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If K is a field, let XK be the topological space of orderings in K .

Recall that the u-invariant u(K ) of a field is defined as

u(K ) = sup{dim q : q is an anisotropic torsion quadratic form over K},

where q is torsion if its Witt class is a torsion element in W (K ).

Grenier-Boley, Hoffmann and Scheiderer have recently proven:

Theorem
Let K and L be two SAP fields such that u(K ), u(L) ≤ 2. Then
the following are equivalent:

1. There is a ring isomorphism W (K ) ∼= W (L).

2. There is a homeomorphism XK
∼= XL and a group

isomorphism σ :
∑

K ∗2/K ∗2 ∼=
∑

L∗2/L∗2.

I N. Grenier-Boley, D. Hoffmann, C. Scheiderer, Isomorphism criteria for
Witt rings of real fields, Forum Math. 25 (2013), 1–18.



In particular, the above theorem covers the case of Witt
equivalence of algebraic function fields of curves over R.

A very natural question to ask is what happens if we increase the
stability index by one, for example by considering algebraic
function fields of curves over Q?

This seems to be a difficult question in general, so let’s restrict
ourselves to considering function fields of conics over Q.

In this talk we shall count (some of the) non-isomorphic classes of
Witt rings of function fields of rational conics.



Recall that we have the following obvious implications:

Birational
isomorphism

of conics

Birational
equivalence

(isomorphism
of their

function fields)

Witt
equivalence

of their
function fields



Classes of birationally isomorphic rational conics

Theorem
Let f ∈ Q[x , y ] be an irreducible polynomial of degree 2 and
consider the curve C : f (x , y) = 0 whose function field Q(C) is
formally real. Then C is birationally isomorphic either to

1. a curve whose function field is isomorphic to Q(x), or

2. two parallel lines with no rational points:

x2 − r = 0, r > 0,

or

3. an ellipse with no rational points:

ax2 + by 2 − 1 = 0, a > 0, b > 0.

I P. G ladki, M. Marshall. The pp conjecture for spaces of orderings of
rational conics. J. Algebra Appl. 6 (2007) 245–257.



The proof is absolutely elementary.

From a standard course in linear algebra we know that C is affine
isomorphic either to a curve of parabolic type

ax2 + y = 0, a ∈ Q∗,

or to a curve of parallel type

ax2 + c = 0, a ∈ Q∗, c ∈ Q,

or to a curve of elliptic (hyperbolic) type

ax2 + by 2 + c = 0, a, b ∈ Q∗, c ∈ Q.

Clearly, a function field of a parabola is just Q(x).

Moreover, two parallel lines with a rational point are not
irreducible.

The “degenerated” ellipse (hyperbola) ax2 + by 2 = 0, a, b ∈ Q∗ is
birationally isomorphic to two parallel lines via (x , y) 7→ ( xy , 1).

After some scaling, we might as well assume that two parallel lines
are of the form x2 − r = 0, r ∈ Q.



The “non-degenerated” ellipse (hyperbola)

ax2 + by 2 + c = 0, a, b, c ∈ Q∗

with a rational point (q, r) ∈ Q2 can be parametrized by x−q
y−r , i. e.

is birationally isomorphic to Q(z) for z = x−q
y−r .

Finally, after scaling and/or interchanging x and y (if necessary),
the “non-degenerate” ellipse (hyperbola) above clearly satisfies
either:

a > 0, b > 0, c < 0, (elliptic type),

or
a > 0, b < 0, c < 0, (hyperbolic type),

but these are birationally isomorphic via (x , y) 7→ ( yx ,
1
x ).

Scaling some more, we can always assume c = −1.



Classes of birationally equivalent rational conics

Probably the first attempt to classify function fields of conics was
due to Ernst Witt:
I E. Witt, Gegenbeispiel zum Normensatz. Math. Zeit. 39 (1934) 12–28.

Roughly speaking, he showed that function fields K of conics over
Q are in one-to-one correspondence with quaternion algebras C
over Q such that K splits C .

This work paved the way to the theory of generic splitting fields,
that basically started with the ultra-classical paper by Amitsur:

I S. Amitsur, Generic splitting fields of central simple algebras. Annals of
Math. 62 (1955) 8–43.

Again, roughly speaking, he showed that to a given central simple
algebra C over Q there corresponds an algebraic function field K
in n − 1 variables over Q which splits C .

