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Basic definitions

k is a field.
The classical u-invariant of k , u(k), is defined as
the supremum of the dimensions of anisotropic quadratic
forms defined over k .
If dim(q) > u(k), then q is isotropic over k .
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This talk will not deal with the more general u-invariant of a
field that is defined for formally real fields.
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Basic examples I

u(algebraically closed field) = 1
u(real closed field) =∞
x2

1 + · · ·+ x2
n is anisotropic over k for all n ≥ 1

u(finite field) = 2
u(p-adic field) = 4
u(nonreal number field) = 4
u(k((t))) = 2u(k)
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If K is a field complete with respect to a discrete valuation
with residue field k , then

u(K ) = 2u(k)
The last result is easy to prove when char k 6= 2 and a bit
harder to prove when char k = 2.

David Leep u-invariant of a rational function field



If K is a field complete with respect to a discrete valuation
with residue field k , then
u(K ) = 2u(k)

The last result is easy to prove when char k 6= 2 and a bit
harder to prove when char k = 2.

David Leep u-invariant of a rational function field



If K is a field complete with respect to a discrete valuation
with residue field k , then
u(K ) = 2u(k)
The last result is easy to prove when char k 6= 2 and a bit
harder to prove when char k = 2.

David Leep u-invariant of a rational function field



Basic examples II

k is a Ci -field if for all d ≥ 1, every homogeneous form defined
over k of degree d in n variables is isotropic over k whenever
n > d i .

If k is a Ci -field, then u(k) ≤ 2i .
Algebraically closed fields are C0-fields.
Finite fields are C1-fields.
It is usually very difficult to determine whether a given field is
a Ci -field for some i .
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There are three ways to construct new Ci -fields from other
ones.

Theorem

Assume that k is a Ci -field. Then
k(t) is a Ci+1-field.
Every algebraic extension of k is a Ci -field.
k((t)) is a Ci+1-field.
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Corollary

Assume that k is a Ci -field. Then

u(k) ≤ 2i ,
u(k(t)) ≤ 2i+1,
For every algebraic extension of E/k, u(E ) ≤ 2i ,
u(k((t))) ≤ 2i+1.

David Leep u-invariant of a rational function field



Corollary

Assume that k is a Ci -field. Then
u(k) ≤ 2i ,

u(k(t)) ≤ 2i+1,
For every algebraic extension of E/k, u(E ) ≤ 2i ,
u(k((t))) ≤ 2i+1.

David Leep u-invariant of a rational function field



Corollary

Assume that k is a Ci -field. Then
u(k) ≤ 2i ,
u(k(t)) ≤ 2i+1,

For every algebraic extension of E/k, u(E ) ≤ 2i ,
u(k((t))) ≤ 2i+1.

David Leep u-invariant of a rational function field



Corollary

Assume that k is a Ci -field. Then
u(k) ≤ 2i ,
u(k(t)) ≤ 2i+1,
For every algebraic extension of E/k, u(E ) ≤ 2i ,

u(k((t))) ≤ 2i+1.

David Leep u-invariant of a rational function field



Corollary

Assume that k is a Ci -field. Then
u(k) ≤ 2i ,
u(k(t)) ≤ 2i+1,
For every algebraic extension of E/k, u(E ) ≤ 2i ,
u(k((t))) ≤ 2i+1.

David Leep u-invariant of a rational function field



Basic questions on u(k(t))

Let k be an arbitrary field and assume that u(k) is finite.
What can be said about u(E ) where E/k is a finite algebraic
extension of k?
What can be said about u(k(t))?
We have the following.

Theorem

2u(k) ≤ 2 sup{u(E ) | E/k finite separable ext.} ≤ u(k(t))

We now consider these questions in more detail.
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First assume that char k = 2.

Recall that k2 is a subfield of k .
We let [k : k2] denote the dimension of k over k2.

Proposition

Let L denote a finite algebraic extension of k. Then

1 [L : L2] = [k : k2]

2 [k(t) : k(t)2] = 2[k : k2]

3 [k : k2] ≤ u(k) ≤ 2[k : k2]

4 u(L) ≤ 2u(k)

5 2u(k) ≤ u(k(t)) ≤ 4u(k)

Proof.

