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Let

A = Mjy(D) afinitely generated simple algebra over Q
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Let A* be the group of units in A.

Questions :
» structure ?
» computation ?
» A= A3 ?

» maximal finite subgroups ?
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General method : let ' = A* act on a connected graph X.

"A good knowledge of the quotient graph '\ X yields virtually all the
information on I'."

Explicitely, one can use the following fundamental exact sequence
from Bass-Serre theory to get a presentation of I (i.e. generators
and relations)

1—m(X) > m(M\W\X) > T — 1

(this idea dates back to Opgenorth 2001)
Question : how can one get such a graph X ?
Answer : Voronoi theory, graph of perfect "forms".
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A c A maximal order & 3 an O-lattice L c D" such that
A =End(L) ={Me M,(D) | ML c L}

— N<=GL(L) = {a € My(D) | aL = L}.

Classification of O-lattices (Steinitz class) = A conjugated in
GL,(D) to

O ... 0 o
(a) O ... 0 o
a ... a O

where O’ = Oj(a) = {x € K | xa C a}.
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o1,...,0r thereal places of K that do not ramify in D
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Forms (2)
Sn(Dr) = {F e Ax | F"=F} > Py(Dg) = Sa(Dr)so

To F € S,(Dr) one can associate a quadratic form on the real
vector space D7, defined as

F[x] := trace(Fxx"),

which is positive definite if F € Py(Dg).
Definition
Let L c D" an O-lattice, and F € P,(Dg)
» ming (F) = mingyeeL F[],
» S (F)={¢eL|F[f] =min.(F)}.
» (minimal classes) Cl. (F) := {H € Pn(Dgr) | SL.(H) = SL(F)}.



A cell complex

The minimal classes w.r.t. a given lattices L form a cell complex
("Voronoi complex") on which A* = GL(L) acts

» g-F:=g'Fg
Aut, (F) = {g € GL(L) | g - F = F} finite group.

> g- C|L(F) = C|L(g- F)
AUtL(C|L(F)) = {g S GL(L) | g- C|L(F) = C|L(F)} ) AUtL(F).
Definition
A form F is L-perfect if Cl, (F) = R.oF.

Voronoi theory = this complex is finite mod A* and can be
computed explicitely (Voronoi algorithm, neighbouring process).



Maximal finite subbgroups

Let G be a finite subgroup of A* = GL(L). Set
F(G)={F € Sy(Dr) | g- F = F}.

A form Fis G-perfect w.r.t. L if Cl (F) N F(G) = RuoF.
Theorem

1. Let G be a maximal finite subgroup of GL(L). Then, there
exists a well-rounded (=compact) minimal class C such that
CNF(G) = R.oF for some form F, and G = Aut, (C).

2. If G is a finite subgroup of GL(L), then the maximal finite
subgroups of GL(L) containing it are of the form
H = Aut  (Cg) where Cg is a G-minimal class.



Example

Table: Well rounded minimal classes for K = Q[ V-15]

Lo = Ok ® Ok
C | G=Aut(C) | dim(rg(C)) | Aut.(F) | maximal
perf. corank = 0
P4 C6 1 Cs no
P2 C4 1 C4 no
perf. corank = 1
Cq Di2 1 Di2 yes
Co Di» 1 Di2 yes
C3 Cg 2 no
Cs Co 2 no
perf. corank = 2
D, Dg 1 Ds yes
D> Dg 1 Dg yes
D3 V4 1 V4 yes
D4 V4 1 V4 yes




Example (continued)

Table: Well rounded minimal classes for K = Q[ V—15]

Li =0k®p

C | G=Aut(C) | dim(rg(C)) | Aut.(F) | maximal

perf. corank = 0

P ‘ C3 : C4 ‘ 1 ‘ C3 : C4 ‘ yes
perf. corank = 1

Cq Dg 1 Dg yes

Co Dg 1 Dg yes

Cs Di» 1 Di» yes

perf. corank = 2

D | Vs \ 1 Vy yes




Example (continued)

Table: Well rounded minimal classes for K = Q[ V—15]

Li =0k ®p2

C | G=Aut(C) | dim(rg(C)) | Aut.(F) | maximal
perf. corank = 0

P ‘ C3:C4 ‘ 1 ‘ C3ZC4 ‘ yes
perf. corank = 1

Cq Dg 1 Dg yes

Co Dg 1 Dg yes

Cs Di» 1 Di» yes
perf. corank = 2

D | Vs \ 1 2 yes

Corollary

GL2(Ok) = GL(Lp) and GL(L+) are not isomorphic.



Number of conjugacy classes of maximal finite subgroups

Dg D12 V4 SLQ(S) Qg Cg : C4
K = Q[ V-15]
St(Ly=[0k] | 2| 2 | 2 - - -
St(L)=1[p2] | 2 | 1 | 1 - - 1
K = Q[ V-5
St(L)=[0k] | 3 | 2 | 1 - 1
St(L)=1[p2] | 1| 2 | 1 1 -
K = Q[ V-6]
St(Ly=[0xk] | 3 | 2 | 1 1
St(L)y=[pz] | 1| 1 | 2 - 1 1
K = Q[ V-10]
St(Ly=1[0k] | 3 | 2 | 1 - 1
St(L) = [p2] | 1 - |3 1 - 2
K = Q[V-21]
St(Ly=[0«] | 6 | 4 | 2 - 2
St(L) =[p2] | 2 6 - -
St(L) = [ps] 2 | 6 2 -
St(L) = [ps] 8 2




