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Basic definitions

k is a field.

The classical u-invariant of k, u(k), is defined as

the supremum of the dimensions of anisotropic quadratic
forms defined over k.

If dim(q) > u(k), then g is isotropic over k.
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This talk will not deal with the more general u-invariant of a
field that is defined for formally real fields.
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Basic examples |

u(algebraically closed field) =1
u(real closed field) = oo

x2 + -+ + x2 is anisotropic over k for all n > 1

u(finite field) = 2
u(p-adic field) = 4
u(nonreal number field) = 4
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Basic examples |

u(algebraically closed field) =1

u(real closed field) = oo

x2 + -+ + x2 is anisotropic over k for all n > 1
u(finite field) = 2

u(p-adic field) = 4

u(nonreal number field) =
(k

u(k((t))) = 2u(k)
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If K is a field complete with respect to a discrete valuation
with residue field k, then
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If K is a field complete with respect to a discrete valuation
with residue field k, then
u(K) = 2u(k)
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If K is a field complete with respect to a discrete valuation
with residue field k, then

u(K) = 2u(k)

The last result is easy to prove when char k # 2 and a bit
harder to prove when char k = 2.
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Basic examples Il

k is a C;-field if for all d > 1, every homogeneous form defined
over k of degree d in n variables is isotropic over k whenever
n>d'.
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Basic examples Il

k is a C;-field if for all d > 1, every homogeneous form defined
over k of degree d in n variables is isotropic over k whenever

n>d'.

If k is a C;-field, then u(k) < 2'.

Algebraically closed fields are Cy-fields.

Finite fields are C;-fields.

It is usually very difficult to determine whether a given field is
a C;-field for some 1.
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There are three ways to construct new C;-fields from other
ones.
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ones.

Assume that k is a C;-field. Then
k(t) is a C;1-field.
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There are three ways to construct new C;-fields from other
ones.

Assume that k is a C;-field. Then
k(t) is a C;1-field.
Every algebraic extension of k is a C;-field.
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There are three ways to construct new C;-fields from other
ones.

Assume that k is a C;-field. Then

k(t) is a Ciy1-field.

Every algebraic extension of k is a C;-field.
k((t)) is a C,'Jrl-fie/d.
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Corollary

Assume that k is a C;-field. Then
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Corollary

Assume that k is a C;-field. Then
u(k) <27,
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Assume that k is a C;-field. Then
u(k) <27,
u(k(t)) <21,
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Corollary

Assume that k is a C;-field. Then

u(k) <27,

u(k(t)) <271,

For every algebraic extension of E /k, u(E) < 2/,
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Corollary

Assume that k is a C;-field. Then

u(k) <27,

u(k(t)) <271,

For every algebraic extension of E /k, u(E) < 2/,
u(k((t))) < 2.
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Basic questions on u(k(t))
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Basic questions on u(k(t))

Let k be an arbitrary field and assume that u(k) is finite.
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Basic questions on u(k(t))

Let k be an arbitrary field and assume that u(k) is finite.
What can be said about u(E) where E/k is a finite algebraic
extension of k?
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Basic questions on u(k(t))

Let k be an arbitrary field and assume that u(k) is finite.
What can be said about u(E) where E/k is a finite algebraic
extension of k?

What can be said about u(k(t))?

We have the following.

2u(k) < 2sup{u(E) | E/k finite separable ext.} < u(k(t))
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Basic questions on u(k(t))

Let k be an arbitrary field and assume that u(k) is finite.
What can be said about u(E) where E/k is a finite algebraic
extension of k?

What can be said about u(k(t))?

We have the following.

2u(k) < 2sup{u(E) | E/k finite separable ext.} < u(k(t))

We now consider these questions in more detail.
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First assume that char k = 2.
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First assume that char k = 2.
Recall that k2 is a subfield of k.
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First assume that char k = 2.
Recall that k? is a subfield of k.
We let [k : k?] denote the dimension of k over k2.

David Leep u-invariant of a rational function field



First assume that char k = 2.
Recall that k? is a subfield of k.
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Let L denote a finite algebraic extension of k. Then
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First assume that char k = 2.
Recall that k? is a subfield of k.
We let [k : k?] denote the dimension of k over k2.

Proposition

Let L denote a finite algebraic extension of k. Then
Q [L:L?]=[k: K]
Q [k(t) : k(t)?] = 2[k : k?]
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First assume that char k = 2.
Recall that k? is a subfield of k.
We let [k : k?] denote the dimension of k over k2.

Proposition

Let L denote a finite algebraic extension of k. Then
Q [L:L?]=[k: K]
Q [k(t) : k(t)?] = 2[k : k?]
Q [k: k3] < u(k) < 2[k : k?]
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First assume that char k = 2.
Recall that k? is a subfield of k.
We let [k : k?] denote the dimension of k over k2.