4. u(L) ≤ 2[L : L2] = 2[k : k2] ≤ 2u(k)
5. u(k(t)) ≤ 2[k(t) : k(t)2] = 4[k : k2] ≤ 4u(k)
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For the rest of the talk, assume that fields have characteristic
6= 2.

Many, but not all, of the following results hold in characteristic
2, but for simplicity we avoid this case.
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Basic inequalities - algebraic extensions

Theorem

If [E : k] = r , then u(E ) ≤ r+1
2

u(k).
If [E : k] = r and u(k) = 1, then

u(E ) ≤

{
2 if 1 ≤ r ≤ 4,
r−1

2
if r ≥ 5.

The first statement is optimal for 1 ≤ r ≤ 3.
The second statement is optimal for 1 ≤ r ≤ 8.
No example is known where u(E ) > 2u(k).
Examples are known where u(E ) = 2u(k), u(E ) = 3

2
u(k), and

also many other cases.
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The proof of the theorem depends on the following theorem
about systems of quadratic forms.

Theorem

Let S = {q1, . . . , qr} be a system of quadratic forms defined
over k in n variables.
If n > r(r+1)

2
u(k), then S is isotropic over k.

That is, uk(r , 1) ≤ r(r+1)
2

u(k).
This bound is optimal for r = 1, 2, 3.
Nothing is known in general for r ≥ 4.
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Basic inequalities - rational function fields

Theorem

2u(k) ≤ 2 sup{u(E ) | E/k finite algebraic } ≤ u(k(t))

There exist fields k that have finite extensions with
u(E ) = 2u(k).
Then u(k(t)) ≥ 2u(E ) = 4u(k).
No example is known where u(k(t)) > 4u(k).
In cases when there exists a finite extension with u(E ) > u(k),
the exact value of u(k(t)) is not known. In fact, no upper
bound for u(k(t)) is known.
The only known values of u(k(t)) are powers of two.
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The Milnor exact sequence for the Witt ring W (k) of k gives
the following result.

Theorem

We have I n(E ) = 0 for all finite algebraic extensions E/k if
and only if I n+1(k(t)) = 0.

Recall that I n(E ) is the ideal in W (E ) generated by the n-fold
Pfister forms defined over E .
If u(E ) < 2n, then every n-fold Pfister form defined over E is
hyperbolic over E , and so I n(E ) = 0.
The converse holds for n = 1, 2 but it does not hold for n ≥ 3.
There are fields k with I 3(k) = 0 but u(k) can be arbitrarily
large.
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Theorem

Assume that u(E ) = 1 for all finite algebraic extensions E/k.
Then u(k(t)) = 2.

Proof.

For all finite algebraic extensions, u(E ) = 1 and so I (E ) = 0.
Therefore I 2(k(t)) = 0 by the Milnor exact sequence, and this
implies u(k(t)) ≤ 2.
Since u(k(t)) 6= 1, we have u(k(t)) = 2.
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Assume that u(E ) = 2 for all finite algebraic extensions E/k .

Then u(k(t)) ≥ 4.
Does u(k(t)) = 4?

No.

David Leep u-invariant of a rational function field



Assume that u(E ) = 2 for all finite algebraic extensions E/k .
Then u(k(t)) ≥ 4.

Does u(k(t)) = 4?

No.

David Leep u-invariant of a rational function field



Assume that u(E ) = 2 for all finite algebraic extensions E/k .
Then u(k(t)) ≥ 4.
Does u(k(t)) = 4?

No.

David Leep u-invariant of a rational function field



Assume that u(E ) = 2 for all finite algebraic extensions E/k .
Then u(k(t)) ≥ 4.
Does u(k(t)) = 4?

No.

David Leep u-invariant of a rational function field



Theorem

There exists a field k with u(E ) = 2 for all finite extensions
E/k and such that u(k(t)) ≥ 6. Thus
u(k(t)) > 2 sup{u(E ) | E/k finite algebraic }.

