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I. Strong Approximation.

Let F be a number field and XF be a separated
scheme of finite type over F

Let AF and Af
F are the adeles and finite adeles of F

respectively.

Definition: The strong approximation holds for XF if
XF (F ) is dense in XF (Af

F ) under the diagonal map.
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Examples satisfying strong approximation

1. XF = Ga (Chinese Remainder Theorem).

2. XF = semi-simple, simply connected such that
the real points of any simple F -component is not
compact.
(Eichler-Kneser-Weil-Shimura-Platonov-Prasad etc.)

3. XF : xd1 + xd2 + · · ·+ xdn = a with a ∈ F×, where
d and n are positive integers with

n ≥ d(2d−1+[F : Q])[F : Q]+1 and d ≡ 1 mod 2.

(circle method).
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Diophantine interpretation.

Let oF be the ring of integers of F .

A separated scheme X of finite type over oF is
called an integral model of XF if

XF = X×oF F.

Definition. If∏
p∈ΩF

X(oFp
) 6= ∅ ⇒ X(oF ) 6= ∅,

we say the Hasse principle holds for X.
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Proposition. The strong approximation holds for XF

if and only if the Hasse principle holds for any
integral model of XF .

Examples satisfying the Hasse principle.

1. X is defined by the linear equations. (Gn
a)

2. X : q(x1, · · · , xn) = c with indefinite quadratic
form q over oF with n ≥ 4 and c 6= 0. (Spin(n)).
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II. Strong Approximation with Brauer-Manin
Obstruction.

By Manin’s idea:

XF (AF )Br(XF ) = {(xp)p∈ΩF
∈ XF (AF ) :∑

p

invp(ξ(xp)) = 0 for all ξ ∈ Br(XF )}.

where Br(XF ) = H2
et(XF ,Gm) and Gm is the etale

sheaf defined by the multiplicative groups.
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Class field theory implies that

XF (F ) ⊆ XF (AF )Br(XF ) ⊆ XF (AF ).

Definition. If XF (F ) is dense in the projection to
the finite adele part

prAf
F
[XF (AF )Br(XF )]

under the diagonal map, we say the strong
approximation with the Brauer-Manin obstruction
holds for XF .
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Proposition. The strong approximation with the
Brauer-Manin obstruction holds for XF if and only
if for any integral model X of XF ,

X(oF ) 6= ∅ ⇔ (
∏
p

X(oFp
))Br(XF ) 6= ∅

where

(
∏
p

X(oFp
))Br(XF ) = (

∏
p

X(oFp
))∩XF (AF )Br(XF ).
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III. Homogeneous Spaces.

Suppose XF is a homogeneous space of a linear
algebraic group GF with XF (F ) 6= ∅. Then

XF
∼= GF/HF

over F , where H is the stabilizer of a rational point
of XF (F ).
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Theorem. Strong approximation with Brauer-Manin
obstruction holds for XF if

1) (Colliot-Thélène - Xu). G is semi-simple and
simply connected, F∞-points of any simple factor of
G is not compact and H is connected or a finite
commutative group scheme.

The special case for G = Spin and H connected
has independently proved by Erovenko & Rapinchuk
and Beli & Chan
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2) (Harari). G is an algebraic torus.

3) (Borovoi-Demarche). F∞ points of any simple
factor of simply connected semi-simple part of G is
not compact and H is connected.

4) (Poitou-Tate). G is a finite commutative group
scheme.

5) (Wei-Xu). G is a group of multiplicative type.
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Application: Studying linear algebra over oF .
Example.(

0 − 5
1 0

)
=

(
2 1
0 1

)(
−1 − 3

2 1

)(
2 1
0 1

)−1

(
0 − 5
1 0

)
=

(
1 − 2
1 1

)(
−1 − 3
2 1

)(
1 − 2
1 1

)−1

But these two matrices are not similar over Z !
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IV. Families of Homogeneous Spaces.

G.L.Watson investigated the local-global principle
over Z for the following equation

q(x1, · · · , xn) +
n∑
i=1

ai(t)xi + b(t) = 0

where q(x1, · · · , xn) is a quadratic form over Z and
a1(t), · · · , an(t) and b(t) are polynomials over Z.
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The above variety is isomorphic to

XQ : q(x1, · · · , xn) = p(t)

over Q, where p(t) is a polynomial over Q.

The study of strong approximation of XQ will
provide the solvability of Waton’s equation by
choosing Watson’s equation as an integral model.
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Let X̃Q → XQ be a resolution of singularities for
XQ.

Theorem (Colliot-Thélène - Xu). If X̃Q(R) is not
compact, then strong approximation with
Brauer-Manin obstruction holds for X̃Q.

Watson’s result is certain case that Br(XQ)/Br(Q)
is trivial. This result is also true over a number field.
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One needs to extend spinor genus theory to a
quadratic diophantine equation (L+ u) in order to
prove the above theorem when q is a definite
quadratic form.

Moreover, studying (primitive) representation by a
quadratic diophantine equation (L+ u) is
equivalent to studying (primitive) representation of
a quadratic form L with congruent conditions.
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General fibration method:
Let f : XF → YF be a morphism of smooth
quasi-projective geometrically integral varieties over
F and assume

(1) all geometric fibers of f are non-empty and
integral.

(2) there is WF ⊂ YF be a non-empty open subset
such that f : f−1(W )→ W is smooth.
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Proposition. Suppose X(AF ) 6= ∅ and

1) YF satisfies the strong approximation.

2) The fiber of f above F -points of W satisfy the
strong approximation.

3) The map f−1(W )(Fp)→ W (Fp) is surjective for
all archimedean places p.

