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Abstract. Let X = SpecA be a normal affine variety over an algebraically closed field k
of characteristic 0 endowed with an effective action of a torus T of dimension n. Let also
∂ be a homogeneous locally nilpotent derivation on the normal affine Zn-graded domain
A, so that ∂ generates a k+-action on X that is normalized by the T-action.

We provide a complete classification of pairs (X, ∂) in two cases: for toric varieties
(n = dimX) and in the case where n = dimX − 1. This generalizes previously known
results for surfaces due to Flenner and Zaidenberg. As an application we compute the
homogeneous Makar-Limanov invariant of such varieties. In particular, we exhibit a
family of nonrational varieties with trivial Makar-Limanov invariant.

Introduction

Let k be an algebraically closed field of characteristic 0. For an algebraic torus
T ' (k∗)n acting on an algebraic variety X , the complexity of this action is the
codimension of the general orbit. Without loss of generality, we restrict ourselves
to effective T-actions, so the complexity is dimX−dimT. In particular, a T-variety
of complexity 0 has an open orbit and is thus a toric variety. It is well-known that
a T-action on X = SpecA gives rise to an M -grading on A, where M is a lattice
of rank n.

More generally, let A =
⊕

m∈M Ãm be a finitely generated effectively M -graded
domain and let K = FracA. For any m ∈M we let

Km = {f/g ∈ K | f ∈ Ãm+e, g ∈ Ãe}.

Then Ãm ⊆ Km, and k ⊆ K0 ⊆ K are field extensions. Letting {µ1, . . . , µn}
be a basis of M we fix, for every i = 1, . . . , n, an element χµi ∈ Kµi

. For every
m =

∑
i aiµi we have Km = χmK0, where χ

m =
∏

i(χ
µi)ai . Thus, without loss of

generality, we assume in the sequel that

A =
⊕

m∈M

Amχm ⊆ K0[M ], where Am ⊆ K0,
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and K0[M ] denotes the semigroupK0-algebra of M . In this setting the complexity
of the T-action equals the transcendence degree of K0 over k. In particular, for a
toric variety X , K0 = k, and χm is just a character of T regarded as a rational
function on X .

There are well-known combinatorial descriptions of normal T-varieties. For toric
varieties see, e.g., [De], Chapter 1 in [KKMS], and [Od]. For complexity 1 case,
see Chapters 2 and 4 in [KKMS] and, more generally, [Ti1], [Ti2]. Finally, for
arbitrary complexity, see [AlHa], [AHS]1.

We let N = Hom(M,Z), MQ = M ⊗ Q, and NQ = N ⊗ Q. Any affine toric
variety can be described via the weight cone σ∨ ⊆ MQ spanned over Q≥0 by all
m ∈M such that Am 6= {0} or, alternatively, via the dual cone σ ⊆ NQ. Similarly,
the description of normal affine T-varieties of complexity 1 due to Altmann and
Hausen deals with a polyhedral cone σ ⊆ NQ (dual to the weight cone σ∨ ⊆MQ),
a smooth curve C, and a divisor D on C whose coefficients are polyhedra in NQ
having tail cone σ. The degree degD is defined as the Minkowski sum of the
coefficients of D (see Subsection 1.1 for precise definitions).

For affine surfaces with a C∗-action an alternative description2 was proposed in
[FlZa1]. This description was used in [FlZa2] in order to classify all C+-actions on
normal C∗-surfaces. Generalizing this construction, in the present paper we use
the description in [AlHa] to classify normal affine T-varieties of complexity 0 or 1
endowed with a k+-action.

A k+-action gives rise to a locally nilpotent derivation (LND) on A. To any LND
on A we can associate a homogeneous LND which maps homogeneous elements
into homogeneous elements, see Lemma 1.10. A homogeneous LND ∂ on A =⊕

m∈M Amχm ⊆ K0[M ] can be extended to a derivation on K0[M ]. We say that
∂ is of fiber type if ∂(K0) = 0 and of horizontal type otherwise. In geometric terms,
the fact that the LND ∂ is homogeneous means that the corresponding k+-action
on X = SpecA is normalized by the torus T.

In Theorem 2.7 we obtain a classification of homogeneous LNDs on toric vari-
eties. For T-varieties of complexity 1, such a classification is given in Theorems
3.8 (for fiber type) and 3.28 (for horizontal type). These theorems are the main
results of the paper. In [Li1] this classification of homogeneous LNDs of fiber type
is generalized to arbitrary complexity.

We show as a corollary that the equivalence classes of homogeneous LNDs on
the toric variety defined by the cone σ ⊆ NQ are in one-to-one correspondence
with the extremal rays of σ (see Corollary 2.10). This is also true for normal affine
T-varieties of complexity 1 over an affine curve C. Over a projective curve C, these
classes are in one-to-one correspondence with the extremal rays of σ disjoint from
the polyhedron degD (see Remark 3.14). The classification of homogeneous LNDs
of horizontal type is more involved, see Corollary 3.31.

The Makar-Limanov invariant [ML] is an important tool which allows us, in
particular, to distinguish certain varieties from the affine space. For an algebra A,
this invariant is defined as the intersection of the kernels of all locally nilpotent

1In the case of complexity 1, the descriptions in [AlHa] and [Ti2] are equivalent and
agree with the one in [KKMS, Chaps. 2 and 4], see [Ti2, Sect. 6] and [Vo].

2Which is actually equivalent, see Example 3.5 in [AlHa].
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AFFINE T-VARIETIES AND LOCALLY NILPOTENT DERIVATIONS

derivations on A. For graded algebras, we introduce a homogeneous version of
the Makar-Limanov invariant. For T-varieties of complexity 0 and 1 we give an
explicit expression of the latter invariant. The triviality of the homogeneousMakar-
Limanov invariant implies that of the usual one.

As an application we exhibit in Subsection 4.2 a family of nonrational singular
varieties with a trivial Makar-Limanov invariant. These examples (in a preliminary
version of our paper) attracted the attention of V. L. Popov, who proposed in a
recent preprint [Po] yet another family of affine varieties with these same properties,
this time in addition smooth. It is worth mentioning that generalizing the methods
in Subsection 4.2 we obtained a birational characterization of normal affine varieties
with trivial Makar-Limanov invariant [Li1].

The content of the paper is as follows. In Section 1 we recall the combinatorial
description of T-varieties due to Altmann and Hausen, and also some generalities
on locally nilpotent derivations and k+-actions. In Sections 2 and 3 we obtain our
principal classification results for toric varieties and for T-varieties of complexity
1, respectively. The comparison with previously known results in the surface case
is given in Subsection 3.3. Finally, in Section 4 we provide the applications to the
Makar-Limanov invariant.

In the entire paper k is an algebraically closed field of characteristic 0, except
in Section 2, where k is not necessarily algebraically closed.

Acknowledgments. The author is grateful to Mikhail Zaidenberg for posing the
problem and for permanent encouragement, and to Dimitri Timashev for useful
discussions. We also thank Vladimir Popov for kindly communicating to us his
preprint [Po].

1. Preliminaries

1.1. Combinatorial description of T-varieties
Let N be a lattice of rank n and let M = Hom(N,Z) be its dual lattice. We also
let NQ = N⊗Q, MQ = M⊗Q, and we consider the natural duality MQ×NQ → Q,
(m, p) 7→ 〈m, p〉.

Let T = Speck[M ] be the corresponding n-dimensional algebraic torus as-
sociated to M . Thus M is the character lattice of T and N is the lattice of
one-parameter subgroups. It is customary to write the character associated to
a lattice vector m ∈ M as χm, so that χm is the comorphism of the morphism
k[t]→ k[M ], t 7→ m [Od].

Let X = SpecA be an affine T-variety. It is well-known that the morphism
A → A ⊗ k[M ] induces an M -grading on A and, conversely, every M -grading
on A arises in this way. Furthermore, a T-action is effective if and only if the
corresponding M -grading is effective3.

Let A =
⊕

m∈M Amχm be a finitely generated effectively M -graded domain.
The weight cone of A is the cone σ∨ ⊆MQ spanned by all the lattice vectorsm ∈M
such that Am 6= {0}. In the sequel, for a cone σ∨ ⊆ MQ, we let σ∨

M = σ∨ ∩M

3We say that an M -graded algebra A is effectively graded by M if the set {m ∈ M |
Am 6= 0} is not contained in a proper sublattice of M .
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denote the set of lattice points in σ∨, so that

A =
⊕

m∈σ∨
M

Amχm.

Since A is finitely generated, the cone σ∨ is polyhedral and since the grading is
effective, σ∨ is of full dimension or, equivalently, σ is pointed4.

An affine T-variety of complexity 0 is a toric variety. There is a well-known
way of describing affine toric varieties in terms of pointed polyhedral cones in NQ.
To any such cone σ ⊆ NQ we associate an affine semigroup algebra k[σ∨

M ] :=⊕
m∈σ∨

M
kχm and an affine toric variety X = Speck[σ∨

M ]. Conversely, for an affine

toric variety, the corresponding cone σ is the dual of the weight cone σ∨. We note
that in this particular case, σ∨ ⊆ MQ is the cone spanned by all lattice vectors
m ∈M such that the character χm : T→ k∗ extends to a regular function on X .

In [AlHa] a combinatorial description of affine T-varieties of arbitrary complexity
is given. In what follows we recall the main features of this description specialized
to the case of complexity 1 torus actions. In [Ti1] a combinatorial description
of complexity 1 actions of reductive groups is given and in [Ti2] it is specialized
for torus actions. For torus actions of complexity 1, the descriptions in [AlHa]
and [Ti1] are equivalent and agree with the one given earlier (in a slightly more
restrictive setting) by Mumford [KKMS, Chaps. 2 and 4], cf. [Ti2] and [Vo].

Definition 1.1.

(i) Let σ be a pointed cone in NQ. We define Polσ(NQ) to be the set of all
σ-tailed polyhedra, i.e., polyhedral domains in NQ which can be decomposed as
the Minkowski sum of a compact polyhedron and σ. The set Polσ(NQ) equipped
with the Minkowski sum forms an abelian semigroup with neutral element σ.

(ii) We also let CPLQ(σ∨) denote the set of all piecewise linear Q-valued func-
tions h : σ∨ → Q which are upper convex and positively homogeneous, i.e.,

h(m+m′) ≥ h(m) + h(m′) and h(λm) = λh(m), ∀m,m′ ∈ σ∨, ∀λ ∈ Q≥0.

The set CPLQ(σ∨) with the usual addition forms an abelian semigroup with neutral
element 0.

For a polyhedron ∆ ∈ Polσ(NQ) we define its support function

h∆ : σ∨ → Q, m 7→ min〈m,∆〉.

Clearly, h∆ ∈ CPLQ(σ∨). The map Polσ(NQ) → CPLQ(σ∨) given by ∆ 7→ h∆ is
an isomorphism of abelian semigroups.

For the following definition we refer to [AlHa].

4A cone in a vector space is called pointed if it contains no subspaces of positive
dimension.
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Definition 1.2. Let C be a smooth curve. A σ-polyhedral divisor on C is a formal
sum D =

∑
z∈C ∆z · z, where ∆z ∈ Polσ(NQ) and ∆z = σ for all but finitely many

values of z. For m ∈ σ∨ we can evaluate D in m by letting D(m) be the Q-divisor
on C,

D(m) =
∑

z∈C

h∆z
(m) · z.

A σ-polyhedral divisor is called proper if either C is affine, or C is projective
and the following two conditions hold:

(1) The polyhedron degD :=
∑

z∈C ∆z is a proper subset of the cone σ.
(2) If hdegD(m) = 0, then m is contained in the boundary of σ∨ and a multiple

of D(m) is principal.

These two assumptions are counterparts of the conditions that D(m) is semi-
ample for all m ∈ σ∨

M and big for all m contained in the relative interior of σ∨, cf.
[AlHa, Def. 2.7]. They are automatically fulfilled if C is affine.

Definition 1.3. A fan which defines a toric variety consists of pointed cones. We
need to consider more generally objects which we call quasifans. These satisfy the
usual definition of a fan except that their cones are not necessarily pointed.

As usual, for a function h ∈ CPLQ(σ∨), we define its normal quasifan Λ(h)
as the coarsest refinement of the quasifan of σ∨ such that h is linear in each cone
δ ∈ Λ(h). For a σ-polyhedral divisor D on C, we define its normal quasifan Λ(D) as
the coarsest common refinement of all Λ(h∆z

) ∀z ∈ C. We have Λ(D) = Λ(hdegD).

The following theorem gives a combinatorial description of T-varieties of com-
plexity 1 analogous to the classical combinatorial description of toric varieties.
This is a specialization of results in [AlHa] to torus actions of complexity 1. Alter-
natively, a direct proof is given in [Ti2] for (1) and (2), while (3) is straightforward
from loc. cit. See also Theorem 4.3 in [FlZa1] for the particular case of C∗-surfaces.

Theorem 1.4.

(1) To any proper σ-polyhedral divisor D on a smooth curve C one can asso-

ciate a normal finitely generated effectively M -graded domain of dimension

n+ 1, where n = rank(M), given by 5

A[C,D] =
⊕

m∈σ∨
M

Amχm, where Am = H0(C,OC(bD(m)c)).

(2) Conversely, any normal finitely generated effectively M -graded domain of

dimension n + 1 is isomorphic to A[C,D] for some smooth curve C and

some proper σ-polyhedral divisor D on C.

(3) Moreover, the M -graded domains A[C,D] and A[C ′,D′] are isomorphic

if and only if C ' C ′ and, under this identification, D(m) − D′(m) is

principal for all m ∈ σ∨
M and depends linearly on m.

