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In this paper we generalize the algebraic density property to not necessarily 
smooth affine varieties relative to some closed subvariety containing the singular 
locus. This property implies the remarkable approximation results for holomorphic 
automorphisms of the Andersén–Lempert theory. We show that an affine toric 
variety X satisfies this algebraic density property relative to a closed T-invariant 
subvariety Y if and only if X \ Y �= T. For toric surfaces we are able to classify 
those which possess a strong version of the algebraic density property (relative 
to the singular locus). The main ingredient in this classification is our proof of 
an equivariant version of Brunella’s famous classification of complete algebraic 
vector fields in the affine plane.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A remarkable property of the Euclidean space of dimension at least two, that to a great extent compen-
sates for the lack of partition of unity for holomorphic automorphisms, was discovered by Andersén and 
Lempert in the early 1990’s [2,1], see also the work by Forstnerič and Rosay [12]. Since then, the theory of 
Stein manifolds with very large holomorphic automorphism group is called Andersén–Lempert theory.

The property was formalized by Varolin who named it the density property (DP). A Stein manifold X
has the DP if the Lie algebra generated by complete holomorphic vector fields is dense (in the compact-open 
topology) in the space of all holomorphic vector fields on X. Recall that a vector field is called complete if 
its flow exists for all complex time and all initial conditions.

The DP allows to construct (global) automorphisms of X with prescribed local properties. More precisely, 
any local phase flow on a Runge domain in X can be approximated by (global) automorphisms. This has 
remarkable applications for geometric questions in complex analysis, we refer the reader to survey articles 
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[21,16,18] and the recent book [10]. For smooth affine algebraic varieties, the algebraic density property 
(ADP) was also introduced by Varolin. The ADP implies the DP, therefore it is commonly used as a tool 
to prove the DP.

In this paper we generalize the ADP to not necessarily smooth affine varieties relative to some closed 
subvariety containing the singular locus as follows: Let X be an affine algebraic variety and let Xsing be the 
singular locus. We also let Y ⊆ X be an algebraic subvariety of X containing Xsing and let I = I(Y ) ⊆ C[X]
be the ideal of Y . Let VFalg(X, Y ) be the C[X]-module of vector fields vanishing in Y , i.e., VFalg(X, Y ) =
{∂ | ∂(C[X]) ⊆ I}. Let Liealg(X, Y ) be the Lie algebra generated by all the complete vector fields in 
VFalg(X, Y ).

Definition 1.1. We say that X has the strong ADP relative to Y if VFalg(X, Y ) = Liealg(X, Y ). Furthermore, 
we say that X has the ADP relative to Y if there exists � ≥ 0 such that I� VFalg(X, Y ) ⊆ Liealg(X, Y ). With 
this definition, the ADP relative to Y with � = 0 is just the strong ADP relative to Y . If we let Y = Xsing

we simply say that X has the strong ADP or the ADP, respectively.

Except for the fact that we consider not necessarily smooth varieties, the strong ADP is a version of 
Varolin’s Definition 3.1 in [24] of DP for the Lie subalgebra of vector fields vanishing on Y . Whereas for 
� > 0 our property is slightly weaker than Varolin’s definition since we generate the Lie subalgebra of vector 
fields vanishing on Y of order at least � using complete vector fields vanishing on Y of possibly lower order 
than �. Still this version of the ADP has the same remarkable consequences as in Varolin version of ADP 
for the group of holomorphic automorphisms of X fixing Y pointwise (see Theorem 6.3).

In this paper we investigate the ADP for toric varieties. Our first main result is the following theorem 
(see Theorem 3.7).

Theorem. Let X be an affine toric variety of dimension at least two and let Y be a T-invariant closed 
subvariety of X containing Xsing. Then X has the ADP relative to Y if and only if X \ Y �= T.

Recall that every smooth affine toric variety is isomorphic Ck × (C∗)n−k. A special case of our theorem 
where X = Cn and Y is the union of up to n − 1 coordinate hyperplanes has been already proven by 
Varolin [24].

It is well known that every affine toric surface different from C∗×C or C∗ ×C∗ is obtained as a quotient 
of C2 by the action of a cyclic group. Let d > e be relatively prime positive integers. We denote by Vd,e the 
toric surface obtained as the quotient of C2 by the Zd-action ζ · (u, v) = (ζu, ζev), where ζ is a primitive 
d-th root of unity. The following theorem is our second main result (see Corollary 5.5).

Theorem. Vd,e has the strong ADP if and only if e divides d + 1 and e2 �= d + 1.

Furthermore, for every affine toric surface our methods allow to determine the values of � from Defini-
tion 1.1 for which I� VFalg(X, Xsing) ⊆ Liealg(X, Xsing). The main ingredient in the proof of this theorem 
is an equivariant version of Brunella’s famous classification of complete algebraic vector fields in the affine 
plane (see [6]) or, equivalently, classification of complete algebraic vector fields on affine toric surfaces (see 
Theorem 4.10). This result might be of independent interest.

2. Vector fields and the algebraic density property

In this section we prove a general method for establishing the ADP that we later will use to show the 
ADP for toric varieties.

Definition 2.1. Let X be an affine algebraic variety and Y be a subvariety containing Xsing.
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(i) Let Aut(X, Y ) be the subgroup of automorphism of X stabilizing Y . We say that X is homogeneous 
with respect to Y if Aut(X, Y ) acts transitively on X \ Y .

(ii) We also let x0 ∈ Xreg. A finite subset M of the tangent space Tx0X is called a generating set if the 
image of M under the action of the isotropy group of x0 in Aut(X, Y ) generate the whole tangent space 
Tx0X.

The following is our main tool to establish the ADP for toric varieties. It is a generalization of [15, 
Theorem 1].

Theorem 2.2. Let X be an algebraic variety homogeneous with respect to some subvariety Y ⊇ Xsing. Let 
also L be a finitely generated submodule of the C[X]-module VFalg(X, Y ) of vector fields vanishing on Y . 
Assume that L ⊆ Liealg(X, Y ). If the fiber of L over some x0 ∈ X \ Y contains a generating set, then X
has the ADP relative to Y .

Proof. Let {∂i} be a finite set of vector fields in L such that {∂i[x0]} is a generating set. Let now {βj} ⊆
Aut(X, Y ) be a finite collection of automorphisms fixing x0 such that {β∗

j (∂i)[x0]} span the tangent space 
at x0. Since change of coordinates does not change completeness of a vector field, for β ∈ Aut(X, Y ), the 
finitely generated module Lβ = β∗(L) is again contained in Liealg(X, Y ). By replacing L with 

⊕
j Lβj

, we 
can assume that {∂i[x0]} span the tangent space at x0.

