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Universidad de Talca, Casilla 721, Talca, Chile

aliendo@inst-mat.utalca.cl

Received 29 January 2016
Accepted 29 April 2016
Published 7 June 2016

We characterize rational actions of the additive group on algebraic varieties defined over

a field of characteristic zero in terms of a suitable integrability property of their asso-
ciated velocity vector fields. This extends the classical correspondence between regular
actions of the additive group on affine algebraic varieties and the so-called locally nilpo-
tent derivations of their coordinate rings. Our results lead in particular to a complete
characterization of regular additive group actions on semi-affine varieties in terms of
their associated vector fields. Among other applications, we review properties of the
rational counterpart of the Makar–Limanov invariant for affine varieties and describe
the structure of rational homogeneous additive group actions on toric varieties.
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0. Introduction

During the last decades, the systematic study of regular actions of the additive
group Ga on affine varieties has provided very useful and effective tools to under-
stand the structure of certain of these varieties, most particularly those which are
very close to complex affine spaces from a topological or differential point of view.
One key feature of these actions in characteristic zero is that they are uniquely
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determined by their associated velocity vector fieldsa which, in turn, admit a very
simple, purely algebraic characterization. Namely, a global vector field on an affine
k-variety X = Spec(A) is the same as a k-derivation ∂ of A into itself, and deriva-
tions corresponding to additive group actions are precisely those with the property
that A is the increasing union of the kernels of the iterated k-linear operators ∂n,
n ≥ 1. Derivations ∂ with this property are called locally nilpotent and the co-
morphism µ∗ : A→ A[t] of the corresponding Ga-action µ : Ga ×X → X on X is
recovered by formally taking the exponential map

exp(t∂) : A→ A[[t]], f �→
∑

n

∂n(f)
n!

tn,

and observing that the local nilpotency of ∂ guarantees precisely that the latter
factors through the subring A[t] of A[[t]].

The study of affine algebraic varieties from a geometry point of view benefited a
lot from the rich algebraic theory of locally nilpotent derivations and therefore, it is
very desirable to push further this fruitful approach to more general settings. One
possible direction consists in re-interpreting the property for a global derivation ∂
of a ring A of being locally nilpotent as a kind of “algebraic integrability condition”
through the above exponential map construction. So given an arbitrary algebraic
k-variety X with field of rational functions KX and a rational vector field ∂ on
X , viewed as a k-derivation ∂ : KX → KX , we can again define formally the
exponential map

exp(t∂) : KX → KX [[t]], f �→
∑

n

∂n(f)
n!

tn,

and ask for counterparts in this context of the previous integrability condition. The
most natural one, which we call rational integrability (Definition 1.4), is to require
that the previous map factors through the subalgebra KX(t) ∩KX [[t]] of KX [[t]].
Our first main result (Theorem 1.5) shows that rationally integrable rational vector
fields on a variety X are in one-to-one correspondence with rational Ga-actions
Ga × X ��� X on X . This notion also turns out to coincide with the abstract
algebraic notion of locally nilpotent derivation of a field extension K/k given by
Makar–Limanov [13], with the additional advantage that rational integrability can
be checked directly on generators of the field K over k.

Being local in nature, the rational integrability condition is much more flexible
than the property of being locally nilpotent, and this enables the possibility to
study local and global additional conditions ensuring that a rational Ga-action
is actually regular. For instance, we obtain a complete characterization of reg-
ular Ga-actions on semi-affine varieties X in terms of their associated veloc-
ity vector fields, viewed as k-derivations ∂̃ : OX → OX from the structure
sheave of X to itself. Namely, we establish (Theorem 2.1) that regular Ga-actions

aThis is no longer the case in positive characteristic where one has to keep track of appropriate
infinite collections of higher order differential operators, see e.g. [14].
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on X are in one-to-one correspondence with k-derivations ∂̃ : OX → OX for which
the induced k-derivations ∂ : KX → KX and Γ(X, ∂̃) : Γ(X,OX) → Γ(X,OX) of
the field of rational functions and the ring of global regular functions on X are
respectively rationally integrable and locally nilpotent. In the case where X is not
semi-affine, these two conditions are in general no longer sufficient to characterize
regular Ga-actions. Nevertheless, they guarantee, thanks to a general construction
due to Zaitsev [19], the existence of a partial completion of X on which the rational
Ga-action on X given by ∂ extends to a regular action.

The last section of the paper contains three applications of these notions. The
first concerns a generalization to the rational context of the Makar–Limanov invari-
ant [13] and of its behavior under stabilization. In our second application we give
a combinatorial description of homogeneous rational Ga-actions on toric varieties
from which we derive a more conceptual proof of a characterization of regular
homogeneous Ga-actions on semi-affine toric varieties due to Demazure [4]. The
last application consists of a characterization of line bundle torsors in terms of
rational Ga-actions.

1. Basic Results on Rational Actions of the Additive Group

In what follows, the term variety refers to a separated geometrically integral scheme
of finite type over a fixed base field k of characteristic zero. We denote by k an
algebraic closure of k. An algebraic group over k is a group object in the category
of k-varieties. In particular, every algebraic group G in our sense is connected. We
denote by eG : Spec(k)→ G the neutral element of G and by mG : G×G→ G the
group law morphism.

Definition 1.1. A rational action of an algebraic group G on a variety X is a
rational map α : G ×X ��� X such that (pr1, α) : G ×X ��� G ×X is dominant
and such that the following diagrams of rational maps commute

G×G×X idG×α �������

mG×idX

��

G×X

α

���
�
�
�
� Spec(k)×X eG×idX ��

pr2

������������������ G×X

α

���
�
�
�
�

G×X α �������� X X.

(1.1)

We denote by dom(α) the largest open subset of G×X on which α is defined and
we say that α : G×X ��� X is defined at a point (g, x) ∈ G×X if the latter belongs
to dom(α). If so, we denote α(g, x) simply by g · x. Remark that for every point
g ∈ G, dom(α)∩Xg is a nonempty open subset of the fiber Xg = X ×G Spec(κ(g))
of pr1 : G×X → X over g [4, Lemme 1, p. 515]. A rational action α : G×X ��� X
such that dom(α) = G×X is called regular.

The conditions above mean equivalently that if (g, x) and (g′, g · x) belong to
dom(α) then (g′g, x) belongs to dom(α) and (g′g) · x = g′ · (g · x). Furthermore, if
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(eG, x) ∈ dom(α) then eG · x = x. These can be rephrased more formally by saying
that rational actions of G on X correspond to homomorphisms of group functors
G→ Birk(X), where Birk(X) is the contravariant functor (k-Varieties)→ (Groups)
which associates to every k-variety T , the group of T -birational maps X × T ���
X ×T . A rational action is regular if and only if the corresponding homomorphism
G→ Birk(X) factors through the automorphism group functor Autk(X) of X .

