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Abstract

In 1938, Delone proved that (x2 + 3y2, x2 + xy + y2) is the unique
pair of non-isometric positive definite integral binary forms
representing same integers. In this talk, we find all pairs of positive
definite binary integral forms representing same integers in the set
Ap,k = {pn + k : n ≥ 0} for any prime p and any non-negative
integer k less than p.
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Some notations

Let f (x , y) = [a, b, c] = ax2 + bxy + cy2 be a (positive
definite integral) binary quadratic form with discriminant
df := b2 − 4ac < 0. We always assume that f is primitive,
that is, (a, b, c) = 1.

The binary Z-lattice corresponding to f is denoted by
Lf = Zx + Zy . It satisfies [Q(x), 2B(x , y),Q(y)] = [a, b, c].
We always assume that the norm ideal of any binary lattice is
Z.

For two binary forms f and g , f is (properly) equivalent to g

if there is a T =

(
r s
t u

)
∈ GL2(Z) (SL2(Z), respectively)

such that f (rx + sy , tx + uy) = g(x , y).

If f is (properly) equivalent to g , then we write f ∼ g
(f ' g , respectively).
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Composition law

Let Sd be the set of all proper equivalence classes of primitive
binary forms with discriminant d . h(d) = |Sd |.
For two classes C1,C2 ∈ Sd , there are [a1, b, c1] ∈ C1 and
[a2, b, c2] ∈ C2 such that (a1, a2) = 1.

The composition C1 · C2 is the class in Sd containing
[a1a2, b, ∗].
Under this composition law, Sd forms an finite abelian group.

The identity class Id is the class containing a form
representing 1.

A class C is called an ambiguous class if C−1 = C.

For binary forms f1 ∈ C1 and f2 ∈ C2, f1 · f2 denotes a form in
the class C1 · C2.
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Some notations

The isometry group O(f ) of f is defined by

O(f ) =

{(
r s
t u

)
∈ GL2(Z) : f (rx + sy , tx + uy) = f (x , y)

}
.

The proper isometry group of f is denoted by O+(f ).

Note that o+(f ) := |O+(f )| = 2 unless df 6= −3,−4. In the
exceptional cases, o+([1, 1, 1]) = 6 and o+([1, 0, 1]) = 4.

We define

R(a, f ) = {(x , y) ∈ Z2 : f (x , y) = a}.

Note that R(a, f ) is a finite set. We define r(a, f ) = |R(a, f )|.
Q(f ) = {a ∈ Z : r(a, f ) 6= 0}.
For a binary lattice L, R(a, L) and Q(L) are similarly defined .
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Some known results

For any positive integer k with (k , d) = 1,∑
C∈Sd

r(k ,C) = wd

∑
n|k

(
d

n

)
,

where (·) is the Kronecker’s symbol and w−3 = 6,w−4 = 4,
otherwise wd = 2.

If h(d) = 1, then we can explicitly compute the number
r(k , f ) for the binary form f with df = d .

h(d) = 1 if and only if d = −3,−4,−8,−11,−19,−43,−67,
−163,−12,−16,−28,−27.
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Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Some remarks

f ∼ g if and only if Lf ' Lg if and only if f ' g or f ' g−1.

For a binary lattice L, the corresponding binary form fL is well
defined only up to equivalence.

For two binary lattices L and M, fL · fM is NOT defined.

If either fL or fM is contained in an ambiguous class, then
fL · fM is well defined up to equivalence.

r(a, fL · fM) + r(a, fL · f −1M ) is independent of the choices of
proper equivalences. Hence it is well defined.

For a class C ∈ Sd and a prime p, if r(p,C) 6= 0, then
r(p,D) = 0 for any D ∈ Sd − {C,C−1} .



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Watson transformations

For any prime p, the Watson transformation Λp(L) of a lattice
L is defined by

Λp(L) = {x ∈ L : Q(x + z) ≡ Q(x) (mod p) ∀z ∈ L}.

Define H = [0, 1, 0].