5For a Q-divisor D, bDc stands for the integral part and {D} for the fractional part
of D.
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In [KaFi] (see also [FlZa1]), all C∗-surfaces are divided into three types: el-
liptic, parabolic, and hyperbolic. In the general case, we will use the following
terminology.

An M -graded domain A = A[C,D] (or, equivalently, a T-variety X) will be
called elliptic if C is projective. A nonelliptic T-variety will be called parabolic if σ
is of full dimension and hyperbolic if σ = {0}. If dimX ≥ 3, this does not exhaust
all the possibilities.

Example 1.5. Letting N = Z2 and σ = {(0, 0)}, in NQ = Q2 we consider the
triangle ∆0 with vertices (0, 0), (0, 1), and (− 1

4 ,−1) and the segment ∆1 = {0}×
[0, 1].

∆0 ⊆ NQ ∆1 ⊆ NQ

11

−1

−
1

4

Let C = Spec k[t] and let D = ∆0 · [0] + ∆1 · [1]. In the following picture, for
the normal quasifans Λ(h∆0

), Λ(h∆1
) and Λ(D) in MQ = Q2, for i = 0, 1 we show

the values of hi = h∆i
on each maximal cone.

Λ(h0) Λ(h1) Λ(D)

Q≥0(−4, 1)Q≥0(−4, 1)

Q≥0(8,−1)Q≥0(8,−1)

Q≥0(−1, 0)Q≥0(−1, 0)Q≥0(−1, 0)

Q≥0(1, 0)

Q≥0(1, 0)

−

1

4
m1 −m2 0

0

m2m2m2

m2m2

m1m1m1

We let A = A[C,D] as in Theorem 1.4 and we let X = SpecA. The torus
T = (k∗)2 acts on X . Since C is affine and σ = {(0, 0)}, X is hyperbolic as a
T-variety. By Theorem 1.4 we have

A(4,0) = tk[t], A(−1,0) = k[t], A(−4,1) = k[t], and A(8,−1) = t(t− 1)k[t].

An easy calculation shows that the elements

u1 = −tχ(4,0), u2 = χ(−1,0), u3 = −χ(−4,1), and u4 = t(t− 1)χ(8,−1),

generate A as an algebra. Furthermore, they satisfy the irreducible relation u1 +
u2
1u

4
2 + u3u4 = 0, and so

A ' k[x1, x2, x3, x4]/(x1 + x2
1x

4
2 + x3x4). (1)
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The Z2-grading on A is given by deg x1 = (4, 0), deg x2 = (−1, 0), deg x3 = (−4, 1),
and deg x4 = (8,−1). The curve C and the proper polyhedral divisor D can be
recovered from this description of A following the recipe in [AlHa, Sect. 11].

We let K0 denote the function field of C. There is a natural embedding of M -
graded algebras A ↪→ K0[M ]. If C is affine, then Am is a locally free A0-module
of rank 1 for every m ∈ σ∨

M .
Following [FlZa1, Prop. 4.12], in the next lemma we show the way in which our

combinatorial description is affected when passing to a certain cyclic covering.

Lemma 1.6. Let A = A[C,D], where C is a smooth curve with function field K0

and D is a proper σ-polyhedral divisor on C. Consider the normalization A′ of the

cyclic ring extension A[sχe], where e ∈ M , sd = f ∈ Ade ⊆ K0, and d > 0. Then

A′ = A[C ′,D′], where C ′ and D′ are defined as follows:

(i) If A is elliptic, then A′ is also elliptic and C ′ is the smooth projective curve

with function field K0[s].
(ii) If A is nonelliptic, then A′ is also nonelliptic and C = SpecA′

0, where A′
0

is the normalization of A0 in K0[s].
(iii) In both cases D′ =

∑
z∈C ∆z · p∗(z), where p : C ′ → C is the projection.

Proof. The normalization A′ admits a natural M -grading. The latter is defined
by the M -grading on A and by letting deg sχe = e. Let K = FracA. Since
(sχe)d−fχde = 0, A′ is the normalization of A in the function field K ′ := K[sχe].
But χ−e ∈ K, so K ′ = K[s]. Moreover, K[s] = K0[s]⊗Frack[M ], so the function
field of C ′ is K0[s], and A′

0 is the normalization of A0 in the field K0[s]. This
proves (i) and (ii).

For every m ∈M we have D′(m) =
∑

z∈C hz(m)p∗(z) = p∗(D(m)). Therefore,
for every f ∈ K0, there are equivalences:

divC(f) + D(m) ≥ 0 ⇔ divC′(p∗f) + p∗(D(m)) ≥ 0 ⇔ divC′(f) + D′(m) ≥ 0.

Let m ∈ σ∨
M and let r > 0 be such that D(rd ·m) is integral. Then

g ∈ A′
m ⇔ grd ∈ Ardm ⇔ divC(g

rd) + D(rd ·m) ≥ 0

⇔ divC′(grd) + D′(rd ·m) ≥ 0 ⇔ divC′(g) + D′(m) ≥ 0,

which proves (iii). �

1.2. Locally nilpotent derivations and k+-actions

Let A be a commutative ring. A derivation on A is called locally nilpotent (LND
for short) if for every a ∈ A there exists n ∈ Z≥0 such that ∂n(a) = 0.

Let X = SpecA be an affine variety. Given an LND ∂ on A, the map φ∂ :
k+ × A → A, φ∂(t, f) = et∂f defines a k+-action on X , and any k+-action arises
in this way. In the following lemma we collect some well-known facts about LNDs
over a field of characteristic 0, not necessarily algebraically closed, needed for later
purposes, see, e.g., [Fr2], [ML].

Lemma 1.7. Let A be a finitely generated normal domain over a field of charac-

teristic 0. If ∂ and ∂ ′ are two LNDs on A, then the following hold
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(i) ker∂ is a normal subdomain of codimension 1.

(ii) ker∂ is factorially closed, i.e., ab ∈ ker∂ ⇒ a, b ∈ ker∂.

(iii) If a ∈ A is invertible, then a ∈ ker∂.

(iv) If ker∂ = ker∂ ′, then there exist f, f ′ ∈ ker∂ such that f ′∂ = f∂′.

(v) For a ∈ A, ∂a ∈ (a)⇒ ∂a = 0.

(vi) If a ∈ ker∂, then a∂ is again an LND.

Definition 1.8. We say that two LNDs ∂ and ∂ ′ on A are equivalent if ker∂ =
ker∂′. Geometrically, this means that the generic orbits of the associated k+-
actions coincide, cf. also Lemma 1.7(iv).

With dual lattices M and N as in Subsection 1.1, for a field extension k ⊆ K0

we consider a finitely generated effectively M -graded domain

A =
⊕

m∈σ∨
M

Amχm, where Am ⊆ K0,

(we keep our convention from the Introduction regarding M -graded algebras).

A derivation ∂ on A is called homogeneous if it sends homogeneous elements into
homogeneous elements. Hence, ∂ sends homogeneous pieces of A into homogeneous
pieces.

Let M∂ = {m ∈ σ∨
M | ∂(Amχm) 6= 0}. The action of ∂ on homogeneous pieces

of A defines a map ∂M : M∂ → σ∨
M , i.e., ∂(Am) ⊆ A∂M (m). By the Leibniz rule,

for homogeneous elements f ∈ Am \ ker∂ and g ∈ Am′ \ ker∂, we have

∂(fg)=f∂(g)+g∂(f)∈A∂M (m+m′), ∂M (m+m′)=m+∂M (m′)=m′+∂M (m).

Thus ∂M (m) −m ∈ M is a constant function on M∂ . This leads to the following
definition.

Definition 1.9. Let ∂ be a nonzero homogeneous derivation on A. The degree

of ∂ is the lattice vector deg ∂ defined by deg ∂ = deg ∂(f) − deg(f) for any
homogeneous element f /∈ ker∂. With this notation the map ∂M : M∂ → σ∨

M is
just the translation by the vector deg ∂.

We also say that an LND ∂ on A is negative if deg ∂ /∈ σ∨
M , nonnegative if

deg ∂ ∈ σ∨
M , and positive if ∂ is nonnegative and deg ∂ 6= 0.

It is well-known that any LND on A decomposes into a sum of homogeneous
derivations, some of which are locally nilpotent. Short of a good reference, in the
next lemma we provide a short argument.

Lemma 1.10. Let A be a finitely generated normal M -graded domain. For any

derivation ∂ on A there is a decomposition ∂ =
∑

e∈M ∂e, where ∂e is a homoge-

neous derivation of degree e. Moreover, let ∆(∂) be the convex hull in MQ of the

set {e ∈ M | ∂e 6= 0}. Then ∆(∂) is a bounded polyhedron and for every vertex e
of ∆(∂), ∂e is locally nilpotent if ∂ is.
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Proof. Letting a1, . . . , ar be a set of homogeneous generators of A we have A '
k[r]/I , where k[r] = k[x1, . . . , xr] and I denotes the ideal of relations of a1, . . . , ar.
TheM -grading and the derivation ∂ can be lifted to anM -grading and a derivation
∂′ on k[r], respectively.

The proof of Proposition 3.4 in [Fr2] can be applied to an M -grading, proving
that ∂′ =

∑
e∈M ∂′

e, where ∂′
e is a homogeneous derivation on k[r]. Furthermore,

since ∂′(I) ⊆ I and I is homogeneous, we have ∂ ′
e(I) ⊆ I . Hence ∂′

e induces a
homogeneous derivation ∂e on A of degree e, proving the first assertion.

The algebra A being finitely generated, the set {e ∈ M | ∂e 6= 0} is finite and
so ∆(∂) is a bounded polyhedron. Let e be a vertex of ∆(∂) and let n ≥ 1. If
ne =

∑n
i=1 mi with mi ∈ ∆(∂) ∩M , then mi = e ∀i. For a ∈ Amχm this yields

∂n
e (a) = (∂n(a))m+ne, where (∂

n(a))m+ne stands for the summand of degreem+ne
in the homogeneous decomposition of ∂n(a). Hence ∂e is locally nilpotent if ∂ is
so. �

In the following lemma we extend Lemma 1.8 in [FlZa2] to more general grad-
ings. This lemma shows that any LND ∂ on a normal domain can be extended as
an LND to a cyclic ring extension defined by an element of ker∂. Actually (i) is
contained in loc. cit. while the proof of (ii) is similar and so we omit it.

Lemma 1.11.

(i) Let A be a finitely generated normal domain and let ∂ be an LND on A.
Given a nonzero element v ∈ ker∂ and d > 0, we let A′ denote the nor-

malization of the cyclic ring extension A[u] ⊇ A in its fraction field, where

ud = v. Then ∂ extends in a unique way to an LND ∂ ′ on A′.

(ii) Moreover, if A is M -graded and ∂ and v are homogeneous, with deg v =
dm for some m ∈ M , then A′ is M -graded as well, and u and ∂ ′ are

homogeneous with deg u = m and deg ∂ ′ = deg ∂.

1.12. Recall that A =
⊕

m∈σ∨
M
Amχm, where Am ⊆ K0, K0 is a field containing

k, and FracA = K0(M)6. The following lemma provides some useful extension of
a homogeneous LND ∂ on A.

Lemma 1.13. For any homogeneous LND ∂ on A, the following hold:

(i) The derivation ∂ extends in a unique way to a homogeneous k-derivation

on K0[M ].
(ii) If ∂(K0) = 0, then the extension of ∂ as in (i) restricts to a homogeneous

locally nilpotent K0-derivation on K0[σ
∨
M ].

Proof. The first assertion is evident. Let Nil(∂) be the subalgebra of K0[M ] where
∂ acts in a nilpotent way. To show (ii), suppose that ∂(K0) = 0. Assuming that
fχm ∈ K0[σ

∨
M ], we consider r > 0 such that Arm 6= 0. Letting g ∈ Arm, we have

frχrm = f ′gχrm for some f ′ ∈ K0. Thus frχrm ∈ Nil(∂) and so fχm ∈ Nil(∂).
�

In the setting as in the previous lemma, the extension of ∂ to K0[M ] will still
be denoted by ∂. Following [FlZa2] we use the next definition.

6For a field K0 and a lattice M , K0(M) denotes the function field of K0[M ].
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Definition 1.14. With A as in paragraph 1.12, a homogeneous LND ∂ on A is
said to be of fiber type if ∂(K0) = 0 and of horizontal type if ∂(K0) 6= 0.

Let A be a finitely generated domain and let X = SpecA. In this setting
the fact that ∂ is homogeneous means that the corresponding k+-action on X is
normalized by the T-action given by the M -grading. Furthermore, ∂ is of fiber
type if and only if the general orbits of the corresponding k+-action are contained
in the closures of general orbits of the T-action. Otherwise, ∂ is of horizontal type.

2. Locally nilpotent derivations on toric varieties

In this section we consider more generally toric varieties defined over a field k

of characteristic 0, not necessarily algebraically closed. This will be important in
Section 3 below.

Let M and N be lattices as in Subsection 1.1. We also let NQ = N ⊗ Q,
MQ = M⊗Q, and we consider the natural duality MQ×NQ → Q, (m, p) 7→ 〈m, p〉.
Notation 2.1. Let ρ ∈ N and e ∈ M be lattice vectors. We define ∂ρ,e as the
homogeneous derivation of degree e on k[M ] given by ∂ρ,e(χ

m) = 〈m, ρ〉 · χm+e.

An easy computation shows that ∂ρ,e is indeed a derivation. Let Hρ be the
subspace of MQ orthogonal to ρ, and let H+

ρ be the half-space of MQ given by
〈·, ρ〉 ≥ 0. The kernel ker∂ρ,e is spanned by all characters χm with m ∈ M
orthogonal to ρ, i.e., ker∂ρ,e = k[Hρ ∩M ].