Proposition

Let L denote a finite algebraic extension of k. Then
Q [L: L] =[k: Kk
Q [k(t) : k(t)?] = 2[k : k?]
[k'k2]<u( ) < 2[k : k3]
u(L) < 2u(k)
Q 2u(k) < u(k(t)) < 4du(k)
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First assume that char k = 2.
Recall that k? is a subfield of k.
We let [k : k?] denote the dimension of k over k2.

Proposition

Let L denote a finite algebraic extension of k. Then
Q [L: L] =[k: Kk
Q [k(t) : k(t)?] = 2[k : k?]
[k'k2]<u( ) < 2[k : k3]
u(L) < 2u(k)
Q 2u(k) < u(k(t)) < 4du(k)

4. u(L) < 2[L: L?] = 2[k : k?] < 2u(k)
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First assume that char k = 2.
Recall that k? is a subfield of k.
We let [k : k?] denote the dimension of k over k2.

Proposition

Let L denote a finite algebraic extension of k. Then
Q [L: L] =[k: Kk
Q [k(t) : k(t)?] = 2[k : k?]
[k'k2]<u( ) < 2[k : k3]
u(L) < 2u(k)
Q 2u(k) < u(k(t)) < 4du(k)

4. u(L) < 2L: 12 = 2[k : k2] < 2u(k)
5. u(k(t)) < 2[k(t) : k(t)?] =4[k : k2] < 4u(k) O
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For the rest of the talk, assume that fields have characteristic

42,
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For the rest of the talk, assume that fields have characteristic

42,

Many, but not all, of the following results hold in characteristic
2, but for simplicity we avoid this case.
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Basic inequalities - algebraic extensions
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Basic inequalities - algebraic extensions

If[E : k] = r, then u(E) < “Hu(k).
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Basic inequalities - algebraic extensions

If[E : k] = r, then u(E) < “Flu (k)
If [E: k] =r and u(k) =1, the

u(E) <

2 ifl<r<a4,
% if r > 5.
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Basic inequalities - algebraic extensions

If[E : k] = r, then u(E) < “Hu(k).
If [E : k] = r and u(k) =1, then

u(E) <

2 ifl<r<a4,
% if r > 5.

The first statement is optimal for 1 < r < 3.
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Basic inequalities - algebraic extensions

If[E : k] = r, then u(E) < “Lu(k).
If[E:k]=rand u(k)=1,

The first statement is optimal for 1 < r < 3.
The second statement is optimal for 1 < r < 8.
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Basic inequalities - algebraic extensions

If[E : k] = r, then u(E) < “Hu(k).
If [E : k] = r and u(k) =1, then

u(E) <49, ;
71 if r > 5.

{2 ifl1<r<a

The first statement is optimal for 1 < r < 3.
The second statement is optimal for 1 < r < 8.
No example is known where u(E) > 2u(k).
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Basic inequalities - algebraic extensions

If[E : k] = r, then u(E) < “Lu(k).
If[E:k]=rand u(k)=1,

The first statement is optimal for 1 < r < 3.

The second statement is optimal for 1 < r < 8.

No example is known where u(E) > 2u(k).

Examples are known where u(E) = 2u(k), u(E) = 2u(k), and
also many other cases.

David Leep u-invariant of a rational function field



The proof of the theorem depends on the following theorem
about systems of quadratic forms.
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The proof of the theorem depends on the following theorem
about systems of quadratic forms.

Let S ={qi1,...,q,} be a system of quadratic forms defined
over k in n variables.
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The proof of the theorem depends on the following theorem
about systems of quadratic forms.

Let S ={qi1,...,q,} be a system of quadratic forms defined

over k in n variables.

If n > "y (k), then S is isotropic over k.

2
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The proof of the theorem depends on the following theorem
about systems of quadratic forms.

Let S ={qi1,...,q,} be a system of quadratic forms defined

over k in n variables.
If n > "y (k), then S is isotropic over k.

2

That is, uy(r,1) < B u(k).
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The proof of the theorem depends on the following theorem
about systems of quadratic forms.

Let S ={qi1,...,q,} be a system of quadratic forms defined

over k in n variables.

If n > "y (k), then S is isotropic over k.

2

That is, uy(r,1) < B u(k).
This bound is optimal for r = 1,2, 3.
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The proof of the theorem depends on the following theorem
about systems of quadratic forms.

Let S ={qi1,...,q,} be a system of quadratic forms defined

over k in n variables.

If n > "y (k), then S is isotropic over k.

