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Introduction

Let k be an arbitrary field. In this paper a variety X is an integral separated scheme
of finite type over the field k. We assume further that k is algebraically closed in the
field of rational functions k(X). A point in X is a not necessarily rational closed point.
A variety is called normal if all its local rings are integrally closed domains. All algebraic
group actions are, in particular, regular morphisms.

Let T = G} be the n-dimensional split algebraic torus, where Gy, stands for the
multiplicative group of k. A T-variety is a normal variety endowed with an effective action
of T. The complexity of a T-variety X is the non-negative integer dim X — dim T. If the
base field k is algebraically closed, then the complexity of X can be read off geometrically
as the codimension of the generic orbit. The best known examples of T-varieties are those
of complexity zero, called toric varieties.

Let G, be the additive group of the field k. The main result of this paper is a classifi-
cation of the G,-actions on an affine T-variety X that are normalized by T in the cases
where X is of complexity zero or one. This generalizes a paper by the second author [23],
where the same result is obtained in the particular case where k is algebraically closed
and of characteristic zero. The case of normalized G,-actions on an affine G,-surface
over the field of complex numbers was first studied in [16].

Let M be the character lattice of T and let N be the lattice of one-parameter sub-
groups. We have a natural duality Mg x Ng — R given by (m,v) — (m,v) between
the vector spaces Mg = M ®7 R and Ng = N ®z R. Recall that T-actions on an affine
variety corresponds to M-gradings on its coordinate ring.

Affine T-varieties can be described in combinatorial terms. In the case of toric varieties,
there is the well-known description of affine toric varieties via strongly convex rational
polyhedral cones in Ng [12,30]. In 2006, Altmann and Hausen gave a combinatorial
description of affine T-varieties of arbitrary complexity over an algebraically closed field
of characteristic zero [1]. This intersects with previous works by several authors [18,13,34,
15,35] (see also [2,3] for the theory of non-necessarily affine T-varieties). Furthermore, in
a recent paper, the first author generalized the combinatorial description due to Altmann
and Hausen to the case of affine T-varieties of complexity one over an arbitrary field [21].

The combinatorial description of affine T-varieties of complexity one that we will use
in this paper encodes an affine T-variety X with a triple (C,0,®), where C' is a regular
curve, o is a strongly convex rational polyhedral cone in Ng and ® is a o-polyhedral
divisor on C, i.e., a divisor in C whose coefficients instead of integers are polyhedra in Ng
that can be decomposed as a Minkowski sum @ 4 o with @ a compact polyhedron (see
Section 1 for details).
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It is well known that the additive group actions on an affine variety X = Spec A are
in one to one correspondence with certain sequences 9 = {9 : A — A};cz., of k-linear
operators on A called locally finite iterative higher derivations [27,8,9], or LFIHDs for
short (see Definition 2.1 for details). Now, assume that X = Spec A is an affine T-variety
and let 0 be an LFIHD on A. The LFTHD 0 is called homogeneous of degree e € M
if every 0 is homogeneous of degree ie. Furthermore, in positive characteristic, we
introduce the technical notion of rationally homogeneous LFIHDs as follows: let p > 0
be the characteristic of k and let r € Z>¢, then 0 is called rationally homogeneous of
degree e/p" if 9@") is homogeneous of degree ie and ) = 0 whenever p” does not
divide j.

In the case where k is algebraically closed, the notion of (rationally) homogeneous
LFIHD translates into geometric terms in the following way. An LFTHD on A is homo-
geneous if and only if the corresponding G,-action on X is normalized by the T-action.
Moreover, let Fy,r : G, = G, be the Frobenius map sending t — t?" . If 9 is an LFTHD
and ¢ : G, — Aut(X) is the corresponding G,-action, then 9 is rationally homogeneous
if and only if ¢ o Fp71 is normalized by the T-action for some r € Z>( (see Proposi-
tion 2.8). In this case we say that ¢ is normalized by the T-action up to a Frobenius
map.

The kernel ker 9 of an LFTHD 9 is defined as the intersection of ker ) for all i € Zg;
it is equal to the ring k[ X]® of G,-invariant regular functions on X and Frac(ker 9) corre-
sponds to the field k(X)®= of G,-invariant rational functions on X. Denote by k(X)T the
field of T-invariant rational functions on X. A (rationally) homogeneous LFTHD is called
vertical if k(X)T C k(X)® and horizontal otherwise. When k is algebraically closed,
the horizontal condition means geometrically that the general G,-orbits are transverse
to the rational fibration defined by the T-action.

Let X = Spec A be the affine toric variety given by the strongly convex rational cone
o C Ng. We denote by o(1) the set of extremal rays of the cone o. In Theorem 3.5 we
classify normalized G,-actions on affine toric varieties. They are described by Demazure
roots of the cone o, i.e., vectors e € M such that there exists p € o(1) with (e, p) = —1
and (e, p’) > 0, for all p’ € o(1) different from p. We also classify G,-actions on affine
toric varieties that are normalized up to a Frobenius map (see Corollary 3.7). Let us
mention some developments from the theory of Demazure roots. The reader may consult
[12,10,29,7,11,5] for the study of automorphisms of complete T-varieties via Demazure’s
roots and [25,19] for the roots of the affine Cremona groups. See also [22] for a geometric
description in the setting of affine spherical varieties.

Let now X = Spec A be an affine T-variety of complexity one given by the triple
(C,0,9). The classification of normalized G,-actions on such an X is divided into two
theorems corresponding to vertical and horizontal LFIHDs. The classification of vertical
LFIHDs on A is given in Theorem 4.4. They are described by pairs (e, ¢), where e is
a Demazure root of o and ¢ is a global section of the invertible sheaf Oc(®(e)). The
Q-divisor D(e) is uniquely determined by © and e in a combinatorial way. The classifi-
cation of horizontal LFIHDs on A is only available when k is perfect, see Theorem 5.11.
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Its combinatorial counterpart is different from the characteristic zero case (compare with
[23, Theorem 3.28]) and is related to the description of rationally homogeneous LFTHDs
on affine toric varieties.

The content of the paper is the following. In Section 1 we present the combinatorial
description of affine T-varieties of complexity one that will be used in this paper. In
Section 2 we introduced the background results on G,-actions. In Section 3 we obtain our
classification result for toric varieties. Finally, the classification of normalized G,-actions
on affine T-varieties of complexity one is divided in Sections 4 and 5 corresponding to
the vertical and horizontal cases, respectively.

1. Generalities on affine T-varieties of complexity one

In this section, we recall a combinatorial description of affine T-varieties of complexity
one over an arbitrary field [21, Section 3]. Let k be field and let X = Spec A be an affine
variety over k. We start by introducing some notation from convex geometry (see e.g.
[30] or [1, Section 1]).

1.1. Let T ~ G}, be a split algebraic torus over k. Denote by M = Hom(T,G,,) the
character lattice of T and let N = Hom(Gy,, T) be the lattice of one-parameter subgroups.
We have a natural duality Mg x Ng — R given by (m,v) — (m,v), where Mgp = M ®@; R
and Ng = N ®z R are the associated real vector spaces. We also let Mg = M ®z Q and
Ng = N ®z Q be the corresponding rational vector spaces.

A rational cone in Ng is a cone generated by a finite subset of N. If ¢ C Ny is a
rational cone, then we let 0¥ C My be its dual cone, i.e., the cone of real linear forms
on Mg that are non-negative on o. Recall that the dual cone oV of a rational cone is
again rational. The relative interior of a rational cone o C Ng, denoted by rel. int(o), is
the topological interior of ¢ in the span of ¢ inside Ng.

For any face F' C o the set F* stands for the dual face of F in ¢, ie., F* = F+-noV.
A rational cone o is strongly convex if 0 is a face of ¢. This is equivalent to say that the
dual oV C My is full dimensional. For any rational cone w C Mg we let wys = w N M.

Furthermore, given a subsemigroup S C M we let

k[S] = € kx™

meS

be the semigroup algebra of S' defined by the relations Xm'xm, = X’”*ml forallm,m’ € S
and x° = 1.

For any integer d > 0 and any polyhedron A C Ni we let A(d) be the set of faces of
dimension d. In particular, A(0) is the set of vertices of A.

Let 0 C Ng be a strongly convex rational cone. We define Pol,(Ng) as the set of
polyhedra in Ny that can be written as a Minkowski sum @ + o, where Q C Ny is a
rational polytope, i.e., a bounded polyhedron having its vertices in the rational vector
space Ng.
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1.2. A T-variety is a normal variety endowed with an effective action of the algebraic
torus T. Recall that a T-action X = Spec A is equivalent to an M-grading of the alge-
bra A. In algebraic terms, a T-action on X is effective if and only if the semigroup of
weights of A generates M. In this case the weight cone 0¥ of A is the dual of a strongly
convex rational cone o C Ng.

1.3. Let X = Spec A be an affine T-variety. Letting Ky = k(X)T be the field of T-invariant
rational functions on X we can write

A= P Anx™"

meoy,

as an M-graded subalgebra of Ko[M]. Here, 0¥ C My is the weight cone of A, x™ is
a weight vector in k(X), Ag = Ko N A, and A,, is an Ap-module contained in Kj.
Furthermore, the weight vectors satisfy x = 1, and x™ ~Xm' = X’”*m, for allm,m’ € M.

The complexity of the T-variety X is the transcendence degree of the field extension
Ky/k. Since the action is effective, it is also equal to rank M — dim X. In geometrical
terms, when k = k is algebraically closed the complexity is the codimension of the
generic T-orbit.

A toric variety is a T-variety of complexity zero. An affine toric variety X = Spec A is
completely determined by the weight cone oV of A. Conversely, given a strongly convex
rational cone o C Ng, we can define an affine toric variety by letting X, := Speck][o,].

Another important class of affine T-varieties is provided by the surface case. If X is
an affine Gy,-surface, then the coordinate ring A = k[X] is endowed with a Z-grading.
Up to reversing the grading, we can assume that the subspace A4 = @mEZ>0 A x™ is
nonzero. We distinguish three cases (see [14]).

(i) The elliptic case: A =D, cz_, Amx™ = 0 and Ay = k.
(it) The parabolic case: A_ =0 and Ay # k.
(#¢) The hyperbolic case: A_ # 0.

More generally, an affine T-variety X = Spec A of complexity one is called elliptic if
Ap = k (see [23, Section 1.1]).

To provide a description of affine T-varieties of complexity one, we need to consider
the Weil divisors theory on regular algebraic curves. In the next paragraph, we recall the
definitions we need.

1.4. Let C' be a regular curve over k. By a point belonging to C' we mean a closed point.
Letting z € C we let [k, : k] be the degree of the point z defined as the dimension
of residue field k., of z over k (see [33, Proposition 1.1.15]). A point z € C of degree
one is called a rational point. For a nonzero rational function f € k(C)* the associated
principal divisor is
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divszorde-z,

zel

where ord, f is the order of f at the point z. The degree of a Weil Q-divisor D =
> .cc @z - Z is the rational number

deg D = Z[mz :k]-a,.
zeC

If C is projective, then we have degdiv f = 0 (see [33, Theorem 1.4.11]). In addition, we
let [D] =% .ccola:] -z be the integral Weil divisor obtained by taking the integral part
of each coefficient of D. Similarly, the Q-divisor {D} = D — | D] stands for the fractional
part of D. The space of global sections of the Q-divisor D is defined by

H°(C,0¢(D)) := H°(C,0c(|D])) = {f € k(C)*| div f + D >0} U {0}.
When C is projective, H(C, Oc(D)) is usually called the Riemann—Roch space of D.