We let A1 = {x ∈ X \ Y | span(∂i[x]) �= TxX}. We also let A1 =
⋃

Aj
1 be the decomposition of A1 in 

irreducible components and we pick xj ∈ Aj
1. Since X is homogeneous with respect to Y , we can choose 

αj ∈ Aut(X, Y ) sending x0 to xj . We also put α0 = Id. Let now

A2 =
{
x ∈ X \ Y | span

{
α∗
j (∂i)[x] | ∀i, j

}
�= TxX

}
.

By construction dimA1 > dimA2 and so we can proceed by induction on dimension to obtain a finite 
collection of automorphisms αj ∈ Aut(X, Y ) such that the collection {α∗

j (∂i)[x]} span the tangent space at 
every point x ∈ X \ Y .

We let E =
⊕

j Lαj
. With the same argument as before, E is a finitely generated C[X]-submodule of 

VFalg(X, Y ) contained in Liealg(X, Y ). By construction, we have that the fiber of Ẽ := VFalg(X, Y )/E at 
every x ∈ X \ Y is trivial. Hence, the support of Ẽ is contained in Y .

We define

J = AnnC[X] Ẽ :=
{
f ∈ C[X] | fa = 0 for all a ∈ Ẽ

}
.

By construction JẼ = 0. This yields J VFalg(X, Y ) ⊆ E. Furthermore, by [14, Ch. II, Ex. 5.6] we have that 
V (J) ⊆ Y . Recall that I is the ideal of Y and let J ′ = J ∩ I so that V (J ′) = Y . Let now ai be a finite 
set of generators of i. Since rad(J ′) = I, we have that there exists �i such that a�ii ∈ J for all i. Letting 
� = 1 +

∑
i(�i − 1) we obtain

I� ⊆ J ′ ⊆ J and so I� VFalg(X,Y ) ⊆ J VFalg(X,Y ) ⊆ E ⊆ Liealg(X,Y ).

Hence the theorem follows. �
3. The algebraic density property for affine toric varieties

We first recall the basic facts from toric geometry that will be needed in this section. They can be found 
in any text about toric geometry such as [13,20,7].
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Let M and N be mutually dual lattices of rank n with duality pairing M × N → Z, where (m, p) 
→
〈m, p〉 = p(m). We also let MQ = M ⊗Z Q and NQ = N ⊗Z Q. Letting T be the algebraic torus T =
SpecC[M ] = N ⊗Z C∗. A toric variety is a normal variety endowed with an effective action of T having 
an open orbit. Since the T-action is effective, the open orbit is equal to T.

It is well known that affine toric varieties can be described by means of strongly convex polyhedral cones 
(pointed cones) in the vector space NQ. Indeed, let σ be a pointed cone in NQ, then Xσ = SpecC[σ∨∩M ] is 
an affine toric variety and every affine toric variety arises this way. Here C[σ∨∩M ] is the semigroup algebra 
C[σ∨ ∩M ] =

⊕
m∈σ∨∩M Cχm. In the following, we denote σ∨ ∩M by σ∨

M .
There is a one to one correspondence between the faces τ of the cone σ and the orbits O(τ) of the 

T-action on Xσ (usually called the Orbit–Cone correspondence). The dimension of an orbit is given by 
dimO(τ) = rankN − dim τ and its closure is given by O(τ) =

⋃
δ O(δ) where δ runs over all faces of σ

containing τ . The ideal I(τ) of an orbit closure O(τ) is given by

I(τ) =
⊕

m∈σ∨
M\τ⊥

Cχm

where τ⊥ ⊆ MQ is the orthogonal of τ . Furthermore, the ideal of X \ T is

I(X \ T) =
⊕

m∈(rel.int σ∨)∩M

Cχm,

where rel.int denotes the relative interior.
As usual, we identify a ray ρ ⊆ σ with its primitive vector. The set of all the rays of σ is denoted by 

σ(1). A cone σ is called smooth if σ(1) is part of a basis of the lattice N . Let τ ⊆ σ be any face. The orbit 
O(τ) is contained in Xreg if and only if τ is smooth.

Let now e ∈ M and p ∈ N . The linear map

∂e,p : C[M ] → C[M ], χm 
→ 〈m, p〉 · χm+e

is a homogeneous derivation of the algebra C[M ] and so it is a homogeneous vector field on T = SpecC[M ]. 
By the exponential map, the tangent space of T = N ⊗Z C∗ at the identity e ∈ T is isomorphic to N ⊗Z C
and the evaluation of the vector field ∂e,p at the smooth point e is ∂e,p[e] = p.

Let σ ⊆ NQ be a pointed cone. The following proposition gives a description of all the homogeneous 
vector fields on Xσ. The first statement of the following result can be found in [8]. For the convenience of 
the reader we provide a short argument.

Proposition 3.1. The homogeneous vector field ∂e,p on T extends to a homogeneous vector field in Xσ if and 
only if

Type I: e ∈ σ∨
M , or

Type II: There exists ρe ∈ σ(1) such that
(a) p ∈ Zρe,
(b) 〈e, ρe〉 = −1, and
(c) 〈e, ρ〉 ≥ 0 for all ρ ∈ σ(1) \ {ρe}.

Furthermore, ∂e,p is locally nilpotent if and only if it is of type II, and ∂e,p is semisimple if and only if it is 
of type I and e = 0.
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Proof. The vector field ∂e,p extends to Xσ if and only if ∂e,p(C[σ∨
M ]) ⊆ C[σ∨

M ]. Since C[σ∨
M ] is spanned by 

χm for all m ∈ σ∨
M , it is enough to show that ∂e,p(χm) ∈ C[σ∨

M ]. In combinatorial terms, this corresponds 
to the condition:

For every m ∈ σ∨
M \ p⊥, we have 〈m + e, ρ〉 ≥ 0 for all ρ ∈ σ(1). (1)

Assume first that p is not proportional to any ρ ∈ σ(1). Then for every ρ ∈ σ(1) there exists m ∈ σ∨
M

such that 〈ρ, m〉 = 0 and 〈p, m〉 �= 0. Hence, (1) implies that 〈ρ, e〉 ≥ 0 and so ∂e,p is of type I.
Assume now that there exists ρe ∈ σ(1) such that p ∈ Zρe. With the same argument as above we can 

show that 〈ρ, e〉 ≥ 0 for all ρ ∈ σ(1) \ {ρe}. Let now m ∈ σ∨
M such that 〈ρe, m〉 = 1. Then (1) implies 

that 〈ρe, m + e〉 ≥ 0. This yields 〈ρe, e〉 ≥ −1. If 〈ρe, e〉 = −1 then ∂e,p is of type II. If 〈ρe, e〉 > −1 then 
〈ρe, e〉 ≥ 0 and ∂e,p is of type I.