Note that

Lp = L⊗ Zp 6' H if and only if Q(L) ∩ pZ = Q(Λp(L)).
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Problem

We write (L,M) ' (L′,M ′) if L ' L′,M ' M ′ or
L ' M ′,M ' L′

(Delone, Watson) Q(L) = Q(M) if and only if L ' M or
(L,M) ' ([1, 0, 3], [1, 1, 1]).

For a prime p and an integer k (0 ≤ k ≤ p − 1), define
Ap,k = {pn + k : n ∈ Z+ ∪ {0}}.
(Problem) Find all non-isometric pairs (L,M) of binary
lattices such that

Q(L) ∩ Ap,k = Q(M) ∩ Ap,k 6= ∅.
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Remarks

In the representation point of view, it is convenient to consider
“lattices” rather than “forms”. However if we use the group
structure, we have to consider the proper equivalence classes.

There is NO composition law between equivalences classes of
lattices.

Let p be an odd prime and a be any integer such that −a is a
quadratic non-residue modulo p.

If L = [1, 0, a] and M = [1, 0, p2a], then

Q(L) ∩ pZ = Q(M) ∩ pZ = Q(p2x2 + ap2y2).

Therefore there are infinitely many such pairs if k = 0.
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Useful Lemmas

(Weber) For any (primitive) binary lattice L, there are
infinitely many primes that are represented by L.

(Meyer) For any binary lattice L, L represents infinitely many
primes in the set An,k if Q(L) ∩ An,k 6= ∅.
(Pall’s Lemma) Assume that Lp ' H. Let T be the binary
lattice such that r(p,T ) > 0 and dT = dL. For any integer n,

r(pn, L) = r(n, fL · fT ) + r(n, fL · f −1T )− r

(
n

p
, L

)
.
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Example

Note that C−108 = {[1, 0, 27], [4, 2, 7], [4,−2, 7]}.
Let n = 2a3bk with (k , 6) = 1.

If a > 0 or b > 0, then

r(n, x2 + 27y2) = ω
∑
m|k

(
−3

m

)
,

where

ω =


2 if a = 0 and b ≥ 2 or a ≥ 2 and b = 0,

6 if a is positive even integer and b ≥ 2,

0 otherwise.
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Example

Assume that (n, 6) = 1.

If we define

P = {p : p ≡ 1 (mod 3), 2 is a cubic residue modulo p},

then r(p, [1, 0, 27]) > 0 if and only if p ∈ P.

Let Q be the set of primes that are congruent to 1 modulo 3
and are not represented by [1, 0, 27].

Let

n =
r∏

i=1

peii

s∏
j=1

q
fj
j

t∏
k=1

rgkk ,

where pi ∈ P and qj ∈ Q and rk ≡ 2 (mod 3).

If gk is odd for some k , then r(n, [1, 0, 27]) = 0.
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Example

Assume that gk is even for any k .

Then we have

r(n, x2 + 27y2) =
2

3

r∏
i=1

(ei + 1)
s∏

j=1

((fj + 1) + ε),

where

ε =



0 if
s∏

j=1

(fj + 1) ≡ 0 (mod 3),

2 if
s∏

j=1

(fj + 1) ≡ 1 (mod 3),

−2 otherwise.
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Sublattices with index p

Let L = Zx + Zy be a binary lattice.

The set of sublattices of L with index p is denoted by Γp(L).

Every lattice in Γp(L) is of the form

L−1 := Z(px) + Zy and Lu := Z(x + uy) + Z(py),

where 0 ≤ u ≤ p − 1.

Assume that p is odd.
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Sublattices with index p

If Lp is isotropic unimodular, then each lattice in Γp(L) is
locally isometric to

〈1,−p2〉
(
p − 1

2

)
, 〈∆p,−∆pp

2〉
(
p − 1

2

)
or 〈p,−p〉 (2).

If Lp is anisotropic unimodular, then each lattice in Γp(L) is
locally isometric to

〈1,−∆pp
2〉
(
p + 1

2

)
or 〈∆p,−p2〉

(
p + 1

2

)
.