The following has been introduced in [1] for any complexity in the case where k is
algebraically closed of characteristic zero. In our context, we give a similar definition.

Definition 1.5. Let C' be a regular curve over k. Consider ¢ C Ng a strongly convex

rational cone. A o-polyhedral divisor over C is a formal sum © = ) A, -z, where

zeC
each A, € Pol,(Ng) and A, = o for all but finitely number of z. For eeve]ry coefficient
A, of the o-polyhedral divisor © we define h, as the piecewise linear map h, : Mg — R
given by m +— min,ea_(o)(m, v). We remark that h, restricted to oV C Mg corresponds
to the support function of A,.

For any m € Mg we define the evaluation of © as the Q-divisor

D(m) =Y h.(m)-z.

zeC

\

We denote by A(D) the coarsest refinement of the quasifan of ¢ such that the map

m +— D(m) is linear in each cone. We also define the degree of © as

deg® =Y [k. : k|- A, € Pol,(Ng).
zeC

A o-polyhedral divisor ©® = Y _~ A, -z is called proper if it satisfies one of the
following conditions.

(i) the curve C is affine, or
(ii) the curve C is projective, the polyhedron deg® is a proper subset of o, and for every
m € oy, such that deg®(m) = 0, a nonzero integral multiple of D (m) is principal.
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Actually, polyhedral divisors are combinatorial objects that allow us to construct
multigraded algebras, as explained in the following.

Notation 1.6. To a o-polyhedral divisor ® =}~ A -z over C we associate the rational
T-submodule

A[C,@] = @ Am . Xm - KO[M]a

\
meo

where A, = H°(C,0c(D(m))) and Ko = k(C).

Given m,m’ € o), the evaluations satisfy ®(m)+2(m’) < ©(m+m’). Hence, for every
f € A, and every g € A,,/, the product fg lies on A4 . This multiplication rule
turns the vector space A[C, D] into an M-graded subalgebra.

For a non-empty open subset Cy C C we let

Q\COZ ZAZ'Z

2€Cy

be the restriction of ® to Cy.

The following yields a description of the coordinate ring of an affine T-variety of
complexity one (for a proof see [21, Theorem 4.3]). This description intersects with some
classical cases; see [35,34] for complexity one case, [1] for higher complexity, and [15] for
the Dolgachev—Pinkham—Demazure presentation of affine complex C*-surfaces. For the
functorial properties of this description see [21, Proposition 4.5].

Theorem 1.7.

(i) If D is a proper o-polyhedral divisor on a regular curve C' over k, then the M -graded
algebra A|C, D] = P

meovam Am, where

Am = HO(C7 OC(Q(m)))v

is the coordinate ring of an affine T-variety of complexity one over k.
(it) Conwversely, to any affine T-variety X = Spec A of complexity one over k, one can

associate a pair (Cx,Dx ) as follows.

(a) Cx is the abstract reqular curve over k defined by the conditions k[Cx]| = k[X]®
and k(Cx) = k(X)T.

(b) Dx, is a proper ox -polyhedral divisor over Cx, which is uniquely determined
by X and by a sequence v = (X"™)mem of k(X) as in 1.5.

We have a natural identification A = A[Cx,Dx ] of M-graded algebras with the

property that every homogeneous element f € A of degree m is equal to fmx™, for

a unique global section fp, of the sheaf Ocy (Dx,(m)).



K. Langlois, A. Liendo / Journal of Algebra 449 (2016) 730-773 737

Example 1.8. Let M = Z? and let o be the first quadrant in the vector space Ng = R2.
We also let Ag = (1/2,0) + 0, Ay = L+ 0 and Ay = (1/2,0) + o, where L is the line
segment joining the points (0,0) and (—1/2,1/2).

Letting k be an arbitrary field and C = PL we let D be the o-polyhedral divisor
D =Ap-[0]+ A1 [1]+ Ay - [00] over C. The degree of © is deg® = L' + o, where L'
is the line segment joining the points (1,0) and (1/2,1/2).

Hence deg® C o and © is proper. Let A = A[C,®] and X = Spec A. A direct

=

computation shows that the elements

t—1
uy = T . X(2’0)a Ug = X(O’l)a uz = X(l’l)a Uqg =

2
x%9 and

t—1)2
=17 co

u =
5 t

generate the algebra A. Furthermore, a minimal set of relations satisfied by these gener-
ators is given by usus — ugug = 0, ugus — u%ug —ujuguy = 0 and u% — u%m — ului =0.
Hence

2 2 2 2
A~ klxy, 20, T3, 24, 5|/ (T2xs — T34, T3Ts — TITo — T1T2Xa, T — TT4 — T1T5) -
The following result provides a calculation of the Altmann—Hausen presentation in

terms of polyhedral divisors when we extend the scalars to an algebraic closure of k, see
[21, Proposition 3.9].
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Lemma 1.9. Assume that k is a perfect field, and let k be an algebraic closure of k. The
absolute Galois group of ®R/k acts on the closed points of the curve

Cf( =C X Speck Specf{

which can be identified with the set of the k-rational points of C(k). The orbit space
C’(E)/Qﬁﬁ/k can be identified with C. We denote by S : C(k) — C the quotient map.

IfD =5 oA, zis a proper o-polyhedral divisor over C, then
AlC, D] ek k = A[C(k),Dg],

where Dy, is the proper o-polyhedral divisor over C (k) defined by

D= A.-5%2) with ()= > 7.

zeC Z’eS—1(z)
The proof of the following result is exactly the same as in [23, Lemma 1.6].

Lemma 1.10. Let A = A[C,D], where C is a regular curve over k with field of ratio-
nal functions Ko and ® = Y _~ A, -z is a proper o-polyhedral divisor. Consider the
normalization A’ of the cyclic extension Alsx®], where e € M, s € A homogeneous of
degree de, and d € Z~q. If k is algebraically closed in A, then A’ = A[C’,D’'] where C’
and ®' are defined by the following.

(1) If A is elliptic, then A’ is also and C' is the regular projective curve associated with
the algebraic function field Ko[s].
(@) If A is non-elliptic, then A" is also and C' = Spec Ay, where A, is the normalization
of Ag in Kols].
(#ii) In both cases ®" =3 - A, -7*(z), where w: C" — C is the natural projection.

2. Generalities on G,-actions

Let X = Spec A be an affine T-variety over an arbitrary field k. In this section, we
study the relation between G,-actions on X that are normalized by the torus action and
homogeneous locally finite iterative higher derivations.

Definition 2.1. Let 9 = {G(i)}iezzg be a sequence of k-linear operators on A. We say
that 0 is a locally finite iterative higher derivation (LFITHD for short) if it satisfies the

following conditions:

(i) The operator () is the identity map.
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(#) For any i € Z>¢ and for all fi, fo € A we have the Leibniz rule
0D (f1- f2) = Za(j)(fl) U (fa).
§=0
(éi7) The sequence 9 is locally finite, i.e. for any f € A there exists a positive integer r

such that for any i >, 9@ (f) = 0.
(iv) For all i,j € Z>¢ and for any regular function f € A we have

(3(1‘) o a(j)) (f) = (Z +J) B+ (1) .

7

Furthermore, if 9 verifies only (7), (i), (iv), we say that 0 is a iterative higher derivation.
If O verifies only (7)), (#), we say O is a Hasse—Schmidt derivation (see [36]).

Consider an action
p:Gyx X > X
of the additive group G, over k. Then the comorphism ¢* gives a sequence 0 =

{8@}:'6220 of k-linear operators on A defined by the following way. For any f € A
we write

¢*(f)=>_ 09(f)-a' € Ay klz], where Kk[z]=K[G,]
1=0

is the polynomial algebra in one variable. An easy computation shows that 0 is an
LFIHD [27]. Conversely, given an LFIHD 0 on A, its exponential map

o0
e*0 = Z oW gt
i=0

is the comorphism of a G,-action on X = Spec A.

Remark 2.2. Consider an LFITHD 0 on A. For a positive integer ¢ we let
(am)” W, 00W

be the composition of i copies of ). Denoting by p the characteristic of the field k, we
have the equality

(au))”O o (5(1)))”1 o o (3(#'))"“

(1) —
0 GG () ’
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where i = Z;:O i; - p’ is the p-adic expansion' of i. If further p = 0, then the G,-action
is therefore uniquely determined by the locally nilpotent derivation ().

In characteristic zero, the algebra of invariants of a G,-action on the variety X =
Spec A is the kernel of the associated locally nilpotent derivation on A. The following
definition describes the arbitrary characteristic case.

Definition 2.3. For an LFTHD 0 on the algebra A its kernel is the subset
ker 9 := {f e A|09(f) =0, forallie Z>0}.

This is the subalgebra of invariants A% C A for the G,-action corresponding to 9. The
LFIHD 0O is non-trivial if ker0 # A. A subspace V' C A is called 9-invariant if for
any ¢ € Z>o, we have the inclusion 8(i)(V) C V. In particular, the subspace kerd is
O-invariant. For any f € A we define the multiplication f0 as the sequence of k-linear
operators f0 = {fiﬁ(i)}iezzo. It is easy to check that fO is an LFIHD if and only if
f € ker 0.

The next result provides some useful properties of G,-actions, see [9, 2.1, 2.2] and [8,
Example 3.5].

Proposition 2.4. For every non-trivial LFTHD O on the algebra A the following hold.
(a) The subring ker 0 C A is factorially closed, i.e., for all f1, fo € A we have f1fy €

ker 0\ {0} implies f1, fo € ker 0.
The subring ker 0 is algebraically closed in A.

—~
o
=

The subring ker 9 is a subring of codimension one in A.
(d) If char(k) = p > 0 and A = K[y] is the polynomial ring in one variable, then there
are some ci,...,c € kK* and some integers 0 < s1 < ... < s, such that

s
i=1

(e) If A* is the set of units of A, then A* C kerd so that A* = (kerd)".
(f) A principal ideal (f) = fA is O-invariant if and only if f € ker 0.

Proof. Assertions (a), (b) and (c) are obtained by using the degree function

ANA{0} = Zso, [+ deg, ¢*(f).

! When p = 0 we make the convention that the p-adic expansion is i = i¢.
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In particular, we remark that (b) implies that the ring ker @ is normal whenever A is
normal. Assertion (d) is proven in [8, Example 3.5]. Assertion (e) is an easy consequence
of (a).

Using arguments from [15, 2, 1.2 (b)] we give a short proof of (f). Assume that f is
nonzero. By Definition 2.1 (i) we can consider d € Zsq such that f’ := 9D (f) # 0
and belongs to ker 0. If the ideal (f) is O-invariant, then f’ € ker N (f) so that f' = af
for some a € A. By Proposition 2.4 (a) we obtain f € ker 9. Conversely, let o’ € A. By
Definition 2.1 (4), for any i € Zso we have 9 (a’f) = ) (a’) f and so the ideal (f) is
O-invariant. O

In the next lemma, we study the extensions of LFIHDs on the algebra A to the
localization ring T-!A given by a multiplicative system T C A. We were inspired by

well-known computations with the Hasse—Teichmiiller derivatives (cf. [17, Section 2]).
For this lemma, we let

J
E(i,j) = {(31, o 85) €T, | Zsz = Z} for all integers i, j € Z~g, such that j <.
=1

Lemma 2.5. Let T be a subset of A stable under multiplication such that0 ¢ T and1 € T.

(1) If O be an iterative higher derivation on the algebra A, then O extends to a unique
iterative higher derivation O = {5(i)}iezzo on the algebra T~ 1A given by

0 (1)-T 5 X aeey)

J=1 (815,85 ) EE(3,7)

forall f €T and all i € Z~yg.
(i) Furthermore, if O is an LFIHD on A and if T C kerd, then the extension 0 on
T~A is an LFIHD.

