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Let X be a normal affine T-variety, where T stands for the alge-
braic torus. We classify Ga-actions on X arising from homogeneous
locally nilpotent derivations of fiber type. We deduce that any
variety with trivial Makar-Limanov (ML) invariant is birationally
decomposable as Y ×P2, for some Y . Conversely, given a variety Y ,
there exists an affine variety X with trivial ML invariant birational
to Y × P2.
Finally, we introduce a new version of the ML invariant, called the
FML invariant. According to our conjecture, the triviality of the FML
invariant implies rationality. We confirm this conjecture in dimen-
sion at most 3.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The paper is devoted mainly to a birational characterization of normal affine algebraic varieties
with trivial Makar-Limanov invariant. Let us introduce the necessary notation and definitions.

We let k be an algebraically closed field of characteristic 0, M be a lattice of rank n, and T be the
algebraic torus T = Spec k[M] � (k∗)n . A T-variety X is a variety endowed with an algebraic action
of T. For an affine variety X = Spec A, to introduce a T-action on X is the same as to endow A with
an M-grading. There are well-known combinatorial descriptions of normal T-varieties. We send the
reader to [3] and [10, Ch. 1] for the case of toric varieties, to [10, Ch. 2 and 4] and [16] for the
complexity 1 case, where dim X = dim T + 1, and to [1,2] for the general case.

We let NQ = N ⊗ Q, where N = Hom(M,Z) is the dual lattice of M . Any affine toric variety can
be described via a polyhedral cone σ ⊆ NQ . Similarly, the description of a normal affine T-varieties X
due to Altmann and Hausen [1] involves the data (Y , σ ,D) where Y is a normal semiprojective
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variety, σ ⊆ NQ is a polyhedral cone, and D is a divisor on Y whose coefficients are polyhedra in NQ

that can be decomposed as the Minkowski sum of a bounded polyhedron and σ .
To introduce a Ga-action on an affine variety X is equivalent to fix a locally nilpotent derivation

(LND) on its structure ring A [7, §1.5]. Any LND on A can be extended to a derivation on K = Frac A by
the Leibniz rule. If an LND of A is homogeneous with respect to the M-grading on A we say that the
associated Ga-action on X is compatible with the T-action. Furthermore, we say that a homogeneous
LND ∂ (or, equivalently, the associated Ga-action) is of fiber type if ∂(K T) = 0 and of horizontal type
otherwise [6,12].

In [6] Flenner and Zaidenberg gave a classification of compatible Ga-actions on normal affine
k∗-surfaces. Generalizing this construction, in [12] a classification of Ga-actions on normal affine T-
varieties of complexity 1 was given. In Theorem 2.4 below, we extend this classification to Ga-actions
of fiber type on normal affine T-varieties of arbitrary complexity.

The Makar-Limanov (ML) invariant [9] showed to be an important tool for affine geometry. In par-
ticular, it allows to distinguish certain varieties from the affine space. For an algebra A, this invariant
is defined as the intersection of the kernels of all locally nilpotent derivations on A. Nevertheless,
this invariant is far form being optimal. Indeed, the ML invariant of the affine space An is trivial i.e.,
ML(An) = k. However, it can also be trivial for a non-rational affine variety [12]. In Theorem 4.2 we
give a birational characterization of normal affine varieties with trivial ML invariant.

To avoid such a pathology, we introduce a new invariant called the FML invariant. This is defined
as the intersection of the fields of fractions of the kernels of all locally nilpotent derivations on A.
For an affine variety X , we conjecture that FML(X) = k implies that X is rational. We confirm this
conjecture for dimensions up to 3, see Theorem 5.6.

The content of the paper is as follows. In Section 1 we recall some generalities about T-actions and
Ga-actions. In Section 2 we obtain the announced classification of LNDs of fiber type. In Section 3 we
introduce the homogeneous ML invariant and show some of its limitations. In Section 4 we establish
our principal result concerning the birational characterization. Finally, in Section 5 we introduce the
FML invariant, investigate the aforementioned conjecture, and give a comparison with the classical
ML invariant.

In the entire paper, unless stated otherwise, the term variety means a normal integral scheme of
finite type over a field k of characteristic 0, not necessarily algebraically closed.

1. Preliminaries

1.1. Combinatorial description of T-varieties

Let N be a lattice of rank n and M = Hom(N,Z) be its dual lattice. We let as before NQ = N ⊗ Q,
MQ = M ⊗ Q, and we consider the natural duality pairing MQ × NQ → Q, (m, p) �→ 〈m, p〉.

Let T = Spec k[M] be the n-dimensional algebraic (split) torus associated to M and let X = Spec A
be an affine T-variety. The comorphism A → A ⊗ k[M] induces an M-grading on A and, conversely,
every M-grading on A arises in this way. The T-action on X is effective if and only if the correspond-
ing M-grading is effective.

In [1], a combinatorial description of normal affine T-varieties is given. In what follows we recall
the main features of this description. Let σ be a pointed polyhedral cone in NQ . We define Polσ (NQ)

to be the set of all polyhedra in NQ that can be decomposed as the Minkowski sum of a bounded
polyhedron and σ .