1.1. Criterion for existence of rational Ga-actions

A rational action α : Ga × X ��� X of the additive group scheme Ga = Ga,k =
Spec(k[t]) on a k-variety X with field of rational functions KX is equivalently
determined by a co-action homomorphism α∗ : KX → KX(t) of fields over k, which
factors through the valuation ring Oν0 = {r(t) ∈ KX(t) | ord0r(t) ≥ 0} of KX(t)
and such that the following diagrams commute

KX
α∗

��

α∗

��

KX(t)

t�→t+t′

��

KX
α∗ ��

id

�����
����

����
�� Oν0/tOν0

KX(t′) α̃∗
�� KX(t, t′) KX ,

��

(1.2)

where for every f(t′) =
P

ai(t
′)i

P
bj(t′)j ∈ KX(t′),

α̃∗(f(t′)) =
∑
α∗(ai)(t′)i∑ α∗(bj)(t′)j ∈ KX(t)(t′) = KX(t, t′).

Indeed, the condition that α∗ factors through Oν0 is ensured by the fact that
dom(α) ∩ ({0} ×X) is a nonempty open subset of {0} ×X , and the commutativ-
ity of the two diagrams expresses the usual axioms for a co-action. The following
characterization is well known.

Proposition 1.2. A k-variety X admits a nontrivial rational Ga-action if and only
if it is birationally ruled, i.e. birationally isomorphic to Y × P1 for some k-variety
Y .

Proof. Every k-variety of the form Y ×P1 admits a regular Ga-action by projective
translation on the second factor. The converse follows for instance from Rosenlicht
Theorem [18] which asserts for our purpose that a k-variety equipped with a rational
Ga-action is Ga-equivariantly birationally isomorphic to U ×Ga on which Ga acts
by translations on the second factor for some affine k-variety U . Nevertheless we
find more enlightening to give an elementary proof borrowed from Koshevoi [10].
Suppose that α : Ga × X ��� X is a nontrivial rational Ga-action and let K0 =
KGa

X = {h ∈ KX |α∗h = h} be its field of invariants. It is enough to show that
there exists s ∈ KX\K0 such that α∗s = s + t and KX = K0(s). Note that if
such an element s exists, then it is transcendental over K0 for otherwise, applying
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α∗ to a nontrivial polynomial relation P (s) = 0 for some P ∈ K0[v] would render
the conclusion that t ∈ KX(t) is algebraic over K0(s) whence over KX , which is
absurd. Furthermore, since any two elements si, i = 1, 2, such that α∗si = si + t

differ only by the addition of an element in K0, it is enough to show that for every
f ∈ KX\K0 there exists s ∈ KX such that α∗s = s+ t and f ∈ K0(s).

Now since α is nontrivial, there exists f ∈ KX\K0, and α∗f can be written in the
form α∗(f) = (1 + b(t))−1a(t) where a(t) =

∑n
i=0 ait

i ∈ KX [t] with a0 = f , b(t) =∑m
i=1 bit

i ∈ tKX [t], and either a(t) or 1 + b(t) is nonconstant. The commutativity
of the first diagram (1.2) above implies that(

1 +
m∑

i=1

α∗(bi)(t′)i

)−1( n∑
i=0

α∗(ai)(t′)i

)

=

(
1 +

m∑
i=1

bi(t+ t′)i

)−1( n∑
i=0

ai(t+ t′)i

)

=

(
1 +

m∑
i=1

bit
i +

m∑
i=1

b1,i(t)(t′)i

)−1( n∑
i=0

a1,i(t)(t′)i

)

=

(
1 +

m∑
i=1

b1,i(t)
1 +

∑m
i=1 bit

i
(t′)i

)−1( n∑
i=0

a1,i(t)
1 +

∑
biti

(t′)i

)
,

where a1,i(t) =
∑n

j=i

(
j

j−i

)
ajt

j−i and b1,i(t) =
∑m

j=i

(
j

j−i

)
bjt

j−i. Identifying the
coefficients, we obtain

α∗(aj) =
a1,j(t)

1 +
∑m

i=1 bit
i

and α∗(bj) =
b1,j(t)

1 +
∑m

i=1 bit
i
.

In particular, α∗(a−1
n ) = (a−1

n +
∑m

i=1 a
−1
n bit

i) ∈ KX [t] and, re-using the axioms to
get the equality

α∗a−1
n +

m∑
i=1

α∗(a−1
n bi)(t′)i = a−1

n +
m∑

i=1

a−1
n bi(t+ t′)i,

we deduce that α∗(a−1
n bi) = a−1

n

∑m
j=i

(
j
i

)
bjt

j−i for every i = 1, . . . ,m. Thus

a−1
n bm ∈ K0, α∗(a−1

n bm−1) = a−1
n bm−1 + ma−1

n bmt and so, letting s = a−1
n bm−1

ma−1
n bm

we obtain that α∗s = s+ t. We further deduce by induction that a−1
n bi ∈ K0[s] for

every i = 1, . . . ,m. The same argument applied to f−1 implies that s′ = an−1b−1
m

nanb−1
m

and also satisfies α∗s′ = s′ + t and that f−1b−1
m ai ∈ K0[s′] = K0[s] for every

i = 1, . . . , n. Since b−1
m an ∈ K0, this shows that f ∈ K0(s) as desired.

The proof above shows more precisely that for every nontrivial rational Ga-
action α : Ga ×X ��� X there exists a decomposition KX = KGa

X (s), where KGa

X
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is the field of invariants and s is an element transcendental over KGa

X satisfying
α∗s = s+ t, for which α∗ takes the form

α∗ = α∗
(KGa

X ,s)
: KX = KGa

X (s)→ KGa

X (s)(t), f(s) �→ α∗
(KGa

X ,s)
(f(s)) = f(s+ t).

(1.3)

An element s ∈ KX with the above properties is called a rational slice for the
action α.

Example 1.3. A smooth curve C admits a rational Ga,k-action if and only it is
birational to P1

k. Indeed, by Proposition 1.2, C admits a rational Ga,k-action if
and only if KC = K0(s) for some element s transcendental over K0. This implies
that K0 is an algebraic extension of k and that C is birational over k to P1

K0
. But

since by hypothesis C is geometrically integral, we have K0 = k necessarily and so,
C

∼��� P1
k.