To prove the second assertion, we let ∂ = ∂e,p be a homogeneous vector field. A straightforward compu-
tation shows that

∂�+1(χm
)

= 〈m + �e, p〉 · ∂�
(
χm

)
· χe. (2)

Assume first that ∂ is of type I and that e ∈ σ∨
M \ {0}. If 〈e, p〉 �= 0 then (2) yields

∂�
(
χe

)
= �! · 〈e, p〉� · χ�e �= 0,

and so ∂ is not locally finite since span{χke | k ∈ Z≥0} is not finite dimensional. If 〈e, p〉 = 0 then let 
m ∈ σ∨

M be such that 〈m, p〉 �= 0. In this case (2) implies

∂�
(
χm

)
= 〈m, p〉� · χm+(�−1)e �= 0,

and again ∂ is not locally finite with a similar argument.
Assume now that ∂ is of type I and that e = 0. The vector field ∂ is the infinitesimal generator of the 

algebraic C∗-action on Xσ given by the Z-grading on C[σ∨
M ] induced by the degree function deg(χm) =

〈p, m〉. Hence, the vector field ∂ is semisimple.
Finally, assume that ∂ is of type II. For every m ∈ σ∨

M we let � = 〈m, ρe〉. Now, ∂e,p is locally nilpotent 
since ∂�+1

e,p (χm) = 0 by (2). �
In the following corollary, we give an explicit description of the homogeneous complete vector fields on 

an affine toric variety.

Corollary 3.2. The vector field ∂e,p is complete if and only if it is of type II, or it is of type I and 〈e, p〉 = 0.

Proof. The vector fields of type II are locally nilpotent, hence complete. In the following, we assume that 
∂ = ∂e,p is of type I. First, assume that 〈e, p〉 = 0. Then ∂ = χe · ∂0,p and since χe belongs to the kernel 
of ∂0,p, we have that ∂ is complete.

Assume now that 〈p, e〉 �= 0. Let I be the ideal of X \ T, i.e.,

I =
⊕

m∈rel.int(σ∨)∩M

Cχm.

Since e ∈ σ∨
M , we have that ∂(I) ⊆ I. Hence, X \ T is invariant by ∂e,p and so T is also invariant by ∂e,p. 

In the following, we show that ∂ is not complete when restricted to T. Since λ∂, λ ∈ C∗ is complete if and 
only if ∂ is complete, we will assume that p is a primitive vector in N and 〈e, p〉 > 0.



3690 F. Kutzschebauch et al. / Journal of Pure and Applied Algebra 219 (2015) 3685–3700
Without loss of generality, we choose mutually dual bases of N and M such that p = (1, 0, . . . , 0) and 
e = (e1, . . . , en), with e1 > 0 and n = rankN . We will also denote xi = χβi the standard coordinates of the 
torus T, where {βi | i = 1, . . . , n} is the base of N . In this coordinates, the vector field ∂ restricted to T is 
given by

∂ = xe1+1
1 xe2

2 · · ·xen
n

∂

∂x1
,

which is not complete on T since e1 > 0. Indeed the vector fields xn∂/∂x on C are not complete for 
n ≥ 2. �

Remark that in Corollary 3.2 complete vector fields of type I are extensions of complete vector fields on 
the big torus T while complete vector fields of type II are locally nilpotent, hence not complete in T. In the 
next lemma, we give a criterion for a homogeneous vector field to vanish in an orbit closure.

Lemma 3.3. Let ∂e,p be a non-zero homogeneous vector field on Xσ and let τ ⊆ σ be a face. Then ∂e,p
vanishes at the orbit closure O(τ) if and only if

Type I: p ∈ Span τ or 〈e, ρ〉 > 0 for some ρ ∈ τ(1).
Type II: 〈e, ρ〉 > 0 for some ρ ∈ τ(1).

Proof. The vector field ∂e,p does not vanish at the orbit closure O(τ) if and only if ∂e,p(C[σ∨
M ]) � I(τ). In 

combinatorial terms this happens if and only if

there exists m ∈ σ∨
M \ p⊥ such that 〈m + e, ρ〉 = 0 for all ρ ∈ τ(1). (3)

Case of type I. In this case, we have e ∈ σ∨
M so 〈m + e, ρ〉 = 0 for all ρ ∈ τ(1) if and only if 〈m, ρ〉 = 0 and 

〈e, ρ〉 = 0 for all ρ ∈ τ(1). This is the case if and only if m ∈ τ⊥ and e ∈ τ⊥. Such and m ∈ σ∨
M \ p⊥ exists 

if and only if τ⊥ � p⊥, i.e., if and only if p /∈ Span τ . Hence, we conclude that ∂e,p does not vanish at the 
orbit closure O(τ) if and only if p /∈ Span τ and 〈e, ρ〉 = 0 for all ρ ∈ τ(1).

Case of type II. In this case we have that there exists ρe ∈ σ(1) such that p ∈ Zρe \ {0}, 〈e, ρe〉 = −1, and 
〈e, ρ〉 ≥ 0 for all ρ ∈ σ(1) \ {ρe}.

Assume first that ρe /∈ τ(1). An argument similar to case I yields that ∂e,p does not vanish at the orbit 
closure O(τ) if and only if p /∈ Span τ and 〈e, ρ〉 = 0 for all ρ ∈ τ(1). Since ρe /∈ τ(1), we have that p /∈ Span τ

and so the vector field ∂e,p does not vanish at the orbit closure O(τ) if and only if 〈e, ρ〉 = 0 for all ρ ∈ τ(1).
Assume now that ρe ∈ τ(1). If there exists ρ ∈ τ(1) such that 〈e, ρ〉 > 0, then 〈m + e, ρ〉 > 0 for all 

m ∈ σ∨
M and so ∂e,p vanishes at the orbit O(τ) by (3). Assume 〈e, ρ〉 = 0 for all ρ ∈ τ(1) \ {ρe} and let 

m ∈ σ∨
M be such that 〈m, ρe〉 = 1 and 〈m, ρ〉 = 0 for all ρ ∈ τ(1) \ {ρe}. We have 〈m, ρe〉 �= 0 so m /∈ p⊥ and 

〈m + e, ρ〉 = 0 for all ρ ∈ τ(1). By (3), we conclude that ∂e,p does not vanish at the orbit closure O(τ). �
Remark 3.4. The degree of a homogeneous locally nilpotent vector fields (of type II) is called a root of σ. 
The set of all roots of σ is denoted by R(σ). For a root e ∈ R(σ), the ray ρe is called the distinguished ray 
of e and the Ga-action generated by the homogeneous locally nilpotent vector field ∂e,ρe

is denoted by He.

In order to show the ADP for toric varieties, we need to show that Xσ is homogeneous with respect to 
some closed subvariety Y . In [5], the authors prove that Xσ is homogeneous with respect to Xsing

σ . In fact, 
they show that the group of special automorphisms acts infinite-transitively with respect to Xsing

σ . In the 
following, we will show how their methods can be applied to show that Xσ is homogeneous with respect to 
any T-invariant closed subvariety Y .
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Proposition 3.5. Let σ ⊆ NQ be a pointed cone and let Y be any T-invariant closed subvariety of Xσ

containing Xsing
σ . Then Xσ is homogeneous relative to Y .