Proof. The existence and the uniqueness of d is given in [26, 3.7, 5.8], [36, Section 3].
Proceeding by induction the computation of 5(i)(%) is an easy consequence of Defini-
tion 2.1 (ét). The rest of the proof is straightforward. O

As a consequence of the previous lemma, we obtain a result on equivariant cyclic
coverings of an affine variety with a G,-action (see also [16, Lemma 1.8]).

Corollary 2.6. Let K = Frac A. Consider an LFIHD O on A and let f € kerd be a
nonzero element. Let d € Z~y be an integer and let u be an algebraic element over K
satisfying u® — f = 0. If B is the integral closure of Alu] in its field of fractions, then O
extends to a unique LFTHD O’ on the algebra B such that u € ker &'.
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Proof. By Lemma 2.5 we can extend the LFITHD 0 on A to an iterative higher derivation
on the field K, and on the polynomial ring K[t] by letting 0 (t) = 0 for any i > 1.
Consider the morphism of K-algebras ¢ : K[t] — Klu], t — u. Let P € K|[t] be the
monic polynomial generating the ideal ker ¢.

We can write t — f = FP, for some F € K[t]. Remark that F' is monic since P and
t4 — f are monic. Since A is integrally closed, we obtain F, P € A[t]. Furthermore, for
any i € Zgo we have 9 (FP) = 0 (t4 — f) = 0. Note that A[t] is d-invariant and the
restriction of 0 to A[t] is an LFIHD. Therefore, by Proposition 2.4 (a), we have P €
Alt] Nker 0 defining an iterative higher derivation & on K[u]. Clearly, the normalization
B of the ring Afu] is again 0'-invariant. The rest of the proof is straightforward and we
omitted it. O

In the sequel, we let

A= P Anx™ C Ko[M]

\2
meo

as in Section 1, where x™ is also seen as the character of the split torus T corresponding
to the lattice vector m € M. Let us introduce the notion of homogeneous iterative higher
derivations.

Definition 2.7. Let 0 be an iterative higher derivation. The sequence 0 is homogeneous
if there exists e € M such that

0D (ApX™) C AmyieX™ % forall i€ Zsgandme M.

If 0 is non-trivial, then the vector e is called the degree of 0 and is denoted by deg 0. For
the case where k is of characteristic p > 0 we have the more general definition. Given
r € Z>( we say that 0 is rationally homogeneous of degree e/p" (or of bidegree (e, p") if
we need to emphasize the vector e) if it satisfies the following.

(i) 0P (AmX™) C Amyiex™ ¢, for all i € Zxo, and m € M.
(i1) 0Y) = 0 whenever p” does not divide j.

In [23, Section 1.2] it is shown that a usual derivation on a multigraded algebra which
sends graded pieces into graded pieces is homogeneous. However this does not hold for
higher derivations. Note also that the kernel of a homogeneous LFIHD 0 on A is an
M-graded subalgebra of A. In the sequel, we introduce some notation in order to have a
geometrical interpretation of homogeneous and rationally homogeneous LFIHDs in the
case where k is an algebraically closed field.?

2 Note that the Notation 2.8 and Proposition 2.9 can be generalized in the setting of group schemes and
of Hopf algebras when k is arbitrary.
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Notation 2.8. Assume that k is algebraically closed. Letting e € M be a vector we denote
by G. the group whose underlying set is T x G, and multiplication law is defined by

(t1,a1) - (t2, a2) = (t1 - t2, X" “(t2) - 1 + ),

where t; € T and «; € G,. Actually, every semidirect product of T x G, given by a
character T — Aut G, ~ G, is isomorphic to some G..

The following proposition is similar to [16, Lemma 2.2]. For the convenience of the
reader we give a short proof.

Proposition 2.9. Assume that the field k is algebraically closed.

(i) If A is M-graded and O is a homogeneous LFIHD on A of degree e, then the corre-
sponding G,-action is normalized by the T-action. This means that the actions of
the torus and the additive group induce a Ge-action with comorphism given by

Wi(ta) =t-e*(f),

where (t,a) € Ge and f € A.
(it) Conversely, if G acts on X = Spec A, then the actions of the subgroups T and G,
give an M -grading on A and a homogeneous LFIHD of degree e.

(iii) Assume further that char(k) = p > 0. Let Fpr : G, — G,, t — 7" be the Frobenius
map. Giing a rationally homogeneous LFIHD 0 on A of degree e/p" is equivalent to
having a Ga-action on X equal to ¢po (Fpr,idx ), where ¢ is a G,-action normalized
by T.

Proof. (i) Given (t,a) € G, and f € A, by homogeneity of d we have

£ 0D = X9V (¢- f). Vi € Lo, M
This gives
‘. e"a(f) _ f:xie(t)ai 3(i)(t . f) _ ex@(t)ou‘?(t . f)
i=0

Hence for all (t1, a1), (t2, a2) € G, we obtain

P ((t1, 1) - (ta, a0))(f) = X" (12010 o X (t2)aad (g 1y . f) = 4™ (£, a1 ) (V" (t2, 02) (£))-

We conclude that ¢* defines a G.-action on the variety X = Spec A.
(it) The action of the subgroup G, C G, yields an LFTHD 9 on the algebra A. For
a € G, and f € A we have ¥*(1,a)(f) = e*?(f). So for any t € T we have
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t-e*(f) = v ((Lx“(Wa) - (£,0)(f) = e D0t - ).

Identifying the coefficients we obtain (1). Thus the LFIHD @ is homogeneous for the
M-grading given by the action of the subgroup T C G..
Assertion (7i7) follows immediately from (i) and (i). O

For an arbitrary field k we consider the following natural definition.

Definition 2.10. Assume that the torus T acts on X = Spec A. A G,-action on X is
normalized (resp. normalized up to a Frobenius map) by the T-action if the corresponding
LFIHD 9 is homogeneous (resp. rationally homogeneous).

To classify normalized G,-action it is convenient to separate them into two types (see
[16, 3.11] and [23, Lemma 1.11] for special cases).

Definition 2.11. A homogeneous LFIHD 0 is of wertical type (or of fiber type) if
0W(Ky) = {0} for any i € Zwq. Otherwise 0 is of horizontal type. We use similar
terminology for normalized G,-actions. An affine T-variety endowed with a non-trivial
vertical (resp. horizontal) G,-action is called vertical (resp. horizontal).

A homogeneous LFTHD of horizontal type is automatically non-trivial. In the vertical
case, one can extend a homogeneous LFIHD on A to an LFIHD on the semigroup algebra
Koloyy].

Lemma 2.12. Let 0 be a homogeneous LFIHD of vertical type on the M -graded algebra A.
Then O extends to a unique homogeneous locally finite iterative higher Kg-derivation on
the semigroup algebra Koloy,].

Proof. By Lemma 2.5, the LFIHD O extends to an iterative higher derivation 9’ on
Ko[M]. Since 8 is of vertical type, Definition 2.1 (4i) implies that each &’ ) is Ky-linear.
Consequently, if S C M is the subsemigroup of weights of the M-graded algebra A, then
B := Ky[S] = A ®x K is 0'-invariant.

Let us show that &'|p is an LFIHD on B. Let fx™ € B be a homogeneous element
with f € K. Write fx™ = f'hx™ for some f’ € K and for some h € A,,. There exists
r € Z~q such that for any i > r,

o O(fx™) = f0U (™) = 0.
Since every element of B is a sum of homogeneous elements we conclude that &’'|p is a

locally finite iterative higher Ky-derivation on B. Thus, d'|p extends to an LFTHD on
the integral closure B = Ky[o),]. O
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In the next lemma, we prove an elementary result concerning the LFTHDs of the poly-
nomial algebra in one variable. It will be useful in order to study horizontal G,-actions
in Section 5. We let ordg be the natural valuation

ordg : k[t] \ {0} = Z>o, Zaiti — min{i|a; # 0}.

Lemma 2.13. Assume that char(k) = p > 0. Let 9 be an LFIHD on the polynomial algebra
k[t] in one variable such that

T
e®o(t) =t + Z NP
i=1

where A\ € k* and 0 < s1 < ... < s, are integers. We also fix a non-negative integer
i€ Zzo.
If 0 € Z>( verifies £ > ip®*, then

Ot = X @

7

téfi

and therefore ordy ™) (t*) = ¢ — i whenever (f) #0.

Proof. First of all, we have

/ . o
— t'LO I | >\o¢ vy Za.
) ] ) (io...z’) (Aaz” )
=Y, >0

a=1

Considering the term of degree ip®' in x of the previous sum, we get the following
conditions:

it = p® 4+ ... +i.p® and  ig+i1+...+1i. =4, (2)

where (ig,41,...,4,) € Z;‘El. Note that such an (r + 1)-tuple (ig, i1, ..., %,) exists since
¢ > ip°t and so we can take

(ig,i1,... i) = (£ —14,i,0,...,0).

Let us show that this is the minimal choice for iy € Z>¢. Indeed, let (yo,v1,...,7) € Z%
be an (r 4+ 1)-uplet satisfying (2) with «¢ minimal. Then we have

r
g-i:f—zwa‘psa_slSg—zva:’yo.
a=1 a=1
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Hence by minimality, yo = ¢ — 4, so that i = > _| 7. Thus,
T T
Ya a=1

We obtain (79,71, .- -,7%r) = (£—i,4,0,...,0). This implies in particular that 97™) (¢*) =
i (f)tl_i as required. O

3. G,-actions on affine toric varieties

Let k be a field. In this section, we present a combinatorial description of normalized
G,-actions up to a Frobenius map on affine toric varieties over k.

For a rational cone 0 C Ny we recall that o(1) denotes its set of extremal rays. As
usual we write by the same letter a ray of ¢ and its primitive vector. The following is a
classical definition, see for instance [12,23,4].

Definition 3.1. Let 0 C Ng be a strongly convex rational cone. A vector e € M is called
a Demazure’s root (or for simplicity called root) if the following hold.

(¢) There exists p € o(1) such that (e, p) = —1.
(it) For any p’ € o(1) \ {p} we have (e, p’) > 0.

The extremal ray p satisfying (e, p) = —1 is called the distinguished ray of the root e € M.
We denote by Rt o the set of Demazure’s roots of the cone o. By [23, Remark 2.5] every
element of o(1) is the distinguished ray of a root of Rt o.

Since the subset k[T]* generates the algebra k[T], Proposition 2.4 (e) implies that
k[T] has no non-trivial LFTHDs. So without loss of generality, in the sequel, we may only
consider toric varieties X, = Speck[o},] given by a nonzero strongly convex rational
cone 0 C Ng.

Example 3.2. Let e € Rt o be a root. Consider the homogeneous derivation 8§1) on the
semigroup algebra k[o,] given by

aél)(Xm) = (m,p)x™"¢ forall m € oy,
where p is the distinguished ray of e. Then aé” is locally nilpotent and yields a G,-action

on X, in the following natural way: the homogeneous LFIHD 0, is given by the formula®

AW (™) = <(m@, p)) ™t forall i€ Zso and m €y, .

The kernel of 9, is k[p},], where p* C ¢ is the dual face of p.

3 We set the convention that ( ) =0, for all 71, r2 € Z>o with 1 < ra.

1
T2
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Assume now that char(k) = p > 0. Starting from J. and an integer r € Z>o we can
also define a rationally homogeneous LFIHD 0., of degree e/p” € Mg. Its exponential
map is

o0
exaem _ Zaéz) P
=0

We check easily that ker 9., = k[p},]. In addition, for any m € o), we have

deg, "% (x™) = p" (m, p).