1.2. Rational Ga-actions and rational vector fields

Every rational Ga-action α : Ga×X ��� X on a k-variety X gives rise to a rational
vector field, i.e. a k-derivation ∂̃ : OX → KX from the structure sheaf OX to the
constant sheaf KX of rational functions on X , consisting of velocity vectors along
germs of general orbits. More precisely, α induces a rational homomorphism of
sheaves

η : α∗Ω1
X/k → Ω1

Ga×X/k → Ω1
Ga×X/X

on Ga × X , where Ω1
Ga×X/X is the sheaf of relative differentials of the second

projection prX : Ga × X → X . Pulling back by the zero section morphism eX :
X → Ga ×X , x �→ (0, x), whose image intersects dom(α) by definition, we obtain
a global section e∗Xη : e∗Xα

∗Ω1
X/k � Ω1

X/k → e∗XΩ1
Ga×X/X � OX of the sheaf

HomX(Ω1
X/k,OX) ⊗ KX , hence by composition with the canonical k-derivation

d : OX → Ω1
X/k, a k-derivation ∂̃ : OX → KX . Furthermore, we can extend this

derivation via the Leibniz rule to a k-derivation from KX to KX . We denote this
derivation with the same symbol ∂̃ : KX → KX .

If the Ga-action α is regular, then η : α∗Ω1
X/k → Ω1

Ga×X/X is regular homo-
morphism, giving rise to global section e∗Xη of HomX(Ω1

X/k,OX), for which the

corresponding derivation ∂̃ : OX → KX factors through OX . In the case of a regu-
lar Ga-action α : Ga ×X → X on an affine variety X = Spec(A), the k-derivation
∂ = Γ(X, ∂̃) ∈ Derk(A) deduced from ∂̃ : OX → OX coincides simply with the
one ∂ = d

dt |t=0 ◦ α∗ : A → A[t]/tA[t] � A. It is well known (see e.g. [13]) that a
k-derivation ∂ ∈ Derk(A) arises from a regular Ga-action on X if and only if it is
“algebraically integrable” in the sense that the formal exponential homomorphism
exp(t∂) : A → A[[t]] factors through a homomorphism α∗ : A → A[t] ⊂ A[[t]].
This holds precisely when A =

⋃
n≥1 Ker ∂n, and derivations with this property are

called locally nilpotent.

1650060-6
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Being locally nilpotent is not a local property in the Zariski topology since for
instance the restriction of a locally nilpotent derivation to a non-Ga-stable affine
open subset of X is no longer locally nilpotent (see Example 1.8). In contrast, the
following weaker form of the algebraic integrability condition behaves well under
localization.

Definition 1.4. A k-derivation ∂̃ : KX → KX on a variety X is called rationally
integrable if the formal exponential homomorphism

exp(t∂̃) : KX → KX [[t]], f �→
∑ ∂̃nf

n!
tn

factors through KX(t) ∩KX [[t]].

By definition, every rationally integrable k-derivation ∂̃ : KX → KX induces a
global rational k-derivation ∂ = Γ(X, ∂̃) : KX → KX which gives rise in turn to a
homomorphism α∗ = exp(t∂) : KX → KX(t) factoring through Oν0 and satisfying
the axioms of a rational co-action of Ga. Conversely, for every rational Ga-action
α : Ga ×X ��� X with associated co-morphism α∗ : KX → KX(t), the fact that
α∗ factors through Oν0 guarantees that the k-linear homomorphism

∂ =
d

dt
◦ α∗ : KX → Oν0

d
dt−→ Oν0 → Oν0/tOν0 � KX (1.4)

is well defined and the commutativity of the second diagram (1.2) implies that ∂
is a k-derivation. In fact, if we write KX = KGa

X (s) for a suitable rational slice s in
such a way that α∗ takes the form α∗

(KGa
X ,s)

as in (1.3), then ∂ coincides with the

k-derivation ∂
∂s : KGa

X (s)→ KGa

X (s). We deduce in turn from Taylor’s formula that

exp(t∂)(f(s)) =
∑ tn

n!
∂n

∂sn
f(s) = f(s+ t) = α∗(f(s)).

Summing up, we obtain the following characterization.

Theorem 1.5. There exists a one-to-one correspondence between rational Ga-
actions α : Ga ×X ��� X on a k-variety X and rationally integrable k-derivations
∂̃ : KX → KX .

For a rational Ga-action α : Ga×X ��� X associated with a rationally integrable
k-derivation ∂ = Γ(X, ∂̃) : KX → KX , the field of invariants KGa

X is equal to the
kernel Ker ∂ of ∂ while rational slices for α coincide precisely with elements s ∈ KX

such that ∂s = 1.

Remark 1.6. In [13], a k-derivation ∂ : K → K of a field extension K/k is
called locally nilpotent if K is equal to the field of fractions of its subring Nil(∂) =⋃

n≥0 Ker ∂n. In the case where K = KX is the field of rational functions on a
k-variety X , this property turns out to be equivalent to the rational integrability
of the associated derivation ∂ : KX → KX . Indeed, by virtue of [13, Lemma 2,
p. 13] and Proposition 1.2 the two notions are both equivalent to the property that
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KX is a purely transcendental extension of its subfield Ker ∂. The formulation in
terms of rational integrability has the advantage to be easier to check in practice:
by definition, if KX = k(f1, . . . , fn) then a k-derivation ∂ : KX → KX is rationally
integrable if and only if exp(t∂)(fi) ∈ KX(t) for every i = 1, . . . , n.

Example 1.7. The derivation ∂ = x ∂
∂x : k[x] → k[x] is not locally nilpotent, and

since exp(t∂)(x) = x exp(t) ∈ k(x)[[t]]\k(x)(t), the induced k-derivation of k(x) is
not rationally integrable, with field of invariants Ker∂ = k.

Example 1.8. Let ∂̃ : OA1 → OA1 be the k-derivation associated with the regular
action of Ga on A1 = Spec(k[x]) by translations. Then Γ(A1, ∂̃) = ∂

∂x is a locally
nilpotent derivation of k[x]. On the other hand, for every nonconstant polynomial
p ∈ k[x], the k-derivation of k[x]p(x) induced by ∂̃ is rationally integrable but
not locally nilpotent, defining a rational Ga-action of the principal open subset
Up = Spec(k[x]p(x)) of A1.

Example 1.9. The derivation ∂ = −x2 ∂
∂x : k[x] → k[x] is not locally nilpotent.