The example comes from work of Colliot-Thélène and Madore.
They constructed a field k with u(E ) = 2 for all finite
extensions E/k and two quadratic forms q1, q2 defined over k
in 5 variables such that {q1, q2} have no nontrivial common
zero defined over k .
Then the Amer-Brumer theorem implies that q1 + tq2 is an
anisotropic quadratic form defined over k(t).
Thus u(k(t)) ≥ 5 and therefore u(k(t)) ≥ 6.
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I found the following generalization of the theorem of
Colliot-Thélène and Madore:

Theorem
Assume that Q is an anisotropic quadratic form defined over
k(t) with dim(Q) = 5, and assume that Q satisfies the
following two conditions.
(1) For each monic irreducible polynomial π ∈ k[t], if
∂2
π(Q) 6= 0, then

1 ∂2
π(Q) is represented by a one-dimensional form over Eπ,

2 ∂1
π(Q) /∈ I 2(Eπ).

3 deg(π) is a 2-power.

(2) If ∂1
∞(Q) 6= 0, then

1 ∂1
∞(Q) is represented by a one-dimensional form over E∞,

2 ∂2
∞(Q) /∈ I 2(E∞).
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Theorem(continued)
Here Eπ denotes the residue field of the valuation on k(t)
corresponding to π, and E∞ is the residue field corresponding
to 1

t
.

Let F be a field such that either F/k is an algebraic extension
with [F : k] odd, or F = k(C ) is the function field of a conic
C defined over k . Then QF (t) is anisotropic over F (t) and
QF (t) satisfies the two conditions above with F in place of k .

It follows that there exists a field extension K of k such that
u(E ) = 2 for all finite extensions E/K and u(K (t)) ≥ 6.

I don’t have an upper bound for u(K (t)) in this case.
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field κ.
The classical example is k = Qp, κ = Fp.
Three methods have been found to prove that u(Qp(t)) = 8.
Parimala and Suresh developed one method for p 6= 2 and
recently handled the case p = 2 also.
Harbater, Hartmann, Krashen used patching techniques for the
case p 6= 2.
I used a theorem of Heath-Brown to give a proof valid for all p
that also is valid for function fields of higher transcendence
degree. (More details below.)
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Becher, Grimm, Van Geel used results based on patching
techniques and valuation theory to prove the following result.

Theorem

Assume that k is a field that is complete with respect to a
discrete valuation having residue field κ and assume that
char κ 6= 2. Then

u(k(t)) = 2 · sup{u(`(t)) | `/κ finite separable extension}.

With k = Qp, κ = Fp, we have u(`(t)) = 4, and so
u(Qp(t)) = 8.
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A generalization of Ci -fields

For d ≥ 0, a field k satisfies property Ci(d) if every system of r
homogeneous forms of degree d defined over k in n variables,
n > rd i , has a nontrivial simultaneous zero defined over k .

If k is a Ci(2)-field, then the case r = 1 shows that u(k) ≤ 2i .
If k is a Ci -field, then Lang-Nagata proved that k is a
Ci(d)-field for all positive integers d .
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For a long time, it was hoped that one could prove that Qp is
a C2(2)-field.

That is, a system of r quadratic forms defined over Qp in n
variables should have a nontrivial common zero defined over
Qp whenever n > 4r (= r · 22).
This is known for r = 1, 2.
For a fixed r ≥ 3, it is known that the result holds for
sufficiently large p compared to r . But for r ≥ 4, no explicit
bound is known for how large p should be compared to r .
The problem remains open.
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Here is a newer approach.

For d ≥ 0, a field k satisfies property Ai(d) if every system of
r homogeneous forms of degree d defined over k in n
variables, n > rd i , has a nontrivial simultaneous zero in an
extension field over k of degree prime to d .
Write k ∈ Ai(d) if k is an Ai(d)-field.
If k is a Ci(d)-field, then k is an Ai(d)-field.
If k ∈ Ai(2), then the case r = 1 and Springer’s theorem on
odd degree extensions shows that u(k) ≤ 2i .
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If k is an Ai(d)-field, then k(t) is an Ai+1(d)-field.

If k is an Ai(d)-field and d is a prime power, then every
algebraic extension E/k is an Ai(d)-field.

Thus if k is an Ai(2)-field, then k(t1, . . . , tm) is an
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Theorem

Qp is an A2(2)-field.

Corollary

u(Qp(t1, . . . , tm)) = 2m+2

Proof.