2

That is, uy(r,1) < B u(k).
This bound is optimal for r = 1,2, 3.
Nothing is known in general for r > 4.
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Basic inequalities - rational function fields
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Basic inequalities - rational function fields

2u(k) < 2sup{u(E) | E/k finite algebraic } < u(k(t))
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Basic inequalities - rational function fields

2u(k) < 2sup{u(E) | E/k finite algebraic } < u(k(t))

There exist fields k that have finite extensions with
u(E) =2u(k).
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Basic inequalities - rational function fields

2u(k) < 2sup{u(E) | E/k finite algebraic } < u(k(t))

There exist fields k that have finite extensions with
u(E) =2u(k).
Then u(k(t)) > 2u(E) = 4u(k).
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Basic inequalities - rational function fields

2u(k) < 2sup{u(E) | E/k finite algebraic } < u(k(t))

There exist fields k that have finite extensions with
u(E) =2u(k).

Then u(k(t)) > 2u(E) = 4u(k).

No example is known where u(k(t)) > 4u(k).
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Basic inequalities - rational function fields

2u(k) < 2sup{u(E) | E/k finite algebraic } < u(k(t))

There exist fields k that have finite extensions with

u(E) =2u(k).

Then u(k(t)) > 2u(E) = 4u(k).

No example is known where u(k(t)) > 4u(k).

In cases when there exists a finite extension with u(E) > u(k),
the exact value of u(k(t)) is not known. In fact, no upper
bound for u(k(t)) is known.
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Basic inequalities - rational function fields

2u(k) < 2sup{u(E) | E/k finite algebraic } < u(k(t))

There exist fields k that have finite extensions with

u(E) =2u(k).

Then u(k(t)) > 2u(E) = 4u(k).

No example is known where u(k(t)) > 4u(k).

In cases when there exists a finite extension with u(E) > u(k),
the exact value of u(k(t)) is not known. In fact, no upper
bound for u(k(t)) is known.

The only known values of u(k(t)) are powers of two.
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The Milnor exact sequence for the Witt ring W(k) of k gives
the following result.
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The Milnor exact sequence for the Witt ring W(k) of k gives
the following result.

We have I"(E) = O for all finite algebraic extensions E [k if
and only if I""1(k(t)) = 0.
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The Milnor exact sequence for the Witt ring W(k) of k gives
the following result.

We have I"(E) = O for all finite algebraic extensions E [k if
and only if I""1(k(t)) = 0.

Recall that /”(E) is the ideal in W(E) generated by the n-fold
Pfister forms defined over E.
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The Milnor exact sequence for the Witt ring W(k) of k gives
the following result.

We have I"(E) = 0 for all finite algebraic extensions E [k if
and only if I""1(k(t)) = 0.

Recall that /”(E) is the ideal in W(E) generated by the n-fold
Pfister forms defined over E.

If u(E) < 2", then every n-fold Pfister form defined over E is
hyperbolic over E, and so /"(E) = 0.
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The Milnor exact sequence for the Witt ring W(k) of k gives
the following result.

We have I"(E) = 0 for all finite algebraic extensions E [k if
and only if I""1(k(t)) = 0.

Recall that /”(E) is the ideal in W(E) generated by the n-fold
Pfister forms defined over E.

If u(E) < 2", then every n-fold Pfister form defined over E is
hyperbolic over E, and so /"(E) = 0.

The converse holds for n = 1,2 but it does not hold for n > 3.
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The Milnor exact sequence for the Witt ring W(k) of k gives
the following result.

We have I"(E) = 0 for all finite algebraic extensions E [k if
and only if I""1(k(t)) = 0.

Recall that /”(E) is the ideal in W(E) generated by the n-fold
Pfister forms defined over E.

If u(E) < 2", then every n-fold Pfister form defined over E is
hyperbolic over E, and so /"(E) = 0.

The converse holds for n = 1,2 but it does not hold for n > 3.
There are fields k with /3(k) = 0 but u(k) can be arbitrarily
large.
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Assume that u(E) =1 for all finite algebraic extensions E /k.
Then u(k(t)) = 2.
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Assume that u(E) =1 for all finite algebraic extensions E /k.
Then u(k(t)) = 2.
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Assume that u(E) =1 for all finite algebraic extensions E /k.
Then u(k(t)) = 2.

For all finite algebraic extensions, u(E) =1 and so /(E) = 0.

A\
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Assume that u(E) =1 for all finite algebraic extensions E /k.
Then u(k(t)) = 2.

| A

Proof.
For all finite algebraic extensions, u(E) =1 and so /(E) = 0.
Therefore /?(k(t)) = 0 by the Milnor exact sequence, and this

implies u(k(t)) < 2.

A\
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Assume that u(E) =1 for all finite algebraic extensions E /k.
Then u(k(t)) = 2.

Proof.

For all finite algebraic extensions, u(E) =1 and so /(E) = 0.
Therefore /?(k(t)) = 0 by the Milnor exact sequence, and this
implies u(k(t)) < 2.