Proof. Using the T-action and the Orbit–Cone correspondence, to prove the theorem it is enough to find, 
for every orbit O(τ) in Xreg

σ different from the open orbit, an automorphism that

(i) sends a point x in O(τ) into an orbit of higher dimension, and
(ii) leaves stable every orbit not containing O(τ) in its closure.

Let ρ1, . . . , ρ� be the rays of τ . In [5, Lemma 2.3] and its proof, the authors show that for every smooth 
orbit O(τ) there exists a root e ∈ R(σ) such that

〈ρ1, e〉 = −1, 〈ρ2, e〉 = . . . = 〈ρ�, e〉 = 0, and 〈ρ, e〉 > 0 for all rays ρ /∈ τ(1). (4)

Furthermore, they show that a generic automorphism α in the Ga-action He corresponding to the root e
satisfies (i).

Let O(δ) be any orbit that does not contain O(τ) in its closure. In combinatorial terms, this means that δ
is a face of σ that is not contained in τ . We claim that He leaves O(δ) pointwise invariant and so α satisfies 
(ii) which proves the proposition.

In terms of the vector field ∂e,ρe
, our claim is equivalent to ∂e,ρe

vanishes at O(δ). Since δ is not contained 
in τ there exists a ray ρ of δ that is not a ray of τ . By (4) we have 〈e, ρ〉 > 0. Now the claim follows from 
Lemma 3.3. �

For our next theorem we need the following lemma that follows by direct computation.

Lemma 3.6. Let ∂e1,p1 and ∂e2,p2 be two homogeneous vector fields. Then [∂e1,p1 , ∂e2,p2 ] = ∂e,p, where p =
p1(e2) · p2 − p2(e1) · p1 and e = e1 + e2.

Theorem 3.7. Let X be an affine toric variety of dimension at least two and let Y be a T-invariant closed 
subvariety of X containing Xsing. Then X has the ADP relative to Y if and only if X \ Y �= T.

Proof. Let X = Xσ be the toric variety given by the pointed cone σ ∈ NQ and let Xσ \ Y �= T. There is at 
least one codimension one T-orbit not contained in Y . Assume it is O(ρ1) for some ray ρ1 ∈ σ(1). Let e1
be a root with ρ1 as distinguished ray. By (4), we can assume that 〈e1, ρ〉 > 0 for all ρ ∈ σ(1) \ {ρ1}. By 
Lemma 3.3, the locally nilpotent vector field ∂e1,ρ1 vanishes at Y and so ∂e1,ρ1 ∈ VFalg(Xσ, Y ).

Letting e2, e3 ∈ rel.int(σ∨) ∩M be such that e3 = e1 + e2, we let

L = Span
{
∂e,p | p ∈ N, e ∈ e3 + σ∨

M

}
.

The set L is contained in VFalg(Xσ, Y ) since ∂e,p ∈ L vanishes in Xσ \ T. In fact, L is a submodule of 
VFalg(Xσ, Y ) since for every m ∈ σ∨

M and every ∂e,p ∈ L, we have χm∂e,p = ∂e+m,p ∈ L. Furthermore, the 
fiber over the identity e ∈ T ⊆ Xσ is given by

Le = Span
{
∂e,p[e] | ∂e,p ∈ L

}
= Span{p | ∂e,p ∈ L} = N ⊗Z C = TeXσ, (5)

and so Le contains a generating set. We claim that L ⊆ Liealg(Xσ, Y ). Hence Xσ has the ADP relative to Y

by Theorem 2.2 and Proposition 3.5.
By Corollary 3.2, the vector field ∂e,p is complete if 〈e, p〉 = 0. Hence, to prove our claim it is enough to 

show that for every e ∈ e3 + σ∨
M , there exists p ∈ N such that 〈e, p〉 �= 0 and ∂e,p ∈ Liealg(Xσ, Y ).
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Indeed, let e4 = e − e1 and choose p4 be such that 〈e4, p4〉 = 0 and 〈e1, p4〉 �= 0 which implies that ∂e4,p4

belongs to Liealg(Xσ, Y ). This is possible since e4 lies in rel.intσ∨ and e1 is a root of σ∨. By Lemma 3.6 we 
have

[∂e1,ρ1 , ∂e4,p4 ] = ∂e,p where p = ρ1(e4) · p4 − p4(e1) · ρ1.

A routine computation shows that

〈e, p〉 =
〈
e, ρ1(e4) · p4 − p4(e1) · ρ1

〉
= 〈e1, p4〉 �= 0,

proving the claim.

Assume now that X \ Y = T. The converse of the theorem follows from the fact that for all affine 
toric varieties X and all � ∈ Z>0 there is a vector field ∂ ∈ I� VFalg(X, X \ T) \ Liealg(X, X \ T), where 
I = I(X \ T). Indeed, Andersén [3] proved that any complete algebraic vector field on T does preserve the 
Haar form

ω = dx1

x1
∧ . . . ∧ dxn

xn
.

Thus if we find ∂ in I� VFalg(X, X \ T) whose restriction to T does not preserve ω we are done.
After a change of coordinates one can assume that (1, 0, . . . , 0) ∈ rel.intσ∨. Then ∂ = xN

1
∂

∂x1
is a regular 

vector field on X contained in I� VFalg(X, X \ T) for N big enough which does not preserve ω. �
Remark 3.8. Lárusson proved in [19,11] that all smooth toric varieties are Oka–Forstnerič manifolds, however 
it is still unknown if they are elliptic, see [10,18] for definitions. The proof of Theorem 3.7 can be adapted to 
prove the following: every smooth quasi-affine toric variety is elliptic (and thus an Oka–Forstnerič manifold). 
Indeed, the torus T is well known to be elliptic. Let X0 be a smooth quasi-affine toric variety different from T. 
Let also X be an affine toric variety such that X0 ⊆ X is an equivariant open embedding and let Y = X\X0. 
Now, Proposition 3.5 and (5) imply that X0 is elliptic [10, Example 5.5.13 (B)].

4. Classification of complete vector fields on affine toric surfaces

In this section we classify all complete algebraic vector fields on a given affine toric surface Xσ. The classi-
fication works essentially the same as the classification of complete vector fields on C2 done by Brunella [6].

From now on we will use the fact that each affine toric surface different from C∗ × C or C∗ × C∗ can 
be seen as the quotient of C2 by the action of a cyclic group. Let d be the order of the group and let e
be a co-prime number 0 < e < d and consider the action of Zd given by ζ · (u, v) = (ζu, ζev) where ζ is 
a primitive d-th root of unity. We obtain the projection π : C2 → C2/Zd =: Vd,e onto our toric surface which 
is a ramified covering of Vd,e ramified only over the unique singular point. Certainly each vector field on X
pulls back to an invariant vector field of C2 by using the fiber-wise isomorphism Dπ on the tangent space. 
A complete vector field on Vd,e will pull back to an invariant complete vector field on C2.