We start by describing the kernel and the possible degree vectors of a homogeneous
LFIHD on k[o},], where o is a nonzero strongly convex rational cone.

Lemma 3.3. Consider a non-trivial homogeneous LFIHD 0 on k[o),]. Then the following
statements hold.

(i) There exists p € o(1) such that ker & = k[p* N M].
(it) The degree e € M of the sequence O is a Demazure’s root of o and p is the distin-
guished ray of e.

Proof. (i) By Proposition 2.4 (a) we have ker @ = k[IW N oy,] for some linear subspace
W C Mg. Assume that W N ¢V is not a face of ¢V. Then W divides ¢V into two parts.
We can find m € o), such that for any r € Z>q, m + re ¢ W. Since x™ ¢ ker d, there
is some 7y € Zs satisfying 9("0) (x™) # 0. Hence 9" (x™) is homogeneous of degree
m + roe. By the previous argument

) 6 9ro) (x™) £ 0 for some 7, € Zsy.

By Definition 2.1 (iv) we have 80+ (x™) #£ 0 and so we let 7, = ro+77. Proceeding
by induction we can build a strictly increasing sequence of positive integers {7;};cz.,
verifying 0(") (x™) # 0 for any j € Z>o. This contradicts the fact that d is an LFIHD.
Thus W N oV is a face of oV. Since kerd is a subring of codimension one, we have
W Noy, =p*N M for some extremal ray p € o(1).

(i) If e € o), then the same argument as before gives a contradiction. The rest of
the proof follows as in [23, Lemma 2.4]. O

In the following lemma, we state some properties of a homogeneous LFTHD on k[o,].

Lemma 3.4. Let 0 be a non-trivial homogeneous LFIHD on k[o},] of degree e and with
distinguished ray p. For every i € Zso we let ¢; : o), — k be such that o0 (x™) =
Ci(m)Xm+ie
conditions.

. Then the sequence {ci}tiez-, of functions on oy satisfies the following
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(i) The map cq is the constant map m +— 1.
(it) For all m,m’ € oy, we have

i(m +m) Zcu (m). (3)

(@) For every m € oy, there exists r € Z>q such that ¢c;(m) =0 for all i > r.
() For every i,j € Z>o we have

<Z +J> civj(m) = ci(m+ je) - c;(m)  for all m € o).
i
(v) For every i € Z>o we have ¢;(m+m') = ¢;(m) for allm € o), and allm’ € p*NM.

Proof. Assertions (i), (i), (i) and (év) follow from the definition of LFIHD. Let us
show (v). Since ™ € ker , for any j € Z~q we have ¢;(m') = 0. Applying (3) we obtain
cilm+m')=c¢;(m). O

The next result provides a classification of normalized G,-actions on X,. See [23,
Theorem 2.7] for the case where char(k) = 0.

Theorem 3.5. Let 0 C Ng be a nonzero strongly convex rational cone. Every non-trivial
Ga-action on X, normalized by the T-action is given by a homogeneous LFIHD of the
form A\O., where O, is as in Erample 3.2, e € Rto and X € k*.

Proof. Let 0 be a non-trivial homogeneous LFIHD of degree e on k[o;]. By Lemma 3.3,
e is a root of o and ker @ = k[p* N M], where p € o(1) is the distinguished ray of the
root e.

Let us first show that there exists a lattice vector m € o), such that (m,p) = 1. Let
m’ € o), not contained in the face p* so that (m’,p) > 1. By [23, Lemma 2.4, we have
that m :=m/ + ((m/, p) — 1) - e € o, satisfies (m, p) = 1.

We let ¢; : o), — k be the maps defined in Lemma 3.4. Let B = k[z] be the

2

polynomial algebra of one variable. Using the basis (1,x,2%,...) we define a sequence

of linear operators 0 = {0V};cz., on the k-linear space B as follows: fixing a vector
m € oy, verifying (m, p) =1 we define

O (x") = ¢i(rm)a"" forall i,r € Zsg.
We claim that 9 is well defined. Indeed, let i,7 € Z>o be such that ¢ > r, then

OV (X™™) = ¢;(rm)x" ™ € k[o};] and (rm +ie,p) =7 —1i <0
so that ¢;(rm) =10.

Hence, 09 (27) = ¢;(rm)2z"~* = 0 for all i > r.
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By Lemma 3.4, the sequence of operators 0 is an LFTHD on B. For instance, let us
show that 9 satisfies Definition 2.1 (4). Letting i,j € Z>( we have

5% 089 (") = 59 (c; (rm)a”) = ci((r — j)m) - ¢;(rm)a” =
Since e € Rt o is a root having p as distinguished ray, it follows that
vi=rm+je—(r—jm=jlm+e)€p NM.
By Lemma 3.4 (v), we have
ci((r —j)ym) = ci((r — j)m +v) = ci(rm + je).

Therefore by Lemma 3.4 (iv), we conclude that

5(1) o 5(])($T) = (Z + j) Ci+j (Tm).%‘r_i_j = (Z + ]> 5(i+j)((1)r),
7

7

as required. Conditions (2), (), (éi¢) of Definition 2.1 follow from similar straightforward
computations.

Since 0 is homogeneous for the natural graduation of B, by Proposition 2.4 (d) there
exists A € k such that every ¢; verifies

ci(rm) = (’;) A

for any r € Zx(. We use the convention \° = 1 whenever A\ = 0. Let w € o}, be a lattice
vector. The elements

w+ (w, pe, (w, pe + (w, p)m

belong to p* N M. By Lemma 3.4 (v) this implies

mw—qw+www+wwmwwm%mm—(Wfﬁx. ()

Since 0 is non-trivial, we have A\ € k*. By virtue of (4) the sequence 0 is given by the
LFIHD A0, (see Example 3.2). O

Example 3.6. Let M = Z? and let o be the strongly convex rational cone generated in
the vector space Ng = R? by the vectors and p = (0,1) and p’ = (2,—1). The dual
cone oV is the cone in My generated by the vectors (1,0) and (1,2). Let A = k[o),] and
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let X = Spec A be the corresponding toric variety. The algebra A is generated by the
elements

(1,0)

ur =X Uy = X(l’l) and wus = X(1’2) )

The generators satisfy the relation ujusz = u3 and so A = k[z,y, 2]/(zz —y?). The lattice
vector e = (0,—1) € M is a root of o since (e, p) = —1 and (e, p') = 1.

ee=(0,~-1)

The corresponding LFTHD 9, of Example 3.2 is given by
OO (x) =z, W (x)=0, foralli>0;
oy) =y, oV (y) =w, IV(y)=0, foralli>1;
() =z V()=2y, 9P(z) =1, 0V (z)=0, foralli>2.
Hence, the corresponding normalized G,-action ¢ is defined by
¢:Gyx X = X, where () (z,y,2)) = (z,y 4+ Az, 2 + 2\y + \?2) .

As an immediate consequence of Theorem 3.5, we obtain a description of all normalized
G,-actions up to a Frobenius map.

Corollary 3.7. Let o C Ng be a nonzero strongly convex rational cone. Then for every root
e € Rt o with distinguished ray p, every integer r € Z>g, and every scalar A € k*, there is
a non-trivial rationally homogeneous LFIHD O on the algebra k[o),] whose exponential
is given by

oo
ewa(Xm) = E ((m@, p>>)\i Xm"'iea:ipr for all me€ay,.
=0

Conversely, every rationally homogeneous LFIHD on k[o),] arises in this way.
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In the next corollary, we generalize to the case of positive characteristic some re-
sults in [23, Section 2]. See also [20, Corollary 3.5] for a more general statement in the
characteristic zero case. The proofs are similar to those in [23] so we omit them.

Corollary 3.8. Let 0 C Ny be a strongly convex rational, then the following hold.

(i) For any normalized up to a Frobenius map G,-actions in Speck[o),] the algebra of
invariants is finitely generated.

(ii) There is a finite number of rationally homogeneous LFIHDs on k[oy,] with pairwise
distinct kernels.

4. G,-actions of vertical type

In this section, we classify normalized G,-actions of vertical type on an affine T-variety
X = Spec A of complexity one over a field k. See [24] for higher complexity when the
base field is algebraically closed of characteristic zero.

To achieve our classification, we place ourselves in the context of Section 1 by letting
A = A[C,D], where C is a regular curve over k and ® = 3 _~ A, -z is a proper
o-polyhedral divisor. Hence,

A[C,@} = @ Am 'Xm c KO[M]a

\
meo

where A, = H°(C,0c(D(m))) and Ko = k(C).

The following result gives some general properties of homogeneous LFIHDs on the
M-graded algebra A. Recall that the affine T-variety X = Spec A is called elliptic if
Ag =k.

Lemma 4.1. Let 0 be a homogeneous LFTHD on A of degree e. Then the following state-
ments hold.

(i) If O is vertical, then e ¢ 0* and kerd = @, ... A
face T of the cone o. In particular, the algebra ker 0 is finitely generated.
(#3) If A is non-elliptic, then 9 is vertical if and only if e & o

mX™ for some codimension one

Proof. (i) By Lemma 2.12 we may extend 9 to a homogeneous LEFTHD 0 on the semigroup
Ko-algebra Ko[o),]. By Lemma 3.3 we have e € Rt o and so e ¢ . Moreover, we obtain
ker @ = Ko[7a] for some codimension one face 7 of o¥. Thus,

kerd = ANkerd = @ AmXx™.

meETM

As a consequence of [1, Lemma 4.1], the algebra ker 0 is finitely generated.
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(ii) Assume that A is non-elliptic and let d be the extension of @ on the Ky-algebra
Ko[M]. If e ¢ oV, then for any i € Z-q we have 9()(4y) = A;. = {0}. Since K, =
Frac Ag, we conclude that J is vertical. 0O

As remarked in [23, Remark 3.2], in the elliptic case, the M-graded algebra admits in
general LFTHDs 9 of horizontal type satisfying degd ¢ oV.

In the following, we introduce some combinatorial data on A = A[C,D] in order to
describe its vertical normalized G,-actions.

Notation 4.2. Let e € Rto be a root of ¢ with distinguished ray p and recall that
D(e) = X, ccmingea, (0){e,v) - z. We denote by @, the Ag-module H°(C,Oc(D(e))).
Furthermore, if ¢ € ®. is a nonzero section, then for any vector m € o belonging to Mg
we have

divp > —D(e) > D(m) —D(m +e). (5)

Starting with the previous combinatorial data, we may construct a homogeneous
LFIHD of vertical type, as follows:

Lemma 4.3. Let e € Rto be a root of o with distinguished ray p and let ¢ € ®, be
a section. Denote 8 = © O, where J. is the LFIHD on the Kg-algebra Ko[o),] corre-
sponding to the root e as in Example 3.2. Then for any i € Z>o we have ('_)(i)(A) CA.
Consequently, the sequence

Oegp = {004 : A - A}

iEZZO

defines a homogeneous LFIHD of vertical type on A.

Proof. Fix i € Zs¢ and let f € A,, be nonzero such that divf + |[D(m)| > 0. If
OD(fx™) # 0 and ¢ # 0, then by (5) we have
div (990 (Fx™) /X" ) + [D(m+ ie)
=idivp+divf+ [D(m+ie)| >i(D(m/i) —D(m/i+e))— |D(m)] + |D(m + ie) |
> {D(m)} — {D(m +ie)}.