Let Nil(∂ρ,e) be the subalgebra of k[M ] where ∂ρ,e acts in a nilpotent way.
Assume that 〈e, ρ〉 = −1. For every m ∈ H+

ρ ∩M , the character χm ∈ Nil(∂ρ,e)

since ∂`
ρ,e(χ

m) = 0, where ` = 〈m, ρ〉 + 1. Thus, the derivation ∂ρ,e restricted
to the subalgebra k[H+

ρ ∩ M ] is a homogeneous LND. On the other hand, ∂ρ,e
is not locally nilpotent in k[M ], in fact, for every m /∈ H+

ρ ∩M , the character
χm /∈ Nil(∂ρ,e) is not nilpotent.

Remark 2.2. If ∂ρ,e stabilizes a subalgebra A ⊆ k[H+
ρ ∩M ], then ∂ρ,e|A is also a

homogeneous LND on A of degree e and ker(∂ρ,e|A) = A ∩ k[Hρ ∩M ].
For the rest of this section we let σ be a pointed polyhedral cone in the vector

space NQ, and we let

A = k[σ∨
M ] =

⊕

m∈σ∨
M

kχm

be the affine semigroup algebra of σ with the corresponding affine toric variety
X = SpecA. Since the cone σ is pointed, σ∨ is of full dimension and the subalgebra
A ⊆ k[M ] is effectively graded by M .

To every extremal ray ρ ⊆ σ we can associate a codimension 1 face τ ⊆ σ∨ given
by τ = σ∨ ∩ ρ⊥. As usual, we denote an extremal ray and its primitive vector by
the same letter ρ. Thus σ∨ ⊆ H+

ρ and τ ⊆ Hρ.

Definition 2.3. Let σρ be the cone spanned by all the extremal rays of σ except
ρ, so that σ∨ = σ∨

ρ ∩H+
ρ . We also let

Sρ = σ∨
ρ ∩ {e ∈M | 〈e, ρ〉 = −1}.

This definition can be illustrated in the following picture, where ρ ⊆ NQ is
pointing upwards.
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ρ

σρ

σ ⊆ NQ

τ

σ∨
ρ

σ∨ ⊆ MQ

{〈·, ρ〉 = −1} Sρ

Lemma 2.4. Let e ∈M . Then e ∈ Sρ if and only if:

(i) e /∈ σ∨
M ; and

(ii) m+ e ∈ σ∨
M , ∀m ∈ σ∨

M \ τM .

Proof. Assume first that e ∈ Sρ. Then (i) is evident. To show (ii) we let m ∈
σ∨
M \ τM . Then m+ e ∈ H+

ρ because 〈m+ e, ρ〉 = 〈m, ρ〉 − 1. Also m ∈ σ∨ ⊆ σ∨
ρ

yielding m+ e ∈ σ∨
ρ . Thus m+ e ∈ σ∨ = σ∨

ρ ∩H+
ρ .

To show the converse, we let e ∈ M be such that (i) and (ii) hold. Letting ρi,
i = 1, . . . , `, be all the extremal rays of σ except ρ, for m ∈ σ∨

M \ τM we have

〈m+ e, ρi〉 = 〈m, ρi〉+ 〈e, ρi〉 ≥ 0, ∀i ∈ {1, · · · , `}.

If m ∈ ρ⊥i ∩ σ∨
M , then 〈m, ρi〉 = 0 and so 〈e, ρi〉 ≥ 0 ∀i. Thus e ∈ σ∨

ρ . Since
e ∈ σ∨

ρ \ σ∨, 〈e, ρ〉 is negative. We have 〈e, ρ〉 = −1, otherwise m+ e /∈ σ∨ for any
m ∈ σ∨

M such that 〈m, ρ〉 = 1. This yields e ∈ Sρ. �

Remark 2.5. Since ρ /∈ σρ we have Sρ 6= ∅. Furthermore, by the previous lemma,
e+m ∈ Sρ whenever e ∈ Sρ and m ∈ τM .

In the following lemma we provide a translation of Lemma 2.4 from the language
of convex geometry to that of affine semigroup algebras.

Lemma 2.6. For every pair (ρ, e), where ρ is an extremal ray in σ and e is a lattice

vector in Sρ, the homogeneous derivation ∂ρ,e restricts to an LND on A = k[σ∨
M ]

with kernel ker∂ρ,e = k[τM ] and deg ∂ρ,e = e.

Proof. If σ = {0}, then σ has no extremal rays, so the statement is trivial. We
assume in the sequel that σ has at least one extremal ray ρ. By Lemma 2.4, ∂ρ,e
stabilizes A. Hence, by Remark 2.2, ∂ρ,e is a homogeneous LND on A with kernel
k[τM ] and of degree e. �

The following theorem completes our classification, cf. [De, Prop. 11] and [Od,
Sect. 3.4].

Theorem 2.7. If ∂ 6= 0 is a homogeneous LND on A, then ∂ = λ∂ρ,e for some

extremal ray ρ on σ, some lattice vector e ∈ Sρ, and some λ ∈ k∗.
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Proof. The kernel ker∂ is a subsemigroup subalgebra of A of codimension 1. Since
ker∂ is factorially closed (see Lemma 1.7), it follows that ker∂ = k[σ∨

M ∩H ] for a
certain codimension 1 subspace H of MQ.

If σ∨ ∩H is not a codimension 1 face of σ∨, then H divides the cone σ∨ into
two pieces. Since the action of ∂ on characters is a translation by a constant vector
deg ∂, only the characters from one of these pieces can reach H in a finite number
of iterations of ∂, which contradicts the fact that ∂ is locally nilpotent.

In the case where σ∨ ∩ H = τ is a codimension 1 face of σ∨, we let ρ be
the extremal ray dual to τ . Since ∂ is a homogeneous LND, the translation by
e = deg ∂ maps (σ∨

M \ τM ) into σ∨
M . So, by Lemma 2.4, e ∈ Sρ and ∂ = λ∂ρ,e, as

required. �

From our classification we obtain the following corollaries.

Corollary 2.8. A homogeneous LND ∂ on a toric variety is uniquely determined,

up to a constant factor, by its degree.

Proof. By Theorem 2.7 we have ∂ = λ∂ρ,e where e = deg ∂. We claim that the ρ
is uniquely determined by e. Indeed, the sets Sρ and Sρ′ are disjoint for ρ 6= ρ′.
�

Corollary 2.9. Every homogeneous LND ∂ on a toric variety X is of fiber type

and negative 7.

Proof. The first claim is evident because T acts with an open orbit. By Theorem
2.7, any LND on a toric variety is of the form λ∂ρ,e. Its degree is deg ∂ρ,e = e ∈ Sρ

and Sρ ∩ σ∨ = ∅, so ∂ is negative. �

Corollary 2.10. Two homogeneous LNDs ∂ = λ∂ρ,e and ∂′ = λ′∂ρ′,e′ on A are

equivalent if and only if ρ = ρ′. In particular, there is only a finite number of

pairwise nonequivalent homogeneous LNDs on A.

Proof. The first assertion follows from the description of ker∂ρ,e in Lemma 2.6 and
the second one from the fact that σ, being polyhedral, has only a finite number of
extremal rays. �

The following corollary shows that the kernel of a homogeneous LND on a
semigroup algebra is finitely generated. Since toric varieties are rational, this is
also a consequence of Theorem 1.2 in [Ku].

Corollary 2.11. Let X = Spec A be a toric variety. If ∂ : A → A is a homoge-

neous LND, then ker∂ is finitely generated as a k-algebra.

Proof. The corollary follows directly from the description of ker∂ in Lemma 2.6.
�

Example 2.12. With N = Z3 we let σ be the cone in NQ having extremal rays
ρ1 = (1, 0, 0), ρ2 = (0, 1, 0), ρ3 = (1, 0, 1), and ρ4 = (0, 1, 1). The dual cone
σ∨ ⊆ MQ = Q3 is spanned by the lattice vectors u1 = (1, 0, 0), u2 = (0, 1, 0),
u3 = (0, 0, 1), and u4 = (1, 1,−1). Furthermore, these elements satisfy the relation

7See Definitions 1.9 and 1.14.
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u1+u2 = u3+u4 and the algebra A = k[σ∨
M ] is generated by xi = χui , i = 1, . . . , 4.

Thus,

A ' k[x1, x2, x3, x4]/(x1x2 − x3x4). (2)

Corollary 2.10 shows that there are four nonequivalent homogeneous LNDs on
A corresponding to the extremal rays ρi ⊆ σ. By a routine calculation we obtain

Sρ1
= {(−1, b, c) ∈M | b ≥ 0, c ≥ 1}, Sρ2

= {(a,−1, c) ∈M | a ≥ 0, c ≥ 1},
Sρ3

= {(a, b, c) ∈M | a ≥ 0, b+ c ≥ 0, a+ c = −1}, and

Sρ4
= {(a, b, c) ∈M | b ≥ 0, a+ c ≥ 0, b+ c = −1}.

Letting e1 = (−1, 0, 1), e2 = (0,−1, 1), e2 = (0, 1,−1), e4 = (1, 0,−1), ∂i =
∂ρi,ei , and m = (m1,m2,m3), we have

∂1(χ
m) = m1 · χm+e1 , ∂2(χ

m) = m2 · χm+e2 ,

∂3(χ
m) = (m1 +m3) · χm+e3 , and ∂4(χ

m) = (m2 +m3) · χm+e4 .

Finally, under the isomorphism of (2), the four homogeneous LNDs on A are given
by

∂1 = x3
∂

∂x1
+ x2

∂

∂x4
, ∂2 = x3

∂

∂x2
+ x1

∂

∂x4
,

∂3 = x4
∂

∂x1
+ x2

∂

∂x3
, and ∂4 = x4

∂

∂x2
+ x1

∂

∂x3
.

3. Locally nilpotent derivations on T-varieties of complexity 1

In this section we give a complete classification of homogeneous LNDs on T-
varieties of complexity 1 over an algebraically closed field k of characteristic 0. In
the first part we treat the case of homogeneous LNDs of fiber type, while in the
second one we deal with the more delicate case of homogeneous LNDs of horizontal
type.

We fix the n-dimensional torus T, a smooth curve C, and a proper σ-polyhedral
divisor D =

∑
z∈C ∆z · z on C. Letting K0 be the function field of C, we consider

the affine variety X = SpecA, where

A = A[C,D] =
⊕

m∈σ∨
M

Amχm, with Am = H0 (C,O(bD(m)c)) ⊆ K0.

We denote by hz = h∆z
the support function of ∆z so that D(m) =

∑
z∈C hz(m)·z.

We also fix a homogeneous LND ∂ on A.
In this context, we can interpret Definitions 1.9 and 1.14 as follows.

Lemma 3.1. With the notation as above, let ∂ be a homogeneous LND on A.
Then the following hold:
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(i) If ∂ is of fiber type, then ∂ is negative and ker∂ =
⊕

m∈τM
Amχm where τ

is a codimension 1 face of σ∨.

(ii) Assuming further that A is nonelliptic, ∂ is of fiber type if and only if ∂ is

negative.

Proof. To prove (i) we let ∂ be a homogeneous LND of fiber type on A. By Lemma
1.13 we can extend ∂ to a homogeneous LND ∂̄ on Ā = K0[σ

∨
M ] which is an affine

semigroup algebra overK0. Since ∂(K0) = 0, ∂̄ is a locally nilpotentK0-derivation.
It follows from Corollary 2.9 that deg ∂ = deg ∂̄ /∈ σ∨

M , so ∂ is negative.
Furthermore, Lemma 2.6 and Theorem 2.7 show that ker ∂̄ = K0[τM ] where τ

is a codimension 1 face of σ∨. Thus

ker∂ = A ∩ ker ∂̄ =
⊕

m∈τM

(Am ∩K0)χ
m =

⊕

m∈τM

Amχm,

which proves (i).
To prove (ii) we assume further that A is nonelliptic. Let ∂ be a negative

homogeneous LND on A. Let ∂̄ be the extension of ∂ to K0[M ] as in Lemma
1.13. Since ∂ is negative, ∂(A0) ⊆ Adeg ∂ = 0. Since A is nonelliptic we have
K0 = FracA0, so ∂̄(K0) = 0 and ∂ is of fiber type. �

Remark 3.2. In the elliptic case, the second assertion in Lemma 3.1 does not hold,
in general. Consider for instance the elliptic k-domain A = k[x, y] graded via
deg x = deg y = 1. Then the partial derivative ∂x is a negative homogeneous LND
of horizontal type on A.

3.1. Homogeneous LNDs of fiber type

In this subsection we consider a homogeneous LND ∂ on A of fiber type. Let,
as before, Ā = K0[σ

∨
M ] be the affine semigroup K0-algebra with cone σ ∈ NQ

over the field K0 of rational functions of C. By Lemma 1.13, ∂ can be extended
to a homogeneous locally nilpotent K0-derivation on Ā. To classify homogeneous
LNDs of fiber type, we will rely on the classification of homogeneous LNDs on
affine semigroup algebras from the previous section.

If σ has no extremal ray, then σ = 0 and σ∨ = MQ. By Lemma 3.1 in this case
there are no homogeneous LND of fiber type. So we may assume in the sequel
that σ has at least one extremal ray, say ρ. Let τ be its dual codimension 1 face
and let Sρ be as defined in Lemma 2.4.

Lemma 3.3. For any e ∈ Sρ,

De :=
∑

z∈C

max
m∈σ∨

M
\τM

(hz(m)− hz(m+ e)) · z

is a well-defined Q-divisor on C.