By the way, his work, according to MathSciNet, has been so far
cited over 300 times.



Following the footsteps of old masters, we shall accept the
notation introduced in Witt’s paper and write

Ωa,b := qf
Q[x , y ]

(ax2 + by 2 − 1)
and Ωr := qf

Q[x , y ]

(x2 − r)
.

By the classification theorem discussed above, these are the only
fields that are of our interest: the cases of a > 0, b > 0 and r > 0,
r /∈ Q∗2, cover all situations when Ωa,b or Ωr are formally real, to
include the formally non-real case we will allow a, b ∈ Q∗ and
r ∈ Q∗\Q∗2.

We write K ∼=Q L to indicate that the field extensions K , L of Q
are Q-isomorphic.

Most of what we are doing here works equally well with the field Q
replaced with any field Ω, but we shall restrict ourselves to the
rational case.



The case of fields Ωr

...is actually really easy.

Proposition

For r ∈ Q∗ \Q∗2 the field of constants of Ωr (i.e. the algebraic
closure of Q in Ωr ) is Q(

√
r).

Proof.
Clearly Ωr = Q(

√
r)(x).



Proposition

For r , s ∈ Q∗ \Q∗2, the following are equivalent:

1. r ≡ s mod Q∗2;

2. Q(
√

r) ∼=Q Q(
√

s);

3. Ωr
∼=Q Ωs .

Proof.
1. ⇔ 2. is well-known.

2. ⇒ 3. is clear since Ωr = Q(
√

r)(x).

3. ⇒ 2. is clear since, by the previous proposition, Ωr is the
algebraic function field in a single variable with the field of
constants Q(

√
r).



The case of fields Ωa,b

...is also pretty easy, but already more interesting!

Proposition

For a, b ∈ Q∗ the field of constants of Ωa,b is Q.

Proof.
Clearly Ωa,b = Q(x)(

√
1−ax2

b ).

Suppose f = f0 + f1

√
1−ax2

b , f0, f1 ∈ Q(x), is algebraic over Q.

Then f = f0 − f1

√
1−ax2

b is also algebraic over Q.

Consequently, f0 = (f + f )/2 and f 2
0 − f 2

1 ( 1−ax2

b ) = f f are
algebraic over Q.

It follows that f 2
1 ( 1−ax2

b ) is algebraic over Q.

This is only possible when f1 = 0.

Consequently, f0 ∈ Q and f ∈ Q.



Observe that this implies

Ωa,b 6∼=Q Ωr

for a, b ∈ Q∗ and r ∈ Q∗ \Q∗2.



In order to distinguish between the different fields Ωa,b, we need to
go back to Witt’s paper and use quaternion algebras.

Let K be a field of characteristic 6= 2.

For a, b ∈ K ∗, (a,bK ) denotes the quaternion algebra over K , i.e.,
the 4-dimension central simple algebra over K generated by the
elementsi , j subject to

i2 = a, j2 = b, ji = −ij .

We shall identify quaternion algebras over K , which are isomorphic
as K -algebras, as equal elements of the Brauer group of K .



We start with the following:

Proposition

For a, b ∈ K ∗ the following are equivalent:

1. (a,bK ) = 1 (i.e., (a,bK ) splits over K ).

2. 〈1,−a〉 ⊗ 〈1,−b〉 ∼ 0 over K .

3. 1 ∈ DK 〈a, b〉.
4. The conic ax2 + by 2 = 1 has a K-rational point.

5. qf K [x ,y ]
ax2+by2−1

is purely transcendental over K .

Proof.
1. ⇔ 2. ⇔ 3. ⇔ 4. is, more or less, trivial.

4. ⇔ 5. is a part of the classification theorem discussed earlier
with the field Q replaced by K .



Proposition (E. Witt)

Let C be a quaternion algebra over Q.

Then C splits if and only if C = (a,bQ ), for some a, b ∈ Q∗, or if
C = 1.

Proof.
(⇒): is in
I E. Witt, Gegenbeispiel zum Normensatz. Math. Zeit. 39 (1934) 12–28.

(⇐): is, more or less, trivial; from the definition of Ωa,b it is clear

that 1 ∈ DΩa,b
〈a, b〉, so (a,bQ ) splits over Ωa,b.

