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Decomposability for algebras with involution

Let F be a field and (A, o) an F-algebra with involution.

Is (A, o) totally decomposable, i.e. isomorphic to a tensor product
of quaternion algebras with involution?

Does Sym(c) contain a quadratic extension K/F?

Given such K/F, is K C Q for an F-quaternion algebra Q C A
with 0(Q) = Q?
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Type and capacity

)

(A) if o is orthogonal,
cap(A,o) = deg(A) if o is unitary,

(A) if o is symplectic.

Proposition

cap(A, o) = max{[F[x] : F] | x € Symd(A, o)}

If cap(A, o) = 1, then o is the unique involution of its type on A.
If cap(A, o) = 2, then (A, o) is totally decomposable.

Here, we study the case where cap(A, o) = 4.
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Successive decomposition

Let (A, o) be an F-algebra with involution.

Proposition

Let Q C A be an F-quaternion algebra such that o(Q) = Q and
let C = Ca(Q). Then

(A,0) = (Q,0]q) @ (C,olc)-

If o|q is orthogonal, then o|c is of same type as o and

cap(C,o|c) = Acap(A, o).

Hence, if cap(A, o) = 4 and A contains a o-stable F-quaternion
algebra, then (A, o) is totally decomposable.
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Capacity 2

Assume from now that o is not orthogonal whenever char(F) = 2.

Assume that cap(A, o) = 2 and let V = Symd(o). Then

3 if o is orthogonal,
dim(V) =< 4 if o is unitary,
6 if o is symplectic.

There exists a natural symmetry
V — V,x—X
such that x + X, xx € F for all x € V.

For x € V we have [F[x] : F] <2, as x? — (x + X)x + xX = 0.
Moreover, g : V — F,x — xX is a regular quadratic form.

Let's call (V, q) the symmetrizer form of (A, o).
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Symmetric quadratic extensions

Let (A, o) be an F-algebra with involution with cap(A, o) = 4.

Let K/F be a quadratic étale extension with K C Symd(c) and

C = Ca(K) satisfying dimg(C) = 3 dimg(A). Then:

(C,o|c) is a K-algebra with involution with cap(C,o) = 2.

There exist (many) biquadratic étale L/F with K C L C Symd(o).

We take the symmetrizer form of (C, o) and apply the Scharlau
transfer from K to F to obtain a regular quadratic form over F.

In this form L is a 4-dimensional hyperbolic subspace. We take its
orthogonal complement and denote it 7. Then

2 if o is orthogonal
=4 4 if ois unitary
8 if o is symplectic

dim(7")

What else can we say about the form 7K?
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Decomposability and isotropy

Let (A, o) be an F-algebra with involution with cap(A, o) = 4.
Consider quadratic étale K/F as before, with K C Symd(o).

The form 7K is isotropic if and only if there exists an F-quaternion
algebra Q C A with K C Q, 0(Q) = Q and o|g orthogonal.

The form K is either anisotropic or hyperbolic, and it is
independent of the choice of K/F.

Corollary

If (A, 0) is totally decomposable, then there is a decomposition
where K is contained in one quaternion factor.

A
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The decomposability form

Let (A, o) be an F-algebra with involution with cap(A, o) = 4.
Assume that o is not orthogonal if char(F) = 2.
We have almost shown the following:

Theorem
To (A, o) there is associated an r-fold Pfister form m where

1 if o is orthogonal
r=1< 2 ifo is unitary
3 if o is symplectic

For any field extension L/F we have that (A, o), is totally
decomposable if and only if w; is hyperbolic.

However, we assumed the existence of a convenient quadratic
extension K/F contained in Symd(c)!

This is a challenge when A is a division algebra and o is symplectic.
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The Pfaffian polynomial

Let (A, o) be an F-algebra with symplectic involution and deg(A) = 8.

The elements x € Symd(o) satisfy an equation

x* — a1 (x)x® + a(x)x* — c3(x)x + ca(x) =0

where ¢; : Symd(o) — F is a form of degree / over F (i < 4).

Proposition

There exists x € Symd(o) \ {0} with ci(x) = c3(x) =0 and in
particular [F(x?) : F] < 2.

Karim Johannes Becher Quadratic and cubic form invariants of involutions



Springer’s Theorem for cubic forms

Proposition

There exists x € Symd(o) \ {0} with ci(x) = c3(x) =0 and in
particular [F(x?) : F] < 2.

Consider the cubic form v = (V/, ¢3) of dimension 27 over F where
V = {x € Symd(o) | a1(x) = 0}.

Claim: « is isotropic.

This is true if A is split, so in particular if F is quadratically closed.

Hence, 7, is isotropic over a 2-extension L/F.

Let L/F be a 2-extension and let vy be a cubic form over F.
Then ~ is isotropic over L if and only if -y is isotropic over F.
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Rowen’s Theorem

Let A be a central simple algebra of exponent 2 and degree 8.

Theorem (Garibaldi-Parimala-Tignol for char(F) # 2)

For any symplectic involution o on A, there exists a quadratic étale
extension K /F contained in Symd(A, o).

Corollary (Rowen)

The algebra A contains a triquadratic étale extension of F.

The new proof used:

Any central simple algebra of exponent 2 is split by a 2-extension.

This follows from Merkurjev's Theorem, but a direct elementary
proof can be given.
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