Proof. By Lemma 2.4, for all m ∈ σ∨
M \ τM , m + e is contained in σ∨

M and thus
hz(m) and hz(m+ e) are well defined. Recall that for any z ∈ C, the function hz

is upper convex and piecewise linear on σ∨. Thus the above maximum is achieved
by one of the linear pieces of hz, i.e., by one of the maximal cones in the normal
quasifan Λ(hz) (see Definition 1.3).
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For every z ∈ C, we let {δ1,z, . . . , δ`z,z} be the set of all maximal cones in Λ(hz)
and we let gr,z, r ∈ {1, . . . , `z} be the linear extension of hz|δr,z to MQ. Since the
maximum is achieved by one of the linear pieces we have

max
m∈σ∨

M
\τM

(hz(m)− hz(m+ e)) = max
r∈{1,··· ,`z}

(−gr,z(e)).

Since gr,z(e) ∈ Q ∀(r, z), De is indeed a Q-divisor. �

Remark 3.4. With the notation as in the preceding proof we can provide a better
description of De. Since τ is a codimension 1 face of σ∨, it is contained as a face in
one and only one maximal cone δr,z. We may assume that τ ⊆ δ1,z. By the upper
convexity of hz we have g1,z(e) ≤ gr,z(e) ∀r and so De = −

∑
z∈C g1,z(e) · z.

Notation 3.5. We let Φe = H0(C,OC(b−Dec)). Thus, for any ϕ ∈ Φe and any
m ∈ σ∨

M \ τM , we have

div(ϕ) ≥ dDee ≥ De ≥
∑

z∈C

(hz(m)− hz(m+ e)) · z = D(m)−D(m+ e).

There is a natural way to associate to a nonzero function ϕ ∈ Φe a homogeneous
LND of fiber type on A. More precisely, we have the following lemma.

Lemma 3.6. To any triple (ρ, e, ϕ), where ρ is an extremal ray of σ, e ∈ Sρ is a

lattice vector, and ϕ ∈ Φe is a nonzero function, we can associate a homogeneous

LND ∂ρ,e,ϕ on A = A[C,D] with kernel

ker∂ρ,e,ϕ =
⊕

m∈τM

Amχm and deg ∂ρ,e,ϕ = e.

Proof. Letting Ā = K0[σ
∨
M ], we consider the K0-LND ∂ρ,e on Ā as in Lemma 2.6.

Since ϕ ∈ K0, ϕ∂ρ,e is again a K0-LND on Ā.
We claim that ϕ∂ρ,e stabilizes A ⊆ Ā. Indeed, let f ∈ Am ⊆ K0 be a homoge-

neous element so that div f + bD(m)c ≥ 0. If m ∈ τM , then ϕ∂ρ,e(fχ
m) = 0. If

m ∈ σ∨
M \ τM , then

ϕ∂ρ,e(fχ
m) = ϕf∂ρ,e(χ

m) = m0ϕfχ
m+e,

where m0 := 〈m, ρ〉 ∈ Z>0. Moreover, by virtue of Notation 3.5,

div(m0ϕf) + bD(m+ e)c = divϕ+ div f + bD(m+ e)c
≥ D(m)−D(m+ e)− bD(m)c+ bD(m+ e)c
= {D(m)} − {D(m+ e)}.

Since the divisor div(m0ϕf) + bD(m + e)c is integral and all the values of the
divisor {D(m)} − {D(m+ e)} are in the interval ]− 1, 1[ we have

div(m0ϕf) + bD(m+ e)c ≥ 0 and so m0ϕf ∈ Am+e,

yielding the claim. Finally, ∂ρ,e,ϕ := ϕ∂ρ,e|A is a homogeneous LND on A with
kernel ker∂ρ,e,ϕ =

⊕
m∈τM

Amχm, as desired. �
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Remark 3.7. We have shown actually that for every ϕ ∈ Φe, ϕAm ⊆ Am+e for all
m ∈ σ∨

M \ τM . It is easily seen from the construction of the divisor De that all the
functions ϕ ∈ K0 satisfying this property are contained in Φe.

The following theorem gives the converse of Lemma 3.6 and so completes our
classification of homogeneous LNDs of fiber type on T-varieties.

Theorem 3.8. Every nonzero homogeneous LND ∂ of fiber type on A = A[C,D]
is of the form ∂ = ∂ρ,e,ϕ for some extremal ray ρ ⊆ σ, some lattice vector e ∈ Sρ,

and some function ϕ ∈ Φe.

Proof. Since ∂ is of fiber type, ∂|K0
= 0 and so ∂ can be extended to a K0-LND ∂̄

on the affine semigroup algebra Ā = K0[σ
∨
M ]. By Theorem 2.7 we have ∂̄ = ϕ∂ρ,e

for some extremal ray ρ of σ, some e ∈ Sρ and some ϕ ∈ K0. Since A is stable
under ϕ∂ρ,e, by Remark 3.7, ϕ ∈ Φe and so ∂ = ϕ∂ρ,e|A = ∂ρ,e,ϕ. �

Corollary 3.9. Let as before X = SpecA be a T-variety of complexity 1, let ∂ be

a homogeneous LND of fiber type on A, and let fχm ∈ A \ ker∂ be a homogeneous

element. Then ∂ is completely determined by the image gχm+e := ∂(fχm) ∈
Am+eχ

m+e.

Proof. By the previous theorem ∂ = ∂ρ,e,ϕ for some extremal ray ρ, some e ∈ Sρ,
and some ϕ ∈ Φe, where e = deg ∂ and ρ is uniquely determined by e, see Corollary
2.8.

In the proof of Lemma 3.6 it was shown that ∂ρ,e,ϕ(fχ
m) = m0ϕfχ

m+e. Thus
ϕ = g/m0f ∈ K0 is also uniquely determined by our data. �

Corollary 3.10. Two homogeneous LNDs ∂ = ∂ρ,e,ϕ and ∂′ = ∂ρ′,e′,ϕ′ of fiber

type on A are equivalent if and only if ρ = ρ′. In particular, there is a finite

number of pairwise nonequivalent LNDs of fiber type on A.

Proof. The first assertion follows from the description of ker∂ρ,e,ϕ in Lemma 3.6.
The second one follows from the fact that σ has a finite number of extremal rays.
�

In the following proposition we show that the kernel of a homogeneous LND of
fiber type is finitely generated.

Proposition 3.11. Let ∂ be a homogeneous LND on A = A[C,D], where D is a

proper polyhedral σ-divisor on a smooth curve C. If ∂ is of fiber type, then ker∂
is finitely generated.

Proof. In the notation of Theorem 3.8, we have ∂ = ∂ρ,e,ϕ where ρ ⊆ σ is an
extremal ray. Letting τ ⊆ σ∨ be the codimension 1 face dual to ρ, Lemma 3.6
shows that ker∂ =

⊕
m∈τM

Amχm.
Let a1, . . . , ar be a set of homogeneous generators of A. Without loss of gen-

erality, we assume further that deg ai ∈ τM if and only if 1 ≤ i ≤ s < r. We
claim that a1, . . . , as generate ker∂. Indeed, let P be any polynomial such that
P (a1, . . . , ar) ∈ ker∂. Since τ ⊆ σ∨ is a face,

∑
mi ∈ τM for mi ∈ σ∨

M implies
that mi ∈ τ ∀i. Hence all the monomials composing P (a1, . . . , ar) are monomials
in a1, . . . , as, proving the claim. �
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Given an extremal ray ρ ⊆ σ and e ∈ Sρ, it might happen that dimΦe =
h0(C,OC(b−Dec)) = 0, so that there exist no homogeneous LNDs ∂ of fiber type
on A with deg ∂ = e and ker∂ =

⊕
m∈τM

Amχm. In the following lemma we give
a criterion for the existence of e ∈ Sρ such that dimΦe is nonzero.

Lemma 3.12. Let A = A[C,D] and let ρ ⊆ σ be an extremal ray dual to a

codimension 1 face τ ⊆ σ∨. There exists e ∈ Sρ such that dimΦe is positive if and

only if the curve C is affine or C is projective and hdegD|τ 6≡ 0.

Proof. If C is affine, then for any Z-divisor D the sheaf OC(D) is generated by
the global sections. It follows in this case that dimΦe > 0.

Further let C be a projective curve of genus g. If degb−Dec < 0, then dimΦe =
0. On the other hand, by the Riemann–Roch theorem, dimΦe > 0 if degb−Dec ≥ g
(see Lemma 1.2 in [Ha, Chap. IV]).

Letting h = hdegD =
∑

z∈C hz, with the notation of Remark 3.4 we have
h|τ =

∑
z∈C g1,z and deg(−De) =

∑
z∈C g1,z(e). By the definition of a proper

σ-polyhedral divisor, h(m) > 0 for any m in the relative interior of σ∨.

If h|τ ≡ 0, then by the linearity of g1,z we obtain that deg(−De) < 0, so
degb−Dec < 0 and dimΦe = 0.

If h|τ 6≡ 0, then by the upper convexity of h, h(m) > 0 for all m in the relative
interior of τ . By Remark 3.4, deg(−De) is linear on e and so, according to Remark
2.5, we can choose a suitable e ∈ Sρ so that degb−Dec ≥ g. Hence dimΦe > 0.
�

We can now deduce the following corollary.

Corollary 3.13. Let A = A[C,D] and let ρ ⊆ σ be an extremal ray dual to a

codimension 1 face τ ⊆ σ∨. There exists a homogeneous LND of fiber type ∂ on A
such that ker∂ =

⊕
m∈τM

Amχm if and only if C is affine or C is projective and

ρ ∩ degD = ∅.

Proof. Since ρ∩degD = ∅ is equivalent to hdegD|τ 6≡ 0, the corollary follows from
Theorem 3.8 and Lemma 3.12. �

Remark 3.14. By Corollaries 3.10 and 3.13, the equivalence classes of LNDs of
fiber type on A = A[C,D] are in one-to-one correspondence with the extremal
rays ρ ⊆ σ if C is affine and with extremal rays ρ ⊆ σ such that ρ ∩ degD = ∅ if
C is projective.

Remark 3.15. In the recent preprint [Li1] we generalize the methods of this section
to give a classification of LNDs of fiber type in arbitrary complexity.

3.2. Homogeneous LNDs of horizontal type

Let A = A[C,D] where D is a proper σ-polyhedral divisor on a smooth curve C.
We consider a homogeneous LND ∂ of horizontal type on A. We also denote by
∂ its extension to a homogeneous k-derivation on K0[M ], where K0 is the field of
rational functions of C (see Lemma 1.13(i)).

The existence of a homogeneous LND of horizontal type imposes strong restric-
tions on C, as we show in the next lemma.
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Lemma 3.16. If there exists a homogeneous LND ∂ of horizontal type on A =
A[C,D], then C ' P1 in the case where A is elliptic and C ' A1 in the case where

A is nonelliptic. In the latter case Am is a free A0-module of rank 1 for every

m ∈ σ∨
M and so

Am = ϕmA0 for some ϕm ∈ Am such that div(ϕm) + bD(m)c = 0.

Proof. Let π : X = SpecA 99K C be the rational quotient for the T-action given
by the inclusion π∗ : K0 ↪→ K = FracA. Since X is normal, the indeterminacy
locus X0 of π has codimension greater than 1, and so the general orbits of the
k+-action corresponding to ∂ are contained in X \X0.

Since ∂|K0
6= 0, the general orbits of the k+-action on X are not contained in

the fibers of π, so map dominantly onto C. Hence, C being dominated by A1 we
have C ' P1 in the elliptic case and C ' A1 in the nonelliptic case.

Thus, if C is affine, then A0 = k[t] and so Am is a locally free A0-module of
rank 1 for any m ∈ σ∨

M . By the primary decomposition, any locally free module
over a principal ring is free and so Am ' A0 as a module (see also Chapter VII,
§4, Corollary 2 in [Bu]). Now the last assertion follows easily. �

3.17. For the rest of this section we let K0 = k(t), C = P1 in the elliptic case,
and C = A1 otherwise. We also let S∂ be the set of all lattice vectors m ∈M such
that ker∂ ∩Amχm 6= {0}, we let L(∂) ⊆M be the sublattice spanned by S∂ , and
we let ω∨(∂) be the cone spanned by S∂ in MQ. We write L and ω∨ instead of
L(∂) and ω∨(∂) whenever ∂ is clear from the context.

Lemma 3.18. Let A = A[C,D], where D is a proper σ-polyhedral divisor on C,

and let ∂ be a homogeneous LND of horizontal type on A. With the notation as

above, the following hold:

(1) The kernel ker∂ is a semigroup algebra given by ker∂ =
⊕

m∈ω∨
L
kϕmχm

where ϕm ∈ Am.

(2) For all m ∈ ω∨
L, in the nonelliptic case div(ϕm) + D(m) = 0, while in the

elliptic case div(ϕm)+D(m) = λ · [z∞] for some z∞ ∈ P1 and some positive

λ ∈ Q.
(3) The cone ω∨ is a maximal cone of the quasifan Λ(D) in the nonelliptic

case, and of the quasifan Λ(D|P1\{z∞}) in the elliptic case. In particular,

rank(L) = n.
(4) M is spanned by deg ∂ and L. More precisely, any m ∈M can be uniquely

written as m = l + r deg ∂ for some l ∈ L and some r ∈ Z with 0 ≤ r < d,
where d > 0 is the smallest integer such that d deg ∂ ∈ L.