To a polyhedron � ∈ Polσ (NQ) we associate its support function h� :σ∨ → Q defined by

h�(m) = min〈m,�〉 = min
p∈�

〈m, p〉.

Clearly, this function h� is piecewise linear on σ∨ . Furthermore, h� is concave and positively homo-
geneous, i.e.

h�

(
m + m′) � h�(m) + h�

(
m′), and h�(λm) = λh�(m), ∀m,m′ ∈ σ∨, ∀λ ∈ Q�0.
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Definition 1.1. A variety Y is called semiprojective if it is projective over an affine variety. A σ -poly-
hedral divisor on Y is a formal sum D = ∑

H �H · H , where H runs over all prime divisors on Y ,
�H ∈ Polσ (NQ), and �H = σ for all but finitely many values of H .

For m ∈ σ∨
M := σ∨ ∩ M we can evaluate D in m by letting D(m) be the Q-divisor

D(m) =
∑
H⊆Y

hH (m) · H,

where hH = h�H . A σ -polyhedral divisor D is called proper if the following hold:

(i) D(m) is semiample and Q-Cartier for all m ∈ σ∨
M , and

(ii) D(m) is big for all m ∈ rel.int(σ∨) ∩ M .

For a Q-divisor D on Y , OY (D) stands for the sheaf OY (�D�), where �D� is the integral part
of D . Recall that D is semiample if OY (rD) is globally generated for some r > 0, and big if
dim H0(Y , OY (rD)) � c · rdim Y for some c > 0 and r � 1.

The following theorem gives a combinatorial description of T-varieties analogous to the classical
combinatorial description of toric varieties.

Theorem 1.2. (See [1].) To any proper σ -polyhedral divisor D on a semiprojective variety Y one can associate
a normal finitely generated effectively M-graded domain of dimension rank M + dim Y given by

A[Y ,D] =
⊕

m∈σ∨
M

Amχm, where Am = H0(Y , OY
(
D(m)

)) ⊆ k(Y ).

Conversely, if k is algebraically closed then any normal finitely generated effectively M-graded domain is
isomorphic to A[Y ,D] for some semiprojective variety Y and some proper σ -polyhedral divisor D on Y .

1.2. Locally nilpotent derivations and Ga-actions

Let X = Spec A be an affine variety. A derivation on A is called locally nilpotent (LND for short) if for
every a ∈ A there exists n ∈ Z�0 such that ∂n(a) = 0. Given an LND ∂ on A, the map φ∂ : Ga × A → A,
φ∂(t, f ) = et∂ f defines a Ga-action on X , and any Ga-action arises in this way.

In the following lemma we collect some well-known facts about LNDs over a field of characteris-
tic 0, see e.g., [7].

Lemma 1.3. Let A be a finitely generated normal domain over a field of characteristic 0. For any two LNDs ∂

and ∂ ′ on A, the following hold.

(i) ker ∂ is a normal subdomain of codimension 1.
(ii) ker ∂ is factorially closed i.e., ab ∈ ker∂ ⇒ a,b ∈ ker∂ .

(iii) If a ∈ A is invertible, then a ∈ ker ∂ .
(iv) If ker ∂ = ker ∂ ′ , then there exist a,a′ ∈ ker ∂ such that a∂ = a′∂ ′ .
(v) If a ∈ ker∂ , then a∂ is again an LND.

(vi) If ∂(a) ∈ (a) for some a ∈ A, then a ∈ ker ∂ .
(vii) The field extension Frac(ker ∂) ⊆ Frac A is purely transcendental of degree 1.

Definition 1.4. We say that two LNDs ∂ and ∂ ′ on A are equivalent if ker ∂ = ker ∂ ′ .

Let D be a proper σ -polyhedral divisor on a semiprojective variety Y , and let A = A[Y ,D] be the
corresponding M-graded domain. A derivation ∂ on A is called homogeneous if it sends homogeneous
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elements into homogeneous elements. Given a homogeneous LND ∂ , we define its degree as deg ∂ =
deg ∂( f ) − deg f for any homogeneous f ∈ A \ ker ∂ .

Let KY be the field of rational functions of Y . A homogeneous LND ∂ on A extends to a derivation
on Frac A = KY (M), where KY (M) is the field of fractions of KY [M]. The LND ∂ is said to be of fiber
type if ∂(KY ) = 0 and of horizontal type otherwise.

Geometrically speaking, ∂ is of fiber type if and only if the general orbits of the corresponding
Ga-action on X = Spec A are contained in the closures of general orbits of the T-action given by the
M-grading.

1.3. Locally nilpotent derivations on toric varieties

In this section we recall the classification of homogeneous LNDs given in [12] for toric varieties
defined over a field k of characteristic 0. A similar description is implicit in the paper [3] devoted to
complete toric varieties.