Since the coefficients of the Q-divisor {D(m)} — {D(m + ie)} belong to | — 1,1] we
have

div (8(i)(me)/Xm+ie) + |D(m+ie)] >0,

proving that A is O-invariant. The rest of the proof is straightforward and left to the
reader. 0O
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Our next theorem gives a classification of normalized vertical G,-actions on an affine
T-variety X = Spec A[C, D] of complexity one.

Theorem 4.4. Let A = A[C,D]. If e € Rto is a root of o with distinguished ray p and
p € ®, is a section, then O, is a homogeneous vertical LFIHD on A. Conversely, every
homogeneous vertical LFIHD on A is of the form 0., where e € Rto and ¢ € ®..

Proof. The direct implication corresponds to Lemma 4.3. To prove the converse state-
ment, let d be a non-trivial homogeneous vertical LFITHD on A. By Lemma 2.12,
d extends to a locally finite iterative higher Ko-derivation & on the semigroup alge-
bra Ko[oY,]. By Theorem 3.5, 9 is given by (0, as in Example 3.2, for some ¢ € K and
some root e € Rto.

To conclude the proof, let us show that ¢ € ®.. Let p be the distinguished ray of e.
For every point z € C' we let v, be a vertex of A, where the minimum min,ea_ (o) (e, v)
is achieved so that

De) = Z(e,vz> z.

zeC

For every z € C we let w, = {m € 0" |ha_(m) = (m,v,)}. The set w, C Mg is a full
dimensional cone in Mg (see [1, Section 1]).

Let also m, € oy, \ p3; be a lattice vector such that m. and m, + e belong to w,,
deg®(m,) > g and (m., p) ¢ pZ, where p is characteristic of the field k and ¢ the genus
of the curve C. It is always possible to choose such m, since w, is full dimensional, the
polyhedral divisor ® is proper, and the lattice vector p is primitive. According to the
Riemann—-Roch Theorem we have A,,. # {0}.

Furthermore, the inclusion 8(1)(Amzxmz) C A reX™ ¢ implies @A, C Apte.
Consequently, for any z € C' we have

dive > D(m,) —D(m, +e).

The coefficient of the divisor D(m,) — D(m, + e) at the point z € C' is —(v,, €). Thus,
divy > —®(e) and we have ¢ € ®., as required. O

In analogy with the toric case, the family of vertical normalized G,-actions on
X = Spec A having pairwise distinct kernels is a finite set. The next result provides
a combinatorial criterion for A to admit a homogeneous non-trivial LFTHD of vertical
type.

Corollary 4.5. Let A = A[C,D] and let p C o be an extremal ray. Then, the M-graded
algebra A admits a non-trivial vertical homogeneous LEIHD such that the distinguished
ray of e = degd € Rt o is p if and only if one of the following conditions holds.

(i) C is affine, or
(i) C is projective and pNdeg® = ().
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Proof. If C' is an affine curve, then every divisor on C has a global nonzero section
and so for any e € Rto we have dim ®, > 0. In this case, the corollary follows from
Theorem 4.4.

Assume that C is projective and fix a root e € Rt o with distinguished ray p. Let us
notice that for any m € pj,; we have e + m € Rt o. Furthermore

D(e+m)>D(m)+D(e) and so deg®(m +e) > deg®(m) + degD(e).

Hence, if pNdeg® = (), then we have dim ®.,, > 0 for some m € p},, by the Riemann—
Roch Theorem and by the properness of 2.

Conversely, assume that p N deg® # ). Since we have (e,p) = —1, there exists a
vertex v of deg® such that (e,v) < 0 and therefore deg®(e) < 0. Under these latter
conditions we have dim ®, = 0. Again, we conclude by Theorem 4.4 in the case where C
is projective. 0O

Example 4.6. Let the notation be as in Example 1.8. Let p be the ray of o spanned
by (1,0) and let p’ be the ray of o spanned by (0,1). We have deg® N p # () and
deg® N p’ = 0. Hence, Corollary 4.5 shows that only p’ can be the distinguished ray of
the degree e of an LFTHD 0 of vertical type.

5. Ga-actions of horizontal type

The purpose of this section is to classify all horizontal G,-actions on affine T-varieties
of complexity one over a perfect field in terms of polyhedral divisors. The reader may
consult [23, Section 3.2] for the case where k is algebraically closed and of characteristic
zero. Let as before A = A[C, D], where C is a regular curve over kand ® = A, -z
is a proper o-polyhedral divisor. Hence,

AlC,D] = @ Amx™ C Ko[M], where A, =H"(C,0c(D(m))) and Ko =k(C).

Vv
meoy,

In this section, several results will require the assumption that k is perfect so the
classification will only hold in this case. Nevertheless, the statements that we can prove
without asking for k to be perfect are stated in general.

According to the Rosenlicht Theorem [31], in the case where k is algebraically closed,
the following lemma implies in particular that an affine horizontal T-variety of complexity
one has an open orbit for its corresponding T x G,-action.

Lemma 5.1. Let X = Spec A, where A = A[C,D] and let O be a homogeneous LFIHD
on A. Then O is horizontal if and only if k(X)® Nk(X)T = k.

Proof. Let L = k(X)® Nk(X)T. Assume that d is horizontal and that k(X)T/L is an
algebraic field extension. Consider F' € k(X)T a nonzero invariant rational function.
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Remarking that k(X)C= is the field of fractions of the ring ker d, we can find a € ker d
such that aF is integral over ker 9. Since A is normal, aF' € A, and by Proposition 2.4 (b)
we have aF € kerd. Hence F € k(X)®, contradicting the fact that 0 is of horizontal
type. Since k(X)T/k is of transcendence degree one, we have that L/k is algebraic.
By our convention k is algebraically closed in k(X) which yields L = k. The converse
implication follows directly from the definition of horizontal and vertical LFTHDs. O

Our next lemma shows that the existence of a homogeneous LFIHD on the algebra
A = A|C,®] imposes some restrictions on the curve C. We refer the reader to [16, 3.5],
[23, 3.16] for the case where the base field is algebraically closed of characteristic zero.

Lemma 5.2. Assume that A = A[C,D] admits a homogeneous LFIHD O of horizontal
type. Consider w (resp. L) the cone (resp. sublattice) generated by the weights of ker O
and let wy, = w N L. Then the following statements hold.

(i) The kernel of 0 is a semigroup algebra, i.e.,

kerd = @ k-omx™, where ¢, €k(C)".

mewr

(ii) We have C ~PL, in the case where A is elliptic.
iii) If k is perfect, then C ~ Al in the case where A is non-elliptic.
k

Proof. (i) Let a,a’ € kerd \ {0} be homogeneous elements of the same degree. By
Lemma 5.1, we have a/a’ € k(X)% Nk(X)T = k. Thus ker 9 is a semigroup algebra. By
Proposition 2.4 (b) we have that ker 9 is integrally closed, hence normal. This yields (i).

(1) Let K = Frac A and consider E = K®. By [9, Lemma 2.2] there exists a variable
x over the field E such that F(z) = K. By (i), the extension F/k is purely transcendental
and so is K /k. Since k(C) C K, the regular projective curve C' is unirational. According
to the Luréth Theorem, it follows that C' ~ ]P’llc.

(iii) Assume that A is non-elliptic. Let k be an algebraic closure of k, so that the
field extension l_</k is separable. Let B be the algebra A @i k. Then B is a normal
finitely generated M-graded domain (see Lemma 1.9). Note th at the graded piece By
is Ay @k k. Consequently, 0 extends to a homogeneous LFTHD of horizontal type on
the k-algebra B. Now, we can apply the geometrical argument in [23, Lemma 3.16] to
conclude that we have By ~ k[t], for some variable ¢ over k. By separability of k/k, this
yields Ag ~ K[t] (see e.g. [32,6]). O

The preceding lemma implies that the kernel of a horizontal homogeneous LFTHD on
A is finitely generated. This result can be obtained independently from [20, Theorem 1.3]
in the characteristic zero case. Note also that the kernel of a non-trivial LFIHD on a
normal unirational surface V over a perfect field k such that k[V]* = k* is a polynomial
algebra (see [28, Theorem 2]).
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5.3. In view of the above results, in the following we let C' = Al or C' = PL. Assume
that A has a homogeneous LFIHD 9 of horizontal type and let

ker 0 = EB k-omx™

mewr,

be the kernel of 9. We also assume that k(C) = k(t) for some local parameter ¢t and,
when C' is affine, we let k[C] = k[t] be its coordinate ring,.

Lemma 5.4. Keeping the notation as above, the following statements hold.

(i) If C = AL, then for any m € wy, we have div ¢, +D(m) = 0.

(i) Assume that C = PL. Then there exists a point zo, € C such that for any m € wy,
the effective Q-divisor div ¢, + D (m) has at most zs in its support.

(#ii) The cone w is a maximal cone of the quasifan A (D) (see Definition 1.5) in the
non-elliptic case, and of A(D|p1\(z..}) for the elliptic case.

(iv) The rank of the lattice L is equal to n = rank M. The lattice M is spanned by
e :=degd and L. Furthermore, if d is the smallest positive integer such that de € L,
then we can write every vector m € M in an unique way as m = | + re for some
l € L and some r € Z such that 0 <r <d.

(v) Ifk is perfect, then the point zoo in (ii) is rational, i.e., the residue field of 2o, is k.

Proof. (i) Given a lattice vector m € oy, we let
Am = fm - k[t] )

where f,, € k(t). Assume that m € wr. Then we have ¢,, = Ff,,, for some nonzero
F € k[t]. By Proposition 2.4(a) the polynomial F' is constant. Hence,

div, + [D(m)| = 0.
Consequently, for any r € Z>¢ we obtain
r®(m)| = —rdive, = —diver, = [D(rm)].

This shows that ©(m) is integral when m € wr,.
(#) Assume that there exists m € wy, such that

where zg, 2o are distinct points of C. Denote by co the point at the infinity in C = P
for the local parameter t. Let po(t), peo(t) € k(t) be two rational functions verifying the
following: if the point zo (resp. zo) belongs to Al = Speck|[t], then po(t) (resp. poo(t)) is
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the monic polynomial generator of the ideal of zy (resp. 2.0) in k[t]. Otherwise, zg = oo
(resp. zoo = 00) and we let po(t) = 1/t (resp. poo(t) = 1/t).

Let f := po(t)/poo(t). The rational functions fp,, and f~1p,, belong to A,,. By
Proposition 2.4 (a) we have

FomX™  F T omX™ = @amX*™ €Ekerd, andso  fomX™, f omx™ € kerd,

yielding a contradiction with Lemma 5.2 (¢). Hence, div ¢, + D (m) is supported in at
most, one point.

(#i) By (i) and (%), the map m — ©(m) in the non-elliptic case, and the map
m — Dlp1\ (2.} (m) in the elliptic case, are linear in the cone w. This implies that there
exists a maximal cone wy belonging to A(®) in the non-elliptic case, and belonging to
A(D|pp\{z..)) in the elliptic case, such that w C wy.

Let us show the reverse inclusion wy C w. Let m € wy. Changing m by an integral
multiple, we may assume m € L and ©(m) integral. By Lemma 5.2 (i) and Proposi-
tion 2.4 (¢), the cone w is full dimensional in Mg. Hence, there exists m’ € wy, such that
m +m' € wr. Consider a nonzero section f,, € A,, such that

div fr, + ®(m) =0
in the non-elliptic case, and such that
(div frm +D(m)) [pp\ {200} = 0

in the elliptic case. It follows that

’

mem : me’Xm = /\me+m’Xm+m

for some A\ € k*. Therefore, f,,x™ € kerd and again by Proposition 2.4 (a) we have

m e w.
(i) According to the fact that oy, spans M and that J is a homogeneous LFIHD
on A, for any m € M we have m + se € L for some s € Z. Changing r := —s by the

remainder of the Euclidean division of r by d, if necessary, we obtain m = [ + re, where
l € L and 0 < r < d. The minimality of d implies that this latter decomposition is
unique.