However, the equality

exp(t∂)(x) =
∞∑

n=0

∂nx

n!
tn =

∞∑
n=0

(−1)nxn+1tn =
x

1 + tx

in k(t)[[x]] implies that the induced derivation of k(x) is rationally integrable with
s = x−1 as a slice, and hence defines a rational Ga-action α : Ga × A1 ��� A1 on
A1 = Spec(k[x]). In fact, α coincides simply with the restriction to the open subset
P1\{[1 : 0]} of P1 = Proj(k[u, v]) of the regular Ga-action t · [u : v] = [u : v + tu].

In the examples above, the derivation ∂̃ : OX → KX factors through OX , in
other words, the a priori rational vector field is in fact regular. The following exam-
ples illustrate the situation where the Ga-action is induced by genuinely rational
vector fields.

Example 1.10. The k-derivation ∂ = x−1 ∂
∂y : k(x, y) → k(x, y) is rationally

integrable and its associated rational Ga-action α : Ga×X ��� X , (x, y) �→ (x, y+ t
x )

on X = Spec(k[x, y]) restricts to a regular one on the open subset U = Xx =
Spec(k[x±1, y]) where ∂ is actually locally nilpotent. But dom(α) ∩ ({0} × X) =
{0} × U and in fact, (t, p) /∈ dom(α) for all p ∈ X\U and t ∈ Ga.

Example 1.11. By virtue of Proposition 1.2 and Theorem 1.5, a nonzero k-
derivation ∂ : k(x1, . . . , xn) → k(x1, . . . , xn) is rationally integrable if and only
if there exists an element s ∈ k(x1, . . . , xn) purely transcendental over K0 = Ker∂
such that ∂(s) = 1 and an isomorphism k(x1, . . . , xn) � K0(s).

If n = 2, then by Lüroth theorem K0 is itself purely transcendental over k, say
K0 = k(c1) for some c1 ∈ k(x1, x2) transcendental of k and we obtain that every
nontrivial rational Ga-action on A2 = Spec(k[x1, x2]) is birationally conjugated to

1650060-8
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a translation defined by a locally nilpotent derivation ∂ = ∂
∂s for some isomorphism

k(x1, x2) � k(c1, s). This provides a rational counterpart of a classical result of
Rentschler [17] which asserts that every nontrivial regular Ga,k-action on A2 is
biregularly conjugated to a “twisted translation” associated with a locally nilpotent
derivation of the form r(x) ∂

∂y for some nonzero polynomial r(x) ∈ k[x].
If n = 3 and k is algebraically closed then K0 is the function field of a unira-

tional hence rational surface, so K0 � k(c1, c2) for some algebraically independent
elements c1, c2 ∈ k(x1, x2, x3), and we conclude again that every nontrivial rational
Ga-action on A3 = Spec(k[x1, x2, x3]) is birationally conjugated to a translation
∂ = ∂

∂s for some isomorphism k(x1, x2) � k(c1, c2)(s). Note that in contrast, there
exist locally nilpotent derivations of k[x1, x2, x3] which are not biregularly triangu-
larizable [1].

The same conclusion holds for n = 4 when k is algebraically closed. Indeed,
by virtue of [5], K0 is k-ruled, i.e. isomorphic over k to a purely transcendental
extension K1(c3) of a subfield K1 ⊂ K0 of transcendence degree 2 over k. The latter
being in turn the function field of a unirational hence rational surface, we obtain
isomorphisms K1 � k(c1, c2), K0 � k(c1, c2)(c3) and finally k(x1, x2, x3, x4) �
k(c1, c2, c3)(s) for which ∂ = ∂

∂s .

2. Regular Actions of the Additive Group on Semi-Affine Varieties

Recall that a k-variety X is called semi-affine if the canonical morphism p : X →
X0 = Spec(Γ(X,OX)) is proper. In this case Γ(X,OX) is finitely generated and so
X0 is an affine variety [8, Corollary 3.6]. For instance, complete or affine k-varieties
are semi-affine. By the previous subsection, every regular Ga-action α : Ga×X → X

on a k-variety X gives rise to a rationally integrable k-derivation ∂̃ : OX → OX .
Conversely, the following theorem shows that in the case where X is semi-affine, a
rationally integrable derivation ∂̃ : OX → OX corresponds to a regular Ga-action
if and only if the associated global k-derivation Γ(X, ∂̃) : Γ(X,OX)→ Γ(X,OX) is
locally nilpotent.

Theorem 2.1. Regular Ga-actions on a semi-affine variety X are in one-to-one
correspondence with rationally integrable k-derivations ∂̃ : OX → OX such that the
derivation Γ(X, ∂̃) : Γ(X,OX) → Γ(X,OX) on the ring of global regular functions
is locally nilpotent.

Proof. By Rosenlicht theorem [18], for any regular Ga-action on X there exists
a nonempty Ga-invariant affine open subset U . Hence, Γ(U, ∂̃) is locally nilpo-
tent and since Γ(X,OX) ⊂ Γ(U,OX) it follows that Γ(X, ∂̃) is a locally nilpotent
derivation of Γ(X,OX). Conversely, let ∂̃ : OX → OX be a derivation such that
∂0 = Γ(X, ∂̃) : Γ(X,OX) → Γ(X,OX) is locally nilpotent. Then ∂0 induces a
possibly trivial regular Ga-action α0 : Ga × X0 → X0 on X0 = Spec(Γ(X,OX))
for which the canonical morphism p : X → X0 is Ga-equivariant. In particular,
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for every point x ∈ X , letting ξ = α|Ga×{x} : Ga ��� X , t �→ α(t, x) and ξ0 =
α0|Ga×p(x) : Ga → X0, t �→ α0(t, p(x)), we have a commutative diagram

Ga
ξ �����

ξ0 ���
��

��
��

� X

p

��
X0.

Since p is proper, we deduce from the valuative criterion for properness applied
to the local ring of every closed point t ∈ Ga that α is defined at every point
(x, t) ∈ Ga ×X whence is a regular Ga-action on X .

As a consequence of the proof of the above theorem, we obtain the following
criterion to decide whether a derivation gives rise to a regular Ga-action on a semi-
affine variety.

Corollary 2.2. Let X be a semi-affine variety and let ∂̃ : OX → OX be a k-
derivation. Then ∂̃ defines a regular Ga-action on X if and only if there exists a
nonempty affine open subset U ⊂ X such that Γ(U, ∂̃) : Γ(U,OX) → Γ(U,OX) is
locally nilpotent.

