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Well-rounded lattices
Let Λ ⊆ Rn be a lattice of full rank. Minimal norm of Λ is

|Λ| = min {‖x‖ : x ∈ Λ \ {0}} ,

where ‖ ‖ is Euclidean norm.

Λ is called well-rounded (abbreviated WR) if its set of minimal
vectors

S(Λ) = {x ∈ Λ : ‖x‖ = |Λ|}

contains n linearly independent vectors.
This is equivalent to saying that Λ has equal successive minima
λ1 = · · · = λn, where

λi = min {λ ∈ R>0 : dim (spanR (Bn(λ) ∩ Λ)) ≥ i} ,

where Bn(λ) is the unit ball of radius λ centered at 0 in Rn.
WR lattices are central to extremal lattice theory, since the
standard discrete optimization problems on lattices can be
restricted to WR lattices wlog.
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Algebraic constructions

Many important families of lattices come from algebraic
constructions. We consider three well known instances here:

• Ideal lattices from number fields (Martinet, Bayer-Fluckiger,
Nebe, et al.)

• Cyclic lattices from polynomial rings (Micciancio, et al.)

• Function field lattices from curves over finite fields (Tsfasman
and Vladut, et al.)

Lattices from these constructions figure prominently in extremal
lattice theory and connected areas, prompting the following
question about their geometric properties:

Question 1

Which lattices coming from the above constructions are WR?

In this talk we give a partial answer to this question.
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Ideal lattice construction

We start by fixing some notation:

K = number field of degree n over Q
OK = ring of integers of K
σ1, . . . , σr1 are real embeddings of K
τ1, τ1, . . . , τr2 , τ r2 are pairs of complex conjugate embeddings of K
n = r1 + 2r2

σK = (σ1, . . . , σr1 ,<(τ1),=(τ1), . . . ,<(τr2),=(τr2)) : K → Rn –
Minkowski embedding

Let I ⊆ OK be an ideal, then σK (I ) is a lattice of full rank in Rn,
called an ideal lattice of trace type (Bayer-Fluckiger).
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WR ideal lattices

We say that an ideal I ⊆ OK is WR if the lattice σK (I ) is WR.

Question 2

Which ideals in rings of integers of number fields are WR?

Theorem 1 (F., Petersen (2012))

OK is WR if and only if K is cyclotomic. On the other hand,
infinitely many real and imaginary quadratic number fields
(K = Q(

√
D)) contain WR ideals.
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Proof ingredients for Theorem 1

• Product formula + AM-GM inequality to show that minimal
vectors in σK (OK ) come only from roots of unity in OK .

• Unique canonical integral bases for ideals in quadratic number
fields: a, b + gδ, where:

0 ≤ b < a, 0 < g ≤ a, g | a, g | b

are integers, and

δ =

{
−
√

D if D 6≡ 1(mod 4)
1−
√
D

2 if D ≡ 1(mod 4).

• A result of Clary & Fabrykowski (2004) on infinitude of
squarefree integers in arithmetic progressions.
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WR ideals in quadratic number fields
We can say more in the case of quadratic number fields.

We say that a positive squarefree integer D satisfies the

ν-nearsquare condition if it has a divisor d with
√

D
ν ≤ d <

√
D,

where ν > 1 is a real number. We also write K WR to indicate
that a number field K contains WR ideals.