(v) Assume that k is perfect and fix k an algebraic closure of k. Consider the algebra
B=A®k If welet ® = > .cc Az -z, then by Lemma 1.9 the polyhedral divisor

D= A.-5%(2)

zeC

over ]P’%( satisfies
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B= P Bux™, where By, = H’(PL,Op(Dg(m))).

\
meoy,

We can also extend 0 to a homogeneous LFIHD 0J; of horizontal type on B. For any
m € wy, we have ¢, x™ € ker J; and there exists a rational non-negative number A,
such that

div o, +D(m) = A+ Zoo-
Applying S* to the previous equality we obtain
divi @m +Dg(m) = A - S*(200)-

Assume that 2z, is not a rational point and that \,, > 0 for some lattice vector m € wy,.
Changing m by a multiple we may suppose that A, is greater than 1. Since the field
extension k/k is separable, the polynomial p,_(t) in the proof of (i) has at least two
distinct roots, say 21, z2 € k. Note that the points 21, 2o belong to the support of S*(200)-
Considering the non-constant rational function

f={t==2)/({t - 2),

we fall again into a contradiction with Lemma 5.2 (¢) since

femX™ [ omX™ = pamX”™ €Ekerd, andso  foux™, [T omx™ Ekerdy. O

In the sequel, we let the notation be as in 5.3. Without loss of generality, whenever
k is perfect, in the elliptic case we can assume that z., is the rational point co for the
local parameter t.

Lemma 5.5. Let k be a perfect field. The following statements hold.

(i) If C = PL, then the normalization of the subalgebra Alt] C k(t)[M] is A" =
A[A, D|4:1], where Ay = Speck[t].

(@) If the degree of O belongs to w and the evaluation of the polyhedral divisor D
is linear, then O extends to a homogeneous LFIHD O’ on A’ of horizontal type.
Furthermore, we have ker 0 = ker &'.

(it7) Let d be the smallest positive integer such that for any m € wyy the divisor D(d-m)
is integral. Then we have d - M C L.

Proof. (i) This follows from [21, Theorem 2.5].
(it) Letting

A= P A,x", where A, =H(AL, 04 (Dly(m))),

v
meoy,
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for any m € o), we can write A, = ¢, - k[t] with ¢, is a nonzero rational function
satisfying

div o + [ Dy (m)] = 0.

If m € wy,, we can assume that ¢,, is as in Lemma 5.4 (7).

By Lemma 2.5, we may extend & to a homogeneous iterative higher derivation &’ on
the semigroup algebra k(¢)[M]. Denote by & () the i-th term of . Consider f € A/, for
a lattice vector m € oy, and fix an integer i € Z~. We will show that 0’ ) (fx™) € A’.

By the properness of ® and Lemma 5.4 (i) with z,, = 0o, we can find a lattice vector
m' € wy, verifying the following. The vectors m,m’ belong to a same maximal cone of
A(D) and the coefficient in co of the divisor div ¢, + D(m’) is integral, positive, and
greater than that of —div f — |®(m)]. Therefore

div fom + |D(m' +m)] =div f + [D(m)] + div o +D(m') > 0.
In particular, ¢,/ f belongs to A+, . Hence it follows that
e X™ 0 D (FX™) = 0D (0 FX™ ™) € Aprmapiex™ T

By our assumption we have e € w = 0" so that m + ie € oj;. Since D[4 is linear and
D(m') is integral, we obtain the following identities of Q-divisors over Al :

— div s pmrie = [Dlag (M +m +ie)| = [D]yg (m)] + [D]ag (m +ie)] .
Hence,
Om/tmtie = APm' * Pmrie for some A € k*.
Consequently, this implies
P X™ 0 D(FX™) € A pmpieX™ T C Qs - i - K[t X T
This yields
O D(fX™) € Pmaic K[t X™ ¢ = A, X" C A,

as required. We conclude that the subalgebra A’ is @’-invariant.
Next, we show that @ is a homogeneous LFIHD on A’. Let m’ be as above. We have
t@m/xm/ € A. Thus, there exists s € Z~( such that

P X™ 0" () = 09 (tppx™) =0 for any i>s.

Hence 0’ acts locally finitely on ¢t and so the same holds for A[t]. Let f € A}, and choose
s' € Zxo such that the sheaf Opy (|D(m + s'm')]) is globally generated. Thus,
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SDs’m’meJ’_Slm/ c A;n+s’ml = k[t] Rk Am+slm/ - A[t] .

Since @y x* ™ is in the kernel of & we conclude that &’ acts locally finitely on fx™.
This proves that 0’ is an LFIHD. The fact that @’ is of horizontal type is straightforward
and the proof is left to the reader.

It remains to show that kerd = kerd’. By Lemma 5.2 (i) the kernel ker @’ is the
semigroup algebra given by wy., where L’ is a sublattice of maximal rank. Since ker & C
ker @' we have L C L' and L'/L is a finite abelian group. Let

ker 9 = @ k-onx™ and kerd = @ k-l X"

mewr, mewr

Letting m € L' we let r € Z~¢ be such that rm € L. Then, by Lemma 5.4 (¢) and (i)
we can write Aprm = ¢, = (¢h,)", where A € k*. So ¢}, x™ is integral over kerd. By
normality of A and since ker 0 is algebraically closed in A one has ¢}, x™ € ker 9. Hence
L' = L and so ker @ = ker &'.

(#4) Up to multiplying the LFTHD 0 by a homogeneous kernel element, we may assume
that degd = e € w. In particular, the algebra

A, = @ A x™ is O-invariant.

mewn

By virtue of assertions (i) and (i) in the lemma, we may suppose that C' = Al.
Let m € wpr. We have Agmam = Adm - Ay = @amAme for all m’ € wyy. Hence, the
principal ideal (¢gmx?™) in the ring A,, is 9|4 -invariant. By Proposition 2.4 (f), we
have @4, X" € ker d and so dm € wy,. This yields d - wys C wy, and (44) follows. 0O

The following result provides a geometrical characterization of horizontal non-
hyperbolic affine Gy,-surfaces. See [16, Theorems 3.3 and 3.16] for the case where the
base field is C.

Corollary 5.6. Assume k is perfect. Let N = Z and 0 = R>q, so that © is uniquely
determined by the Q-divisor ©(1). If the graded algebra A admits a homogeneous LEIHD
of horizontal type, then the following statements hold.

(i) If C = AL, then the fractional part {D(1)} has at most one point in its support.
(it) If C =PL, then {D(1)} has at most two points in its support.

In each case, the support of {D(1)} consists of rational points. In particular, every hor-
izontal non-hyperbolic affine Gy, -surface over k is toric.

Proof. (i) We first prove the result in the case where k is algebraically closed. Let d be
the smallest positive integer such that ©(d) is an integral divisor. Letting f € k(t) a
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generator of Ay, i.e. Ay = f- Ao, we let B be the integral closure of A[/fx] in its field
of fractions. Up to a principal divisor, we may assume (1) < 0 and so f € k[t] is a
polynomial. By Lemma 5.5 (ii), we have fx? € ker .

By Corollary 2.6, we obtain the existence of an LFIHD &’ on B extending 0 and
satisfying /fx € kerd. Write B = A[C’,D’'] for some polyhedral divisor ®’ on a
regular affine curve C’ = Spec By. Actually, By is the normalization of k[t, &/ f] and also
a polynomial algebra of one variable over k (see Lemma 5.2 (éii)). The fact that B} = k*
and that By is an unique factorization domain implies that f = (¢ — z)" for some z € k
and some r € Z~¢. Since div f +d - D (1) = 0 one concludes that {D(1)} is supported in
at most on the point z.

Assume now that k is not algebraically closed and that {®(1)} is supported in at
least two points. Extending the scalar to the algebraic closure k gives a contradiction by
Lemma 1.9.

(it) Multiplying 0 by a homogeneous element in its kernel, we may assume that the
degree of 9 is non-negative. By Lemma 5.5 (4), the LFTHD 0 extends to a homogeneous
LFIHD & of horizontal type on the normalization A’ of the algebra A[t]. Note that
the graded algebra A’ is given by the polyhedral divisor D|,1. Applying (i) for the
non-elliptic graded algebra A’, the fractional part {9, AL (1)} has at most one point in its
support. So {D(1)} is supported in at most two points. This yields (i7).

Let us show the latter claim. By a similar argument, we deduce that in any case
the support of {®(1)} consists of rational points (see Lemma 1.9). Assume that A is
non-elliptic. Since {®(1)} is supported in at most one rational point, without loss of
generality, we can let

@(1):720, where 0<e<d, and ged(e,d)=1.

A straightforward computation shows that

A= P ke

b>0, ad—be>0

see e.g. [16, Lemma 3.8] and [23, Example 3.20]. The algebra A admits an effective
Z2-grading endowing X = Spec A with a structure of a toric surface. Assume that A
is elliptic. Using the fact that every integral divisor over P! of degree 0 is principal, we
can reduce to the case where ® is supported in the points 0 and co. We conclude by a
similar argument as in [23, Example 3.21]. O

As a consequence of Corollary 5.6, we obtain the following result.

Corollary 5.7. With the notation in 5.3, we let A, = @meM
wY C Ngr. Then A, ~ A[C,D,] as M-graded algebras, where D, is T-proper polyhe-

Apx™ and let T =

dral divisor over the curve C satisfying the following conditions.
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(i) If A is non-elliptic, then ©, = (v+7) -0 for some v € Ng.
(i) If A is elliptic, then D, = (v +7) -0+ Al - 00 for some v € Ng and some
Al € Pol,(Ng) satisfying v+ Al C 7.

Proof. (i) We will follow the argument in [23, Lemma 3.23]. Note that the degree e of 9
belongs to w. For £ € wy, denote by dy the homogeneous LFTHD ¢, - 0. The subalgebra

B(€+e) = @ AT(“_e)Xr(l-i-e)
r>0

is Op-invariant. Since the homogeneous LFTHD 0| B, 18 of horizontal type, we can
apply Corollary 5.6 to conclude that {D(¢ + e)} is supported in at most one point. By
Lemma 5.4 (7), for all £,¢' € wr, we have

—divp+D(l+e) = D(l+'+e) = D(l'+e)—divpy, andso {D(l+e)} ={D(l'+e)}.

Thus, the union of the supports of the divisors {D (¢ + e)} has at most one element,
where ¢ runs over wy,. By the linearity of ©® in w and Lemma 5.4 (4v), up to a principal
polyhedral divisor, the polyhedral divisor @, of A, is supported in at most one point.
This point needs to be rational so () follows.

(#) By multiplying 0 with a kernel element, we may assume e € w. Let A/, be the
normalization of A,[t]. By Lemma 5.5, elements of degree m € wy in A/, correspond to
the product of a global section of D| AL (m) and the character x™. In addition, 0 extends
to a homogeneous LFTHD of horizontal type on A’,. By (i), the union of the supports of
the divisors {D|[41 (m)}, where m runs trough was, has at most one rational point. This
concludes the proof. O

For our next theorem, which is a key ingredient in our classification result, we in-
troduce the following notation. Let © be a proper o-polyhedral divisor over All( or Pll(
such that the coefficient A at zero is v + o for some v € Ng. Let M = M x Z and let
N = N x Z. We also let & be the cone in Ng generated by (v,1) and (0,0) if C = AL
and by (v, 1), (0,0) and (A, —1) if C = PL.