Since u(k(t)) # 1, we have u(k(t)) = 2. O

| A

<

David Leep u-invariant of a rational function field



Assume that u(E) = 2 for all finite algebraic extensions E /k.
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Assume that u(E) = 2 for all finite algebraic extensions E /k.
Then u(k(t)) > 4.
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Assume that u(E) = 2 for all finite algebraic extensions E /k.
Then u(k(t)) > 4.
Does u(k(t)) = 47
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Assume that u(E) = 2 for all finite algebraic extensions E /k.
Then u(k(t)) > 4.
Does u(k(t)) = 47

No.
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There exists a field k with u(E) = 2 for all finite extensions
E/k and such that u(k(t)) > 6. Thus
u(k(t)) > 2sup{u(E) | E/k finite algebraic }.
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There exists a field k with u(E) = 2 for all finite extensions
E/k and such that u(k(t)) > 6. Thus
u(k(t)) > 2sup{u(E) | E/k finite algebraic }.

The example comes from work of Colliot-Thélene and Madore.
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There exists a field k with u(E) = 2 for all finite extensions
E/k and such that u(k(t)) > 6. Thus
u(k(t)) > 2sup{u(E) | E/k finite algebraic }.

The example comes from work of Colliot-Thélene and Madore.
They constructed a field k with u(E) = 2 for all finite
extensions E/k and two quadratic forms g, g, defined over k
in 5 variables such that {gi, g»} have no nontrivial common
zero defined over k.
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There exists a field k with u(E) = 2 for all finite extensions
E/k and such that u(k(t)) > 6. Thus
u(k(t)) > 2sup{u(E) | E/k finite algebraic }.

The example comes from work of Colliot-Thélene and Madore.
They constructed a field k with u(E) = 2 for all finite
extensions E/k and two quadratic forms g, g, defined over k
in 5 variables such that {gi, g»} have no nontrivial common
zero defined over k.

Then the Amer-Brumer theorem implies that g; + tg, is an
anisotropic quadratic form defined over k(t).
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There exists a field k with u(E) = 2 for all finite extensions
E/k and such that u(k(t)) > 6. Thus
u(k(t)) > 2sup{u(E) | E/k finite algebraic }.

The example comes from work of Colliot-Thélene and Madore.
They constructed a field k with u(E) = 2 for all finite
extensions E/k and two quadratic forms g, g, defined over k
in 5 variables such that {gi, g»} have no nontrivial common
zero defined over k.

Then the Amer-Brumer theorem implies that g; + tg, is an
anisotropic quadratic form defined over k(t).

Thus u(k(t)) > 5 and therefore u(k(t)) > 6.
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| found the following generalization of the theorem of
Colliot-Thélene and Madore:
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| found the following generalization of the theorem of
Colliot-Thélene and Madore:

Theorem
Assume that @ is an anisotropic quadratic form defined over
k(t) with dim(Q) = 5, and assume that @ satisfies the

following two conditions.
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| found the following generalization of the theorem of
Colliot-Thélene and Madore:

Theorem

Assume that @ is an anisotropic quadratic form defined over
k(t) with dim(Q) = 5, and assume that @ satisfies the

following two conditions.
(1) For each monic irreducible polynomial 7 € k[t], if

02(Q) # 0, then

@ 0?(Q) is represented by a one-dimensional form over E,,
@ 9:(Q) & I*(Ex).
© deg(m) is a 2-power.
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| found the following generalization of the theorem of
Colliot-Thélene and Madore:

Theorem

Assume that @ is an anisotropic quadratic form defined over
k(t) with dim(Q) = 5, and assume that @ satisfies the
following two conditions.

(1) For each monic irreducible polynomial 7 € k[t], if

02(Q) # 0, then
@ 0?(Q) is represented by a one-dimensional form over E,,
@ 9:(Q) & I*(Ex).
© deg(m) is a 2-power.

(2) If 0L(Q) # 0, then

@ 01 (Q) is represented by a one-dimensional form over E,

Q@ 9%%.(Q) ¢ I(Ex)-
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Theorem(continued)
Here E, denotes the residue field of the valuation on k(t)
corresponding to 7, and E., is the residue field corresponding
to 1.

t
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Theorem(continued)
Here E, denotes the residue field of the valuation on k(t)

corresponding to 7, and E., is the residue field corresponding
to 1.
t

Let F be a field such that either F/k is an algebraic extension
with [F : k] odd, or F = k(C) is the function field of a conic
C defined over k. Then Qf(¢) is anisotropic over F(t) and
QF(¢) satisfies the two conditions above with F in place of k.
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Theorem(continued)

Here E, denotes the residue field of the valuation on k(t)
corresponding to 7, and E., is the residue field corresponding
to %

Let F be a field such that either F/k is an algebraic extension
with [F : k] odd, or F = k(C) is the function field of a conic
C defined over k. Then Qf(¢) is anisotropic over F(t) and
QF(¢) satisfies the two conditions above with F in place of k.