Theorem 2 (F., Henshaw, Liao, Prince, Sun, Whitehead, 2013)

If D satisfies the 3-nearsquare condition, then the rings of integers
of quadratic number fields K = Q(

√
±D) contain WR ideals; the

statement becomes if and only if when K = Q(
√
−D). This in

particular implies that a positive proportion (more than 1/5) of
real and imaginary quadratic number fields contain WR ideals,
more specifically

lim inf
N→∞

∣∣{Q(
√
±D) WR : 0 < D ≤ N

}∣∣∣∣{Q(
√
±D) : 0 < D ≤ N

}∣∣ ≥
√

3− 1

2
√

3
. (1)
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WR ideals in imaginary quadratics

Theorem 3 (F., Henshaw, Liao, Prince, Sun, Whitehead, 2013)

For every D satisfying the 3-nearsquare condition the imaginary
quadratic field K = Q(

√
−D) contains only finitely many WR

ideals, up to similarity of the corresponding lattices, and this
number is

� min

{
2ω(D)−1,

2ω(D)√
ω(D)

}
. (2)

Remark 1

Let I , J ⊆ OK be WR ideals, then

σK (I ) ∼ σK (J) ⇐⇒ I ∼ J

hence their number ≤ hK ≈ O(
√

D) as D →∞ (Siegel). On the

other hand, the bound of (2) is ≈ (log D)log 2
√

log log D
as D →∞.
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Proof ingredients for Theorems 2 and 3

• Parameterization of similarity classes of integral WR lattices
in R2 by solutions of Pell-type equations x2 + Dy 2 = z2.

• Unique canonical integral bases for ideals in quadratic number
fields, as above.

• Estimates on the density of squarefree integers with divisors in
“floating” intervals around the square-root (this is related to
estimates on Hooley’s ∆-function).

• Explicit estimates (inequalities) on the prime-counting
function (Rosser & Schoenfeld - 1962) and sums of primes
(Jakimczuk - 2005).
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Directions for future work

Question 3

Do there exist real quadratic number fields Q(
√

D) with positive
squarefree D not satisfying the 3-nearsquare condition containing
WR ideals?

Computational evidence suggests that the answer to this question
is no, however at the moment we only have partial results in this
direction.

Problem 1

Study the distribution of WR ideals in number fields of degree ≥ 3.
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Cyclic lattices: definition

Define the rotational shift operator on Rn, n ≥ 2, by

rot(x1, x2, . . . , xn−1, xn) = (xn, x1, x2, . . . , xn−1)

for every x = (x1, x2, . . . , xn−1, xn) ∈ Rn. We will write rotk for
iterated application of rot k times for each k ∈ Z>0 (then rot0 is
just the identity map, and rotk = rotn+k). It is also easy to see
that rot (and hence each iteration rotk) is a linear operator. A
lattice Γ is called cyclic if rot(Γ) = Γ, i.e. if for every x ∈ Γ,
rot(x) ∈ Γ. We will be concerned with cyclic sublattices of Zn;
clearly, Zn itself is a cyclic lattice.

Cyclic lattices were introduced by D. Micciancio in 2002 for
cryptographic use.
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Cyclic lattices from ideals in Z[x ]/(xn − 1)
Let

p(x) =
n−1∑
k=0

akxk ∈ Z[x ]/(xn − 1).

Define a map ρ : Z[x ]/(xn − 1)→ Zn by

ρ(p(x)) = (a0, . . . , an−1) ∈ Zn,

then for any ideal I ⊆ Z[x ]/(xn − 1), ρ(I ) is a sublattice of Zn.
Notice that for every p(x) ∈ I ,

xp(x) = an−1 + a0x + a1x2 + · · ·+ an−2xn−1 ∈ I ,

and so

ρ(xp(x)) = (an−1, a0, a1, . . . , an−2) = rot(ρ(p(x))) ∈ ρ(I ).

In other words, Γ ⊆ Zn is a cyclic lattice if and only if Γ = ρ(I ) for
some ideal I ⊆ Z[x ]/(xn − 1).
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WR cyclic lattices
Let Cn be the set of all full rank cyclic sublattices of Zn.

Question 4

Which lattices in Cn are WR?