Let ρ ∈ N and e ∈ M be lattice vectors. We define ∂ρ,e as the homogeneous derivation of degree e
on k[M] given by ∂ρ,e(χ

m) = 〈m,ρ〉 · χm+e .
For a pointed polyhedral cone σ in the vector space NQ , we let

A = k
[
σ∨

M

] =
⊕

m∈σ∨
M

kχm

be the affine semigroup algebra of the corresponding affine toric variety Xσ = Spec A.
If σ = {0}, then A is spanned by the characters which are invertible functions. By Lemma 1.3 (iii)

any LND on A is trivial. In the following, we fix a ray ρ of σ , and we let τ be the facet of σ∨ dual
to ρ . As usual, we denote by the same letter ρ the ray and its primitive vector.

Definition 1.5. We define

Sρ = σ∨
ρ ∩ {

e ∈ M
∣∣ 〈e,ρ〉 = −1

}
,

where σρ is the cone spanned by the rays of σ except ρ . We have Sρ �= ∅. Furthermore, e + m ∈ Sρ

whenever e ∈ Sρ and m ∈ τM .

The following theorem gives a classification of T-compatible Ga-actions on Spec A, or equivalently,
a classification of the homogeneous LNDs on A.

Theorem 1.6. To any pair (ρ, e), where ρ is a ray of σ and e ∈ Sρ , we can associate a homogeneous LND ∂ρ,e

on A = k[σ∨
M ] of degree e with kernel ker ∂ρ,e = k[τM ]. Conversely, if ∂ �= 0 is a homogeneous LND on A, then

∂ = λ∂ρ,e for some ray ρ ⊆ σ , some lattice vector e ∈ Sρ , and some λ ∈ k∗ .

Proof. The first assertion is Lemma 2.6 in [12]. The second follows from Theorem 2.7 in [12]. �
2. Locally nilpotent derivations of fiber type

In this section we completely describe compatible Ga-actions of fiber type on a normal affine
T-variety over an algebraically closed field of characteristic 0. The particular case of complexity 1 is
done in [12, §3.1].

If the base field is algebraically closed, by Theorem 1.2 every normal finitely generated effec-
tively M-graded domain is isomorphic to A[Y ,D] for some semiprojective variety Y and some proper
σ -polyhedral divisor D on Y .
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We fix a smooth semiprojective variety Y and a proper σ -polyhedral divisor on Y

D =
∑

H

�H · H .

Letting KY be the field of rational functions on Y , we consider the affine variety X = Spec A, where

A = A[Y ,D] =
⊕

m∈σ∨
M

Amχm, with Am = H0(Y , O
(
D(m)

)) ⊆ KY .

We denote by hH the support function of �H so that D(m) = ∑
H∈Y hH (m) · H . We also fix a

homogeneous LND ∂ of fiber type on A.
We let Ā = KY [σ∨

M ] be the affine semigroup algebra over KY with cone σ ∈ NQ . By Lemma 1.13
in [12] ∂ can be extended to a homogeneous locally nilpotent KY -derivation ∂̄ on Ā.

If σ = {0} then ∂̄ = 0 by Theorem 1.6 and so ∂ is trivial. In the sequel we assume that there is at
least one ray, say ρ , of σ . Let τ be its dual facet, and let Sρ be as defined in Definition 1.5.

Definition 2.1. For any e ∈ Sρ , we let De be the Q-divisor on Y defined by

De :=
∑

H

max
m∈σ∨

M\τM

(
hH (m) − hH (m + e)

) · H .

Remark 2.2. An alternative description of De is as follows. Since the function hH is concave and
piecewise linear on σ∨ , the above maximum is achieved by one of the linear pieces of hH i.e., by one
of the maximal cones in the normal quasifan Λ(hH ).

For every prime divisor H on Y , we let {δ1,H , . . . , δ�H ,H } be the set of all maximal cones in Λ(hH )

and gr,H , where r ∈ {1, . . . , �H }, be the linear extension of hH |δr,H to MQ . Since the maximum is
achieved on one of the linear pieces in σ∨ we have

max
m∈σ∨

M\τM

(
hH (m) − hH (m + e)

) = max
r∈{1,...,�H }

(−gr,H (e)
) = − min

r∈{1,...,�H } gr,H (e).

Since τ is a facet of σ∨ , it is contained as a face in one and only one maximal cone δr,H . We may
assume that τ ⊆ δ1,H . By the concavity of hH we have g1,H (e) � gr,H (e), ∀r and so

De = −
∑

H

g1,H (e) · H .

We need the following lemma.

Lemma 2.3. For any e ∈ Sρ we define Φe = H0(Y , OY (−De)). If ϕ ∈ KY then ϕ ∈ Φe if and only if ϕ · Am ⊆
Am+e for any m ∈ σ∨

M \ τM .

Proof. If ϕ ∈ Φe , then for every m ∈ σ∨
M \ τM ,

div(ϕ) � De �
∑

H

(
hz(m) − hz(m + e)

) · H = D(m) − D(m + e).