It follows that there exists a field extension K of k such that
u(E) = 2 for all finite extensions E/K and u(K(t)) > 6.
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Theorem(continued)
Here E, denotes the residue field of the valuation on k(t)
corresponding to 7, and E., is the residue field corresponding
to 1.

t

Let F be a field such that either F/k is an algebraic extension
with [F : k] odd, or F = k(C) is the function field of a conic
C defined over k. Then Qf(¢) is anisotropic over F(t) and
QF(¢) satisfies the two conditions above with F in place of k.

It follows that there exists a field extension K of k such that
u(E) = 2 for all finite extensions E/K and u(K(t)) > 6.

| don't have an upper bound for u(K(t)) in this case.
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The u-invariant of rational function fields over a

complete discretely valued field
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field .
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field .
The classical example is k = Q,, k = F.
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field .

The classical example is k = Q,, k = F.

Three methods have been found to prove that u(Q,(t)) = 8.
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field .

The classical example is k = Q,, k = F.

Three methods have been found to prove that u(Q,(t)) = 8.
Parimala and Suresh developed one method for p # 2 and
recently handled the case p = 2 also.
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field .

The classical example is k = Q,, k = F.

Three methods have been found to prove that u(Q,(t)) = 8.
Parimala and Suresh developed one method for p # 2 and
recently handled the case p = 2 also.

Harbater, Hartmann, Krashen used patching techniques for the
case p # 2.
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The u-invariant of rational function fields over a

complete discretely valued field

Assume that k is a field that is complete with respect to a
discrete valuation having residue field .

The classical example is k = Q,, k = F.

Three methods have been found to prove that u(Q,(t)) = 8.
Parimala and Suresh developed one method for p # 2 and
recently handled the case p = 2 also.

Harbater, Hartmann, Krashen used patching techniques for the
case p # 2.

| used a theorem of Heath-Brown to give a proof valid for all p
that also is valid for function fields of higher transcendence
degree. (More details below.)
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Becher, Grimm, Van Geel used results based on patching
techniques and valuation theory to prove the following result.
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Becher, Grimm, Van Geel used results based on patching
techniques and valuation theory to prove the following result.

Theorem

Assume that k is a field that is complete with respect to a
discrete valuation having residue field k and assume that
charx # 2. Then

u(k(t)) = 2-sup{u(l(t)) | ¢/~ finite separable extension}.

v
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Becher, Grimm, Van Geel used results based on patching
techniques and valuation theory to prove the following result.

Theorem

Assume that k is a field that is complete with respect to a
discrete valuation having residue field k and assume that
charx # 2. Then

u(k(t)) = 2-sup{u(l(t)) | ¢/~ finite separable extension}.

v

With k = Q,,, k = F,, we have u({(t)) = 4, and so
u(Q(1)) = 6.
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A generalization of C;-fields

For d > 0, a field k satisfies property C;(d) if every system of r
homogeneous forms of degree d defined over k in n variables,
n > rd’, has a nontrivial simultaneous zero defined over k.
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A generalization of C;-fields

For d > 0, a field k satisfies property C;(d) if every system of r
homogeneous forms of degree d defined over k in n variables,

n > rd’, has a nontrivial simultaneous zero defined over k.

If k is a C;(2)-field, then the case r = 1 shows that u(k) < 2.
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A generalization of C;-fields

For d > 0, a field k satisfies property C;(d) if every system of r
homogeneous forms of degree d defined over k in n variables,
n > rd’, has a nontrivial simultaneous zero defined over k.

If k is a C;(2)-field, then the case r = 1 shows that u(k) < 2.
If k is a C;-field, then Lang-Nagata proved that k is a
Ci(d)-field for all positive integers d.
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If k is a C;(d)-field, then k(t) is an C;,1(d)-field.
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If k is a C;(d)-field, then k(t) is an C;,1(d)-field.
If k is a C;(d)-field, then every algebraic extension of k is a
Ci(d)-field.
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If k is a C;(d)-field, then k(t) is an C;,1(d)-field.
If k is a C;(d)-field, then every algebraic extension of k is a
Ci(d)-field.

Thus if k is an C;(2)-field, then k(ti,...,tn) is an
Cirm(2)-field and u(k(ty,. .., ty,)) < 277
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For a long time, it was hoped that one could prove that Q,, is
a Cy(2)-field.
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For a long time, it was hoped that one could prove that Q,, is

a Cy(2)-field.
That is, a system of r quadratic forms defined over Q, in n
variables should have a nontrivial common zero defined over

Q, whenever n > 4r (= r - 2?).
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For a long time, it was hoped that one could prove that Q,, is
a Cy(2)-field.