Of course 1 splits over Q, so it also splits over Ωa,b.



Proposition (E. Witt)

For a, b, c , d ∈ Q∗ the following are equivalent:

1. (a,bQ ) = ( c,dQ ).

2. Ωa,b
∼=Q Ωc,d .

Proof.
1. ⇔ 2. is Satz on page 464 in:
I E. Witt, Gegenbeispiel zum Normensatz. Math. Zeit. 39 (1934) 12–28.

2. ⇔ 1.: Assume that Ωa,b
∼=Q Ωc,d and consider the algebras

(a,bQ ) and ( c,dQ ).

(a,bQ ) splits over Ωa,b
∼=Q Ωc,d , so it is either 1 or ( c,dQ ).

If it is ( c,dQ ), we’re done, if it is 1, then Ωa,b is just Q(x), and so is

Ωc,d , hence ( c,dQ ) is 1.

Consequently, (a,bQ ) = ( c,dQ ).



Classes of Witt equivalent function fields of rational
conics

The starting point for our next considerations is the following
ultra-classic:

Theorem (Harrison, 1970)

For K , L fields of characteristic 6= 2, the following are equivalent:

1. W(K ) ∼= W(L).

2. There exists a group isomorphism α : K ∗/K ∗2 → L∗/L∗2 such
that α(−1) = −1 and α(DK 〈1, a〉) = DL〈1, α(a)〉 for all
a ∈ K ∗/K ∗2.

I D.K. Harrison, Witt rings. University of Kentucky Notes, Lexington,
Kentucky (1970).

Using a number of results that emerged from the Harrison
criterion, we shall start counting Witt rings of Ωa,b and Ωr .



Theorem (Koprowski, 2002)

Let k and l be two global fields of characteristic 6= 2 and let K and
L be algebraic function fields with fields of constans k and l that
also have rational places. If K and L are Witt equivalent, then so
are k and l.

I P. Koprowski, Local-global principle for Witt equivalence of function fields
over global fields. Colloq. Math. 91 (2002) 293–302.

It follows that Ωa,b 6∼ Ωr and if Ω(
√

r) 6∼ Ω(
√

s) then Ωr 6∼ Ωs .

Thus, so far, we have at least 2 Witt non-equivalent fields, Ωa,b

and Ωr .

Let us try to distinguish between Witt non-equivalent fields within
these two classes.

The case of Ωr is somewhat easier.



Theorem (Perlis, Szymiczek, Conner, Litherland, 1994)

Every quadratic extension of Q is Witt equivalent to Q(
√

r) for
some r ∈ {−1,±2,±7,±17}, and, moreover, these 7 quadratic
extensions of Q are Witt non-equivalent to each other.

I R. Perlis, K. Szymiczek, P.E. Conner, R. Litherland, Matching Witts with
global fields, in: Recent Advances in Real Algebraic Geometry and
Quadratic Forms (Proc. RAGSQUAD Year, Berkeley,CA, 1990-1991);
(W. B. Jacob, T. Y. Lam, and R. O.Robson, eds.), Contemp. Math 155
(1994), 365–387.

I K. Szymiczek, Witt equivalence of global fields. II. Relative quadratic
extensions. Trans. Amer. Math. Soc. 343 (1994) 277–303.

It follows that the function fields Ωr , r ∈ {−1,±2,±7,±17}, are
themselves Witt non-equivalent.

Thus our count of Witt non-equivalent function fields of conics is
up to 8.

We turn now to the fields Ωa,b, which are more tricky to handle.



We start with the following easy observation:

Proposition

For a, b ∈ Q∗ and a number field k such that −ab ∈ k∗ \ k∗2 the
following are equivalent:

1. there is a point p of Ωa,b with the residue field isomorphic to
k;

2. the form 〈a, b,−1〉 is isotropic over k.

Proof.
1. ⇒ 2.: Let p be the point of Ωa,b with the residue field k .

Then there are x , y ∈ k such that a · x2 + b · y 2 − 1 · 12 = 0.

Consequently, the form 〈a, b,−1〉 is isotropic over k .

1. ⇐ 2.: Let x , y , z ∈ k be such that ax2 + by 2 − z2 = 0.

If z = 0, then −ax2 = by 2 and, consequently,

−ab =
(
by
x

)2
∈ k∗2, which yields a contradiction.