If f ∈ ϕ Am then div( f ) + D(m) � div(ϕ) and so div( f ) + D(m + e) � 0. Thus ϕ Am ⊆ Am+e .
To prove the converse, we let ϕ ∈ KY be such that ϕ Am ⊆ Am+e for any m ∈ σ∨

M \ τM . With the
notation of Remark 2.2, we let m ∈ M be a lattice vector such that D(m) is an integral divisor, and m
and m + e belong to rel.int(δ1,H ), for any prime divisor H .
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For every H ∈ SuppD, we let f H ∈ Am be a rational function such that

ordH ( f H ) = −hH (m) = −g1,H (m).

By our assumption ϕ · f H ∈ Am+e and so

ordH (ϕ f H ) � −hH (m + e) = −g1,H (m + e).

This yields ordH (ϕ) � −g1,H (m + e) + g1,H (m) = −g1,H (e), hence ϕ ∈ Φe . This proves the
lemma. �

The following theorem gives a classification of LNDs of fiber type on an arbitrary normal affine
T-variety. We let Φ∗

e = Φe \ {0}.

Theorem 2.4. To any triple (ρ, e,ϕ), where ρ is a ray of σ , e ∈ Sρ , and ϕ ∈ Φ∗
e , we can associate a homoge-

neous LND ∂ρ,e,ϕ on A = A[Y ,D] of fiber type and of degree e, with kernel

ker ∂ρ,e,ϕ =
⊕

m∈τM

Amχm.

Conversely, if k is algebraically closed then every non-trivial homogeneous LND ∂ of fiber type on A is of
the form ∂ = ∂ρ,e,ϕ for some ray ρ ⊆ σ , some lattice vector e ∈ Sρ , and some function ϕ ∈ Φ∗

e .

Proof. Letting Ā = KY [σ∨
M ], we consider the KY -LND ∂ρ,e on Ā as in Theorem 1.6. Since ϕ ∈ K ∗

Y ,
ϕ∂ρ,e is again a KY -LND on Ā.

We claim that ϕ∂ρ,e stabilizes A ⊆ Ā. Indeed, let f ∈ Am ⊆ KY be a homogeneous element. If
m ∈ τM , then ϕ∂ρ,e( f χm) = 0. If m ∈ σ∨

M \ τM , then

ϕ∂ρ,e
(

f χm) = ϕ f ∂ρ,e
(
χm) = m0ϕ f χm+e,

where m0 := 〈m,ρ〉 ∈ Z>0. By Lemma 2.3, m0ϕ f χm+e ∈ Am+e , proving the claim.
Finally ∂ρ,e,ϕ := ϕ∂ρ,e|A is a homogeneous LND on A with kernel

ker ∂ρ,e,ϕ = A ∩ ker ∂ρ,e =
⊕

m∈τM

(Am ∩ KY )χm =
⊕

m∈τM

Amχm,

as desired.
To prove the converse, since k is algebraically closed we have A = A[Y ,D]. We consider a homo-

geneous LND ∂ on A of fiber type. Since ∂ is of fiber type, ∂|KY = 0 and so ∂ can be extended to a
KY -LND ∂̄ on the affine semigroup algebra Ā = KY [σ∨

M ]. By Theorem 1.6, ∂̄ = ϕ∂ρ,e for some ray ρ
of σ , some e ∈ Sρ and some ϕ ∈ K ∗

Y . Since A is stable under ϕ∂ρ,e , by Lemma 2.3 ϕ ∈ Φ∗
e and so

∂ = ϕ∂ρ,e|A = ∂ρ,e,ϕ . �
Corollary 2.5. Let A be a normal finitely generated effectively M-graded domain, where M is a lattice of finite
rank, and let ∂ be a homogeneous LND on A. If ∂ is of fiber type then ker∂ is finitely generated.

Proof. Let A = A[Y ,D], where D is a proper σ -polyhedral divisor on a semiprojective variety Y . In
the notation of Theorem 2.4 we have ∂ = ∂ρ,e,ϕ , where ρ is a ray of σ . Letting τ ⊆ σ∨ be the facet
dual to ρ , by Theorem 2.4 we have ker∂ = ⊕

m∈τM
Amχm .

Let a1, . . . ,ar be a set of homogeneous generators of A. Without loss of generality, we may assume
that deg ai ∈ τM if and only if 1 � i � s < r. We claim that a1, . . . ,as generate ker ∂ . Indeed, let P be
any polynomial such that P (a1, . . . ,ar) ∈ ker ∂ . Since τ ⊆ σ∨ is a face,

∑
mi ∈ τM for mi ∈ σ∨

M implies
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that mi ∈ τ , ∀i. Hence all the monomials composing P (a1, . . . ,ar) are monomials in a1, . . . ,as , proving
the claim. �
Corollary 2.6. Let as before ∂ be a homogeneous LND of fiber type on A = A[Y ,D], and let f χm ∈ A \ ker∂

be a homogeneous element. Then ∂ is completely determined by the image gχm+e := ∂( f χm) ∈ Am+eχ
m+e .