Example 2.3. The semi-affineness hypothesis cannot be weakened. For instance,
letting X = A2

∗ = Spec(k[x, y])\{(0, 0)}, the derivation ∂̃ = ∂
∂x : OX → OX

only defines a rational Ga-action α : Ga × X ��� X since for a point of the form
p = (x0, 0) ∈ X the orbit map ξ : Ga ��� X , t �→ α(t, p) = (x0 + t, 0) is not defined
at t0 = −x0. On the other hand, the restriction of ∂

∂x to the principal affine open
subset {y 
= 0} of X is locally nilpotent.

The previous example illustrates the typical situation where a rationally inte-
grable k-derivation ∂̃ : OX → KX factoring through OX does not give rise to a
regular Ga-action α : Ga × X → X . Namely, even though {0} × X is contained
in the domain of definition dom(α) of α, the Ga-orbit of a point x might not be
defined for every time t ∈ Ga. Nevertheless, in such situations, the following result,
which is consequence of a general construction due to Zaitsev [19, Theorem 4.12]
(see also [3]), shows that it is always possible to find a minimal equivariant partial
completion of X on which the Ga-action extends to a regular one.

Proposition 2.4. Let X be an algebraic variety equipped with a rational Ga-action
α : Ga ×X ��� X associated to a rationally integrable k-derivation ∂̃ : OX → OX .
Then there exists an algebraic variety X equipped with a regular Ga-action α :
Ga×X → X and a Ga-equivariant open immersion j : X ↪→ X. Furthermore, such
a triple (X,α, j) with the additional property that X\X contains no Ga-orbits is
unique up to equivalence.
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3. Applications

3.1. The rational Makar–Limanov invariant

By analogy with the usual Makar–Limanov invariant [13] of an affine k-variety
X = Spec(A), which is defined as the subalgebra ML(A) of A consisting of regular
functions on X which are invariant under all regular Ga-action on X , it is natural
to define the rational Makar–Limanov invariant of a k-variety X as the subfield
RML(X) of KX consisting of rational functions on X which are invariant under
all rational Ga-actions on X . Equivalently, RML(X) is equal to the intersection
in KX of the kernels of all rationally integrable k-derivations of KX . The RML
invariant of a k-rational variety is clearly equal to k while Proposition 1.2 shows
in particular that RML(X) = KX if and only if X is not birationally ruled. The
following proposition provides the rational counterpart of a result due to Makar–
Limanov [13, Lemma 21] which asserts that if A is a k-algebra such that ML(A) = A

then ML(A[x]) = A.

Proposition 3.1. If X is not birationally ruled then the projection prX : X×P1 →
X is invariant under all rational Ga-actions on X × P1.

Proof. Let KX×P1 = KX(u) where u is transcendental over KX . By virtue of
Proposition 1.2, a rational Ga-action α : Ga× (X×P1) ��� X×P1 on X×P1 gives
rise to a decomposition KX×P1 = KGa

X×P1(s) for a suitable rational slice s. Letting
ν0 be the restriction of the u−1-adic valuation on KX×P1 to the subfield KGa

X×P1 ,
it is enough to show that ν0(x) = 0 for every x ∈ KGa

X×P1 . Indeed, noting that the
residue field of the u−1-adic valuation on KX×P1 is equal to KX , this will imply
that KGa

X×P1 is contained in KX whence is equal to it since these two fields have
the same transcendence degree over k and are both algebraically closed in KX×P1 .
So suppose on the contrary that there exists x ∈ KGa

X×P1 transcendental over k
with ν0(x) 
= 0. Up to changing x for its inverse we may assume that ν0(x) < 0. It
follows that the transcendence degree of the residue field κ0 of ν0 over k is strictly
smaller than that of KGa

X×P1 . The Ruled Residue Theorem [16] then implies that
KX is a simple transcendental extension of the algebraic closure of κ0 in KX , in
contradiction with the hypothesis that X is not birationally ruled.

Corollary 3.2. A k-variety admits two rational Ga-actions αi : Ga × X ��� X,
i = 1, 2, such that for a general k-rational point x ∈ X the rational orbit maps
αi|Ga×{x} : Ga ��� X, t �→ αi(t, x) do not coincide if and only if it is birationally
isomorphic over k to Y × P2 for some k-variety Y .

One could have expected more generally that if X is not birationally ruled then
for every n ≥ 1 the projection prX : X × Pn → X is invariant under all rational
Ga-actions on X×Pn. But this is wrong, as shown by the following example derived
from a famous counterexample to the birational version of the Zariski Cancellation
Problem [2].
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Example 3.3. The affine threefold X ⊂ A4
C = Spec(C[x, y, z, t]) defined by the

equation

y2 + (t4 + 1)(t6 + t4 + 1)z2 = 2x3 + 3t2x2 + +t4 + 1

has no nontrivial rational Ga-actions but RML(X × A3) = C.

Proof. By virtue of [15, Example 2.9],X is a unirational, non-rational affine variety
with the property that X × A3 is rational. So RML(X × A3) = C and it remains
to check that RML(X) = KX . By virtue of Proposition 1.2, the existence of a
nontrivial rational Ga-action on X would imply that X is birationally isomorphic
to S × A1 for a smooth affine surface S. But since X is unirational, S would be
unirational whence rational and so would be X , a contradiction.

Remark 3.4. In the regular case, an example of a smooth rational affine surface
S = Spec(A) such that ML(S) = A but ML(S × A2) = C was given in [6].

3.2. Homogeneous rational Ga-actions on toric varieties

Recall that a toric varietyX is a normal k-variety equipped with an effective regular
action µ : T×X → X of a split torus T = Gn

m,k having an open orbit. A rational Ga-
action α : Ga×X ��� X on X is said to be T-homogeneous if it semi-commutes with
the action of T. This means equivalently that the subgroup of Birk(X) generated
by the regular action µ of T and the rational action α of Ga is isomorphic to an
algebraic group of the form T � Ga. In this subsection, we give a combinatorial
characterization of homogeneous rational Ga-actions on a toric variety X in terms
of their corresponding rationally integrable derivations.

Let us briefly recall from [7] some basic facts about the combinatorial descrip-
tion of toric varieties. Let M = Hom(T,Gm,k) be the character lattice and let
N = Hom(Gm,k,T) be the 1-parameter subgroup lattice of T. Following the usual
convention, we consider M and N as additive lattices and we let MQ = M⊗Z Q and
NQ = N ⊗Z Q. A fan Σ ∈ NQ is a finite collection of strongly convex polyhedral
cones such that every face of σ ∈ Σ is contained in Σ and for all σ, σ′ ∈ Σ the
intersection σ ∩ σ′ is a face in both cones σ and σ′. A toric variety XΣ is built
from Σ in the following way. For every σ ∈ Σ, we define an affine toric variety
Xσ = Spec(k[σ∨ ∩M ]), where σ∨ ⊆MQ is the dual cone of σ and k[σ∨ ∩M ] is the
semigroup algebra of σ∨ ∩M , i.e.

k[σ∨ ∩M ] =
⊕

m∈σ∨∩M

k · χm, with χ0 = 1, and

χm · χm′
= χm+m′

, ∀m,m′ ∈ σ∨ ∩M.