That is, a system of r quadratic forms defined over Q, in n
variables should have a nontrivial common zero defined over
Q, whenever n > 4r (= r - 2?).

This is known for r =1, 2.
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For a long time, it was hoped that one could prove that Q,, is
a Cy(2)-field.

That is, a system of r quadratic forms defined over Q, in n
variables should have a nontrivial common zero defined over
Q, whenever n > 4r (= r - 2?).

This is known for r =1, 2.

For a fixed r > 3, it is known that the result holds for
sufficiently large p compared to r. But for r > 4, no explicit
bound is known for how large p should be compared to r.
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For a long time, it was hoped that one could prove that Q,, is
a Cy(2)-field.

That is, a system of r quadratic forms defined over Q, in n
variables should have a nontrivial common zero defined over
Q, whenever n > 4r (= r - 2?).

This is known for r =1, 2.

For a fixed r > 3, it is known that the result holds for
sufficiently large p compared to r. But for r > 4, no explicit
bound is known for how large p should be compared to r.
The problem remains open.
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Here is a newer approach.
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Here is a newer approach.

For d > 0, a field k satisfies property A;(d) if every system of
r homogeneous forms of degree d defined over k in n
variables, n > rd’, has a nontrivial simultaneous zero in an
extension field over k of degree prime to d.
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Here is a newer approach.

For d > 0, a field k satisfies property A;(d) if every system of
r homogeneous forms of degree d defined over k in n
variables, n > rd’, has a nontrivial simultaneous zero in an
extension field over k of degree prime to d.

Write k € A;(d) if k is an A;(d)-field.
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Here is a newer approach.

For d > 0, a field k satisfies property A;(d) if every system of
r homogeneous forms of degree d defined over k in n
variables, n > rd’, has a nontrivial simultaneous zero in an
extension field over k of degree prime to d.

Write k € A;(d) if k is an A;(d)-field.

If k is a C;(d)-field, then k is an A;(d)-field.
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Here is a newer approach.

For d > 0, a field k satisfies property A;(d) if every system of
r homogeneous forms of degree d defined over k in n
variables, n > rd’, has a nontrivial simultaneous zero in an
extension field over k of degree prime to d.

Write k € A;(d) if k is an A;(d)-field.

If k is a C;(d)-field, then k is an A;(d)-field.

If k € A;(2), then the case r = 1 and Springer's theorem on
odd degree extensions shows that u(k) < 2,
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If k is an A;(d)-field, then k(t) is an A;;1(d)-field.
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If k is an A;(d)-field, then k(t) is an A;;1(d)-field.
If k is an A;(d)-field and d is a prime power, then every
algebraic extension E /k is an A;(d)-field.
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If k is an A;(d)-field, then k(t) is an A;;1(d)-field.
If k is an A;(d)-field and d is a prime power, then every
algebraic extension E /k is an A;(d)-field.

Thus if k is an A;(2)-field, then k(ty,...,ty) is an
Aiym(2)-field and thus u(k(ty, ..., ty)) < 277M.
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Q, is an Ay(2)-field.
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Q, is an Ax(2)-field.

U(Qp(tl, cee tm)) — om+2
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Q, is an Ay(2)-field.

U(Qp(tl, cee tm)) _ om+2

Q,(t, ..., ty) is an Aoy ,(2)-field, so
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Q, is an Ay(2)-field.

U(Qp(tl, cee tm)) _ om+2

Q,(t, ..., ty) is an Aoy ,(2)-field, so
u(Qp(ty, ..., tm)) < 2mF2
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Q, is an Ay(2)-field.

U(Qp(tl, cee tm)) _ om+2

Q,(t, ..., ty) is an Aoy ,(2)-field, so

u(Qp(ty, ..., tm)) < 2mF2
We have u(Qp(ts, ..., tm)) > 2™ by straightforward
valuation theory. O]
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To prove that Q,, is an A»(2)-field, we need the following
theorem proved by Heath-Brown.
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To prove that Q,, is an A»(2)-field, we need the following
theorem proved by Heath-Brown.

Let K be a p-adic field with residue field F.
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To prove that Q,, is an A»(2)-field, we need the following
theorem proved by Heath-Brown.

Let K be a p-adic field with residue field F.
Let S ={aqi,...,q,} be a system of r quadratic forms defined
over K in n variables.
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To prove that Q,, is an A»(2)-field, we need the following
theorem proved by Heath-Brown.

Let K be a p-adic field with residue field F.
Let S ={aqi,...,q,} be a system of r quadratic forms defined
over K in n variables.

If n> 4r and |F| > (2r)", then S is isotropic over K.
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To prove that Q,, is an A»(2)-field, we need the following
theorem proved by Heath-Brown.