If Lp = 〈ε1, ε2pt〉 is not unimodular, then each lattice in Γp(L)
is locally isometric to

〈ε1, ε2pt+2〉 (p) or 〈ε1p2, ε2pt〉 (1).
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Sublattices with index p

For any binary lattice K with p | dK , up(K ) :=
(

a
p

)
for any

a ∈ Q(K )− pZ.

We define two subsets Γp,±1(L) of Γp(L) by

Γp,±1(L) := {K ∈ Γp(L) : up(K ) = ±1} .

The number of equivalence classes in Γp,±1(L) :=γp,±1(L).

(Lemma) For the action Φ : O(L)× Γp,±1(L) 7→ Γp,±1(L)
defined by Φ(σ,M) = σ(M), each orbit ob(M) consists of all

lattices isometric to M. Furthermore |ob(M)| = o(L)
o(M) .
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Number of equivalent classes

Assume o(L) = 4 and τx ∈ O(L) for a primitive vector x ∈ L.

If
(
−dL
p

)
= 1, then

γ
p,
(

Q(x)
p

)(L) = 2+
p − 4−

(
−1
p

)
4

and γ
p,−

(
Q(x)
p

)(L) = 0+
p −

(
−1
p

)
4

,

If
(
−dL
p

)
= −1, then

γp,1(L) = γp,−1(L) = 1 +
p − 2 +

(
−1
p

)
4

.

Finally, if p divides the discriminant of L, then

γp,up(L)(L) = 1 +
p − 1

2
and γp,−up(L)(L) = 0.
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Number of equivalent classes

If L = [1, 0, 1], then
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2
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2
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Number of equivalent classes

If L = [1, 1, 1] and p 6= 3 then
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Finally, if L = [1, 1, 1] and p = 3, then γp,1(L) = 1 and
γp,−1(L) = 0.
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When k 6= 0, p 6= 2

Let L and M be binary Z-lattices such that L 6' M and
(L,M) 6' ([1, 1, 1], [1, 0, 3]).

(Main result for k 6= 0, p 6= 2) Two lattices L and M satisfy
the condition

Q(L) ∩ Ap,k = Q(M) ∩ Ap,k 6= ∅

if and only if

L2 ' M2 and every lattice in Γ
p,
(

k
p

)(L) is isometric to M,

or L = [1, 0, 3] and the pair ([1, 1, 1],M) instead of (L,M)
satisfies the above condition. Furthermore in the former case,
it is equivalent to the conditions given in Table I and II:
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Table I

p k o(L) dL

(
Q(x)
p

)
M

3 1 2 1 (mod 3) × [L : M] = 3, up(M) = 1

3 2 2 1 (mod 3) × [L : M] = 3, up(M) = −1

3 1 4 1 (mod 3) × [L : M] = 3, up(M) = 1

3 2 4 1 (mod 3) × [L : M] = 3, up(M) = −1

3 1 4 2 (mod 3) −1 [L : M] = 3, up(M) = 1

3 2 4 2 (mod 3) 1 [L : M] = 3, up(M) = −1

5 1, 4 4 ±1 (mod 5) −1 [L : M] = 5, up(M) = 1

5 2, 3 4 ±1 (mod 5) 1 [L : M] = 5, up(M) = −1

Table I (x ∈ L is a primitive vector such that τx ∈ O(L))
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Table II

p k L M p k L M

3 1 [1, 1, 1] [1, 1, 7] 5 1, 4 [1, 1, 1] [1, 1, 19]

5 2, 3 [1, 1, 1] [3, 3, 7] 7 1, 2, 4 [1, 1, 1] [1, 1, 37]

7 3, 5, 6 [1, 1, 1] [3, 3, 13] 11 2, 6, 7, 8, 10 [1, 1, 1] [7, 1, 13]

13 2, 5, 6, 7, 8, 11 [1, 1, 1] [7, 5, 19] 3 1 [1, 0, 1] [1, 0, 9]

3 2 [1, 0, 1] [2, 2, 5] 5 1, 4 [1, 0, 1] [1, 0, 25]

5 2, 3 [1, 0, 1] [2, 2, 13] 7 1, 2, 4 [1, 0, 1] [1, 0, 49]

Table II
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Sketch of proof

Assume that Q(L) ∩ Ap,k = Q(M) ∩ Ap,k 6= ∅.
Then Lq ' Mq for any q 6= 2, p.