Furthermore, if τ ⊆ σ is a face of σ, then the inclusion of algebras k[σ∨ ∩M ] ↪→
k[τ∨∩M ] induces a T-equivariant open embedding Xτ ↪→ Xσ. The toric variety XΣ
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associated to the fan Σ is then defined as the variety obtained by gluing the family
{Xσ |σ ∈ Σ} along the open embeddings Xσ ←↩ Xσ∩σ′ ↪→ Xσ′ for all σ, σ′ ∈ Σ.

Let XΣ be a toric variety. Since the torus T acts on XΣ with an open orbit,
the field of fractions KX of X is equal to KT = Frac(k[M ]) which is a purely
transcendental extension of k of degree n = dim T. Let α : Ga × X ��� X be a
rational T-homogeneous Ga-action on X , let ∂̃ : KT → KT be the corresponding
rational k-derivation and let ∂ = Γ(T, ∂̃) : KT → KT be the induced k-derivation
of KT. In the case where α is regular, it is well known that α is T-homogeneous if
and only if ∂ is homogeneous, i.e. homogeneous as a linear map with respect to the
M -grading on k[M ]. In the rational case, the field KT is not graded but it is the
fraction field of the M -graded ring k[M ], so we say that f ∈ KT is homogeneous if
f is a quotient of homogeneous elements. We say that a derivation ∂ : KT → KT is
homogeneous if it sends homogeneous elements to homogeneous elements.

Lemma 3.5. A rational Ga-action α : Ga×T ��� T is T-homogeneous if and only
if the corresponding k-derivation ∂ : k[M ] → KT is homogeneous. Furthermore,
every homogeneous rational k-derivation ∂ : k[M ] → KT is regular, i.e. factors
through k[M ].

Proof. The first assertion follows from the same argument as in the regular case,
see e.g. [12, Lemma 2]. Since every homogeneous element in k[M ] is invertible, it
follows that the only homogeneous elements in KT are the characters χm, m ∈M ,
which are regular functions on T.

Regular homogeneous k-derivations on T were already described in [4], see also
[11, Proposition 3.1]. Let p ∈ N and let e ∈M . The linear map ∂p,e : k[M ]→ k[M ],
χm �→ p(m)χm+e is a homogeneous k-derivation on T and every homogeneous
k-derivation on T is a multiple ∂p,e for some e ∈M and some p ∈ N . Without loss
of generality we may assume that p is primitive.

Lemma 3.6. Let p ∈ N be a primitive vector and let e ∈M . The k-derivation ∂p,e

is rationally integrable if and only if p(e) = ±1.

Proof. Since ∂−p,e = −∂p,e, we may assume without loss of generality that p(e) ≥
0. Choosing mutually dual basis for M and N , we may assume p = (1, 0, . . . , 0) and
e = (e1, . . . , en) with e1 ≥ 0. Letting xi = χβi , where {β1, . . . , βn} is the basis for
M , the k-derivation ∂p,e becomes

∂p,e = xe1+1
1 xe2

2 · · ·xen
n

∂

∂x1
.

A direct computation now shows that ∂p,e is rationally integrable if and only if
e1 = p(e) = 1.

The following lemma gives conditions for a derivation ∂p,e to extend to a regular
k-derivation of an affine toric variety Xσ. It was first proven in [4] in a slightly
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different form (see also [11, Proposition 3.1] for a modern proof). For a fan Σ or a
cone σ the notation Σ(1) and σ(1) refers to the set of primitive vectors of the rays
in Σ and σ, respectively.

Lemma 3.7. Let Xσ be an affine toric variety. Then the homogeneous k-derivation
∂p,e on T extends to a k-derivation on Xσ if and only if

(1) e ∈ σ∨
M , or

(2) there exists ρe ∈ σ(1) such that p = ±ρe, ρe(e) = −1, and ρ(e) ≥ 0 for all
ρ ∈ σ(1)\{ρe}.

Furthermore, ∂e,p is locally nilpotent if and only if it is as in (3.7).

By the valuative criterion for properness, a toric variety XΣ is semi-affine if and
only if Supp(Σ) =

⋃
σ∈Σ σ is convex. We can now apply Corollary 2.2 to recover a

description of regular Ga-actions on semi-affine toric varieties which was obtained
by Demazure [4] using lengthy explicit computations.

Proposition 3.8. Let XΣ be a semi-affine toric variety. Then ∂p,e is the derivation
of a T-homogeneous regular Ga-actions αp,e : Ga × XΣ → XΣ on XΣ if and only
if there exists ρe ∈ Σ(1) such that p = ±ρe, ρe(e) = −1, and ρ(e) ≥ 0 for all
ρ ∈ Σ(1)\{ρe}.

Proof. By Corollary 2.2, the k-derivation ∂p,e is the derivation of a T-homogeneous
regular Ga-action if and only if there exists an affine open Ga-invariant subset
U ⊆XΣ such that Γ(U, ∂̃) is locally nilpotent. Since the action is T-homogeneous,
we can assume that U is also T-invariant. Now the proposition follows from
Lemma 3.7.

3.3. Rational Ga-actions associated with affine-linear bundles of

rank one

Here we consider a class of rational Ga-actions coming from regular actions of
certain nonconstant group schemes, locally isomorphic to Ga. We characterize
the simplest possible ones in terms of their corresponding rationally integrable
k-derivations.