Proof. Since k ⊆ ker∂ we have 0 ∈ S∂ . If m,m′ ∈ S∂ , then m +m′ ∈ S∂ and so
S∂ is a subsemigroup of σ∨

M .
For any f ∈ K0 = k(t) we have ∂(f) = f ′(t)∂(t), where ∂(t) 6= 0 since ∂ is of

horizontal type. Thus ∂(f) = 0 if and only if f is constant. Let us fix m ∈ S∂ .
If ϕm, ϕ′

m ∈ ker∂ ∩ Amχm are nonzero, then ϕm/ϕ′
m ∈ ker∂ ∩ K0 = k and so

ϕ′
m = λϕm for some λ ∈ k∗.
Hence, ker∂ =

⊕
m∈S∂

kϕmχm and ker∂ is a semigroup algebra. Since ker∂ is
normal, S∂ is saturated, and so S∂ = ω∨

L, which proves (1).
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To prove (2), we assume first that C is affine. Given m ∈ ω∨
L, we let ϕm be

as in Lemma 3.16. Since ker∂ is factorially closed, if fϕmχm ∈ ker∂ ∩ Amχm for
some f ∈ A0, then f ∈ ker∂ ∩ A0 = k and ϕmχm ∈ ker∂ ∩ Amχm. The latter
implies that ϕr

mχrm ∈ ker∂∩Armχrm ∀r ≥ 1, and so rbD(m)c = brD(m)c ∀r ≥ 1.
Hence, D(m) is an integral divisor, which yields (2) in the nonelliptic case.

In the case where C = P1, we may suppose that z∞ =∞. Given m ∈ ω∨
L, let us

assume that div(ϕm) + bD(m)c ≥ [0] + [∞] so that tϕm ∈ Am and t−1ϕm ∈ Am.
We have (tϕmχm)(t−1ϕmχm) = (ϕmχm)2 ∈ ker∂. Thus tϕmχm ∈ ker∂, which
contradicts (1). Henceforth, div(ϕm) + bD(m)c = λ · [z∞], λ ∈ Z≥0. An argument
similar to that employed in the nonelliptic case, yields div(ϕm) +D(m) = λ · [z∞]
for some positive λ ∈ Q, proving (2).

We have dimker∂ = dimω∨. Since ∂ is an LND, ker∂ has codimension 1 in
A. Hence ω∨ is of full dimension in MQ. Furthermore, in the nonelliptic case (2)
shows that hz|ω∨ is linear ∀z ∈ A1, so that ω∨ is contained in a maximal cone δ
in Λ(D).

Assume that ω∨ ( δ. Let m ∈ δ \ ω∨ and let ϕm ∈ k(t) be such that D(m) is
integral and div(ϕm)+D(m) = 0. Letting m′ ∈ ω∨

L be such that m+m′ ∈ ω∨
L, the

linearity of D implies ϕmχmϕm′χm′

= ϕm+m′χm+m′ ∈ ker∂. Hence ϕmχm ∈ ker∂
which is a contradiction, proving (3) in the nonelliptic case. In the elliptic case, a
similar argument (with z ∈ P1 \ {z∞}) provides the result.

Finally, since σ∨
M spans M as a lattice and ∂ is a homogeneous LND, for any

m ∈ M we have m + r deg ∂ ∈ L for some r ∈ Z. Thus, for 0 ≥ r > −d, the
decomposition as in (4) is unique because of the minimality of d. �

The following corollary shows that the kernel of a homogeneous LND on A is a
semigroup algebra and so the kernel is finitely generated. Since, by Lemma 3.16,
the function field of A is rational over k, this is also a consequence of Theorem 1.2
in [Ku].

Corollary 3.19. In the notation of Lemma 3.18, by (3) ω ⊆ NQ is a pointed

polyhedral cone and, by (1),

ker∂ =
⊕

m∈ω∨
L

kϕmχm ' k[ω∨
L]

is an affine semigroup algebra, in particular, ker∂ is finitely generated.

Let us consider two basic examples, one with a nonelliptic T-action and the
other with an elliptic T-action. They are universal in the sense of Lemma 3.23
below. We use both examples in our final classification, cf. Lemma 3.26 and
Theorem 3.28.

Starting with an affine toric variety X and a homogeneous LND ∂ of fiber
type (see Corollary 2.9), we can restrict the big torus action to an appropriate
codimension 1 subtorus T so that ∂ becomes of horizontal type for the T-action of
complexity 1 on X . This is actually the case in our examples.

Example 3.20. Letting A = A[C,D], where C = A1, p ∈ NQ, and D = (p+σ)·[0],
we have that h0 : σ∨ → Q, m 7→ 〈m, p〉 is linear and hz = 0 ∀z ∈ k∗. Denoting by
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h : MQ → Q the linear extension of h0 to the whole MQ, for m ∈ σ∨
M we obtain

Am = t−bh(m)ck[t] =
⊕

r≥−h(m)

ktr.

Letting N̂ = N × Z, M̂ = M × Z, and letting σ̂ be the cone in N̂Q spanned by

(σ, 0) and (p, 1), a vector (m, r) ∈ M̂Q belongs to the dual cone σ̂∨ if and only if
m ∈ σ∨ and r ≥ −h(m). By identifying χ(0,1) with t we obtain

A =
⊕

(m,r)∈σ̂∨

M̂

ktrχm =
⊕

(m,r)∈σ̂∨

M̂

kχ(m,r) = k[σ̂
M̂
].

Hence, A is an affine semigroup algebra and so we can apply the results of the
previous section.

Since A0 is spanned as an affine semigroup algebra by the character χ(0,1), the
only codimension 1 face of σ̂∨, not containing the lattice vectors (0, 1), is

τ = {(m, r) ∈ M̂Q | m ∈ σ∨, r = −h(m)}.

This is the face of σ̂∨ dual to the extremal ray ρ spanned by (p, 1) in N̂Q.
In the notation of Lemma 2.4, picking e′ ∈ Sρ and λ ∈ k∗ we let ∂ = λ∂ρ,e′

be the homogeneous LND with respect to the M̂ -grading described in Lemma 2.6.
Since (0, 1) /∈ τ , ∂ is of horizontal type with respect to the M -grading on A. Let
degM stand for the corresponding degree function.

For any e′ = (e, s) ∈M ×Z we have degM ∂ = e and ker∂ = k[τ
M̂
]. Therefore,

in the notation of Lemma 3.18, ω∨ = σ∨ and L = {m ∈M | h(m) ∈ Z}.
To be more concrete, we let d > 0 be the smallest integer such that d · p ∈ N .

Then d ·h is an integer valued function on σ∨
M . Letting m1 ∈M be a lattice vector

such that {h(m1)} = {1/d}, by a routine calculation we obtain

Sρ =

{
(e, s) ∈ M̂

∣∣∣ e ∈ L−m1, s = −h(e)− 1

d

}
∩ σ∨

ρ , (3)

and

∂(χm · tr) = λ (r + h(m)) · χm+e · tr−h(e)−1/d, ∀ (m, r) ∈ M̂, (4)

where σρ ⊆ N̂Q is as defined in Lemma 2.4, λ ∈ k∗, and ∂t is the partial derivative
with respect to t. Moreover, in this case σρ = σ × {0} and so

Sρ =

{
(e, s) ∈ M̂

∣∣∣ e ∈ σ∨ ∩ (L−m1), s = −h(e)− 1

d

}
.
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Example 3.21. Let C = P1, p ∈ NQ. Let ∆∞ be a σ-tailed polyhedron (see
Definition 1.1(i)), and let D = (p + σ) · [0] + ∆∞ · [∞]. Under these assumptions
h0 : σ∨ → Q, m 7→ 〈m, p〉 is linear, and hz = 0 ∀z ∈ k∗. As before let h : MQ → Q
denote the linear extension of h0 to the whole MQ. We also suppose that p+∆∞ (
σ and so the sum h0+h∞ ≥ 0 is not identically 0. Under these assumptions the σ-
polyhedral divisor D is proper in the sense of Definition 1.2. Letting A = A[C,D],
for any m ∈ σ∨

M we have

Am =
⊕

−h0(m)≤r≤h∞(m)

ktr.

Let N̂ = N × Z, M̂ = M × Z, and let σ̂ be the cone in N̂Q spanned by (σ, 0),

(p, 1), and (∆∞,−1). A vector (m, r) ∈ M̂Q belongs to the dual cone σ̂∨ if and
only if m ∈ σ∨, r ≥ −h0(m), and r ≤ h∞(m). Thus, by identifying χ(0,1) with t,
we obtain

A =
⊕

(m,r)∈σ̂∨

M̂

ktrχm =
⊕

(m,r)∈σ̂∨

M̂

kχ(m,r) = k[σ̂
M̂
].

Hence, A is again an affine semigroup algebra, and so the results in the previous
section can be applied.

We let as before ρ ⊆ σ̂ be the extremal ray spanned by (p, 1). The codimension
1 face dual to ρ is

τ = {(m, r) ∈ M̂Q | m ∈ σ∨, r = −h(m)}.

In the notation of Lemma 2.4, picking e′ ∈ Sρ and λ ∈ k∗ we let ∂ = λ∂ρ,e′

be the homogeneous LND with respect to the M̂ -grading described in Lemma 2.6.
Again ∂ is of horizontal type with respect to the M -grading on A.

Furthermore, for any e′ = (e, s) ∈M×Z we have degM ∂ = e and ker∂ = k[τ
M̂
].

Therefore, in the notation of Lemma 3.18, ω∨ = σ∨ and L = {m ∈M | h(m) ∈ Z}.
To be more concrete, we let d and m1 be as in the previous example. By a

routine calculation we obtain that Sρ is as in (3) and ∂ is as in (4).

Remark 3.22. (i) In both examples, the homogeneous LND ∂ extends to a deriva-
tion on K0[M ] given by (4).

(ii) With the same formula (4), ∂ extends to a homogeneous LND on

AM :=
⊕

m∈M

t−bh(m)ck[t]χm, where A ⊆ AM ⊆ K0[M ].

(iii) In particular, if p = 0, then ρ is the extremal ray spanned by (0, 1), d = 1,
and L = M . Furthermore, we can choose m1 = 0 so that Sρ = (M × {−1}) ∩ σ∨

1 ,
and the homogeneous LND ∂ of horizontal type on A is given by ∂ = λχe∂t, where
(e,−1) ∈ Sρ.

We return now to the general case. We recall that

A = A[C,D], where D =
∑

z∈C

∆z · z
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is a proper σ-polyhedral divisor on C = A1 or C = P1, hz is the support function
of ∆z , and ∂ is a homogeneous LND of horizontal type on A.

In the next lemma we show that the subalgebra Aω of A, generated by the
homogeneous elements whose degrees are contained in ω∨, is as in the previous
examples.

Lemma 3.23. With the notation of Lemma 3.18, we let Aω =
⊕

m∈ω∨
M
Amχm.

Then Aω ' A[C,Dω ] as M -graded algebras, where:

(i) Dω = (p+ ω) · [0] for some p ∈ NQ, in the case where C = A1; and

(ii) Dω = (p+ ω) · [0] + ∆∞ · [∞] for some p ∈ NQ and some ∆∞ ∈ Polσ(NQ)
with p+∆∞ ( σ, in the case where C = P1.

Proof. By Lemma 3.18(3), the support functions hz restricted to ω∨ are linear for
all z ∈ A1 in the nonelliptic case and for all z ∈ P1 \ {z∞} in the elliptic case. In
the nonelliptic case this shows that Dω =

∑
z∈C(pz+ω) ·z, where pz ∈ NQ. In the

elliptic case, we may suppose that z∞ =∞ and soDω =
∑

z∈A1(pz+ω)·z+∆∞·[∞],
where ∆∞ ∈ Polσ(NQ) and pz ∈ NQ ∀z ∈ A1.

By Lemma 1.7(vi), without loss of generality we may assume that deg ∂ ∈ ω∨
M .

Letting e = deg ∂ we consider the two-dimensional finitely generated normal Z≥0-
graded domain

Be =
⊕

r∈Z≥0

Areχ
re.

If C is affine, then (Be, ∂|Be
) is a parabolic pair in the sense of Definition

3.1 in [FlZa2]. Now Corollary 3.19 in loc. cit. shows that, for any r ∈ Z≥0, the
fractional part {Dω(re)} is supported in at most one point 8. While for C projec-
tive, (Be, ∂|Be

) is an elliptic pair in the sense of loc. cit. Then Theorem 3.3 in
loc. cit. shows that Be is an affine semigroup algebra. According to Example 5.1
in [Ti2], for any r ∈ Z≥0, the fractional part {Dω(re)} is supported in at most two
points.

Given m ∈ L, the derivation ϕmχm∂ on A with ϕm as in Lemma 3.18(1) is
again locally nilpotent. Applying the previous analysis to this LND shows that,
for any r ∈ Z≥0, the fractional part {Dω(r · (e + m))} is supported in at most
one point in the nonelliptic case and in at most two points in the elliptic case. By
Lemma 3.18(4) L and e span M . So the functions hz|ω∨ are integral except for
at most one value of z in the nonelliptic case and at most two values of z in the
elliptic case. Furthermore, in the elliptic case one of the two values of z ∈ P1 such
that hz is not integral corresponds to z =∞.

Without loss of generality, in both cases we may suppose that z = 0 is an
exceptional value in A1, provided there is one. In particular, pz ∈ N is a lattice
vector for any z ∈ k∗. Since any integral divisor on A1 and any integral divisor of
degree 0 on P1 are principal, Theorem 1.4 shows that Dω can always be chosen so
that pz = 0 ∀z ∈ k∗. Now the result follows. �

8The classification results in [FlZa2] are stated for surfaces over the field C but they
are valid over any algebraically closed field of characteristic 0 with the same proofs.
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Remark 3.24. (1) By Examples 3.20 and 3.21, the previous lemma shows that Aω

is an affine semigroup algebra or, equivalently, SpecAω is a toric variety. Hence,
SpecAω is a toric variety containing X = SpecA as an open subset.