Proof. By the previous theorem ∂ = ∂ρ,e,ϕ for some ray ρ , some e ∈ Sρ , and some ϕ ∈ Φe . Here
e = deg ∂ and ρ is uniquely determined by e, see Corollary 2.8 in [12].

In the course of the proof of Theorem 2.4 it was shown that ∂ρ,e,ϕ( f χm) = m0ϕ f χm+e . Thus
ϕ = g

m0 f ∈ K0 is also uniquely determined by our data. �
It might happen that Φ∗

e as above is empty. Given a ray ρ ⊆ σ , in the following theorem we give
a criterion for the existence of e ∈ Sρ such that Φ∗

e is non-empty.

Theorem 2.7. Let A = A[Y ,D], and let ρ ⊆ σ be the ray dual to a codimension one face τ ⊆ σ∨ . Then
there exists e ∈ Sρ such that dimΦe is positive if and only if the divisor D(m) is big for all lattice vectors
m ∈ rel.int(τ ).

Proof. Assuming that D(m) is big for every lattice vector m ∈ rel.int(τ ), we consider the linear map

G : MQ → DivQ(Y ), m �→
∑

H

g1,H (m) · H,

so that G(m) = D(m) for all m ∈ τ and De = −G(e) for all e ∈ Sρ . Choosing m ∈ rel.int(τ ) ∩ (Sρ + μ)

and r ∈ Z>0, we let j = m − 1
r · μ. Let us consider the divisor

G( j) = G(m) − 1

r
· G(μ) = D(m) − 1

r
· G(μ).

Since D(m) is big and the cone of big divisors is open in DivR(Y ) (see [11, Def. 2.2.25]), by choos-
ing r big enough, we may assume that G( j) is big. Furthermore, after increasing r, if necessary,
we may assume that G(r · j) has a section. Now, r · j = r · m − μ = (r − 1) · m + (m − μ). Since
(r − 1) · m ∈ τM and m − μ ∈ Sρ , we have r · j ∈ Sρ . Letting e = r · j ∈ Sρ we obtain De = −G(e) and
so dim H0(Y , O Y (−De)) is positive.

Assume now that there is m ∈ rel.int(τ ) such that D(m) is not big. Since the set of big divisors is
an open and convex set in DivR(Y ), the divisor D(m) is not big whatever is m ∈ τ . We let B be the
algebra

B =
⊕

m∈τM

Amχm.

Under our assumption dim B < n +k −1. Since dim A = n +k, by Lemma 1.3 (i) B cannot be the kernel
of an LND on A. By Theorem 2.4, the latter implies that for none of the e ∈ Sρ the dimension dim Φe

is positive. �
Finally, we deduce the following corollary.

Corollary 2.8. Two homogeneous LNDs of fiber type ∂ = ∂ρ,e,ϕ and ∂ ′ = ∂ρ ′,e′,ϕ′ on A = A[Y ,D] are equiv-
alent if and only if ρ = ρ ′ . Furthermore, the equivalence classes of homogeneous LNDs of fiber type on A are
in one-to-one correspondence with the rays ρ ⊆ σ such that D(m) is big ∀m ∈ rel.int(τ ), where τ is the facet
dual to ρ .
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Proof. The first assertion follows from the description of ker ∂ρ,e,ϕ in Theorem 2.4. The second follows
from the first one due to Theorem 2.7. �
Remark 2.9. Let X = Spec A[Y ,D] be an affine T-variety and recall that n = rank M . There are two
types of T-invariant divisors on X . The first type corresponds to families of n-dimensional orbit clo-
sures over a prime divisor in Y ; and the second one corresponds to families of (n − 1)-dimensional
orbit closures over Y . By [15, Proposition 3.13], the equivalence classes of homogeneous LNDs of
fiber type on X are also in one-to-one correspondence with the T-invariant divisors of the second
type.

3. Homogeneous Makar-Limanov invariant

Let X = Spec A, where A is a finitely generated k-domain, and let LND(A) be the set of all LNDs
on A. The Makar-Limanov invariant (ML invariant for short) of A (or of X = Spec A) is defined as

ML(A) =
⋂

∂∈LND(A)

ker ∂.

In the case where A is effectively M-graded we let LNDh(A) be the set of all homogeneous LNDs
on A and LNDfib(A) be the set of all homogeneous LNDs of fiber type on A. Following [12], we define

MLh(A) =
⋂

∂∈LNDh(A)

ker ∂ and MLfib(A) =
⋂

∂∈LNDfib(A)

ker ∂.

MLh(A) is called the homogeneous Makar-Limanov invariant of A. Clearly,

ML(A) ⊆ MLh(A) ⊆ MLfib(A).

In this section we provide examples showing that, in general, these inclusions are strict and so,
the homogeneous LNDs are not enough to compute the ML invariant.