Let us first note that every line bundle p : L → Z over a k-variety Z carries
a canonical rationally integrable OZ -derivation dL/Z : OL → Ω1

L/Z ↪→ KL with
the property that over every affine open subset Zi on which L becomes trivial, the
Γ(Zi,OZi)-derivation

Γ(p−1(Zi), dL/Z) : Γ(p−1(Zi),OL)→ Γ(p−1(Zi),Ω1
L/X) � Γ(p−1(Zi),OL)

is locally nilpotent. Indeed, writing p : L = SpecZ(SymZL∨) → Z for a certain
invertible sheaf L, we have Ω1

L/Z � p∗L∨ and for every affine open subset Zi of Z
over which L-becomes trivial, say L|Zi � Spec(OZi [si]), Γ(p−1(Zi), dL/Z) coincides
with the derivation ∂

∂si
.
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A line bundle is in fact a group scheme over Z, locally isomorphic to Ga,Z =
Ga ×Spec(k) Z, whose group law m : L ×Z L → L is induced by the diagonal
homomorphismL → L⊕L of the invertible sheaf L of germs of sections of p : L→ Z,
and whose neutral section e : Z → L corresponds to the zero section of L. In
this context, the correspondence between regular Ga-actions of an affine variety
X = Spec(A) and locally nilpotent k-derivation of A extends to a correspondence
between regular actions µ : L ×Z X → X of L on a variety q : X → Z affine over
Z and “locally nilpotent” OZ -derivations ∂̃ : OX → q∗L∨. Namely, the derivation
∂̃ is the composition of the canonical OZ -derivation dX/Z : OX → Ω1

X/Z with the
homomorphism of OX -module Ω1

X/Z → q∗L∨ obtained similarly as in Sec. 1.2 by
pulling back the homomorphism η : µ∗Ω1

X/Z → Ω1
L×ZX/X � pr∗Xq

∗L∨ of OL×ZX -
module by the zero section morphism e × idX : X → L ×Z X . This derivation is
locally nilpotent in the sense that q∗OX is the union of the kernels of the OZ -linear
homomorphisms ∂n

L,X : q∗OX → q∗OL ⊗OZ (L∨)⊗n, n ≥ 1, defined inductively
by ∂1

L,X = q∗∂̃ : q∗OX → q∗q∗L∨ � q∗OX ⊗OZ L∨ and, for every n ≥ 2, as the
composition ∂n

L,Z = (∂1
L,Z ⊗ id) ◦ ∂n−1

L,X where

(∂1
L,Z ⊗ id) : q∗OX ⊗OZ (L∨)⊗n−1 → (q∗OX ⊗OZ L∨)⊗OZ (L∨)⊗n−1

� q∗OX ⊗OZ (L∨)⊗n.

The action µ : L ×Z X → X is then recovered as the morphism induced by the
formal exponential homomorphism

exp(t∂L,X) =
∑
n≥0

∂n
L,X

n!
tn : q∗OX → q∗OX ⊗OZ

(⊕
n≥0

(L∨)⊗ntn
)

� q∗OX ⊗OZ SymZL∨.
The simplest examples of varieties admitting an action of a line bundle p : L→ Z

are principal homogeneous L-bundles, that is, varieties q : X → Z equipped with
an action of L which are locally equivariantly isomorphic over Z to L acting on
itself by translations. For such varieties, the corresponding rationally integrable
OZ-derivations ∂̃ : OX → q∗L∨ have the additional property that there exists a
covering of Z by affine open subsets Zi ⊂ Z on which L becomes trivial and such
that the induced derivation

Γ(q−1(Zi), ∂̃) : Γ(q−1(Zi),OX)→ Γ(q−1(Zi), q∗L∨) � Γ(q−1(Zi),OX)

is locally nilpotent, with a regular slice si ∈ Γ(q−1(Zi),OX). The following propo-
sition shows conversely that the existence on a variety X of a structure of principal
homogeneous bundle under a suitable line bundle p : L→ Z can be decided, without
prior knowledge of L and Z, from the consideration of certain rationally integrable
k-derivations ∂̃ : OX → KX .

Proposition 3.9. Let X be a k-variety and let ∂̃ : OX → N be a rationally
integrable k-derivation with value in an invertible subsheaf N of KX . Suppose that
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there exists a covering of X by affine open subsets Xi, i ∈ I, and trivializations
ψi : N|Xi

∼→ OXi such that the following hold :

(a) For every i ∈ I, the k-derivation Γ(Xi, ψi ◦ ∂̃) : Γ(Xi,OX) → Γ(Xi,OX) is
locally nilpotent with a regular slice si ∈ Γ(Xi,OX).

(b) For every i, j ∈ I, the invertible function ψi ◦ ψ−1
j |Xi∩Xj ∈ Γ(Xi ∩Xj ,O∗

X) is
contained in Ker(Γ(Xi ∩Xj , ∂̃)).

Then there exists a geometrically integral scheme Z of finite type over k, a mor-
phism q : X → Z and an invertible sheaf L on Z such that N � q∗L∨ and q : X → Z

is a principal homogeneous bundle under the line bundle p : SpecZ(SymZL∨)→ Z.

Proof. Letting αi : Ga×Xi → Xi be the Ga-action generated by the k-derivation
∂i = Γ(Xi, ψi ◦ ∂̃) and Zi = Spec(Γ(Xi,OX)/(si)) ⊂ Xi, the first hypothesis
implies that Φi : Ga × Zi → Xi, (t, zi) �→ αi(t, zi) is a Ga-equivariant isomor-
phism between Ga×Zi equipped with the action by translations on the first factor
and Xi equipped with the action αi. By definition, ∂i|Xi∩Xj = aij∂j |Xi∩Xj where
aij = ψi ◦ ψ−1

j |Xi∩Xj ∈ Γ(Xi ∩Xj ,O∗
X) and condition (b) says in particular that

aij ∈ Ker ∂i|Xi∩Xj = Ker ∂j |Xi∩Xj . This implies in turn that every element of
Γ(Xi∩Xj ,OX) which is in the canonical image of Γ(Xi,OX) or Γ(Xj ,OX) is anni-
hilated by a certain power of ∂i. SinceX is separated, Γ(Xi∩Xj ,OX) is generated by
these canonical images [9, I.5.5.6] and so ∂i|Xi∩Xj and ∂j |Xi∩Xj are locally nilpotent
derivations of Γ(Xi∩Xj ,OX). This shows thatXi∩Xj is stable under the Ga-actions
αi onXi and αj onXj . Therefore there exist open subsets Zij � Spec(Ker ∂i|Xi∩Xj )
and Zji � Spec(Ker ∂j |Xi∩Xj ) of Zi and Zj respectively such that Xi∩Xj is simul-
taneously Ga-equivariantly isomorphic to SpecZij

(OZij [si]) and SpecZji
(OZji [sj ])

with respect to the action αi and αj . Furthermore, since aij ∈ Ker ∂i|Xi∩Xj we
have