Let K be a p-adic field with residue field F.
Let S ={aqi,...,q,} be a system of r quadratic forms defined

over K in n variables.
If n> 4r and |F| > (2r)", then S is isotropic over K.

We now use this theorem to prove that Q, is an A,(2)-field.
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.
Let F, be the residue field of Q,.
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.

Let F, be the residue field of Q,.

If K is an unramified extension of Q, with residue field E and
[K:Q,] =1 then [E:F,]=[K:Q,]=1and

El=F,/ =
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.

Let F, be the residue field of Q,.

If K is an unramified extension of Q, with residue field E and
[K:Q,] =1 then [E:F,]=[K:Q,]=1and

= [Fyl! = p'.

Since F, is a finite field, it is known that such unramified
extensions exist for every | > 1.
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.

Let F, be the residue field of Q,.

If K is an unramified extension of Q, with residue field E and
[K:Q,] =1 then [E:F,]=[K:Q,]=1and

El= [,/ =

Since F, is a finite field, it is known that such unramified
extensions exist for every | > 1.

Thus there exists such a K with / odd and |E| = p/ > (2r)".
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.

Let F, be the residue field of Q,.

If K is an unramified extension of Q, with residue field E and
[K:Q,] =1 then [E:F,]=[K:Q,]=1and

= [Fyl! = p'.

Since F, is a finite field, it is known that such unramified
extensions exist for every | > 1.

Thus there exists such a K with / odd and |E| = p/ > (2r)".
Then Heath-Brown's theorem implies that S is isotropic over
K.
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Let S ={q1,...,q,} be a system of r quadratic forms defined
over Q, in n variables and assume that n > r - 22 = 4r.

Let F, be the residue field of Q,.

If K is an unramified extension of Q, with residue field E and
[K:Q,] =1 then [E:F,]=[K:Q,]=1and

= [Fyl! = p'.

Since F, is a finite field, it is known that such unramified
extensions exist for every | > 1.

Thus there exists such a K with / odd and |E| = p/ > (2r)".
Then Heath-Brown's theorem implies that S is isotropic over
K.

Since [K : Q,] is odd, it follows that Q, € A>(2).
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A calculation of u(k(t)) using pairs of quadratic

forms
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.
Then q1, g vanish on a common m-dimensional space over k
if and only if
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.

Then q1, g vanish on a common m-dimensional space over k
if and only if

g1 + tqo vanishes on an m-dimensional space over k(t)).
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.

Then g1, g vanish on a common m-dimensional space over k
if and only if

g1 + tqy vanishes on an m-dimensional space over k(t)).

Lemma
Let Q be a quadratic form defined over k(t).
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.

Then g1, g vanish on a common m-dimensional space over k
if and only if

g1 + tqy vanishes on an m-dimensional space over k(t)).

Lemma

Let Q be a quadratic form defined over k(t).

Then there exist two quadratic forms gy, g» defined over k
such that
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.

Then g1, g vanish on a common m-dimensional space over k
if and only if

g1 + tqy vanishes on an m-dimensional space over k(t)).

Lemma

Let Q be a quadratic form defined over k(t).

Then there exist two quadratic forms gy, g» defined over k
such that

Q = g1+ tgx in W(k(t)).
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A calculation of u(k(t)) using pairs of quadratic

forms

We need two lemmas.

Lemma (Amer's theorem)

Let g1, > be two quadratic forms defined over k.

Then g1, g vanish on a common m-dimensional space over k
if and only if

g1 + tqy vanishes on an m-dimensional space over k(t)).

Lemma

Let Q be a quadratic form defined over k(t).

Then there exist two quadratic forms gy, g» defined over k
such that

Q = g1+ tgx in W(k(t)).

That is, @ L mH ~ g, + tq, over k(t) for some m > Q.
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Let uk(2, m) denote the largest integer N such that there exist
quadratic forms gy, g, defined over k in N variables that do
not vanish on a common m-dimensional space over k.
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Let uk(2, m) denote the largest integer N such that there exist
quadratic forms gy, g, defined over k in N variables that do
not vanish on a common m-dimensional space over k.

Set uk(2, m) = oo if no such integer exists.
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Let uk(2, m) denote the largest integer N such that there exist
quadratic forms gy, g, defined over k in N variables that do
not vanish on a common m-dimensional space over k.

Set uk(2, m) = oo if no such integer exists.

The two lemmas are needed to prove the following theorem.
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Let uk(2, m) denote the largest integer N such that there exist
quadratic forms gy, g, defined over k in N variables that do
not vanish on a common m-dimensional space over k.

Set uk(2, m) = oo if no such integer exists.