(2) In the notation of Lemma 3.23, let h(m) = 〈m, p〉. By virtue of Lemma
3.18(1) and (2), L = {m ∈M | h(m) ∈ Z}.
Remark 3.25. For every isomorphism A ' A[C,D], the proof of the previous
lemma implies the following:

(1) If C = A1, then all hz |ω∨ are linear and all but possibly one of them are
integral.

(2) If C = P1, then all but possibly one of hz|ω∨ are linear and all but possibly
two of them are integral.

(3) By virtue of Theorem 1.4, we may suppose, in both cases, that hz|ω∨ = 0
∀z ∈ k∗ and that h0|ω∨ is linear.

The following lemma provides the main ingredient in our classification of the
homogeneous LNDs of horizontal type on A = A[C,D].

Lemma 3.26. Let D be a proper σ-polyhedral divisor on C = A1 or C = P1. Let

ω∨ be a maximal cone in the quasifan ∆(D) or ∆(D|A1), respectively, such that

hz|ω∨ = 0 ∀z ∈ k∗. Let ∂ be the derivation of degree e given by formula (4). Then
∂ extends to a homogeneous LND on A = A[C,D] if and only if, for every m ∈ σ∨

M

such that m+ e ∈ σ∨
M , the following hold:

(i) If hz(m+ e) 6= 0, then bhz(m+ e)c − bhz(m)c ≥ 1 ∀z ∈ k∗.

(ii) If h0(m+ e) 6= h(m+ e), then bdh0(m+ e)c − bdh0(m)c ≥ 1 + dh(e).
(iii) If C = P1, then bdh∞(m+ e)c − bdh∞(m)c ≥ −1− dh(e).

Here h is the linear extension of h0|ω∨ and d > 0 is the smallest integer such that

dh is integral.

Proof. Similarly, as in Example 3.20, h(m) = 〈m, p〉 for some p ∈ NQ. Since each
hz is upper convex (see Definition 1.1(ii)), hz(m) ≤ 0 for z ∈ k∗ and h0(m) ≤ h(m).
Letting AM =

⊕
m∈M ϕmk[t]χm, where ϕm = t−bh(m)c (see Remark 3.22), we have

A ⊆ AM . By virtue of this remark ∂ extends to a homogeneous LND on AM . We
still denote by ∂ this extension. Thus ∂ extends to a homogeneous LND on A if
and only if ∂ stabilizes A.

To show that ∂ stabilizes A, let us start with the simplest case where h = 0.

Case h = 0. In this case, Remark 3.22(3) shows that L = M , d = 1, and r = −1,
and so ∂ = λχe∂t. Furthermore, hz ≤ 0 ∀z ∈ A1 and in the elliptic case h∞ ≥ 0.
For any m ∈ σ∨

M such that m + e ∈ σ∨
M , the conditions in the lemma can be

reduced to:

(i′) If hz(m+ e) 6= 0, then bhz(m+ e)c − bhz(m)c ≥ 1 ∀z ∈ A1.
(iii′) If C = P1, then bh∞(m+ e)c − bh∞(m)c ≥ −1 ∀m ∈ σ∨

M .

In this case, Am = H0 (C,O(bD(m)c)) ⊆ k[t] and ∂ stabilizes A if and only if

f(t) ∈ Am ⇒ f ′(t) ∈ Am+e, ∀m ∈ σ∨
M ,

or, equivalently,

div f + bD(m)c ≥ 0 ⇒ div f ′ + bD(m+ e)c ≥ 0, ∀m ∈ σ∨
M ,
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or else

ordz(f)+bhz(m)c≥0 ⇒ ordz(f
′)+bhz(m+e)c≥0, ∀m∈σ∨

M and ∀z∈C. (5)

Next we show that (i′) and (iii′) hold if and only if (5) holds.
Let z ∈ A1 and let m ∈ σ∨

M be such that m+e ∈ σ∨
M . If hz(m+e) = 0 condition

(5) holds since f ∈ k[t].
Assume hz(m + e) 6= 0. Since hz ≤ 0 is upper convex, if hz(m) = 0 then

hz(m + re) 6= 0 ∀r > 1 contradicting the fact that ∂ is an LND. Hence we may
assume that hz(m) 6= 0 so that f ∈ (t − z)k[t]. In this setting, ordz(f

′) =
ordz(f)− 1 and so

ordz(f
′) + bhz(m+e)c = ordz(f)+bhz(m)c+(bhz(m+ e)c−bhz(m)c−1). (6)

Therefore (i′) implies (5).
To show the converse, let us suppose that (5) holds. Assuming that C is affine,

for every m ∈ σ∨
M we consider ϕm as in Lemma 3.18. Since by this lemma

ordz(ϕm) + bhz(m)c = 0, applying (5) and (6) to ϕm we obtain

ordz(ϕm)+bhz(m)c+(bhz(m+ e)c − bhz(m)c − 1)=bhz(m+e)c−bhz(m)c−1≥0,

proving (i′) when C is affine. If C is projective, then for any z ∈ A1 and any
m ∈ σ∨

M we can still find ϕm,z ∈ Am such that ordz(ϕm,z) + bhz(m)c = 0. Thus
again, the previous argument applies.

In the elliptic case, we let z =∞ and we fix m ∈ σ∨
M . If f is constant, then (5)

holds because h∞(m) ≥ 0. Otherwise, ord∞(f ′) = ord∞(f) + 1 and so

ord∞(f ′)+bh∞(m+ e)c
= ord∞(f) + bh∞(m)c+ (bh∞(m+ e)c − bh∞(m)c+ 1) . (7)

Therefore (iii′) implies (5).
To show the converse, as before we let ϕm,∞ ∈ Am be such that ord∞(ϕm,∞)+

bh∞(m)c = 0. Applying (5) and (7) to ϕm,∞ we obtain

ord∞(ϕm,∞) + bh∞(m)c+ (bh∞(m+ e)c − bh∞(m)c+ 1)

= bh∞(m+ e)c − bh∞(m)c+ 1 ≥ 0,

proving (iii′).
Next we assume that h is integral.

Case h integral. In this case we still have d = 1. We recall that h(m) = 〈m, p〉.
Letting D′ = D− (p+σ) · [0] if C is affine and D′ = D− (p+σ) · [0] + (p+σ) · [∞]
if C is projective, by Theorem 1.4(iii) A ' A[C,D′]. In this setting A[C,D′] is as
in the previous case with h′

0 = h0 − h, h′
∞ = h∞ + h and h′

z = hz ∀z ∈ k∗.
This consideration shows that ∂ stabilizes A if and only if (i′) and (iii′) hold for

h′
z(m) ∀z ∈ C. For any z ∈ k∗, (i′) is equivalent to (i) in the lemma. Since

bh′
0(m+ e)c − bh′

0(m)c − 1 = bh0(m+ e)c − bh0(m)c − 1− h(e),
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condition (i′) for z = 0 is equivalent to (ii).

Similarly, if C is projective

bh′
∞(m+ e)c − bh′

∞(m)c+ 1 = bh∞(m+ e)c − bh∞(m)c+ 1 + h(e),

and so (iii′) is equivalent to (iii).

Now we turn to the general case.

General case. We may assume that h is not integral, i.e., d > 1. We consider
the normalization A′ of A[ d

√
ϕdeχ

e], where ϕde := t−h(de) so that A ⊆ A′ is a
cyclic extension. With the notation of Lemma 1.6 we have A′ = A[C ′,D′] and
K ′

0 = K0[ d
√
ϕde].

By the minimality of d we deduce that gcd(h(de), d) = 1 and so d
√
ϕde = ta+b/d,

where gcd(b, d) = 1. So K ′
0 = k(s), where sd = t. Thus C ′ ' A1 if A is nonelliptic

and C ′ ' P1 if A is elliptic. Let p : C ′ → C, z′ 7→ z′d = z be the projection
induced by the morphism K0 ↪→ K ′

0, t 7→ t = sd. By Lemma 1.6 we have

D′ = d ·∆0 · [0] +
∑

z′∈k∗

∆z · z′ if C = A1,

and

D′ = d ·∆0 · [0] + d ·∆∞ · [∞] +
∑

z′∈k∗

∆z · z′ if C = P1.

So h′
0 = dh0, h

′
∞ = dh∞, and h′

z′ = hz . Moreover, h′
0|ω∨ is integral and A′ is as

in the previous case.

Recall that AM =
⊕

m∈M ϕmk[t]χm, where ϕm = t−bh(m)c. We define further

A′
M =

⊕

m∈M

ϕ′
mk[s]χm, where ϕ′

m = −sdh(m).

Since AM ⊆ A′
M is a cyclic extension, by Lemma 1.11, ∂ : AM → AM extends to

a homogeneous LND ∂ ′ : A′
M → A′

M .
We claim that ∂ stabilizes A if and only if ∂ ′ stabilizes A′. In fact the “only if”

direction is a consequence of Lemma 1.11. If ∂ ′ stabilizes A′ then ∂′(A) = ∂(A) ⊆
AM ∩ A′ = A, proving the claim.

We let h′ be the linear extension of h′
0|ω∨ . Clearly h′ = dh. The previous case

shows that ∂′ stabilizes A′ if and only if, for any m ∈ σ∨
M such that m+ e ∈ σ∨

M ,
the following conditions hold:

(i′′) If h′
z′(m+ e) 6= 0, then bh′

z′(m+ e)c − bh′
z′(m)c ≥ 1 ∀z′ ∈ k∗.

(ii′′) If h′
0(m+ e) 6= h′(m+ e), then bh′

0(m+ e)c − bh′
0(m)c ≥ 1 + h′(e).

(iii′′) If C = P1, then bh′
∞(m+ e)c − bh′

∞(m)c ≥ −1− h′(e).

Replacing in (i′′)–(iii′′) h′ by dh, h′
0 by dh0, h

′
∞ by dh∞, and h′

z′ by hz for
z ∈ k∗, shows that ∂ stabilizes A if and only if (i)-(iii) of the lemma hold. Now
the proof is completed. �
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Remark 3.27. In the elliptic case, if e ∈ ω∨
M , then (iii) in Lemma 3.26 holds. In

fact,

bdh∞(m+ e)c − bdh∞(m)c ≥ dh∞(m+ e)− 1− dh∞(m)

≥ dh∞(e)− 1 ≥ −dh(e)− 1.

In the following theorem we describe all the homogeneous LND of horizontal
type on a T-variety of complexity 1. It is our main classification result which
summarizes the previous ones.

Theorem 3.28. Let D be a proper σ-polyhedral divisor on C = A1 or C = P1,
and let A = A[C,D]. Let ω∨ ⊆MQ be a polyhedral cone, and let e ∈M be a lattice

vector. Then there exists a homogeneous LND ∂ : A → A of horizontal type with

deg ∂ = e and ω∨(∂) = ω∨ if and only if the following conditions (i)–(v) hold:

(i) If C = A1, then ω∨ is a maximal cone in the quasifan Λ(D), and there

exists z0 ∈ C such that hz|ω∨ is integral ∀z ∈ C \ {z0}.
(i′) If C = P1, then there exists z∞ ∈ P1 such that (i) holds for C0 := P1\{z∞}.

Without loss of generality, we may suppose that z0 = 0, z∞ = ∞ in the elliptic

case, and that hz(m)|ω∨ = 0 ∀z ∈ k∗. Let h and d be as in Lemma 3.26, let m1 be

as in Example 3.20, and let L be as in Remark 3.24(2).

(ii) The lattice vector (e,−1/d− h(e)) belongs to Sρ as defined in (3).

For any m ∈ σ∨
M such that m+ e ∈ σ∨

M , the following hold:

(iii) If hz(m+ e) 6= 0, then bhz(m+ e)c − bhz(m)c ≥ 1 ∀z ∈ k∗.

(iv) If h0(m+ e) 6= h(m+ e), then bdh0(m+ e)c − bdh0(m)c ≥ 1 + dh(e).
(v) If C = P1, then bdh∞(m+ e)c − bdh∞(m)c ≥ −1− dh(e).

Moreover,

ker∂ =
⊕

m∈ω∨
L

kϕmχm,

where ϕm ∈ Am satisfy the relation

div(ϕm) + D(m) = 0 if C = A1 or div(ϕm)|C0
+ D(m)|C0

= 0 if C = P1.

Proof. Let ∂ be a homogeneous LND of horizontal type on A with deg ∂ = e and
ω∨(∂) = ω∨. Lemma 3.18(3) and Remark 3.25 show that (i) and (i′) hold. Lemma
3.23 and Examples 3.20 and 3.21 show that (ii) holds. To conclude, Lemma 3.26
shows that (iii)–(v) hold.

To show the converse, assume that (i), (i′), and (ii)–(v) are fulfilled. By Theorem
1.4, (i) and (i′) imply that Aω ' A[C,Dω ] with Dω as in Lemma 3.23. By Examples
3.20 and 3.21 and Remark 3.22(2), (ii) shows that there exists a homogeneous LND
∂ : AM → AM with deg ∂ = e. By Lemma 3.26 and its proof, (iii)–(v) imply that
∂ restricts to a homogeneous LND on A. Finally, by Lemma 3.18(3), (i) and (i′)
imply that ω∨(∂) = ω∨.

Moreover, Lemma 3.18 (1) and (2) give the desired description of ker∂. �

Remark 3.29. The maximal cones in the quasifan Λ(D) are in one-to-one corre-
spondence with the vertices of the σ-polyhedron degD.
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Corollary 3.30. In the notation of Theorem 3.28, A admits a homogeneous LND

∂ of horizontal type such that ω∨(∂) = ω∨ if and only if (i) and (i′) in the theorem

hold.