Theorem 4 (F., Sun (2013))

For each dimension n ≥ 2, there exist real constants

0 < αn ≤ βn ≤ 1,

depending only on n, such that

αn ≤
# {Γ ∈ Cn : λn(Γ) ≤ R, Γ is WR}

# {Γ ∈ Cn : λn(Γ) ≤ R}
≤ βn as R →∞. (3)

For instance, one can take α2 = 0.261386... and β2 = 0.348652...,
meaning that between 26% and 35% of full rank cyclic sublattices
of Z2 are WR.



Introduction Ideal lattices from number fields Cyclic lattices Function field lattices

WR cyclic lattices
Let Cn be the set of all full rank cyclic sublattices of Zn.

Question 4

Which lattices in Cn are WR?

Theorem 4 (F., Sun (2013))

For each dimension n ≥ 2, there exist real constants

0 < αn ≤ βn ≤ 1,

depending only on n, such that

αn ≤
# {Γ ∈ Cn : λn(Γ) ≤ R, Γ is WR}

# {Γ ∈ Cn : λn(Γ) ≤ R}
≤ βn as R →∞. (3)

For instance, one can take α2 = 0.261386... and β2 = 0.348652...,
meaning that between 26% and 35% of full rank cyclic sublattices
of Z2 are WR.



Introduction Ideal lattices from number fields Cyclic lattices Function field lattices

WR cyclic lattices
Let Cn be the set of all full rank cyclic sublattices of Zn.

Question 4

Which lattices in Cn are WR?

Theorem 4 (F., Sun (2013))

For each dimension n ≥ 2, there exist real constants

0 < αn ≤ βn ≤ 1,

depending only on n, such that

αn ≤
# {Γ ∈ Cn : λn(Γ) ≤ R, Γ is WR}

# {Γ ∈ Cn : λn(Γ) ≤ R}
≤ βn as R →∞. (3)

For instance, one can take α2 = 0.261386... and β2 = 0.348652...,
meaning that between 26% and 35% of full rank cyclic sublattices
of Z2 are WR.



Introduction Ideal lattices from number fields Cyclic lattices Function field lattices

Cyclic lattices: basic properties

Definition 1

For a vector a ∈ Rn, define a lattice

Λ(a) = spanZ
{
a, rot(a), . . . , rotn−1(a)

}
.

Then rot(Λ(a)) = Λ(a), and if a ∈ Zn then Λ(a) is a cyclic lattice.

Let Φ(x) | xn − 1 be a cyclotomic polynomial, then

HΦ = {a ∈ Rn : Φ(x) | pa(x)} ⊆ Rn

is a subspace of dimension n − deg(Φ).

Lemma 5

Let a ∈ Rn, then rk(Λ(a)) < n if and only if pa(x) ∈ HΦ for some
cyclotomic polynomial Φ(x) | xn − 1.
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Cyclic lattices: cryptographic use

Hence if we pick a ∈ Zn with large |a|, the probability that

rk(Λ(a)) = n

is high, and the size of the input data necessary to describe this
lattice is only n (instead of n2 for generic lattices). This
observation makes cyclic lattices very attractive for cryptographic
purposes.

Question 5

But are cyclic lattices hard enough? For instance, are the Shortest
Vector Problem (SVP) and the Shortest Independent Vector
Problem (SIVP) still NP-hard on cyclic lattices?

We do not know, but probably yes.
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SIVP to SVP on cyclic lattices

On the other hand, there is some indication that SIVP is at least
easier on cyclic lattices than on generic lattices.

Theorem 6 (Peikert, Rosen (2005))

Let n be a prime and let Λ ⊂ Rn be a cyclic lattice of rank n.
There exists a polynomial time algorithm that, given a solution to
SVP on Λ, produces an approximate solution to SIVP on Λ within
an approximation factor of 2 (compared to

√
n for generic lattices).

Our work on WR cyclic lattices leads to further information.

Corollary 7 (F., Sun (2013))

In every dimension n ≥ 2, SIVP and SVP are equivalent on a
positive proportion of cyclic lattices.
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Proof ingredients for Theorem 4

• Reduction to the set of cyclic lattices in Rn with a basis of
vectors corresponding to successive minima, the so-called
Minkowskian lattices. Let Gn be the set of Minkowskian
sublattices of Zn with this property.