Definition 4.1. Let f : C2 → C be a regular function on C2. The function f is called Zd-preserved if 
the fibers of f are sent to fibers of f by the Zd-action. It is called Zd-homogeneous of degree [i] ∈ Zd

if ζ∗f(u, v) = f(ζ · (u, v)) = ζif(u, v) for all (u, v) ∈ C2. Let A[i] denote the space of Zd-homogeneous 
polynomials of degree [i]; then we obtain a decomposition of the ring of regular functions on C2 into 
Zd-homogeneous parts C[u, v] = A[0] ⊕ . . . ⊕ A[d−1]. In particular A[0] is the ring of invariant functions 
C[u, v]Zd = C[Vd,e].
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It is clear from the definition that A[i] is spanned by all monomials umvn with [m + en] = [i] ∈ Zd. 
Clearly invariant vector fields are of the form f∂/∂u + g∂/∂v with f ∈ A[1] and g ∈ A[e]. Moreover we have 
the following easy lemma:

Lemma 4.2. Let f : C2 → C be a regular function; then the following are equivalent:

(1) f is Zd-homogeneous,
(2) f is Zd-preserved with f(0, 0) = 0,
(3) f−1(0) is Zd-invariant.

Proof. (1) implies (2) since if f is constant on a curve then also ζi · f is constant and f(0, 0) = 0 follows 
directly from the homogeneity. The fiber f−1(0) contains the Zd-fixed point (0, 0) thus (3) follows from (2). 
If the zero fibers of f and ζ∗f coincide then we have that ζ∗f(u, v) = a · f(u, v) for some a ∈ C∗. By 
f(u, v) = ζd∗f(u, v) = adf(u, v) we see that a is a d-th root of unity and thus (3) implies (1). �

The following lemma is the crucial step in the classification of invariant complete algebraic vector fields 
and hence of complete algebraic vector fields on the toric variety Vd,e. Recall that a rational first integral 
of a vector field is a rational function such that its fibers are tangential to the vector field.

Lemma 4.3. Let ∂ be a Zd-invariant complete algebraic vector field on C2; then ∂ preserves either a 
Zd-homogeneous fibration f : C2 → C with general fibers C or C∗ or ∂ has a reduced rational first in-
tegral g : C2 ��� C.

Proof. By [6] there is a fibration f : C2 → C with C or C∗ fibers which is preserved by the flow ϕt of ∂. We 
may assume that f(0, 0) = 0. If f is Zd-homogeneous then we are done. If f is not Zd-homogeneous then 
we construct a rational first integral. The map ϕt acts by multiplication with some at on the set of fibers 
of f parametrized by C so we have f(ϕt(u, v)) = atf(u, v) (indeed (0, 0) is a fixed point of ϕt). Since ∂ is 
invariant the same holds true for g(u, v) = f(ζ · (u, v)) and hence the rational map f/g is a rational first 
integral for ∂. By the Stein factorization ∂ has a reduced first integral. Recall that every rational function 
C2 ��� P1 can be decomposed into F ◦ f̃C2 ��� P1 → P1 such that f̃ has connected regular fibers, or 
equivalently is reduced. This factorization is called Stein factorization. �

The next step will be the classification of Zd-homogeneous fibrations with general fibers C or C∗ and 
rational first integrals for invariant vector fields. The classification will be done up to equivariant auto-
morphisms of C2 which will lead to a classification of the vector fields on Vd,e up to automorphism of 
Vd,e since equivariant automorphisms clearly project down to automorphisms of the quotient. Equivariant 
automorphisms of C2 are given by invertible maps (u, v) 
→ (p(u, v), q(u, v)) with p ∈ A[1] and q ∈ A[e].

First we establish an equivariant version of the Abhyankar–Moh Theorem. We provide a proof using the 
classical version of the theorem. See [4] for a different proof.

Lemma 4.4. Let C ∼= L ⊂ C2 be a line which is invariant by the group action. Then there is an equivariant 
automorphism of C2 mapping L to {u = 0} or {v = 0}. Moreover a cross of two invariant lines can be 
mapped to {uv = 0}.

Proof. By the classical Abhyankar–Moh Theorem we know that L is given by a polynomial p which is 
a component of an automorphism of C2. In order to find the other component of the automorphism we have 
to find an invariant section of the trivial line bundle given by p. We start with an arbitrary trivialization 
and get an invariant section taking the average over images of the zero section by the group action. Each 
image is another section because the action sends fibers of p to fibers of p since the zero fiber is invariant. 
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We denote the polynomial giving this invariant section by q. The map given by (p, q) is an automorphism 
of C2 since it is the composition of the trivialization we started with and the map (u, v) 
→ (u, v − s(u))
where s is the invariant section. Because the zero sets of p and q are invariant they are Zd-homogeneous by 
Lemma 4.2 and since they are the two components of an automorphism their homogeneity degrees coincide 
with [1] and [e] so either (p, q) or (q, p) is an equivariant automorphism and the claim follows. The second 
statement is trivial since there we already have an invariant section by assumption. �

We get the following corollary as an immediate consequence, see also [9].

Corollary 4.5. Let f : C2 → C be a Zd-homogeneous fibration with C fibers and f(0, 0) = 0; then f(u, v) = u

or f(u, v) = v up to equivariant automorphism of C2.

For the classification of Zd-homogeneous fibration with C∗ fibers we first state the non-equivariant version 
used in [6], see also [23].

Lemma 4.6. Let f : C2 → C be a fibration with C∗ fibers; then f(x, y) has one special fiber (say f−1(0)) and it 
is isomorphic to C ∪C∗ or {xy = 0} and f is up to automorphism of C2 of the form f(x, y) = xm(xly+p(x))n
or f(x, y) = xmyn for coprime m, n ∈ N, deg p < l ≥ 1 and p(0) �= 0.

The equivariant version of this lemma is given by the two following lemmas.

Lemma 4.7. Let f : C2 → C be a Zd-homogeneous fibration with C∗ fibers and f−1(0) ∼= C ∪ C∗; then there 
are coprime m, n ∈ N and an invariant polynomial p with deg p < l ≥ 1 and p(0) �= 0 such that up to 
equivariant automorphism f(u, v) = um(ulv + p(u))n with [l + e] = [0] or f(u, v) = vm(vlu + p(v))n with 
[1 + le] = [0].