L2 ' M2 or (L2,M2) ' ([1, 1, 1], [1, 0, 3]).

Assume that L2 ' M2.

If Lp ' Mp, then there is a prime q ∈ Q(L) ∩ Ap,k . Since
dL = dM , L ' M.

Therefore we may assume that

Lp ' [ε1, 0, ε2p
α] and Mp ' [ε1, 0, ε2p

β],

where εi ∈ Z×p , β − α ∈ 2Z+ and ε1k ∈ (Z×p )2.
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Sketch of proof

The discriminant of each sublattice of L with index p
(β−α)

2

equal to that of M.

By Meyer’s theorem, the number of sublattices of L with

index p
(β−α)

2 is 1 up to isometry.

From this, we have γ
p,
(

k
p

)(L) = 1.

To consider the case when (L2,M2) ' ([1, 1, 1], [1, 0, 3]), we
need some modification of the above argument.
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When k 6= 0, p = 2

(Main result for k 6= 0, p = 2) For two binary Z-lattices L,M,

Q(L) ∩ A2,1 = Q(M) ∩ A2,1

if and only if

(i) (L,M) ' ([a, b, a], [a, 2b, 4a]), where a ≡ 1 (mod 2) and b ≡ 0
(mod 2) or;

(ii) L2 ' H2 and M is the unique primitive sublattice of L with
index 2.
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Corollaries

Let p be a prime greater than 13 and let gcd(k, p) = 1. For
two binary lattices L and M,

Q(L) ∩ Ap,k = Q(M) ∩ Ap,k

if and only if L ' M or (L,M) ' ([1, 1, 1], [1, 0, 3]).

For two binary lattices L and M such that Q(L) ∩ Ap,k 6= ∅,

r(pn + k , L) = r(pn + k ,M) for any non-negative integer n

if and only if (p, k) = (2, 1), (3, 1), (3, 2), Lp ' Hp and M is
the unique primitive sublattice of L with index p such that

up(M) =
(
k
p

)
only when p = 3.
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Corollaries
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Necessary conditions for k = 0

Let L and M be non-isometric binary lattices such that

Q(L) ∩ pZ = Q(M) ∩ pZ.

Then we have

Lq ' Mq for any q 6= 2, p;

If p 6= 2, then L2 ' M2 or (L2,M2) ' ([1, 1, 1], [1, 0, 3]);

Lp ' H if and only if Mp ' H.

If Lp 6' H, then Q(Λp(L)) = Q(Λp(M)).

Conversely, if neither Lp nor Mp is isometric to H and
Q(Λp(L)) = Q(Λp(M)), then Q(L) ∩ pZ = Q(M) ∩ pZ.
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When L2 ' M2

For two non-isometric binary lattices L and M, assume that
Lp ' Mp ' H and L2 ' M2 if p 6= 2.

Let T be the binary lattice s.t. r(p,T ) > 0 and dT = dL.

(Main result for k = 0, L2 ' M2) Under the above
assumptions,

Q(L)∩pZ = Q(M)∩pZ if and only if |fT | = 4 and fL ∼ fM ·f 2T .

Furthermore, if the above holds, then −4p4 + 1 ≤ dL < 0.

Since f 2T is contained in the ambiguous class, fM · f 2T is well
defined up to equivalence.

The above lower bound for dL is extremal. In fact,
(L,M) = ([1, 1, p4], [p2, 1, p2]) satisfies the above condition.
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Sketch of proof

Assume that Q(L) ∩ pZ = Q(M) ∩ pZ.