• Representation of Minkowskian cyclic lattices in the
form

⊕
Λ(ai ) with ai ’s corresponding to successive minima.

• Parameterization of Minkowskian lattices of the form Λ(a) by
points in a certain convex polyhedral cone of positive volume
with lattices in Gn corresponding to integer lattice points.

• Bounding the cone, applying lattice point counting estimates,
and factoring in restrictions to cyclotomic subspaces in the
cases of not full rank.
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Further work

The symmetric group Sn has a natural action on Rn by
permutation of the coordinates. Cyclic lattices are precisely the
sublattices of Zn closed under the action of the cyclic subgroup

〈(1 . . . n)〉 ≤ Sn.

What happens if we consider lattices with automorphism groups
containing a different subgroup of Sn?

Conjecture / Theorem 8 (F., Sun (2013/2014))

The proportion of WR lattices among sublattices of Zn closed
under the action of a subgroup H ≤ Sn is positive if and only if
H = 〈τ〉, where τ is an n-cycle.
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Function field lattice construction
This construction is due to Tsfasman and Vladut:

p is prime, q is a power of p, Fq is the field with q elements
X a curve of genus g over Fq, K = Fq(X )
X (Fq) = {P1, . . . ,Pn} with corresponding valuations v1, . . . , vn
O∗X ,q = {f ∈ K : Supp(f ) ⊆ X (Fq)}

For each f ∈ O∗X ,q, the principal divisor

(f ) =
n∑

i=1

vi (f )Pi ,
∑
i=1

vi (f ) = 0, deg(f ) :=
∑
i=1

|vi (f )|.

Define the map φ : O∗X ,q → Zn given by φ(f ) = (v1(f ), . . . , vn(f )),
then LX ,q := φ(O∗X ,q) ⊆ An−1 is a sublattice of finite index with

|LX ,q| ≥ min
{√

deg(f ) : f ∈ O∗X ,q) \ Fq

}
,

det(LX ,q) ≤
√

n

(
1 + q +

n − q − 1

g

)g

.
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WR function field lattices

Question 6

Which lattices LX ,q as above are WR?

We provide a partial answer to this question:

Theorem 9 (F., Maharaj (2013))

Let g = 1 and n ≥ 5, i.e. X is an elliptic curve with at least 5
points over Fq. Then LX ,q is generated by its minimal vectors, so
in particular is WR.

Theorem 10 (F., Maharaj (2013))

Let g = 1, n ≥ 4, and let ε be the number of 2-torsion points on
X . Then

|S(LX ,q)| =
n

4ε
((n − ε)(n − ε− 2) + n(n − 2)(ε− 1)) .
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Directions for future work

Question 7

Which of the function field lattices coming from curves of higher
genus are WR?

This question may be hard. In our arguments for the elliptic curve
case, we heavily rely on the group structure, which allows a very
explicit description of the divisors giving rise to minimal vectors.
This leads to another direction that we are currently pursuing.

Let
G = {P0,P1, . . . ,Pn−1}

be an abelian group of order n with P0 the identity. A relation in
the multiplication table of G can be written as

n−1∑
i=1

aiPi = P0,

where ai ∈ Z for all 1 ≤ i ≤ n − 1.
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Directions for future work

Hence every relation in G can be identified with the vector(
a1, . . . , an−1,−

n−1∑
i=1

ai

)
∈ Zn,

and the set of all such vectors forms a finite index sublattice of
An−1, call it LG .

This is a direct generalization of the lattice LX ,q described above
when X is an elliptic curve. However, lattices LG are more general,
since not every abelian group can be realized as the group of
points on an elliptic curve over a finite field.

Question 8

For which groups G are the lattices LG WR?

This is currently work in progress.
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Thank you!
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