Proof. The “only if” part follows directly from Lemma 3.26.

Assume that (i) and (i′) hold. By Lemma 3.26 and Examples 3.20 and 3.21, we
only need to show that there exists e ∈ M such that (e,−1/d− h(e)) ∈ Sρ and
(iii)–(v) hold.

Let (e′, r′) ∈ Sρ (by Remark 2.5, this set is nonempty). By this remark e =
e′ + m ∀m ∈ ω∨

L is such that (e, r′ − h(m)) ∈ Sρ. In particular, we can assume
that e belongs to the relative interior of ω∨. In this setting, Remark 3.27 shows
that (v) holds.

As in the proof of Lemma 3.3, for every z ∈ A1, we let {δ0,z, · · · , δ`z,z} denote
the set of all maximal cones in Λ(hz) and we let gr,z, r ∈ {0, · · · , `z}, be the linear
extension of hz|δr,z to MQ. We assume further that ω∨ ⊆ δ0,z ∀z ∈ A1.

Since the functions hz are upper convex, the inequalities in (iii) and (iv) hold
if they hold in every maximal cone on Λ(hz) except δ0,z, i.e.,

(iii′) bgr,z(m+ e)c − bgz(m)c ≥ 1 ∀z ∈ k∗, ∀r ∈ {1, . . . , `z} and ∀m ∈ δr,z ∩M .

(iv′) bdgr,0(m+e)c−bdgr,0(m)c ≥ 1+dh(e) ∀r ∈ {1, . . . , `0} and ∀m ∈ δr,0∩M .

These inequalities are fulfilled if

gr,z(e) ≥ 1, ∀z ∈ k∗ and ∀r ∈ {1, . . . , `z}, and

gr,0(e) ≥ 1/d+ dh(e)e, ∀r ∈ {1, . . . , `0}. (8)

Since e belongs to the relative interior of ω∨, we have gr,z(e) > g0,z(e) ∀z ∈ A1,
g0,0(e) = h(e), and g0,z = 0 ∀z ∈ k∗. By the linearity of the functions gr,z we can
choose e such that (8) holds, proving the corollary. �

Corollary 3.31. In the notation on Theorem 3.28, two homogeneous LNDs ∂ and

∂′ of horizontal type on A are equivalent if and only if ω∨(∂) = ω∨(∂′) and, in the

elliptic case, z∞(∂) = z∞(∂′).

Proof. Indeed, the description of ker∂ given in Theorem 3.28 depends only on ω∨

in the nonelliptic case and on ω∨ and z∞ ∈ C in the elliptic case. �

Corollary 3.32. The number of pairwise nonequivalent homogeneous LNDs of

horizontal type on A = A[C,D] is finite except in the case where A is elliptic and

there exists a maximal cone ω∨ of Λ(D) such that all but possibly one hz|ω∨ are

integral.

Proof. Since Λ(D) has only a finite number of maximal cones, Corollary 3.31 gives
the result in the case where A is nonelliptic. Furthermore, in the elliptic case by
this corollary there is an infinite number of pairwise nonequivalent LNDs on A if
and only if in Theorem 3.28(i′) we can choose z∞ ∈ P1 arbitrarily. However, the
latter is indeed possible under the assumptions of the corollary. �
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Example 3.33. A combinatorial description of k[2] = k[x, y] with the grading
induced by degx = deg y = 1 is given by the proper σ-polyhedral divisor D =
(1 + σ) · [0] on P1, where σ = Q≥0 ⊆ NQ ' Q. By Corollary 3.32 there exists an
infinite number of pairwise nonequivalent LNDs on k[2] homogeneous with respect
to the given grading. Indeed, the derivations on the family

∂λ = λ
∂

∂x
+ (1− λ)

∂

∂y

are homogeneous and pairwise nonequivalent for different values of λ.
In contrast, a combinatorial description of k[2] with the grading induced by

deg x = − deg y = 1 is given by the proper σ-polyhedral divisor D = [0, 1] · [0] on
A1. By Corollary 3.32 there exists a finite number of pairwise nonequivalent LNDs
homogeneous with respect to this grading. Indeed, by Corollary 3.30 the only such
LNDs are the partial derivatives.

Remark 3.34. Let A be a normal finitely generated effectively M -graded algebra,
such that the complexity of the corresponding T-action on SpecA is 0 or 1. In
Corollaries 2.11 and 3.19 and Proposition 3.11 we have shown that the kernel of a
homogeneous LND on A is finitely generated.

On the other hand, there are examples of homogeneous LNDs on Ar for r ≥ 5,
whose kernel is not finitely generated, see [Ro], [Fr1], and [DaFr]. For instance,
Daigle and Freudenburg showed in [DaFr] that ker∂ is not finitely generated for
the LND

∂ = x3
1

∂

∂x2
+ x2

∂

∂x3
+ x3

∂

∂x4
+ x2

1

∂

∂x5

on k[5] = k[x1, . . . , x5]. Furthermore, it is easy to see that ∂ is homogeneous of
degree (0,−1) under the effective Z2-grading on k[5] given by

deg x1 = (1, 0), degx2 = (3, 1), deg x3 = (3, 2),

deg x4 = (3, 3), and deg x5 = (2, 1).

The corresponding T-action on A5 is of complexity 3.
In the following example we study the existence of homogeneous LNDs on the

M -graded algebra A of Example 1.5.

Example 3.35. Let the notation be as in Example 1.5. Since σ = {0}, Lemma
3.1 shows that there is no homogeneous LND of fiber type on A. In contrast, let
us show that there exist exactly four pairwise nonequivalent homogeneous LNDs
on A.

Indeed, since h0 is the only support function which is nonintegral, Corollar-
ies 3.30 and 3.31 show that there are four nonequivalent homogeneous LNDs of
horizontal type on A corresponding to the four maximal cones in Λ(D),

δ1 = cone((1, 0), (−4, 1)), δ2 = cone((−4, 1), (−1, 0)),
δ3 = cone((−1, 0), (8,−1)), δ4 = cone((8,−1), (1, 0)).
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For the cones δ1 and δ2 the hypotheses of Lemma 3.26 are fulfilled, i.e., hz|δi = 0
∀z ∈ k∗ for i = 1, 2. Moreover, e1 = (−3, 1) and e2 = (−8, 1) satisfy conditions
(i)-(iii) in this lemma for δ1 and δ2, respectively.

We let ∂1 and ∂2 be the respective LNDs defined in (4). Lettingm = (m1,m2) ∈
M , by a routine calculation we obtain

∂1(χ
mtr) = (r − 1

4m1 −m2) · χm+e1 tr and ∂2(χ
mtr) = r · χm+e2 tr.

Furthermore, under the isomorphism (1) in Example 1.5, ∂1 and ∂2 can be
extended to k[4] = k[x1, x2, x3, x4] as LNDs

∂1 = − 1
4x3

∂

∂x2
+ x2

1x
3
2

∂

∂x4
and ∂2 = x3

∂

∂x1
− (2x1x

4
2 + 1)

∂

∂x4
.

To obtain the derivations corresponding to δ3 and δ4 we let C ′ = Spec k[s],
∆′

1 = {0} × [−1, 0], and D′ = ∆0 · [0] + ∆′
1 · [1]. Theorem 1.4(3) shows that

A ' A[C ′,D′]. Under this new combinatorial description we have

u1=−sχ(4,0), u2=χ(−1,0), u3=(1− s)χ(−4,1), and u4=sχ(8,−1).

Now the assumptions of Lemma 3.26 are satisfied for δ3 and δ4. Moreover, e3 =
(4,−1) and e4 = (9,−1) satisfy conditions (i)–(iii) in this lemma for δ3 and δ4,
respectively.

We let ∂3 and ∂4 be the respective LNDs defined by (4). By a simple computa-
tion we obtain

∂3(χ
msr) = (r +m2) · χm+e3sr and ∂4(χ

msr) =
(
r − 1

4m1 −m2

)
· χm+e4sr+1.

Furthermore, under the isomorphism (1), ∂3 and ∂4 are induced by the LNDs

∂3 = −x4
∂

∂x1
+ (2x1x

4
2 + 1)

∂

∂x3
and ∂4 = 1

4x4
∂

∂x2
− x2

1x
3
2

∂

∂x3

on k[4].

3.3. The surface case

A description of C∗-surfaces was given in [FlZa1] in terms of the DPD (Dolgachev-
Pinkham-Demazure) presentation. In [FlZa2] this description was applied to clas-
sify the homogeneous LNDs on normal affine C∗-surfaces (of both horizontal and
fiber type). Here we relate both descriptions. Besides, we stress the difference that
appears in higher dimensions.

In the case of dimension 2 the lattice N has rank 1, which makes things quite
explicit (cf., e.g., [Su]).

We treat the elliptic case first. In this case σ is of full dimension, and so we
can assume that σ = Q≥0 ⊆ NQ = Q. Let A = A[C,D], where D is a proper σ-
polyhedral divisor on a smooth projective curve C. In this setting, D is uniquely
determined by the Q-divisor D(1) on C. Here (C,D(1)) coincides with the DPD
presentation data. Since the only extremal ray of σ is σ itself and degD is σ-tailed
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(see Definition 1.1), by Corollary 3.13 there is no homogeneous LND of fiber type
on A.

Furthermore, if there is a homogeneous LND ∂ of horizontal type on A, then
ω∨(∂) = σ∨ and so, by Remark 3.24(1), A = Aω is an affine semigroup algebra,
i.e., SpecA is an affine toric surface. This corresponds to Theorem 3.3 in loc. cit.

Next we consider a nonelliptic algebra A so that C is an affine curve. In loc. cit.
this case is further divided into two subcases, the parabolic one which corresponds
to σ = Q≥0, and the hyperbolic one which corresponds to σ = {0}.

In the parabolic case, the DPD presentation data are the same as in the elliptic
case. In this case there is again just one extremal ray ρ = σ and Sρ = {−1}.
Moreover, since the support functions hz are positively homogeneous on σ∨ =
Q≥0, they are linear and so D−1 = D(1) (see Lemma 3.3). By Theorem 3.8 the
homogeneous LNDs of fiber type on A are in one-to-one correspondence with the
rational functions

ϕ ∈ H0(C,OC(b−D(1)c)).

This corresponds to Theorem 3.12 in loc. cit.
If a graded parabolic two-dimensional algebra A admits a homogeneous LND

of horizontal type, then SpecA is a toric variety by the same argument as in the
elliptic case. This yields Theorem 3.16 and Corollary 3.19 in loc. cit.

In the hyperbolic case, D is uniquely determined by the pair of Q-divisors
(D(1),D(−1)) which correspond to the pair (D+, D−) in the DPD presentation
data. According to our Definition 1.1(ii), this pair satisfies D(1) + D(−1) ≤ 0. In
this case, by Lemma 3.1, there is no homogeneous LND of fiber type on A since
σ = {0}. This corresponds to Lemma 3.20 in loc. cit.

The homogeneous LNDs of horizontal type are classified in Theorem 3.28 above.
Specializing this classification to dimension 2 gives Theorem 3.22 in loc. cit. More
precisely, conditions (i) and (ii) of Theorem 3.28 lead to (i) of Theorem 3.22 in
loc. cit. while (iii) and (iv) in Theorem 3.28 lead to (ii) in Theorem 3.22 in loc. cit.

In contrast, in dimension 3 new phenomena appear. For instance, there exist
nontoric threefolds with an elliptic T-action and a homogeneous LND of horizontal
or fiber type, see Subsection 4.2 for an example of fiber type. With the notation
as in Subsection 4.2, considering C = P1 and D = 1

2∆ · [0] + 1
2∆ · [1] + ∆′ ·

[∞], where ∆′ = σ ∩ {〈(1, 1), ·〉 ≥ 1} ⊆ NQ gives a nontoric example with two
equivalence classes of homogeneous LNDs fiber type and four equivalence classes
of homogeneous LNDs of horizontal type.

4. Applications

4.1. The Makar-Limanov invariant

Let A be a finitely generated normal domain and let LND(A) be the set of all
LNDs on A. The Makar-Limanov invariant of A is defined as

ML(A) =
⋂

∂∈LND(A)

ker∂.
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Similarly, if A is effectively M -graded we let LNDh(A) be the set of all homoge-
neous LNDs on A, and we call

MLh(A) =
⋂

∂∈LNDh(A)

ker∂

the homogeneous Makar-Limanov invariant of A. Clearly, ML(A) ⊆ MLh(A).
In the sequel we apply the results in Sections 2 and 3 in order to compute

MLh(A) in the case where the complexity of the T-action on SpecA is 0 or 1. We
also give some partial results for the usual invariant ML(A) in this particular case.

Remark 4.1. Since two equivalent LNDs (see Definition 1.8) have the same kernel,
to compute ML(A) or MLh(A) it is sufficient to consider pairwise nonequivalent
LNDs on A. The pairwise nonequivalent homogeneous LNDs on A are classified in
Corollary 2.10 for the complexity 0 case, and in Corollaries 3.10 and 3.31 for the
complexity 1 case.

We treat first the case of complexity 0, i.e., the case of affine toric varieties. Let
σ ⊆ NQ be a pointed polyhedral cone.

Proposition 4.2. Let A = k[σ∨
M ] be an affine semigroup algebra so that X =

SpecA is a toric variety. Then

ML(A) = MLh(A) = k[θM ],

where θ ⊆ MQ is the maximal linear subspace contained in σ∨. In particular,

ML(A) = k if and only if σ is of complete dimension, i.e., if and only if there is

no torus factor in X.