∂i|Xi∩Xj (aijsi) = aij∂i|Xi∩Xj (si) = aij = ∂i|Xi∩Xj (sj)

and so, there exists bij ∈ Ker ∂i|Xi∩Xj = Ker ∂j |Xi∩Xj such that sj |Xi∩Xj =
aijsi|Xi∩Xj + bij . The same argument applied to a triple intersection Xi ∩Xj ∩Xk

shows that the natural isomorphisms ϕij : Zji
∼→ Zij induced by the equality

Ker ∂i|Xi∩Xj = Ker ∂j |Xi∩Xj satisfy ϕjk(Zki ∩ Zkj) ⊂ Zjk ∩ Zji and ϕik|Zki∩Zkj
=

ϕij |Zjk∩Zji◦ ϕjk|Zki∩Zkj
. This implies the existence of a unique k-scheme Z together

with open immersions ζi : Zi ↪→ Z such that ξi ◦ ϕij = ξj . Furthermore, the local
projections prZi

: Xi � Zi ×A1 → Zi glue to a locally trivial A1-bundle q : X → Z

with trivializations ρ−1(Zi) � SpecZi
(OZi [si]), i ∈ I, where we identified Zi with

its image in Z. The invertible functions aij ∈ Γ(Xi ∩ Xj,O∗
X) ∩ Ker ∂i|Xi∩Xj �

Γ(Zi ∩Zj,O∗
Z) form a Čech 1-cocycle with value in O∗

Z defining a unique invertible
sheaf L∨ such that N � q∗L∨, and the identity sj |Xi∩Xj = aijsi|Xi∩Xj + bij says
precisely that q : X → Z is in fact a principal homogeneous bundle under the line
bundle p : SpecZ(SymZL∨)→ Z.
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Example 3.10. Let S be the smooth affine surface in A4 = Spec(C[x, y, z, u])
defined by the equations 


xz = y(y − 1),

yu = z(z + 1),

xu = (y − 1)(z + 1)

and let ∂, ∂′ : A = Γ(S,OS)→ KS be the k-derivations defined respectively by


∂x = 0,

∂y = x2,

∂z = (2y − 1)x,

∂u = x(z + 1) + (2y − 1)(y − 1)

and




∂′x = ω3,

∂′y = ω2,

∂′z = ω,

∂′u = 1,

where ω = x/(y − 1) ∈ KS .

It is straightforward to check that ∂ is a locally nilpotent C[x]-derivation of A,
thus defining a regular Ga-action α : Ga × S → S. The surface S is covered by the
two Ga-invariant affine open subsets

S0 = S\{x = y − 1 = 0} � Spec(C[x, v0]) and

S1 = S\{x = y = z + 1 = 0} � Spec(C[x, v1]),

where v0 and v1 denote the restriction to S0 of the rational functions (y−x)/x2 and
ω−1. The restrictions of ∂ to S0 and S1 coincide respectively the locally nilpotent
derivations ∂

∂v0
and x ∂

∂v1
. So letting C1 ⊂ S be the curve {x = y − 1 = 0}, we see

that the derivation of OS into itself associated to ∂ factors through a derivation
∂̃ : OS → N = OS(−C1). By definition, N|S0 = OS0 , N|S1 = xOS1 and using
the isomorphisms ψ0 = idOS0

and ψ1 : xOS1 → OS1 , x �→ 1, we obtain that the
two derivations ∂0 = Γ(S0, ψ0 ◦ ∂̃) = ∂

∂v0
and ∂1 = Γ(S1, ψ1 ◦ ∂̃) = ∂

∂v1
are locally

nilpotent with respective slices s0 = v0 and s1 = v1 and respective geometric
quotients S0/Ga = S1/Ga = Spec(C[x]). Since x−1 ∈ Γ(S0 ∩ S1,O∗

S) = C[x±1]
belongs to Ker(Γ(S0 ∩ S1, ∂̃)), the hypothesis of Proposition 3.9 is satisfied. In
this example, the corresponding scheme Z is isomorphic to the affine line with a
double origin, obtained by gluing S0/Ga and S1/Ga by the identity outside their
respective origins o0 and o1, and L∨ = OZ(−o1). The initial Ga-action defined by
∂ is recovered from the action µ : L×Z S → S of L = SpecZ(SymZL)→ Z as the
composition

α = µ ◦ (σ × idS) : Ga × S � Ga,Z ×Z S → L×Z S → S,

where σ : Ga,Z = Ga ×Spec(C) Z = SpecZ(OZ [t]) → L = SpecZ(SymZL∨) is
the group scheme homomorphism induced by the canonical global section σ of
OZ(o1) = HomZ(L∨,OZ) with divisor equal to o1.

The second derivation ∂′ is not locally nilpotent. However, noting that ∂′ω = 0
and that the restriction of ∂′ to the open subset S1 � Spec(C[x, v1]) coincides
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with the derivation v−3
1

∂
∂x = ω3 ∂

∂x , we conclude that the associated derivation
∂̃ : OS → KS is rationally integrable. Furthermore ∂′ restricts on the open subset
S′

0 = S\{y − 1 = z = u = 0} � Spec(C[u, v′0]), where v′0 = ω|S′
0

to the locally
nilpotent derivation ∂

∂u . The open subsets S′
0 and S1 cover S and letting C′

0 ⊂ S

be the curve {y − 1 = z = u = 0}, we see that ∂̃ factors through the invertible
subsheaf N ′ = OS(3C′

0) of KS . By definition, N ′|S′
0

= OS′
0
, N ′|S1 = ω−3OS1

and using the isomorphisms ψ′
0 = idOS′

0
and ψ′

1 : ω−3OS1 → OS1 , ω−3 �→ 1, we

obtain that the two derivations ∂′0 = Γ(S′
0, ψ

′
0 ◦ ∂̃′) = ∂

∂u and ∂′1 = Γ(S1, ψ
′
1 ◦

∂̃′) = ∂
∂x are locally nilpotent with respective slices s′0 = u and s′1 = x, and

respective geometric quotients S′
0/Ga = Spec(C[v′0]) and S1/Ga = Spec(C[v1]).

Since ω−3 ∈ Γ(S′
0∩S1,O∗

S) = C[ω±1] belongs to Ker(Γ(S′
0∩S1, ∂̃

′)), the hypothesis
of Proposition 3.9 is again satisfied. Here the corresponding scheme Z is isomorphic
to P1 obtained by gluing S′

0/Ga and S1/Ga outside their respective origins o′0 and
o1 by the isomorphism v′0 �→ v−1

1 , and L∨ � OZ(3o′0). The resulting morphism
q : S → Z � P1, which coincides with the one (x, y, z, u) �→ [x : y − 1], is thus a
principal homogeneous bundle under the geometric line bundle L = OP1(−3) on P1.
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