Proof. By Lemma 4.6 we know that there exists a not necessary equivariant automorphism (x(u, v), y(u, v))
such that f(x, y) is as in Lemma 4.6. Clearly, the curve C ∼= C ⊂ f−1(0) is invariant by the group action 
since it is the only fiber component isomorphic to C. By Lemma 4.4 we may assume the C = {u = 0}
or C = {v = 0}. In the first case this implies that, up to equivariant automorphism, x(u, v) = au and 
y(u, v) = bv+q(u) for some a, b ∈ C∗ and q ∈ C[u] and hence f is of the form (au)m((au)l(bv+q(u)) +p(u))n
with deg p < l. Since f is Zd-homogeneous we have q ∈ A[e] and p ∈ A[l+e] hence the map (x(u, v), y(u, v))
was equivariant after all and f has the desired standard form up to equivariant automorphism. The equality 
[l + e] = [0] follows from the fact that p(0) �= 0. The case C = {v = 0} leads similarly to the second 
possibility. �
Lemma 4.8. Let f : C2 → C be a Zd-homogeneous fibration with C∗ fibers and f−1(0) ∼= {uv = 0}; then 
there are coprime m, n ∈ N such that f(u, v) = umvn up to equivariant automorphism. If d is divisible by 4
(say d = 4d′) and e = 2d′ + 1 then f can also be of the form f(u, v) = u2 − v2.

Proof. By Lemma 4.6 there is an automorphism (x(u, v), y(u, v)) such that f = xmyn. Clearly the 0-fiber 
{x(u, v) = 0} ∪ {y(u, v) = 0} is invariant by the group action. If the two lines are invariant themselves then 
by Lemma 4.4 we may assume that they coincide with {uv = 0} and hence we may assume x(u, v) = au

and y(u, v) = bv for some a, b ∈ C∗ and we are done. If the two lines are interchanged by the group action 
then we have d = 2d0 is even and

x
(
ζ · (u, v)

)
= ay(u, v) and y

(
ζ · (u, v)

)
= bx(u, v)

for some a, b ∈ C∗. After rescaling we may assume that a = b. The fibration f = xmyn is Zd-homogeneous 
so xmyn = const · ymxn and hence m = n = 1. Moreover we have x(u, v) = x(ζd · (u, v)) = adx(u, v) and 
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hence a = ζi for some i. We see that the maps P±(u, v) = x(u, v) ± y(u, v) are Zd-homogeneous and since 
they are the components of an automorphism of C2 we may assume that the functions P± coincides with 
the functions u and v. Altogether we have 1

4f(u, v) = (u + v)(u − v) = u2 − v2 which is Zd-homogeneous 
only if 2e = 2 or 2e = 2d0 +2. In the first case (x(u, v), y(u, v)) is already equivariant so only the latter case 
remains. Since d is even and thus e = d0 + 1 is odd we have that d0 = 2d′ is even. �
Lemma 4.9. Let f : C2 ��� P1 be a reduced rational first integral of an invariant complete vector field ∂
on C2; then up to equivariant automorphism of C2 and Möbius transform of P1 the rational function f is 
a Zd-homogeneous polynomial with C or C∗ fibers or there are coprime m, n ∈ N such that f(u, v) = um/vn.

Proof. A general fiber of f is an orbit closure of the flow of ∂. Since ∂ is invariant the set of orbits is 
preserved by the Zd-action hence general fibers of f are mapped to general fibers of f by the action and 
the action induces a Zd-action on the base P1. Altogether this means that f is Zd-preserved. If f is not 
surjective then f can be seen as a polynomial which is Zd-homogeneous by Lemma 4.2 and has general 
fibers isomorphic C or C∗ since they are orbit closures.

Now consider the case f surjective. As mentioned in [6] and [23] such a first integral is always of the form 
f = xm/yn for some automorphism (x(u, v), y(u, v)). The Zd-action on the base P1 is either trivial (and 
hence f is Zd-invariant) or it has exactly two fixed points (so two fibers of f are Zd-invariant). In both cases 
there are two invariant fibers intersecting transversally (say the 0- and the ∞-fiber). Indeed if m = n = 1
all fibers intersect transversely and if m �= n all but one fiber intersect pairwise tangentially so this fiber is 
clearly invariant and it intersects all other fibers transversally. By Lemma 4.4 we may assume that these 
two fibers coincides with {u = 0} and {v = 0} and hence x(u, v) = au and y(u, v) = bv or vice versa. �
Theorem 4.10. Let ∂ be a complete algebraic vector field on C2 which is invariant by the group action given 
by ζ · (u, v) = (ζu, ζev) where ζ is a primitive n-th root of unity and 0 < e < d coprime numbers. Then ∂
has, up to equivariant automorphism of C2, one of the forms in the following list.

(1) (a) ∂ = au
∂

∂u
+
(
A
(
ud

)
v + B

(
ue

)) ∂

∂v

(b) ∂ = av
∂

∂v
+

(
A
(
vd
)
u + B

(
ve

′)) ∂

∂u

with a ∈ C, 0 < e′ < d such that [ee′] = [1] ∈ Zd and A, B ∈ C[t].

(2) (a) ∂ = av
∂

∂v
+ A

(
umvn

)[
nu

∂

∂u
−mv

∂

∂v

]
(b) If d = 4d′ and e = 2d′ + 1 then we also have

∂ = a(u + v)
(

∂

∂u
+ ∂

∂v

)
+ A

((
u2 − v2)2d′)[

u
∂

∂v
+ v

∂

∂u

]

with a ∈ C, m, n ∈ N with [m + en] = [0] and A ∈ C[t].
(3) There are a ∈ C, m, n, l ∈ N with [m] = [0], p ∈ A[0], deg p < l, p(0) �= 0 and A ∈ C[t] with the property 

that

A
(
xm

(
xly + p(x)

)n) · (mp(x) + nxp′(x)
)
− ap(x) ∈ xl · C[x, y]

such that

(a) ∂ = a

(
v + p(u)

ul

)
∂

∂v
+ A

(
um

(
ulv + p(u)

)n) · [nu ∂

∂u
−

(
(m + nl)v + mp(u) + nup′(u)

ul

)
∂

∂v

]
with [l + e] = 0.
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(b) ∂ = a

(
u + p(v)

vl

)
∂

∂u
+ A

(
vm

(
vlu + p(v)

)n) · [nv ∂

∂v
−

(
(m + nl)u + mp(v) + nvp′(v)

vl

)
∂

∂u

]
with [1 + le] = 0.

Proof. By Theorem 4.3 we know that the flow ∂ preserves fibers of a Zd-homogeneous C- or C∗-polynomial 
(which are described in Corollary 4.5 and Lemmas 4.7 and 4.8) or it has a rational first integral (which 
may be assumed to be of the form um/vn by Lemma 4.9). Once we have a polynomial that is preserved 
by the flow we can check in Proposition 2 in [6] how the vector field looks like. Since the vector fields need 
to be Zd-invariant some extra conditions are required. In the case of the rational first integral we have 
∂ = nu∂/∂u + mv∂/∂v which is already in the list. �
5. The strong algebraic density property for affine toric surfaces

First we give a new concept of the ADP which was first introduced in [17].