Example 3.1. Let A = k[x, y] with the grading given by deg x = 0 and deg y = 1. In this case, both
partial derivatives ∂x = ∂/∂x and ∂y = ∂/∂ y are homogeneous. Since ker ∂x = k[y] and ker∂y = k[x]
we have MLh = k. Furthermore, it is easy to see that there is only one equivalence class of LNDs of
fiber type. A representative of this class is ∂y (see Corollary 2.8). This yields MLfib(A) = k[x]. Thus
MLh(A) � MLfib(A) in this case.

Example 3.2. To provide an example where ML(A) � MLh(A) we consider the Koras–Russell affine
cubic threefold X = Spec A, where

A = k[x, y, z, t]/(x + x2 y + z2 + t3).
The ML invariant was first introduced in [9] to distinguish X from A3. In fact ML(A) = k[x] while
ML(A3) = k. In the recent paper [5] Dubouloz shows that the cylinder over the Koras–Russell threefold
has trivial ML invariant i.e., ML(A[w]) = k, where w is a new variable.

Let ∂ be a homogeneous LND on A[w] graded via deg A = 0 and deg w = 1. If e := deg ∂ � −1 then
∂(A) = 0. By Lemma 1.3 (i) we have ker ∂ = A and so ∂ is equivalent to the partial derivative ∂/∂ w .

If e � 0 then ∂(w) = awe+1, where a ∈ A and so, by Lemma 1.3 (vi) w ∈ ker∂ . Furthermore, for
any a ∈ A we have ∂(a) = bwe for a unique b ∈ A. We define a derivation ∂̄ : A → A by ∂̄(a) = b. Since
∂r(a) = ∂̄r(a)wre the derivation ∂̄ is LND. This yields MLh(A[w]) = ML(A) = k[x] while ML(A[w]) = k.
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4. Birational equivalence classes of varieties with trivial ML invariant

In this section we establish a birational characterization of normal affine varieties with trivial ML
invariant over a field k of characteristic 0, not necessarily algebraically closed.

The following lemma was proven in [14, Lemma 16] in the case where k = C.

Lemma 4.1. Let A be a finitely generated 2-dimensional normal k-domain. If ML(A) = k then Frac A is a
purely transcendental extension of k.

Proof. Since ML(A) = k, there are at least two non-equivalent LNDs ∂ and ∂ ′ on A. Let φ and φ′
be the respective Ga-actions. The general orbits of these two Ga-actions intersect transversally on
X = Spec A. Let Orb(x′) be a general orbit of φ′ .

By Lemma 1.3 and the Zariski finiteness theorem [7, p. 147], ker ∂ is a normal finitely gener-
ated 1-dimensional domain. Furthermore, the inclusion ker∂ ⊆ A induces a dominant morphism
X → Spec(ker ∂). The composition A1

k � Orb(x′) ↪→ X → Spec(ker ∂) is not constant. Therefore,
ker ∂ = k′[t] for some t ∈ ker ∂ and some field k′ algebraic over k. By Lemma 1.3 (iii) k′ = k and
so ker ∂ � k[t]. Now the result follows from Lemma 1.3 (vii). �

The following theorem is the main result of this section.

Theorem 4.2. Let X = Spec A be an affine variety of dimension n � 2 over k. If ML(X) = k then X �bir Y ×P2

for some variety Y . Conversely, in any birational class Y × P2 there is an affine variety X with ML(X) = k.

Proof. Let K = Frac A be the field of rational functions on X so that tr.degk(K ) = n. As usual
tr.degk(K ) denotes the transcendence degree of the field extension k ⊆ K .

Since ML(X) = k, there exist at least two non-equivalent LNDs ∂1 and ∂2 : A → A. We let
Li = Frac(ker∂i) ⊆ K , for i = 1,2. By Lemma 1.3 (vii), Li ⊆ K is a purely transcendental extension
of degree 1, for i = 1,2.

We let L = L1 ∩ L2. By an inclusion–exclusion argument we have tr.degL(K ) = 2. We consider the
2-dimensional algebra Ā = A ⊗k L over L. Since Frac Ā = Frac A = K and L ⊆ ker ∂i for i = 1,2, the
LND ∂i extends to a locally nilpotent L-derivation ∂̄i by setting

∂̄i(a ⊗ l) = ∂i(a) ⊗ l, where a ∈ A and l ∈ L.

Furthermore, ker ∂̄i = Ā ∩ Li , for i = 1,2 and so

ker ∂̄1 ∩ ker ∂̄2 = Ā ∩ L1 ∩ L2 = L.

Thus the Makar-Limanov invariant of Ā is trivial. By Lemma 4.1, K = Frac Ā is a purely transcendental
extension of L of degree 2. Thus X �bir Y ×P2, where Y is any model having L as the field of rational
functions.

The second assertion follows from Lemma 4.4 bellow. This completes the proof. �
Remark 4.3. The previous proof depends only on the fact that X has at least two non-equivalent LNDs.
An alternative proof of the first assertion of Theorem 4.2 can be obtained adapting the argument of
Theorem 2.5 in [4].