Note that for any integer n,

r(pn, fL) = r(n, fL · fT ) + r(n, fL · f −1T )− r
(
n
p , L
)

and

r(pn, fM) = r(n, fM · fT ) + r(n, fM · f −1T )− r
(
n
p ,M

)
.

Using Weber’s Theorem, one may prove that (fL · fT , fL · f −1T )
is properly equivalent to

(fM · fT , fM · f −1
T ), (fM · fT , f −1

M · fT ), (f −1
M · f −1

T , fM · f −1
T ) or

(f −1
M · f −1

T , f −1
M · fT ).

Therefore we have

fL ' fM · f −2T ' fM · f 2T or fL ' f −1M · f −2T ' f −1M · f 2T .
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When L2 6' M2

Assume that Lp ' Mp ' H and L2 ' [1, 1, 1], M2 ' [1, 0, 3].

(Main result for k = 0, L2 6' M2) Under the above
assumptions, Q(L) ∩ pZ = Q(M) ∩ pZ if and only if there are
odd integers a, b such that

L ' [a, b, a], M ' [a, 2b, 4a] and r

(
p2,

[
4, 2,

1− dL
4

])
> 0.

Furthermore, if the above holds, then −4p2 + 1 ≤ dL < 0.

The above lower bound for dL is extremal. In fact,
L = [p, 1, p] and M = [p, 2, 4p] satisfies the above condition.
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When p = 3

fL, fM fL, fM fL, fM

L3 ' M3 ' H3, L2 ' M2 [1, 0, 17], [2, 2, 9] [1, 0, 32], [4, 4, 9] [1, 0, 56], [8, 8, 9]

L3 ' M3 ' H3, L2 ' M2 [7, 0, 8], [4, 4, 15] [1, 0, 65], [9, 8, 9] [5, 0, 13], [2, 2, 33]

L3 ' M3 ' H3, L2 ' M2 [1, 0, 77], [9, 4, 9] [7, 0, 11], [2, 2, 39] [1, 0, 80], [9, 2, 9]

L3 ' M3 ' H3, L2 ' M2 [5, 0, 16], [4, 4, 21] [1, 1, 39], [5, 5, 9] [1, 1, 51], [7, 7, 9]

L3 ' M3 ' H3, L2 ' M2 [1, 1, 69], [9, 7, 9] [1, 1, 81], [9, 1, 9] [5, 1, 15], [7, 3, 11]

L3 ' M3 ' H3, L2 ' M2 [1, 1, 75], [9, 5, 9]

L3 ' M3 ' H3, L2 6' M2 [3, 1, 3], [3, 2, 12] [1, 1, 9], [4, 2, 9] [1, 1, 7], [4, 2, 7]

L3 ' M3 ' H3, L2 6' M2 [1, 1, 3], [4, 2, 3]

Table Q(L) ∩ 3Z = Q(M) ∩ 3Z
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Corollaries

(Corollary) Let p be a prime and let L,M be non isometric
binary lattices. Then r(pn, L) = r(pn,M) for any integer n if
and only if neither Lp nor Mp is isometric to H and
Λp(L) ' Λp(M).

(Corollary) If Q(L) ∩ Ap,k 6= Q(M) ∩ Ap,k , then
(Q(L)− Q(M)) ∩ Ap,k is an infinite set.
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Kaplansky’s conjecture

Let L and M be (positive definite integral) ternary Z-lattices.

(Schiemann) L ' M if and only if r(a, L) = r(a,M) for any
integer a.

(Cerviño-Hein) There are infinitely many counterexamples for
the quaternary case.

What happens if Q(L) = Q(M)?

(Kaplansky’s conjecture) Q(L) = Q(M) if and only if either

(i) both L and M are regular and L ∈ gen(M), or
(ii) (L,M) ' (〈a〉 ⊥ [b, b, b], 〈a, b, 3b〉), or

(iii) (L,M) '

a b
2

b
2

b
2 a b

2
b
2

b
2 a

 , [a, 2b, 2a + b] ⊥ 〈2a− b〉

.