Then XF satisfies the strong approximation.
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Example. Let U be an open sub-scheme of Gn
a for

some positive integer n such that

codim(Gn
a \ U,Gn

a) ≥ 2.

Then U satisfies strong approximation.

Proof. Let p : Gn
a → Ga; (x1, · · · , xn) 7→ x1. Then

p|−1
U (y) = p−1(y) ∩ U and p−1(y) ∼= Gn−1

a

with codim(p−1(y) \ (p−1(y) ∩ U), p−1(y)) ≥ 2 for
almost all y ∈ Ga(F ). Induction and the above
proposition.
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Theorem (Colliot-Thélène - Harari).
Let X be a smooth integral affine variety and
f : X → Ga be a surjective morphism such that all
fibers are geometrically integral. Suppose
(1) the generic fiber of f is a homogeneous space of
a simply connected, semi-simple and almost simple
group G over F (t) and the geometric stabilizers
connected reductive.
(2) f has a rational section over Fp and the
specialization Gx of G is isotropic over Fp for almost
all x ∈ Ga(Fp) for some archimedean place p.
(3) any element in Br(X) takes a single value in
X(Fp) for all archimedean primes p.
Then X satisfies strong approximation with
Brauer-Manin obstruction.
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V. Toric Varieties.

Definition: Let T be an torus over F and X be a
normal and separated scheme of finite type over F
with action of T

mX : T ×k X −→ X

over F . X is called a toric variety with respect to T
over F if there is an open immersion iT : T ↪→ X
over F such that the multiplication of T is
compatible with mX .
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Theorem (Cao - Xu).
Any smooth toric variety over F satisfies strong
approximation with Brauer-Manin obstruction.

Under certain geometric assumption, Chambert-Loir
and Tschinkel proved the same result by using
harmonic analysis.
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VI. Application to Counting Integral Points.

Let X be a separated scheme of finite type over Z
such that

XQ = X×Z Q ↪→ Spec(Q[x1, · · · , xn]).

The basic question is to find asymptote formula for

N(X, T ) = ]{(xi) ∈ X(Z) : |xi| ≤ T}
as T →∞.
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• The Hardy-Littlewood circle method

N(X, T ) ∼ (
∏
p

Np(X)) ·N∞(XQ, T )

as T →∞, where

Np(X) = limk→∞
]X(Z/(pk))
pk·dim(XQ)

and

N∞(XQ, T ) = vol({(xi) ∈ XQ(R) : |xi| ≤ T}).

Once the Hardy-Littlewood circle method can be
applied for X, then X satisfies the Hasse principle.
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Brauer-Manin obstruction indicates that the Hasse
principle is not true in general.

It is natural to ask how the asymptote formula looks
like in this situation.
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Theorem (Borovoi-Rudnick).
If XQ is a symmetric homogeneous space of almost
simple, semi-simple and simply connected linear
algebraic group G such that G(R) is not compact,
then there is a density function δ (defined by
Kottwitz invariant) such that

N(X, T ) ∼
∫

(
∏

p X(Zp))×XQ(R,T )

δ(x)dx

as T →∞, where

XQ(R, T ) = {(xi) ∈ XQ(R) : |xi| ≤ T}

and dx is the Tamagawa measure.
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For any

ξ ∈ Br(XQ) = H2
et(XQ,Gm),

one can regard ξ as a locally constant function over
XQ(AQ) and X(Qp) by

ξ((xp)) =
∏
p≤∞

invp(ξ(xp)) and ξ(xp) = invp(ξ(xp))

with a fixed identification

Q/Z ∼=
⋃
n

µn ⊂ C×.

Fei XU Strong approximation with Brauer-Manin obstruction for certain algebraic varieties



casflag-1

For a homogeneous space X, one can define

Np(X, ξ) =

∫
X(Zp)

ξdp

for any prime p and

N∞(X, T, ξ) =

∫
XQ(R,T )

ξd∞

where
∏

p≤∞ dp is the Tamagawa measure over
X(AQ).
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If ξ = 1, then

Np(X, 1) =

∫
X(Zp)

dp = limk→∞
]X(Z/(pk))
pk·dim(XQ)

and
N∞(X, T, 1) = vol(XQ(R, T ))

which are the same as those in the circle method.
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Theorem (Wei-Xu).
If XQ is a symmetric homogeneous space of almost
simple, semi-simple and simply connected linear
algebraic group G such that G(R) is not compact,
then

N(X, T ) ∼
∑

ξ∈(Br(XQ)/Br(Q))

(
∏
p

Np(X, ξ))N∞(X, T, ξ)

as T →∞, where Br(XQ)/Br(Q) is finite.
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Example.
Let p(λ) be an irreducible monic polynomial of
degree n ≥ 2 over Z and X be a scheme defined by
the following equations in variables xi,j

det(λIn − (xi,j)) = p(λ)

over Z with 1 ≤ i, j ≤ n. Then

N(X, T ) ∼ (
∏
p

∫
X(Zp)

dp) ·
∫
XQ(R,T )

d∞

as T →∞.
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Corollary (Eskin-Mozes-Shah).
If p(λ) is split completely over R and Z[θ] is the
ring of integers of Q(θ) for a root θ of p(λ), then

N(X, T ) ∼ 2n−1 · h ·R · ωn√
D
∏n

i=2 Λ( i2)
T

1
2n(n−1)

as T →∞, where h is the class number of Z[θ], R
is the regulator of Q(θ), D is the discriminant of

p(λ), ωn is the volume of unit ball in R 1
2n(n−1) and

Λ(s) = π−sΓ(s)ζ(2s).

Fei XU Strong approximation with Brauer-Manin obstruction for certain algebraic varieties



casflag-1

Thank you!
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