Proof. By Corollary 2.10 and Theorem 2.7, the pairwise nonequivalent homoge-
neous LNDs on A are in one-to-one correspondence with the extremal rays of σ.
For any extremal ray ρ ⊆ σ and any e ∈ Sρ as in Lemma 2.4, the kernel of
the corresponding homogeneous LND is ker∂ρ,e = k[τM ], where τ ⊆ σ∨ is the
codimension 1 face dual to ρ.

Since θ ⊆ σ∨ is the intersection of all codimension 1 faces, we have MLh(A) =
k[θM ]. Furthermore, the characters in k[θM ] ⊆ A are invertible functions on A
and so, by Lemma 1.7(iii), ∂(k[θM ]) = 0 ∀∂ ∈ LND(A). Hence k[θM ] ⊆ ML(A),
proving the lemma. �

For the rest of this section we let A = A[C,D], where D is a proper σ-polyhedral
divisor on a smooth curve C. We also let MLfib(A) and MLhor(A) be the intersec-
tion of the kernels of all homogeneous LNDs of fiber type and of horizontal type,
respectively, so that

MLh(A) = MLfib(A) ∩MLhor(A). (9)

We first compute MLfib(A). If A is nonelliptic (elliptic, respectively) we let
{ρi} be the set of all extremal rays of σ∨ (of all extremal rays of σ∨ such that
ρ∩degD = ∅, respectively). In both cases, we let τi ⊆MQ denote the codimension
1 face dual to ρi and θ =

⋂
τi.
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Lemma 4.3. With the notation as above,

MLfib(A) =
⊕

m∈θM

Amχm.

Proof. By Corollary 3.13, for every extremal ray ρi, there is a homogeneous LND
∂i of fiber type with kernel ker∂i =

⊕
m∈τi∩M Amχm. By Corollary 3.10 any

homogeneous LND of fiber type on A is equivalent to one of the ∂i. Finally, taking
the intersection

⋂
i ker∂i gives the desired description of MLfib(A). �

Remark 4.4. If A is nonelliptic, then θ ⊆ MQ is the maximal linear subspace
contained in σ∨, as in the toric case. In particular, if A is parabolic, then θ = {0}
and MLfib(A) = A0, and if A is hyperbolic, then θ = MQ and MLfib(A) = A.

If there is no LND of horizontal type on A, then MLhor(A) = A and MLh(A) =
MLfib(A). In the sequel we assume that A admits a homogeneous LND of hori-
zontal type.

If A is nonelliptic, we let {δi} be the set of all cones in MQ satisfying (i) in
Theorem 3.28, and δ =

⋂
i δi. If A is elliptic, we let {δi,z} be the set of all cones

in MQ satisfying (i′) in Theorem 3.28 with z∞ = z. We also let B = {m ∈ σ∨ |
hdegD = 0} and δ =

⋂
i,z δi,z ∩ B.

Lemma 4.5. With the notation as before, if ∂ is a homogeneous LND on A of

horizontal type, then

MLhor(A) =
⊕

m∈δL

kϕmχm,

where L = L(∂) and ϕm ∈ Am satisfy the relation div(ϕm) + D(m) = 0.

Proof. We treat first the nonelliptic case. By Corollary 3.30 for every δi there is a
homogeneous LND ∂i of horizontal type with kernel

ker∂i =
⊕

m∈δi∩Li

kϕmχm,

where Li = L(∂i) and ϕm ∈ Am is such that div(ϕm) + D(m) = 0. By Corollary
3.31, any homogeneous LND of horizontal type on A is equivalent to one of the ∂i.
Taking the intersection of all ker∂i gives the lemma in this case.

Further let A be elliptic and let ∂ be a homogeneous LND of horizontal type on
A. Let z0, z∞ ∈ P1 and let ω∨ and L be as in Theorem 3.28 so that

ker∂ =
⊕

m∈ω∨
L

kϕmχm,

where ϕm ∈ Am satisfies div(ϕm) + D(m) = λ[z∞] for some positive λ ∈ k.
By permuting the roles of z0 and z∞ in Theorem 3.28 we obtain another LND

∂′ on A. The description of ker∂ and ker∂ ′ shows that

ker∂ ∩ ker∂′ =
⊕

m∈ω∨
L
∩B

kϕmχm,

where ϕm ∈ Am is such that div(ϕm) + D(m) = 0.
Now the lemma follows by an argument similar to that in the nonelliptic case.

�
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Theorem 4.6. In the notation of Lemmas 4.3 and 4.5, if there is no homogeneous

LND of horizontal type on A, then

MLh(A) =
⊕

m∈θM

Amχm.

If ∂ is a homogeneous LND of horizontal type on A, then

MLh(A) =
⊕

m∈θ∩δL

kϕmχm,

where L = L(∂) and ϕm ∈ Am is such that div(ϕm) + D(m) = 0.

Proof. The assertions follow immediately by virtue of (9) and Lemmas 4.3 and
4.5. �

In the following corollary we give a criterion of triviality of the homogeneous
Makar-Limanov invariant MLh(A).

Corollary 4.7. With the notation as above, MLh(A) = k if and only if one of the

following conditions hold:

(i) A is elliptic, rank(M) ≥ 2, and degD does not intersect any extremal ray

of σ.

(ii) A admits a homogeneous LND of horizontal type and θ ∩ δ = {0}.
In particular, in both cases ML(A) = k.

Proof. By Lemma 4.3, (i) holds if and only if MLhor(A) = k. By Theorem 4.6, (ii)
holds if and only if there is a homogeneous LND of horizontal type and MLh(A) =
k. �

Example 4.8. It easily seen that MLh(A) = k for A as in Example 3.35.

4.2. A nonrational threefold with trivial Makar-Limanov invariant

To exhibit such an example, we let σ be a pointed polyhedral cone in MQ, where
rank(M) = n ≥ 2. We let as before A = A[C,D], where D is a proper σ-polyhedral
divisor on a smooth curve C. By Subsection 1.12. FracA = K0(M) and so SpecA
is birational to C × Pn (cf. Corollary 3 in [Ti2]).

By Corollary 4.7, if A is nonelliptic and ML(A) = k, then A admits a homoge-
neous LND of horizontal type. So C ' A1 and SpecA is rational. On the other
hand, the curve C does not participate in the assumptions of Corollary 4.7(i). So
if (i) is fulfilled, then ML(A) = k while SpecA is birational to C × Pn. This leads
to the following result.

Proposition 4.9. Let A = A[C,D], where D is a proper σ-polyhedral divisor on

a smooth projective curve C of positive genus. Suppose further that degD does

not intersect any extremal ray of σ. Then ML(A) = k whereas X = SpecA is

nonrational.
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Remark 4.10. It is evident that X in Proposition 4.9 is in fact stably nonrational,
i.e., X × P` is nonrational for all ` ≥ 0, cf. [Po, Example 1.22].

In the rest of this section we give a simple geometric example illustrating this
proposition.

Letting N = Z2 and M = Z2 with the canonical bases and duality, we let σ ⊆
NQ be the first quadrant, ∆ = (1, 1)+σ, and h = h∆ so that h(m1,m2) = m1+m2.
Furthermore, we let A = A[C,D], where C ⊆ P2 is the elliptic curve with affine
equation s2 − t3 + t = 0, and D = ∆ · P is the proper σ-polyhedral divisor on C
with P being the point at infinity of C.

Since C 6' P1 and degD = ∆, A satisfies the assumptions of Corollary 4.9.
Letting K0 be the function field of C, by Theorem 1.4 we obtain

A(m1,m2) = H0(C,OC((m1 +m2)P )) ⊆ K0.

The functions t, s ∈ K0 are regular in the affine part of C, and have poles of order
2 and 3 on P , respectively. By the Riemann–Roch theorem dimH0(C,O(rP )) = r
∀r > 0. Hence the functions {ti, tjs | 2i ≤ r and 2j + 3 ≤ r} form a basis of
H0(C,O(rP )) (see [Ha, Chap. IV, Prop. 4.6]).

In this setting the first gradded pieces are the k-modules

A(0,0) = A(1,0) = A(0,1) = k,
A(2,0) = A(1,1) = A(0,2) = k⊕ kt,

A(3,0) = A(2,1) = A(1,2) = A(0,3) = k⊕ kt⊕ ks,
A(4,0) = A(3,1) = A(2,2) = A(1,3) = A(0,4) = k⊕ kt⊕ kt2 ⊕ ks.

Remark 4.11. Let E be the locally free sheaf of rank 2, OC(P ) ⊕ OC(P ). The
variety SpecA corresponds to the contraction of the zero section of the vector
bundle associated to E .

It is easy to see that A admits the following set of generators.

u1 = χ(1,0), u2 = χ(0,1), u3 = tχ(2,0), u4 = tχ(1,1), u5 = tχ(0,2),

u6 = sχ(3,0), u7 = sχ(2,1), u8 = sχ(1,2), u9 = sχ(0,3).

So A ' k[9]/I , where k[9] = k[x1, . . . , x9], and I is the ideal of relations of ui

(i = 1, . . . , 9)9.
Furthermore, Am ⊆ k[s, t]/(s2 − t3 + t) ∀m ∈ σ∨

M since D is supported at the
point at infinity P . The semigroup σ∨

M is spanned by (1, 0) and (0, 1), so letting
v = χ(1,0) and w = χ(0,1) we obtain

A = k[v, w, tv2, tvw, tw2, sv3, sv2w, svw2, sw3] ⊆ k[s, t, v, w]/(s2 − t3 + t).

Thus SpecA is birationally dominated by C0 × A2 where C0 = C \ {P}.
Since C 6' P1, by Lemma 3.16 there is no homogeneous LND of horizontal type

on A. There are two extremal rays ρi ⊆ σ spanned by the vectors (1, 0) and (0, 1).

9Using a software for elimination theory, we were able to find a minimal generating
set of I consisting of 22 polynomials.
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Since degD = ∆ is contained in the relative interior of σ, Corollaries 3.10 and 3.13
imply that there are exactly two pairwise nonequivalent homogeneous LNDs ∂i of
fiber type which correspond to the extremal rays ρi, i = 1, 2, respectively.

The codimension 1 face τ1 dual to ρ1 is spanned by (0, 1) and, in the notation
of Lemma 3.6, Sρ1

= {(−1, r) | r ≥ 0}. Letting e1 = (−1, 1) yields De1 = 0 and so
Φe1 = k. We fix ϕ1 = 1 ∈ Φe1 . By the same lemma we can choose ∂1 = ∂ρ1,e1,ϕ1

as
∂1
(
χ(m1,m2)

)
= m1 · χ(m1−1,m2+1) for all (m1,m2) ∈ σ∨

M .

Likewise, the codimension 1 face τ2 dual to ρ2 is spanned by (1, 0) and, in the
notation of Lemma 3.6, Sρ2

= {(r,−1) | r ≥ 0}. Letting e2 = (1,−1) yields
De2 = 0 and so Φe2 = k. We fix ϕ2 = 1 ∈ Φe2 . By Lemma 3.6 we can choose
∂2 = ∂ρ2,e2,ϕ2

as

∂2
(
χ(m1,m2)

)
= m2 · χ(m1+1,m2−1) for all (m1,m2) ∈ σ∨

M .

The kernels of ∂1 and ∂2 are given by

ker∂1 =
⊕

m∈τ1∩M

Amχm and ker∂2 =
⊕

m∈τ2∩M

Amχm.

Since τ1 ∩ τ2 = {0} we have

ML(A) = ker∂1 ∩ ker∂2 = A(0,0) = k.

This agrees with Corollary 4.9.
The LNDs ∂i are induced, under the isomorphism A ' k[9]/I , by the following

LNDs on k[9]:

∂1 = x2
∂

∂x1
+ 2x4

∂

∂x3
+ x5

∂

∂x4
+ 3x7

∂

∂x6
+ 2x8

∂

∂x7
+ x9

∂

∂x8
,

and

∂2 = x1
∂

∂x2
+ x3

∂

∂x4
+ 2x4

∂

∂x5
+ x6

∂

∂x7
+ 2x7

∂

∂x8
+ 3x8

∂

∂x9
,

respectively.
Below we let X = SpecA and we let π : X 99K C be the rational quotient for

the T-action on X . The comorphism of π is given by the inclusion π∗ : K0 ↪→
FracA = K0(u1, u2).

The orbit closure Θ = π−1(0, 0) over (0, 0) ∈ C is general and is isomorphic to
A2 = Spec k[x1, x2]. The restrictions to Θ of the k+-actions φi corresponding to
∂i, i = 1, 2, respectively, are given by

φ1|Θ : (t, (x1, x2)) 7→ (x1+ tx2, x2) and φ2|Θ : (t, (x1, x2)) 7→ (x1, x2+ tx1).

Furthermore, there is a unique singular point 0̄ ∈ X corresponding to the fixed
point of the T-action on X . The point 0̄ is given by the augmentation ideal

A+ =
⊕

σ∨
M

\{0}

Amχm.

On the other hand, let A = A[C,D], where D is a proper σ-polyhedral divisor
on a smooth projective curve C. By Theorem 2.5 in [KaRu], if SpecA is smooth,
then SpecA ' An+1 (see also Proposition 3.1 in [Su]). In particular, SpecA is
rational.
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Remark 4.12. (i) In [Li1] generalizing the methods of this section we obtain a
birational characterization of normal affine varieties with trivial ML-invariant.

(ii) In [Li2] we studied singularities of T-varieties. In particular, we showed that
the singularities of the X = SpecA[C,D] are not Cohen–Macaulay. On the other
hand, in the recent preprint [Po] a new family of examples of nonrational affine
varieties with trivial ML-invariant is given. This time, these varieties are smooth.
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[AHS] K. Altmann, J. Hausen, H. Süß, Gluing affine torus actions via divisorial fans,
Transform. Groups 13 (2008), 215–242.
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