Theorem 5.8. Let D be a o-proper polyhedral divisor over a regular curve C. Assume that
D satisfies one of the following conditions.

(i) If C is affine, then C = AL = Speck[t] and © = (v+ o) - 0 for some v € Ng.
(it) If C is projective, then C =P} and ® = (v+0) -0+ A - 00 for some v € Ng and
for some Ay € Pol,(NR).

Let d be the smallest positive integer such that dv € N. For any m € M we let h(m) =
(m,v). Then there exists a homogeneous LFIHD O of horizontal type on A = A[C,D]
with deg d = e if and only if the following statements hold.
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(a) If chark = p > 0, then there exists a sequence of integers 0 < s1 < s2 < ... < 8y
such that fori=1,...,r we have (p*e,—1/d — h(p*ie)) € Rt&.
(b) If chark =0, then (e,—1/d — h(e)) € Rt 5.

Under these latter conditions, the LFIHD O is of following form. Let ( = /t. Let us
consider the LFIHD O¢ on the algebra k(] with exponential map

() = ¢+ hat, (6)
=1

where \1,..., A\ € K* (resp. with 8é1) = /\d%, where X € k* ) whenever chark > 0 (resp.

chark = 0). Then the i-th term of O is given by the equality
3(1)(tzxm) _ C—dh(m-‘rie)aéi)(th(m)tl)xm+ie for all thm cA. (7)

Proof. Assume that © satisfies (i) and fix an LFIHD 0 on the algebra A of horizontal
type and of degree e. Let B be the normalization of the subalgebra

A O] CK(O[M]

Consider the affine line ¢’ = Speck][(] and the polyhedral divisor ®' = (dv + o) - 0
over C'. Since d = min{r € Z~¢ | re € L} (see Lemma 5.4 (#)), the algebra A[C’, D] is
precisely B (see [21, Theorem 2.5]). According to Lemma 4.1 (4) we have e € ¢V and so
A [C‘dh(e)xe] is a cyclic extension of the ring A. Since @q.x% € ker @ by Corollary 2.6,
0 extends to a unique LFIHD &’ on B. Using further that dv € N we obtain a natural
isomorphism of M-graded algebras

piB B, XM (T

where E = k[o),][¢]. Consider ¢,d" the homogeneous LFIHD of horizontal type on E
given by

P D =o' Do,

where i € Z>q. Now, Lemma 5.5 (44) implies that ker 0.0 = k[o),] so that ¢.0 =
X¢ - O¢ for some non-trivial LFIHD O;. An easy computation shows that the LFIHD
0= ;.0 is as in (7).

Assume that chark = p > 0 and let us show that (a) holds. By Proposition 2.4 (d),
the exponential map of J¢ is given as in (6) for some integers 0 < 51 < ... < s,. If p
does not divide d, then consider | € Z>q \ pZ such that dl > p*'. Note that t\ € A. By
Lemma 2.13 and (7) we obtain the equality

AP () = A dig /A e+l pte

Since ") (') € A\ {0}, it follows that —1/d — h(p*e) € Z.
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Otherwise, assume that p divide d. By the minimality of d there exists m € oy, such
that dh(m) is not divisible by p. Taking | € Z>¢ such that dl > max{p*', —dh(m)} we
have t!x™ € A\ {0} and so Lemma 2.13 implies

9@ (™) = Aydh(m)t~ /AP e € A\ {0}

Hence in any case e; := (pSte,—1/d — h(p®te)) € M, where M = M x Z.
Let us remark that
ACD = @ k™ =Ky,
(m,l)e&ﬁ

where x(™!) = t!x™ and @ is the cone generated by (v,1) and (c,0). Since e € ¢V, an
easy computation shows that e; = (p°te, —1/d—h(p®‘e)) € Rt & for the distinguished ray
p = (dv,d). So by Corollary 3.7 the M -graded algebra A admits rationally homogeneous
LFIHDs of degree e;/p®t coming from the root e;. One of such rationally homogeneous
LFIHDs is given by the equality

)
eacal (tlxm) — Z (d(l +;l(m)>))\1itl—i(l/d+h(p31 e))Xm—i-ipSlexipsl7
=0

where A\; € k* is as (6). Furthermore, by Corollary 2.6 we extend 9; to a homogeneous
LFIHD &, on the M-graded algebra B. Assume that 7 > 2. One can see €9 and e”¥1 as
automorphisms of the algebra Blz] by letting e”® (x) = %% (2) = x. Hence, using this
convention we have

m{){)—l — ¢

-1 e
e® o (e vpL (X0c1)

where O, 1 is the LFTHD on k[(] defined by
e (¢) = ¢ + Z)\ixpsi .
i=2

Consequently, the map %9 o (e‘w{)_1 yields a homogeneous LFIHD 97 on A. Actually,
replacing O¢ 1 by O¢, the LIFHD 0} satisfies (7). Again, it follows that e; := (p*2e,
—1/d — h(p*>e)) € M is a root of &. One concludes by induction that (a) holds.

If char k = 0, then the locally nilpotent derivation 0é1) on the algebra k[(] is equal to
)\3% for some A € k*. Using (7) we have

oW (t) = Adt~ M RETe € A\ {0}

and so assertion (b) holds. This concludes the proof in the case where condition (z) holds.
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Assume now that (i7) holds. Let A’ be the normalization of A[t] in the field Frac A. By
Lemma 5.5 (#ii), we have d- M = h~'(Z) C L, where L is the sublattice of M generated
by the set of weights of ker 0. Hence, changing d by ¢,, - d for m € o/ ,,, without loss of
generality, we may assume e € oy;.

More precisely, replacing e by e 4+ m for some m € o,, does not change assertions
(a), (b) in the theorem. With this new assumption, again by Lemma 5.5, we extend 9 to
a homogeneous LFIHD 8 on A’ of horizontal type. By the previous argument (the case
where C' = A}) applied to (A’,d) and since 9 stabilizes k[ N M] we obtain (a) and (b).

It remains to show that if a lattice vector e verifies assertions (a), (b), then one can
build a homogeneous LFTHD on A = A[C, D] of horizontal type and of degree e as in (7).
Assume that chark > 0 and let e; = (e, —1/d — h(p®ie)). By (a) we have e; € Rt & and
we can consider the rationally homogeneous LEIHDS O, s, , - . ., Oe, s, on the semigroup
algebra k[?ix?] (see Example 3.2). Using the isomorphism ¢ and considering every % s
as automorphism of the ring A[x], a computation shows that the composition

E 8 Der s

e1:51 o e¥%2:52 o 0 e¥

em
defines an LFIHD as in (7). In the case where chark = 0, a similar argument can be
applied (see also [23, Examples 3.20 and 3.21]). We leave the details to the reader. O

For the proof of our next lemma, which is the last ingredient for our main theorem,
we need the following remark.

Remark 5.9. Assume that k is perfect and let » € Z~g. Then the Frobenius map F :
k — k mapping A — M" is a field automorphism. Let ¢ be a new variable and let 2 = ¢ .
We will compute the ramification of the field extension k(t)/k(z). Let P(x) = a;2" €
k[z] be an irreducible polynomial. Then

P(z) = P(t"") = (F*(P)(t))" , where F*(P)(t)=> F~'(a)t".

Hence F*(P)(t) is irreducible in k[t]. Let C' and C’ be unique projective curves over k
whose function fields are k(t) and k(z), respectively (both isomorphic to PL). The in-
clusion k(z) C k(¢) induces a purely inseparable morphism 7 : C' — C’. Our previous
computation shows that for every z € C the pullback of z as Weil divisor is given by
7*(z) = p" - 2/, where 2’ € C’ lies in the schematic fiber of z.

Let ® = > .~ A, - z be proper o-polyhedral divisor over a regular curve C. Recall
that h, stands for the support function of the o-polyhedron A, for all z € C, see
Definition 1.5.

Lemma 5.10. Assume that k is perfect. Let ® be a proper o-polyhedral divisor over
C = AL or C = PL, respectively. Assume that there exists a mazimal cone w on the
quasifan A(D) or A(Da1), respectively, such that for any z € C different from 0 and oo
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we have h,|, = 0. Let @ be an LFIHD of degree e on the algebra A[C,D,] given by
formula (7). Let p = chark if chark > 0 and p = 1 if chark = 0. Then 0 extends to
an LFIHD on A = A[C,D] if and only if for any m € oy, such that m + pte € oy, the
following hold.

(i) If ho(m +pte) # 0, then |p*h.(m + pte)| — [pFh.(m)| > 1, V2 € C, 2 # 0, 00.
(é@) If ho(m + p®te) # h(m + p*te), then |dho(m + p®te)| — |dho(m)] > 1 + dh(p®te).
(iii) If C =Py, then |dhoo(m +p*te)| — |dhoo(m)] > —1 — dh(pte).

Here h is the linear extension of hgl, to Mg, d € Z~ is the smallest positive integer
such that dh is integral and k is the unique non-negative integer such that d = d'p* with
ged(d', p) = 1.

Proof. Considering m € oy, we can write h(m) = (m,v) for some v € Ng. Since every
h, is upper convex, h,(m) <0 Vz € C'\ {0,00}, and obviously ho(m) < h(m). Letting

Ay = @B Kt - emx™,

meM

where ¢, = t~*(™)) and localizing by a homogeneous element of ker d, by Lemma 2.5,
0 extends to a homogeneous LFHID on Aj;. We also denote this extension by 0. Hence,
0 extends to an LFIHD on A if and only if the extension 0 on Aj; stabilizes A. In
addition, we may assume that k = k is algebraically closed since the extension O of 0
on Ay @ k stabilizes A @y k if and only if  stabilizes A.

For the characteristic zero case, the proof is available in [23, Lemma 3.26]. In the
sequel, we assume chark = p > 0. The proof is divided into three steps, (similar to [23,
Lemma 3.26]) where we assume h = 0, h(m) integral for all m and finishing with the
general case.

Case h = 0. In this case we have d = 1, L = M and by Theorem 5.8, 9 = x°d;
for some LFIHD 0, on k[t]. By Proposition 2.4 (d), the LFIHD 0, is determined by a
sequence of integers 0 < s; < ... < s,. Furthermore, since h, < 0 for any z € A}, then
hoo > 0 in the elliptic case. Fixing m € o), such that m + p®te € o)/, the conditions of
our lemma become:

(i') If hy(m + pte) # 0, then |h,(m +pte)| — |h.(m)| > 1Vz € AL.
(iii') If C =PL, then |hoo(m +p*te)] — [hoo(m)] > —1.

Under the above assumption we have
Ap = H(C,0c(D(m))) C K[t]

and O stabilizes A if and only if
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F(t) € Ay = 8 (f(1) € Amsic,Ym € 0¥y, Vi € Lo,
or equivalently,
divf+ [D(m)] > 0= divat(i)(f) + D(m+ie)] >0, VYme oy, Vi€ Zsg.
This is also equivalent to

ord, f + |ho(m)] > 0= ord, 0 (f) + |hs(m +ie)| > 0,
Vm € o), Vi € Z>o, Vz € C. (8)

We will first show the lemma in the case where C' = Aj.. Let us show first that
(') implies (8) and so O stabilizes A. If h,(m + p**e) # 0 with m € o), such that
m + pSte € oy;. Then we have h.(m) # 0 so that f € (t — 2)k][t].