Thus z 6= 0 and the point p associated to ( xz ,
y
z ) has the residue

field k .



We will need the following improvement on the Harrison criterion:

Theorem (Koprowski, 2002)

Let k and l be two finite extensions of Q, and K and L algebraic
function fields with fields of constants k and l, respectively. Then
K and L are Witt-equivalent iff the following conditions hold:

1. there is an isomorphism i : W (K )→W (L) sending
one-dimensional forms to one-dimensional forms;

2. there is a bijection T : PK → PL between places of K trivial
on k and places of L trivial on l ;

3. there are isomorphisms ip : W (Kp)→W (LT (p)) of Witt rings
of the completions, for every place p ∈ PK , such that:

W (K )
i //

θp
��

W (L)

θT (p)

��
W (Kp)

ip
//W (LT (p))



We start with distinguishing between the formally real and formally
non-real case.

Proposition

For a, b, c , d ∈ Q∗ with a, b > 0 and c , d < 0, the fields Ωa,b and
Ωc,d are Witt non-isomorphic.

First proof.
Not a ”proof”, really, just to indicate that we don’t quite use the
Koprowski criterion here..

The field Ω−1,−1 is not formally real (−1 is a sum of two squares
in Ω−1,−1) so Ω−1,−1 cannot be Witt equivalent to, say, Ω1,1. �



Second proof.
Suppose that Ωa,b is Witt equivalent to Ωc,d , for some a, b > 0
and c , d < 0.

The field Ωa,b has a point p with the formally real residue field K.

By the Koprowski criterion, the field Ωc,d has a point q with the
residue field L Witt equivalent to K.

In particular, L is formally real.

By the previous proposition, the form 〈c , d ,−1〉 is isotropic over L.

But the signature of this form is −3.

This is a contradiction. �

Thus our count of Witt non-equivalent function fields of conics is
up to 9.

Now it is time to distinguish between Witt non-equivalent fields
Ωa,b and Ωc,d , for a, b > 0 and c , d < 0, respectively.



Proposition

The fields Ω1,1 and Ω3,3 are Witt non-equivalent.

First proof.

The conic x2 + y 2 = 1 has a rational point, and, by the
classification theorem, its function field is just Q(x).

By:
I M. Dickmann, M. Marshall, F. Miraglia. Lattice-ordered reduced special

groups. Ann. Pure Appl. Logic. 132 (2005) 27–49.

the pp conjecture holds for the space of orderings of the field Ω1,1.

The conic 3x2 + 3y 2 = 1 does not have any rational points, and,
by:
I P. G ladki, M. Marshall. The pp conjecture for spaces of orderings of

rational conics. J. Algebra Appl. 6 (2007) 245–257.

the pp conjecture fails for the space of orderings of the field Ω3,3.

Since the space of orderings of a field is an invariant of its Witt
ring, this concludes the proof. �



Second proof.
Suppose that Ω1,1 is Witt equivalent to Ω3,3.

The field Ω1,1 has a point p with the residue field isomorphic to Q.

By the Koprowski criterion, the field Ω3,3 has a point q with the
residue field Witt equivalent to Q.

But since the degree of a point is an invariant of Witt equivalence,
this means that the conic 3x2 + 3y 2 = 1 has a rational point. �

Thus our count of Witt non-equivalent function fields of conics is
up to 10.

How about the fields Ωc,d with c , d < 0...?



Proposition

Ω−1,−1 and Ω−1,−3 are Witt non-equivalent.

Proof.
Suppose that Ω−1,−1 is Witt equivalent to Ω−1,−3.

Clearly 1 ∈ DΩ−1,−1〈−1,−1〉.
Thus 1 ∈ DΩ−1,−3〈−1,−1〉.
By one of the propositions, (−1,−1

Q ) splits over Ω−1,−3.

Since (−1,−1
Q ) 6= 1, this implies that (−1,−1

Q ) = (−1,−3
Q ).

But then (−1,3
Q ) = 1, or, equivalently, 3 ∈ DQ〈1, 1〉.

Of course, this is impossible.

So, our count of Witt non-equivalent function fields of conics is up
to 11.



Conjecture 1: There are 11 Witt non-equivalent function fields of
rational conics.



Conjecture 2: There are infinitely many Witt non-equivalent
function fields of rational conics.