Definition 5.1. Let Γ be a group acting on a smooth affine algebraic variety X. Then X has Γ -ADP if the Lie 
algebra of all Γ -invariant algebraic vector fields coincides with the Lie algebra generated by all Γ -invariant 
complete algebraic vector fields.

As in the section above let d, e ∈ Z be two coprime numbers with 0 < e < d and let ζ be a primitive 
d-th root of unity. Consider again the Zd-action on C2 given by ζ · (u, v) = (ζu, ζev). Moreover let e′ be the 
unique integer with 0 < e′ < d and ee′ = 1 mod d. It is clear that:

Proposition 5.2. Vd,e has the strong ADP if and only if C2 has the Zd-ADP.

Let us introduce the following subsets of Z2

I =
{
(i, j) ∈ Z2

≥0 : i + ej = 0 mod d
}
,

J =
{
(i, j) ∈ I \

{
(0, 0)

}
: i < e and j < e′

}
⊂ I.

Lemma 5.3. |J | ≤ 1 ⇔ e | d + 1.

Proof. If e = 1 then also e′ = 1 and thus J = ∅. If e, e′ > 1 then |J | ≥ 1 since (e − 1, e′ − 1) ∈ J . Assume 
ee′ = d + 1, i < e and j < e′, then we have i + je < e + d < 2d and the equality [i + je] = [0] ∈ Zd implies 
i + je = d. Similarly we get ie′ + j = d and thus there is a unique solution for (i, j) and hence |J | = 1. If 
ee′ ≥ 2d +1 then we get another solution of [i +je] = [0] in J . Indeed, choose l ∈ N such that 0 < d − le < e; 
then (d − le, l) �= (e − 1, e′ − 1) lies in J , since le < d implies 0 < l < e′ − 1. �

Let us introduce the following notation:

VF(i,j) =
{
uivj

(
au

∂

∂u
+ bv

∂

∂v

)
: a, b ∈ C

}
,

CVF(i,j) =
{
auivj

(
ju

∂

∂u
− iv

∂

∂v

)
: a ∈ C

}
⊂ VF(i,j),

LNDk
u =

{
avke

′ ∂

∂u
: a ∈ C

}
,

LNDk
v =

{
auke ∂ : a ∈ C

}
.

∂v
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Remark that CVF(i,j) corresponds to the subset of complete vector fields in VF(i,j) by Corollary 3.2. We 
have the decomposition of Zd-invariant vector fields in homogeneous vector fields given by:

VFZd

alg
(
C2) =

⊕
(i,j)∈I

VF(i,j) ⊕
⊕
k∈N

(
LNDk

u ⊕ LNDk
v

)
.

We define the subspace S of VFZd

alg(C2).

S =
⊕

(i,j)∈J

CVF(i,j) ⊕
⊕

(i,j)∈I\J
VF(i,j) ⊕

⊕
k∈N

(
LNDk

u ⊕ LNDk
v

)
.

The following is our main result in this section.

Theorem 5.4. For the Lie algebra LieZd

alg(C2) generated by all Zd-invariant complete algebraic vector fields 
on C2 we have:

LieZd

alg
(
C2) =

{
S e = e′

S ⊕ 〈∂〉 e �= e′

for any ∂ ∈ VF(e−1,e′−1) \ CVF(e−1,e′−1). In particular the codimension of the inclusion LieZd

alg(C2) ⊆
VFZd

alg(C2) is |J | if e = e′ and |J | − 1 otherwise.

Remark that dimC CVF(i,j) = 1 and dimC VF(i,j) = 2 as a vector space. Hence, in the case where e �= e′

we have that VF(e−1,e′−1) ⊆ LieZd

alg(C2). We postpone the proof of this theorem to the end of this section.
The theorem immediately shows in which cases C2 has Zd-ADP or, equivalently, Vd,e has the strong 

ADP. It also allows in each particular case to determine the values of � from Definition 1.1 for which 
I� VFalg(X, Xsing) ⊆ Liealg(X, Xsing).

Corollary 5.5. Let Vd,e be a toric surface.

(i) Vd,e has the strong ADP if and only if e | d + 1 and e2 �= d + 1.
(ii) Vd,e has the ADP and an upper bound for the minimal � such that I� VFalg(X, Xsing) ⊆ Liealg(X, Xsing)

is e + e′ − 2.

The next lemma shows what is happening if we take the Lie bracket of two complete homogeneous vector 
fields.

Lemma 5.6. Let ∂1 ∈ CVF(i,j), ∂2 ∈ CVF(i′,j′), ∂3 ∈ LNDk
u and ∂4 ∈ LNDk′

v , then

(i) [∂1, ∂2] ∈ CVF(i+i′,j+j′),
(ii) [∂1, ∂3] ∈ VF(i−1,j+ke′) \ CVF(i−1,j+ke′),
(iii) [∂1, ∂4] ∈ VF(i+k′e,j−1) \ CVF(i+k′e,j−1),
(iv) [∂3, ∂4] ∈ VF(k′e−1,ke′−1). Furthermore, [∂3, ∂4] ∈ CVF(k′e−1,ke′−1) if and only if ek′ = e′k.

Proof. All four statements follow by direct computation using Corollary 3.2 and Lemma 3.6. �
The next two lemmas show Lie(S) = LieZd

alg(C2), each of them showing one inclusion.

Lemma 5.7. S ⊂ LieZd (C2).
alg
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Proof. Take (i, j) ∈ I \ J , then either (i − e, j + 1) ∈ I or (i + 1, j − e′) ∈ I. In the first case pick 
∂ ∈ CVF(i−e,j+1) and δ ∈ LND1

v and by Lemma 5.6 we have [∂, δ] ∈ VF(i,j) \ CVF(i,j) and thus VF(i,j) ⊂
LieZd

alg(C2). The second case works similarly. �
Lemma 5.8. {Invariant complete algebraic vector fields} ⊂ Lie(S).

Proof. Let L be the set of vector fields appearing in the list of Theorem 4.10. We will first show that L ⊂ S. 
Let ∂ ∈ L and ∂ =

∑
∂i,j its decomposition into homogeneous parts with respect to the standard grading 

on C2. We directly see that all homogeneous parts of vector fields (1) and (2a) are complete. For the vector 
fields (2b) and (3) we claim that ∂i,j = 0 whenever (i, j) ∈ J . Indeed, assume that ∂i,j �= 0 with (i, j) �= (0, 0)
and ∂i,j is not an LND. Then in case (2b) we have e = e′ = 2d′ + 1, i + j ≥ 4d′ and i �= j since for every 
monomial m of the polynomial A we have degu m − degv m is a multiple of 4. Hence, either i > e or j > e′. 
In case (3a) under the same assumptions we have i > m + nl − l ≥ m ≥ d > e. Similarly, in case (3b) we 
have j > m + ln − l ≥ m ≥ d > e′.