The following lemma provides examples of affine varieties with trivial ML invariant in any bi-
rational class Y × Pn , n � 2. It generalizes the results in Section 4.3 in [12]. Let us introduce the
necessary notation.
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As before, we let N be a lattice of rank n � 2 and M be its dual lattice. We let σ ⊆ NQ be a
pointed polyhedral cone of full dimension. We fix p ∈ rel.int(σ ) ∩ M . We let � = p + σ and h = h�

so that

h(m) = 〈p,m〉 > 0, for all m ∈ σ∨
M \ {0}.

Letting Y be a projective variety and H be a semiample and big Cartier Z-divisor on Y , we let
A = A[Y ,D], where D is the proper σ -polyhedral divisor D = � · H , so that

D(m) = 〈p,m〉 · H, for all m ∈ σ∨
M .

Recall that Frac A = KY (M) so that Spec A �bir Y × Pn .

Lemma 4.4. With the notation as above, the affine variety X = Spec A[Y ,D] has trivial ML invariant.

Proof. Let {ρi}i be the set of all rays of σ and {τi}i the set of the corresponding dual facets of σ∨ .
Since rH is big for all r > 0, by Theorem 2.7, there exists ei ∈ Sρi such that dimΦei is positive. So
we can chose a non-zero element ϕi ∈ Φei . By Theorem 2.4 there exists a non-trivial locally nilpotent
derivation ∂ρi ,ei ,ϕi , with

ker ∂ρi ,ei ,ϕi =
⊕

m∈τi∩M

Amχm.

Since the cone σ is pointed and has full dimension, the same holds for σ∨ . Thus, the intersection
of all facets reduces to one point

⋂
i τi = {0} and so⋂

i

ker ∂ρi ,ei ,ϕi ⊆ A0 = H0(Y , OY ) = k.

This yields the equalities

ML(A) = MLh(A) = MLfib(A) = k. �
Example 4.5. Let us provide yet another explicit construction of a class of normal affine T-varieties
with trivial ML invariant. With the notation as in the proof of Lemma 4.4, we fix isomorphisms
M � Zn and N � Zn such that the standard bases {μ1, . . . ,μn} and {ν1, . . . , νn} for MQ and NQ ,
respectively, are mutually dual. We let σ be the first quadrant in NQ , and p = ∑

i νi , so that

h(m) =
∑

i

mi, and D(m) =
∑

i

mi · H, where m = (m1, . . . ,mn), and mi ∈ Q�0.

We let ρi ⊆ σ be the ray spanned by the vector νi , and let τi be its dual facet. In this setting,
Sρi = (τi − μi) ∩ M . Furthermore, letting ei, j = −μi + μ j (where j �= i) yields

h(m) = h(m + ei, j), so that Dei, j = 0, and Φei, j = H0(Y , OY ) = k.

Recall that ∂νi are the partial derivatives defined in Section 1.3. Choosing ϕi, j = 1 ∈ Φei, j we have

∂i, j := ∂ρi ,ei, j ,ϕi, j = χμ j ∂νi , where i, j ∈ {1, . . . ,n}, i �= j
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is a homogeneous LND on A = A[Y ,D] of degree ei, j and with kernel

ker ∂i, j =
⊕
τi∩M

Amχm.

As in the proof of Lemma 4.4 we have⋂
i, j

ker ∂i, j = k and so ML(X) = k.

We can give a geometrical description of X . Consider the OY -algebra

Ã =
⊕

m∈σ∨
M

OY
(
D(m)

)
χm so that A = H0(Y , Ã).

In this case, we can write

Ã =
∞⊕

r=0

⊕
∑

mi=r,mi�0

OY (rH)χm � Sym

(
n⊕

i=1

OY (H)

)
.

Thus X̃ = SpecY Ã is the vector bundle over Y associated to the locally free sheaf E = ⊕n
i=1 OY (H)

(see Ex. 5.18 in [8, Ch. II]). We let π : X̃ → Y be the corresponding affine morphism.
The morphism ϕ : X̃ → X induced by taking global sections corresponds to the contraction of the

zero section to a point 0̄. We let θ := π ◦ ϕ−1 : X \ {0̄} → Y . The point 0̄ corresponds to the augmen-
tation ideal A \ k. This point is the only attractive fixed point of the T-action. The orbit closures of
the T-action on X are Θy := θ−1(y) = θ−1(y) ∪ {0}, ∀y ∈ Y . Let χμi = ui . Then Θy is equivariantly
isomorphic to Spec k[σ∨

M ] = Spec k[u1, . . . , un] � An .
The Ga-action φi, j : Ga × X → X induced by the homogeneous LND ∂i, j restricts to a Ga-action

on Θy given by

φi, j|ΘY : Ga × An → An, where ui �→ ui + tu j, ur �→ ur, ∀r �= i.

Moreover, the unique fixed point 0̄ is singular unless Y is a projective space and there is no other
singular point. By Theorem 2.9 in [13] X has rational singularities if and only if OY and OY (H) are
acyclic. The latter assumption can be fulfilled by taking, for instance, Y toric or Y a rational surface,
and H a large enough multiple of an ample divisor.