Let ¢ € Z>0 If 8i)(f) = 0, then 8(-)(f) € Aptie. Otherwise, 8( )(f) # 0 and so
m + ie € 0. Letting ¢ = [p5* for some | € Z>(, we have ord, 8 (f) > ord,(f) — L.
Hence it follows that

ord, W (f) + [ha(m +ie) ] > ord.(f) + [ha(m)] + (Lhz(m + Ip*e)] — |ha(m)] = 1).

By convexity of ¥ for 1 < j <1 we have m + jpste € aV. If h,(m + ie) = 0, then
ord, W (f) + |h.(m +ie)] > 0 and (8) holds. Otherwise, h.(m + ie) # 0 and again
h.(m+ (I — j)p*te) # 0 for 1 < j < 1. Combining the previous inequality with ('), and
the fact that ord, f + |h.(m)]| > 0 we obtain

ord, 00 (f) + [ha(m +ie)] > ord, (f) + [ha(m)
l
+Z lhe(m+ (I — j)p°te+ p°te)]

— [h(m+ (I =j)p*e)] = 1) 2 0.

This yields (8) in the case where C' = A[.

Now, we show the converse. Assume that C' = All( and that O stabilizes A. Recall that
0 stabilizes A if and only if (8) holds. If w is the unique maximal cone in A(D), then
h is identically zero for all z € C and so (¢) is trivially satisfied. Therefore the lemma
follows in this case.

In the sequel, we assume that A(®D) has at least two maximal cones. Let wy € A(D)
be a maximal cone different from w. Then there exists a lattice vector m € rel.int wy
such that h,(m) € Z and 9™ (¢,,) # 0 for some | € Z>g. Note that here kerd =
EBmewM k - o x™. Taking m big enough we may suppose that —h,(m) > [p°* and by
Lemma 2.13 we may suppose that

ord, 8,5(lp51)(<pm) = —h,(m)—1.
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By (8) we have
|h(m +Ip®e)| —hy(m)—1>0. (9)

Letting h, be the linear extension of hz|w, we have

[ho(m +1p™e)] = [ha(m) + 1h.(p* e)| = ho(m) + [Ih.(p'e)] . (10)
Now, (9) and (10) yield

tha(p*e) 2 [1ha(p*e)] > 1
and so h,(p®te) > 1. Finally, letting m € o),, we obtain
[ha(m+p™e)] = [ha(m)] + [ho(p* e)] > [ho(m)] +1.

This yields (i') and so concludes the proof of the lemma in the case where C' = A[.

Assume now that C = PL. Then for z € C \ {oc} and for any m € o), such that
Ay, # 0, we can find ¢, , € A, satisfying ord, (¢m, ) + [h.(m)]| = 0. Replacing ¢,, by
©m,» in the previous argument and using Lemma 2.13 for z = oo in an analog way as in
the above proof, we obtain the equivalence between (8) and (i'), (éit).

Case h integral. Again in this case we have d = 1. Let v € N be such that
(m,v) = h(m) for all m € wys. Let us consider the polyhedral divisor defined by
D =D+ (—v+o0)-0if Cis affine, and by ' =D+ (-v+0) -0+ (v+o0) - o0 if
C' is projective. Now A is equivariantly isomorphic to A[C,D’] and A[C,®’] is as in the
case where h = 0. Conjugating 0 by the equivariant isomorphism A ~ A[C,®’] (see |21,
Proposition 4.5]), the algebra A is d-invariant if and only if assertions (i), (4’) hold
for the polyhedral divisor ©’. An easy computation shows that this is equivalent to ®
satisfying (7), (%), ().

General case. Now, we assume that h is not integral, i.e., that d > 1. Let us consider
the normalization B of the cyclic extension A[¢~(®)y*] C k(¢)[M], where (¢ =t and
w € rel. int(w) N M satisfies ged(dh(w), d) = 1. We remark that B is naturally M-graded.
Furthermore,

Ké:{%m,beBm, me M, andb#O}:k(C).

Hence, B = A[C’,D'], where C' ~ PL if A is elliptic and C” ~ A} otherwise. We let k
and d’ be the unique pair of positive integers such that d = d'p* with ged(d’,p) = 1. Let
7w : C'" — C be the morphism induced by the field inclusion Ky = k(t) C k(¢) = Kj.
Then by Lemma 1.10, Remark 5.9 and [33, Section 3.12, Exercise 3.8], we obtain

d-Ag-[0] + Zz/ecl\{o} pFA, 2 ifC = All(
d- Do [0]+ 3. con ooy P Az -2 +d- A - [o0], if O =Ty

D =
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This yields hf, = dhg, h', = dhs and h’, = p*h,, where 7(z') = z and h’, is the
support function of the coefficient A’, of ® at z’. Moreover, hy|,, is integral and so the
algebra B satisfies the conditions of the previous case (h integral). We let A’ : Mg — R
be the linear extension of hg|,.

Let

By = @ ¢, -k[¢]-x™, where ], = ¢ "M

Since Ay C By is a cyclic extension, by Corollary 2.6 the LFIHD 0 on Aj,; extends to
an LFTHD &’ on Bj,. Furthermore, d stabilizes A if and only if 0’ stabilizes B (see the
argument in [23, Lemma 3.26]).

By the previous case, B is stabilized by @' if and only if for every m € o), such that
m + pSte € oy, the following conditions are satisfied.

(&) It L, (m + p°te) # 0, then [l (m +p*te)| — |h,,(m)] >1,Vz € C', 2/ #0,00.
(") TE By(m + pe) # W (m + pie), then [y(m +pe)] — [By(m)) > 1+l (p*ic).
(iii”) If C =P}, then |hL (m + pte)] — Al (m)] > —1 — K (p*te).

Now, the lemma follows replacing b’ by dh, h{ by dhg, h’y, by dhs and h’. by p*h, for
all 2’ e C', 2z #£0,00. O

The following is our main result in this section. It gives a classification of horizon-
tal LFTHDs on affine T-varieties of complexity one over a perfect field. It is a direct
consequence of the results in this section.

Theorem 5.11. Assume that the base field k is perfect. Let p = chark if chark > 0 and
p=1if chark = 0. Let © be a proper o-polyhedral divisor over a regular curve C' and
let A= A[C,D]. Let w C My be a rational cone and let e € M be a lattice vector.

Then there exists a homogeneous LFIHD on A of horizontal type with degd = e and
with w as weight cone of ker 0 if and only if the following conditions hold.

(i) C=As or C=PL.
(ii) If C = AL, then w is a mazimal cone in the quasifan A(D), and there exists a
rational point zo € C' such that h, is integral Vz € C, 2 # 2.
(ii") If C = PL, then there exists a rational point zs such that (i) holds for Co :=
PL\ {20}

Without loss of generality, we may suppose that zo = 0, zoo = 00, and h.|, = 0 Vz €
C,z # 0,00. Let also h be the linear extension of hol, to Mg given by h(m) = (m,v)
for some v € Ny, let d > 0 be the smallest integer such that dh is integral and let k be
the unique non-negative integer such that d = d'p*, with ged(d',p) = 1. Let T = w" and
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denote by T the cone in N generated by (v,1) and (7,0) if C = AL and by (v,1), (7,0)
and (Ao, —1) if C =PL.

(iit) There exists s1 € Zxqo such that (p**e,—1/d — h(p*‘e)) € Rt 7.
For any m € oy, such that m + pSte € o, the following hold.

(i) If h.(m + pte) # 0, then |p*h.(m + pte)] — |p*h.(m)] > 1,Vz € C,z # 0, 00.
(v) If ho(m + p°te) # h(m + p°te), then |dho(m + p*te)| — |dho(m)| > 1 + dh(p®te).
(vi) If C =Py, then |dhoo(m + p*te)| — |dhoo(m)] > —1 — dh(p*te).

More precisely, all possible homogeneous LFIHD 0 on A of horizontal type with e,w
satisfying (i)—(iv) are given by the formula (7) in Theorem 5.8. If chark > 0, then O is
described by a sequence of integers 0 < s1 < s9 < ... < s, where every (psie, -1/d —
h(p*ie)) belongs to RtT. Moreover,

ker 0 = @ komx™,

mewr,

where L = h=Y(Z) and @, € A, satisfies the relation
divp, +D(m) =0 if C=Ag or (dives)lo, +D(m)|c, =0 if C =P

Example 5.12. Let the notation be as in Example 1.8. By Theorem 5.11, there exists a
homogeneous LFTHD on A with degree degd = e = (1, 2) and with weight cone w of ker 9
equal to the cone generated by (0,1) and (1,1) in Mg. Indeed, (i) holds since C = PL
and (77) holds with zg = 0 and 2o, = co. With this choice, h.|, = 0 for all z € C,
z # 0,00. The vector v € Ny such that h(m) = (m,v) corresponds to v = (1/2,0). The
cone 7 is generated in Ng by (1,0) and (—1,1) and the cone 7 in Ng is generated by
(1,0,2), (—1,1,0) and (1,0, —2). Taking s; = 0, we have that (e,—1) = (1,2,—1) € Rt T
so that (éi¢) holds. Furthermore, a straightforward verification shows that (iv), (v) and
(vi) hold.

Example 5.13. We assume in this example that the ground field k is algebraically closed
of characteristic 2. Let us consider the Bertin surface

Was = {2?y=x+2°} CA}
of type (2,5). This is a smooth affine surface endowed with the G,,-action
A (.’E, Y, Z) = ()\5.%, )‘_Syv )‘Z)v

where A € G, and (z,y,2) € Wy 5. Consider the polyhedral divisor
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1 1
D=<-5-10 0,—1(-[1
{3} 0+ fot]
over the affine line Al = All(. Here we have N = M = Z. The elements

z=t""\" y=(t+1)itx ", z=x"

generate the Z-graded algebra A = A[A!, D] and satisfy the equation of W5 5. Hence we
may identify the G,,-surface X = Spec A with W3 5. The quotient map by the G,,-action
is

7w (z,y,2) > t=zy+ 1L
The fiber 771(1) consists in two distinct toric curves which intersect only at the origin:
71 (1) = {(0,5,0) |y € k} U{(",0,2) | z € k}.
In the setting of Theorem 5.11, we may take zp = 0 so that 7 = R>( and
7 =R>0(1,0) + Rx>o(L, 5).

If e=1and s:=s; = 2, then (2%, —% — 226) = (4, —1) is a Demazure root of 7 with

distinguished ray (1, 5). Condition (iv) of Theorem 5.11 is not fulfilled. The corresponding

homogeneous iterative higher derivation 0 verifies the formula
o0
5l 4+m . Y
eaa tl my _ l—i, m+4i  4i
i =3 (M)
1=0
for any (m,l) € Z*. This implies directly that

e*9(z) = x and e*?(2) = z + oz,

and so the subalgebra k[z, z] C A is d-stable. However, we have 0 (y) = tx~! ¢ A.

Now let us take e = 1 and s = 6. Then (2%¢, —1 — 25—6) = (64, —13) is a Demazure

root of 7. The conditions of Theorem 5.11 are satisfied and the associated LFIHD 9’ has
exponential map

= /5l+m

ad (gl my _ 1—13i. m~+64i 64

e (tx)—Z( . )t 64040
=0

Therefore

e (z) =z, e (2) = z + a2,

and
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@ () = 21 (1 + €29 (1)) = y + a4z 1124 4 0250550, 4 320,63,
The kernel of &' is the subalgebra k[z] C A.

Remark 5.14. A generalization of [23, Section 4.1] allows to define and compute the ho-
mogeneous Makar-Limanov invariant of an affine T-variety of complexity one of arbitrary
characteristic. Due to lack of space, we omit this straightforward generalization.
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