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Kaplansky’s conjecture

Let L and M be (positive definite integral) ternary Z-lattices.

(Schiemann) L ' M if and only if r(a, L) = r(a,M) for any
integer a.

(Cerviño-Hein) There are infinitely many counterexamples for
the quaternary case.

What happens if Q(L) = Q(M)?

(Kaplansky’s conjecture) Q(L) = Q(M) if and only if either

(i) both L and M are regular and L ∈ gen(M), or
(ii) (L,M) ' (〈a〉 ⊥ [b, b, b], 〈a, b, 3b〉), or

(iii) (L,M) '

a b
2

b
2

b
2 a b

2
b
2

b
2 a

 , [a, 2b, 2a + b] ⊥ 〈2a− b〉

.



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Kaplansky’s conjecture

Let L and M be (positive definite integral) ternary Z-lattices.

(Schiemann) L ' M if and only if r(a, L) = r(a,M) for any
integer a.

(Cerviño-Hein) There are infinitely many counterexamples for
the quaternary case.

What happens if Q(L) = Q(M)?

(Kaplansky’s conjecture) Q(L) = Q(M) if and only if either

(i) both L and M are regular and L ∈ gen(M), or
(ii) (L,M) ' (〈a〉 ⊥ [b, b, b], 〈a, b, 3b〉), or

(iii) (L,M) '

a b
2

b
2

b
2 a b

2
b
2

b
2 a

 , [a, 2b, 2a + b] ⊥ 〈2a− b〉

.



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Kaplansky’s conjecture

Let L and M be (positive definite integral) ternary Z-lattices.

(Schiemann) L ' M if and only if r(a, L) = r(a,M) for any
integer a.

(Cerviño-Hein) There are infinitely many counterexamples for
the quaternary case.

What happens if Q(L) = Q(M)?

(Kaplansky’s conjecture) Q(L) = Q(M) if and only if either

(i) both L and M are regular and L ∈ gen(M), or
(ii) (L,M) ' (〈a〉 ⊥ [b, b, b], 〈a, b, 3b〉), or

(iii) (L,M) '

a b
2

b
2

b
2 a b

2
b
2

b
2 a

 , [a, 2b, 2a + b] ⊥ 〈2a− b〉

.



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Kaplansky’s conjecture

Let L and M be (positive definite integral) ternary Z-lattices.

(Schiemann) L ' M if and only if r(a, L) = r(a,M) for any
integer a.

(Cerviño-Hein) There are infinitely many counterexamples for
the quaternary case.

What happens if Q(L) = Q(M)?

(Kaplansky’s conjecture) Q(L) = Q(M) if and only if either

(i) both L and M are regular and L ∈ gen(M), or
(ii) (L,M) ' (〈a〉 ⊥ [b, b, b], 〈a, b, 3b〉), or

(iii) (L,M) '

a b
2

b
2

b
2 a b

2
b
2

b
2 a

 , [a, 2b, 2a + b] ⊥ 〈2a− b〉

.



Well known results Repns of binary forms When k 6= 0 When k = 0 Ternary case

Kaplansky’s conjecture

Let L and M be (positive definite integral) ternary Z-lattices.

(Schiemann) L ' M if and only if r(a, L) = r(a,M) for any
integer a.

(Cerviño-Hein) There are infinitely many counterexamples for
the quaternary case.

What happens if Q(L) = Q(M)?

(Kaplansky’s conjecture) Q(L) = Q(M) if and only if either

(i) both L and M are regular and L ∈ gen(M), or
(ii) (L,M) ' (〈a〉 ⊥ [b, b, b], 〈a, b, 3b〉), or

(iii) (L,M) '

a b
2

b
2

b
2 a b

2
b
2

b
2 a

 , [a, 2b, 2a + b] ⊥ 〈2a− b〉

.


	Well known results
	Repns of binary forms
	When k=0
	When k=0
	Ternary case