5. FML invariant

The ML invariant serves to distinguish some varieties from the affine space. Nevertheless, this
invariant is far from being optimal as we have seen in the previous section. Indeed, there is a large
class of non-rational normal affine varieties with trivial ML invariant. To eliminate such a pathology,
we propose below a generalization of the classical ML invariant.

Let A be a finitely generated normal domain. We define the FML invariant of A to be the subfield
of K = Frac A given by

FML(A) =
⋂

∂∈LND(A)

Frac(ker ∂).

In the case where A is M-graded we define FMLh and FMLfib in the analogous way, see Section 3.
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Remark 5.1. Let A = k[x1, . . . , xn] so that K = k(x1, . . . , xn). For the partial derivative ∂i = ∂/∂xi we
have Frac(ker ∂i) = k(x1, . . . , x̂i, . . . , xn), where x̂i means that xi is omitted. This yields

FML(A) ⊆
n⋂

i=1

Frac(ker ∂i) = k,

and so FML(A) = k. Thus, the FML invariant of the affine space is trivial.

For any finitely generated normal domain A there is an inclusion ML(A) ⊆ FML(A), while still
FML(An) = k. Hence the FML invariant can be stronger than the classical one in the sense to be able
to distinguish more varieties form the affine space than the classical one. In the next proposition we
show how to recover the classical ML invariant from the FML invariant.

Proposition 5.2. For a finitely generated normal domain A we have

ML(A) = FML(A) ∩ A.

Proof. We must show that for any LND ∂ on A,

ker ∂ = Frac(ker ∂) ∩ A.

The inclusion “⊆” is trivial. To prove the converse inclusion, we fix a ∈ Frac(ker ∂) ∩ A. Letting
b, c ∈ ker ∂ be such that ac = b, Lemma 1.3 (ii) shows that a ∈ ker ∂ . �

Let A = A[Y ,D] for some proper σ -polyhedral divisor D on a normal semiprojective variety Y . In
this case K = Frac A = KY (M), where KY (M) corresponds to the field of fractions of the semigroup
algebra KY [M]. It is a purely transcendental extension of KY of degree rank M .

Let ∂ be a homogeneous LND of fiber type on A. By definition, KY ⊆ Frac(ker ∂) and so, KY ⊆
FMLfib(A). This shows that the pathological examples as in Lemma 4.4 where MLfib(A) = k cannot
occur any more for the FML invariant. Let us formulate the following conjecture.

Conjecture 5.3. Let X be an affine variety. If FML(X) = k then X is (uni)rational.

The following lemma proves Conjecture 5.3 in the particular case where X �bir C × Pn , with C
a curve.

Lemma 5.4. Let X = Spec A be an affine variety such that X �bir C × Pn, where C is a curve. Denote by L the
field of rational functions on C . If C has positive genus then L ⊆ FML(X). In particular, if FML(X) = k then C is
rational.

Proof. Assume that C has positive genus. We have K = Frac A = L(x1, . . . , xn) for some x1, . . . , xn ∈ K ,
and L is not a rational field.

Let ∂ be an LND on A. We claim that L ⊆ Frac(ker ∂). Indeed, let f , g ∈ L \ k. Since tr.degk(L) = 1,
there exists a polynomial P ∈ k[x, y] \ k such that P ( f , g) = 0. Applying the derivation ∂ : K → K to
P ( f , g) we obtain

∂ P

∂x
( f , g) · ∂( f ) + ∂ P

∂ y
( f , g) · ∂(g) = 0.

Since f and g are not constant we may suppose that ∂ P
∂x ( f , g) �= 0 and ∂ P

∂ y ( f , g) �= 0. Hence ∂( f ) = 0
if and only if ∂(g) = 0. This shows that one of the two following possibilities occurs:

L ⊆ Frac(ker ∂) or L ∩ Frac(ker ∂) = k.
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Assume first that L ∩ Frac(ker ∂) = k. Then, by Lemma 1.3 (i) Frac(ker ∂) = k(x1, . . . , xn) and so
the field extension Frac(ker ∂) ⊆ K is not purely transcendental. This contradits Lemma 1.3 (vii). Thus
L ⊆ Frac(ker ∂) proving the claim and the lemma. �
Remark 5.5. We can apply Lemma 5.4 to show that the FML invariant carries more information than
usual ML invariant. Indeed, let, in the notation of Lemma 4.4, Y be a smooth projective curve of
positive genus. Lemma 4.4 shows that ML(A[Y ,D]) = k. While by Lemma 5.4, FML(A[Y ,D]) ⊇ KY .

In the following theorem we prove Conjecture 5.3 in dimension at most 3.

Theorem 5.6. Let X be an affine variety of dimension at most 3. If FML(X) = k then X is rational.

Proof. Since FML(X) is trivial, the same holds for ML(X). If dim X � 2 then X is rational by virtue of
Lemma 4.1. Assume that dim X = 3. Theorem 4.2 implies that X �bir C × P2 for some curve C . While
by Lemma 5.4, C is a rational curve. �
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