The two lemmas are needed to prove the following theorem.

u(k(t)) = supp>i{u(2,m) = 2(m — 1)}
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Let n > 1.
Q 2<wu(2,m+1)—u(2,m) <3 forallm>1.
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Let n > 1.
Q 2<wu(2,m+1)—u(2,m) <3 forallm>1.

Q u(2, 1) +2(m—1) < w(2,m) < u(2,1) +3(m—1) for
all m>1.
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Proposition
Let n > 1.
Q 2<u(2,m+1)— u(2,m) <3 forallm>1.
Q@ u(2,1)+2(m—1) < u(2,m) < ue(2,1) +3(m—1) for
all m> 1.
@ u(k(t)) is finite if and only if there exists an integer N
such that ug(2, m+ 1) = u(2,m) + 2, for all n > N.
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Let n > 1.
Q 2<u(2,m+1)— u(2,m) <3 forallm>1.
Q@ u(2,1)+2(m—1) < u(2,m) < ue(2,1) +3(m—1) for
all m> 1.

@ u(k(t)) is finite if and only if there exists an integer N
such that ug(2, m+ 1) = u(2,m) + 2, for all n > N.

Q u(k(t)) < N if and only ux(2,m) < N +2(m — 1) for all
m>1.
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Suppose for some N that ux(2, m) < N+ 2(m — 1) for all
m > 1.
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Suppose for some N that ux(2, m) < N+ 2(m — 1) for all
m > 1.

Let g1, g» be quadratic forms defined over k in n variables
where n = N +2(m — 1) + 1 > ug(2, m).
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Suppose for some N that ux(2, m) < N +2(m — 1) for all
m > 1.

Let g1, g» be quadratic forms defined over k in n variables
where n = N +2(m — 1) + 1 > ug(2, m).

Then g1, g> vanish on an m-dimensional space over k.
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Suppose for some N that ux(2, m) < N +2(m — 1) for all

m > 1.

Let g1, g» be quadratic forms defined over k in n variables
where n = N +2(m — 1) + 1 > ug(2, m).

Then g1, g> vanish on an m-dimensional space over k.

We can assume that g, g> vanish on the m-dimensional space
given by x,,1.1 =+ =x,=0.
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Suppose for some N that ux(2, m) < N +2(m — 1) for all

m > 1.

Let g1, g» be quadratic forms defined over k in n variables
where n = N +2(m — 1) + 1 > ug(2, m).

Then g1, g> vanish on an m-dimensional space over k.

We can assume that g, g> vanish on the m-dimensional space
given by x,,1.1 =+ =x,=0.

Then
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Suppose for some N that ux(2, m) < N +2(m — 1) for all

m > 1.

Let g1, g» be quadratic forms defined over k in n variables
where n = N +2(m — 1) + 1 > ug(2, m).

Then g1, g> vanish on an m-dimensional space over k.

We can assume that g, g> vanish on the m-dimensional space
given by x,,1.1 =+ =x,=0.

Then

a1 = X1L1(Xm+1, Ce ,Xn) 4+ -+ XmLm + Ql(Xerla e ,Xn)

do> = XlMl(Xm+1, .. ,Xn) 4+ -+ XmMm + Qg(Xm+1, e ,Xn)
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The 2m linear forms Ly(Xmi1,--3Xn)y« -« Liny M1,y My,
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The 2m linear forms Ly(Xmi1,--3Xn)y« -« Liny M1,y My,
span a vector space of dimension at most n — m and
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The 2m linear forms Ly(Xmi1,--3Xn)y« -« Liny M1,y My,
span a vector space of dimension at most n — m and
n—m=N+m-—1.
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The 2m linear forms Ly(Xmi1,--3Xn)y« -« Liny M1,y My,
span a vector space of dimension at most n — m and
n—m=N+m-—1.

For large m, Ly,..., Ly, My, ..., M, are highly linearly
dependent.
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| have found a way to construct spaces of zeros of g, g» where
the 2m linear forms span a vector space whose dimension has
order of magnitude equal to %m.
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Suppose that k is an algebraically closed field, char k # 2.
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Suppose that k is an algebraically closed field, char k # 2.
Then u(k(t)) = 2 because k(t) is a Ci-field (or by an
argument from an earlier slide).
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Suppose that k is an algebraically closed field, char k # 2.
Then u(k(t)) = 2 because k(t) is a Ci-field (or by an
argument from an earlier slide).

| have given a direct proof that ux(2, m) = 2m for all m > 1.
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Suppose that k is an algebraically closed field, char k # 2.
Then u(k(t)) = 2 because k(t) is a Ci-field (or by an
argument from an earlier slide).

| have given a direct proof that ux(2, m) = 2m for all m > 1.
Thus u(k(t)) = sup,,>1{uk(2,m) = 2(m - 1)} = 2.
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THANK YOU
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