Qp(t1, . . . , tm) is an A2+m(2)-field, so
u(Qp(t1, . . . , tm)) ≤ 2m+2.
We have u(Qp(t1, . . . , tm)) ≥ 2m+2 by straightforward
valuation theory.
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To prove that Qp is an A2(2)-field, we need the following
theorem proved by Heath-Brown.

Theorem

Let K be a p-adic field with residue field F .
Let S = {q1, . . . , qr} be a system of r quadratic forms defined
over K in n variables.
If n > 4r and |F | ≥ (2r)r , then S is isotropic over K .

We now use this theorem to prove that Qp is an A2(2)-field.
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Let S = {q1, . . . , qr} be a system of r quadratic forms defined
over Qp in n variables and assume that n > r · 22 = 4r .

Let Fp be the residue field of Qp.
If K is an unramified extension of Qp with residue field E and
[K : Qp] = l , then [E : Fp] = [K : Qp] = l and
|E | = |Fp|l = pl .
Since Fp is a finite field, it is known that such unramified
extensions exist for every l ≥ 1.
Thus there exists such a K with l odd and |E | = pl ≥ (2r)r .
Then Heath-Brown’s theorem implies that S is isotropic over
K .
Since [K : Qp] is odd, it follows that Qp ∈ A2(2).
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer’s theorem)

Let q1, q2 be two quadratic forms defined over k.
Then q1, q2 vanish on a common m-dimensional space over k
if and only if
q1 + tq2 vanishes on an m-dimensional space over k(t)).

Lemma

Let Q be a quadratic form defined over k(t).
Then there exist two quadratic forms q1, q2 defined over k
such that
Q = q1 + tq2 in W (k(t)).
That is, Q ⊥ mH ' q1 + tq2 over k(t) for some m ≥ 0.
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Let uk(2,m) denote the largest integer N such that there exist
quadratic forms q1, q2 defined over k in N variables that do
not vanish on a common m-dimensional space over k .

Set uk(2,m) =∞ if no such integer exists.
The two lemmas are needed to prove the following theorem.

Theorem

u(k(t)) = supm≥1{uk(2,m)− 2(m − 1)}
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Proposition

Let n ≥ 1.

1 2 ≤ uk(2,m + 1)− uk(2,m) ≤ 3 for all m ≥ 1.

2 uk(2, 1) + 2(m − 1) ≤ uk(2,m) ≤ uk(2, 1) + 3(m − 1) for
all m ≥ 1.

3 u(k(t)) is finite if and only if there exists an integer N
such that uk(2,m + 1) = uk(2,m) + 2, for all n ≥ N.

4 u(k(t)) ≤ N if and only uk(2,m) ≤ N + 2(m − 1) for all
m ≥ 1.
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Suppose for some N that uk(2,m) ≤ N + 2(m − 1) for all
m ≥ 1.

Let q1, q2 be quadratic forms defined over k in n variables
where n = N + 2(m − 1) + 1 > uk(2,m).
Then q1, q2 vanish on an m-dimensional space over k .
We can assume that q1, q2 vanish on the m-dimensional space
given by xm+1 = · · · = xn = 0.
Then

q1 = x1L1(xm+1, . . . , xn) + · · ·+ xmLm + Q1(xm+1, . . . , xn)

q2 = x1M1(xm+1, . . . , xn) + · · ·+ xmMm + Q2(xm+1, . . . , xn)
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The 2m linear forms L1(xm+1, . . . , xn), . . . , Lm,M1, . . . ,Mm

span a vector space of dimension at most n −m and
n −m = N + m − 1.
For large m, L1, . . . , Lm,M1, . . . ,Mm are highly linearly
dependent.
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I have found a way to construct spaces of zeros of q1, q2 where
the 2m linear forms span a vector space whose dimension has
order of magnitude equal to 3

2
m.

David Leep u-invariant of a rational function field



Suppose that k is an algebraically closed field, char k 6= 2.

Then u(k(t)) = 2 because k(t) is a C1-field (or by an
argument from an earlier slide).
I have given a direct proof that uk(2,m) = 2m for all m ≥ 1.
Thus u(k(t)) = supm≥1{uk(2,m)− 2(m − 1)} = 2.
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THANK YOU
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