In order to conclude the proof we only need to show that for a vector field δ ∈ Lie(S) and an equivariant 
automorphism φ the vector field φ∗δ ∈ Lie(S). By Lemma 4.10 in [4] φ is a composition of equivariant 
Jonquières automorphisms or more precisely it is a composition of linear equivariant automorphisms and 
flow maps of the vector fields uke∂/∂v and vke

′
∂/∂u (which are contained in S). First we show that for 

any linear automorphism φ we have φ∗δ ∈ Lie(S). For e = 1 this statement is true for obvious reasons, 
indeed here we already have Lie(S) = LieZd

alg(C2). For e �= 1 all equivariant linear automorphisms are 
of the form (u, v) 
→ (au, bv) so they act by homothety on homogeneous vector fields of Lie(S). Now, 
if φt is the flow of the LND ∂ then φt

∗δ ∈ Lie(∂, δ) for all t, since the Taylor expansion of φt
∗δ gives 

φt
∗δ = δ+ t[∂, δ] + 1

2 t
2[∂, [∂, δ]] + . . .+ 1

n! t
n[∂, . . . [∂, δ] . . .] which is a finite sum since ∂ is an LND and hence 

its flow is algebraic in t. Since ∂ ∈ S the claim follows. �
Proof of Theorem 5.4. It is left to show that Lie(S) = S if e = e′ and Lie(S) = S ⊕ 〈∂〉 if e �= e′ for any 
∂ ∈ VF(e−1,e′−1)\CVF(e−1,e′−1). Let (i, j) ∈ J , then we need to show that VF(i,j) � Lie(S) unless e �= e′ and 
(i, j) = (e −1, e′−1). Assume VF(i,j) ⊂ Lie(S), then Lemma 5.6 implies the existence of ∂ ∈ VF(i,j)\CVF(i,j)

such that ∂ = [∂1, ∂2] for some ∂1 ∈ LND1
u and ∂2 ∈ LND1

v, e �= e′ and (i, j) = (e − 1, e′ − 1). �
6. Implications of the algebraic density property for the holomorphic automorphism group

We start with the obvious holomorphic version of Definition 1.1. Let X be a Stein space and let Xsing

be the singular locus. We also let Y ⊆ X be closed analytic subvariety of X containing Xsing and let 
Ihol = I(Y ) ⊆ O(X) be the ideal of Y . Let VFhol(X, Y ) be the O(X)-module of holomorphic vector fields 
vanishing in Y i.e., VFhol(X, Y ) = {∂ | ∂(O(X)) ⊆ Ihol}. Let Liehol(X, Y ) be the Lie algebra generated by 
all the complete vector fields in VFhol(X, Y ).

Definition 6.1. We say that X has the strong density property (DP) relative to Y if Liehol(X, Y ) is dense in 
VFhol(X, Y ) in the compact-open topology. Furthermore, we say that X has the DP relative to Y if there 
exists � ≥ 0 such that I�hol VFhol(X, Y ) is contained in the closure of Liehol(X, Y ). With this definition, the 
DP relative to Y with � = 0 is just the strong DP relative to Y .

Proposition 6.2. Let X be an affine algebraic variety and let Y be a subvariety containing Xsing. Then the 
ADP for X relative to Y implies the DP for X relative to Y .

Proof. The proposition follows from the fact that I� VFalg(X, Y ) is dense in I�hol VFhol(X, Y ). Indeed, by 
Theorem A of Cartan, there are finitely many global sections s1, . . . , sN of I� VFalg(X, Y ) that generate the 
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stalk at every point. A standard application of Theorem B of Cartan implies that any holomorphic section 
sh ∈ I�hol VFhol(X, Y ) over an O(X)-convex compact K ⊆ X can be written as sh = f1s1 + . . .+ fNsN with 
fi ∈ O(K). By approximating the functions fi by global functions in C[X], this implies I� VFalg(X, Y ) is 
dense in I�hol VFhol(X, Y ). �
Theorem 6.3 (Relative Andersén–Lempert Theorem). Let X be a Stein space with the DP relative to a closed 
analytic subvariety Y containing Xsing. Let Ω be an open subset of X. Suppose that Φ : [0, 1] × Ω → X is 
a C1-smooth map such that

(i) Φt : Ω → X is holomorphic and injective for every t ∈ [0, 1],
(ii) Φ0 : Ω → X is the natural embedding of Ω into X,
(iii) Φt(Ω) is a Runge subset of X for every t ∈ [0, 1], and
(iv) Φt(Ω) fixes Y up to order �, where � is such that I�hol VFhol(X, Y ) is contained the closure of 

Liehol(X, Y ).

Then for each ε > 0 and every compact subset K ⊂ Ω there is a continuous family, α : [0, 1] → Authol(X)
of holomorphic automorphisms of X fixing Y pointwise such that

α0 = id and |αt − Φt|K < ε for every t ∈ [0, 1]

Point (iv) in the assumptions of the theorem means the following: Consider the time dependent vector 
field V (x, t0) = d

dt |t=t0Φt(Φ−1
t0 (x)). The isotopy Φt(Ω) fixes Y up to order � if V (x, t0) is a section of 

I�hol VFhol(X, Y ) over Φt0(Ω) for all t0.

Sketch of proof. The map Φt0 is the t0-map of the time dependent vector field V (x, t). It can be approximated 
by dividing the time interval into small pieces and integrating the time independent vector fields over 
each piece. By assumption, each of those time independent fields is a section in I�hol VFhol(X, Y )(Φt0(Ω)). 
Since the sheaf I�hol VFhol(X, Y ) is coherent, a similar use of Theorems A and B of Cartan as in the 
proof of Proposition 6.2 leads to the fact that these time independent vector fields in the Runge domain 
Φt0(Ω) can be approximated by global vector fields in I�hol VFhol(X, Y ). By assumption, these vector fields 
can be approximated by Lie combinations of complete vector fields vanishing in Y (not necessarily in 
I�hol VFhol(X, Y )). Now the standard use of Euler’s method gives the desired conclusion. �
Remark 6.4. If Y ∩ Φt(Ω) = ∅ for all t ∈ [0, 1], then condition (6.3) in Theorem 6.3 is trivially satisfied.

Corollary 6.5. Any smooth point in an affine toric variety X of dimension n ≥ 2 different from the torus 
has an open neighborhood in the Euclidean topology biholomorphic to Cn.

Proof. Let x ∈ X. Take a Runge neighborhood U of x biholomorphic to the unit ball sending x to zero 
and let Φt be the map (1 − t

2 )z in the unit ball. Since X has the DP relative to Xsing, Theorem 6.3
implies that these contractions can be approximated by holomorphic automorphisms αt of X (fixing Xsing

pointwise). The automorphism α1 has an attractive fixed point near x. The basin of attraction of this point 
is biholomorphic to Cn [22]. Since the holomorphic automorphism group of X is transitive on X \ Xsing, 
the claim follows. �
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