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Introduction

Let k be an arbitrary field. In this paper a variety X is an integral separated scheme 
of finite type over the field k. We assume further that k is algebraically closed in the 
field of rational functions k(X). A point in X is a not necessarily rational closed point. 
A variety is called normal if all its local rings are integrally closed domains. All algebraic 
group actions are, in particular, regular morphisms.

Let T = Gn
m be the n-dimensional split algebraic torus, where Gm stands for the 

multiplicative group of k. A T-variety is a normal variety endowed with an effective action 
of T. The complexity of a T-variety X is the non-negative integer dimX − dimT. If the 
base field k is algebraically closed, then the complexity of X can be read off geometrically 
as the codimension of the generic orbit. The best known examples of T-varieties are those 
of complexity zero, called toric varieties.

Let Ga be the additive group of the field k. The main result of this paper is a classifi-
cation of the Ga-actions on an affine T-variety X that are normalized by T in the cases 
where X is of complexity zero or one. This generalizes a paper by the second author [23], 
where the same result is obtained in the particular case where k is algebraically closed 
and of characteristic zero. The case of normalized Ga-actions on an affine Gm-surface 
over the field of complex numbers was first studied in [16].

Let M be the character lattice of T and let N be the lattice of one-parameter sub-
groups. We have a natural duality MR × NR → R given by (m, v) �→ 〈m, v〉 between 
the vector spaces MR = M ⊗Z R and NR = N ⊗Z R. Recall that T-actions on an affine 
variety corresponds to M -gradings on its coordinate ring.

Affine T-varieties can be described in combinatorial terms. In the case of toric varieties, 
there is the well-known description of affine toric varieties via strongly convex rational 
polyhedral cones in NR [12,30]. In 2006, Altmann and Hausen gave a combinatorial 
description of affine T-varieties of arbitrary complexity over an algebraically closed field 
of characteristic zero [1]. This intersects with previous works by several authors [18,13,34,
15,35] (see also [2,3] for the theory of non-necessarily affine T-varieties). Furthermore, in 
a recent paper, the first author generalized the combinatorial description due to Altmann 
and Hausen to the case of affine T-varieties of complexity one over an arbitrary field [21].

The combinatorial description of affine T-varieties of complexity one that we will use 
in this paper encodes an affine T-variety X with a triple (C, σ, D), where C is a regular 
curve, σ is a strongly convex rational polyhedral cone in NR and D is a σ-polyhedral 
divisor on C, i.e., a divisor in C whose coefficients instead of integers are polyhedra in NR

that can be decomposed as a Minkowski sum Q + σ with Q a compact polyhedron (see 
Section 1 for details).
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It is well known that the additive group actions on an affine variety X = SpecA are 
in one to one correspondence with certain sequences ∂ = {∂(i) : A → A}i∈Z≥0 of k-linear 
operators on A called locally finite iterative higher derivations [27,8,9], or LFIHDs for 
short (see Definition 2.1 for details). Now, assume that X = SpecA is an affine T-variety 
and let ∂ be an LFIHD on A. The LFIHD ∂ is called homogeneous of degree e ∈ M

if every ∂(i) is homogeneous of degree ie. Furthermore, in positive characteristic, we 
introduce the technical notion of rationally homogeneous LFIHDs as follows: let p > 0
be the characteristic of k and let r ∈ Z≥0, then ∂ is called rationally homogeneous of 
degree e/pr if ∂(ipr) is homogeneous of degree ie and ∂(j) = 0 whenever pr does not 
divide j.

In the case where k is algebraically closed, the notion of (rationally) homogeneous 
LFIHD translates into geometric terms in the following way. An LFIHD on A is homo-
geneous if and only if the corresponding Ga-action on X is normalized by the T-action. 
Moreover, let Fpr : Ga → Ga be the Frobenius map sending t �→ tp

r . If ∂ is an LFIHD 
and φ : Ga → Aut(X) is the corresponding Ga-action, then ∂ is rationally homogeneous 
if and only if φ ◦ F−1

pr is normalized by the T-action for some r ∈ Z≥0 (see Proposi-
tion 2.8). In this case we say that φ is normalized by the T-action up to a Frobenius 
map.

The kernel ker ∂ of an LFIHD ∂ is defined as the intersection of ker ∂(i) for all i ∈ Z>0; 
it is equal to the ring k[X]Ga of Ga-invariant regular functions on X and Frac(ker ∂) corre-
sponds to the field k(X)Ga of Ga-invariant rational functions on X. Denote by k(X)T the 
field of T-invariant rational functions on X. A (rationally) homogeneous LFIHD is called 
vertical if k(X)T ⊆ k(X)Ga and horizontal otherwise. When k is algebraically closed, 
the horizontal condition means geometrically that the general Ga-orbits are transverse 
to the rational fibration defined by the T-action.

Let X = SpecA be the affine toric variety given by the strongly convex rational cone 
σ ⊆ NR. We denote by σ(1) the set of extremal rays of the cone σ. In Theorem 3.5 we 
classify normalized Ga-actions on affine toric varieties. They are described by Demazure 
roots of the cone σ, i.e., vectors e ∈ M such that there exists ρ ∈ σ(1) with 〈e, ρ〉 = −1
and 〈e, ρ′〉 ≥ 0, for all ρ′ ∈ σ(1) different from ρ. We also classify Ga-actions on affine 
toric varieties that are normalized up to a Frobenius map (see Corollary 3.7). Let us 
mention some developments from the theory of Demazure roots. The reader may consult 
[12,10,29,7,11,5] for the study of automorphisms of complete T-varieties via Demazure’s 
roots and [25,19] for the roots of the affine Cremona groups. See also [22] for a geometric 
description in the setting of affine spherical varieties.

Let now X = SpecA be an affine T-variety of complexity one given by the triple 
(C, σ, D). The classification of normalized Ga-actions on such an X is divided into two 
theorems corresponding to vertical and horizontal LFIHDs. The classification of vertical 
LFIHDs on A is given in Theorem 4.4. They are described by pairs (e, ϕ), where e is 
a Demazure root of σ and ϕ is a global section of the invertible sheaf OC(D(e)). The 
Q-divisor D(e) is uniquely determined by D and e in a combinatorial way. The classifi-
cation of horizontal LFIHDs on A is only available when k is perfect, see Theorem 5.11. 



K. Langlois, A. Liendo / Journal of Algebra 449 (2016) 730–773 733
Its combinatorial counterpart is different from the characteristic zero case (compare with 
[23, Theorem 3.28]) and is related to the description of rationally homogeneous LFIHDs 
on affine toric varieties.

The content of the paper is the following. In Section 1 we present the combinatorial 
description of affine T-varieties of complexity one that will be used in this paper. In 
Section 2 we introduced the background results on Ga-actions. In Section 3 we obtain our 
classification result for toric varieties. Finally, the classification of normalized Ga-actions 
on affine T-varieties of complexity one is divided in Sections 4 and 5 corresponding to 
the vertical and horizontal cases, respectively.

1. Generalities on affine TTT-varieties of complexity one

In this section, we recall a combinatorial description of affine T-varieties of complexity 
one over an arbitrary field [21, Section 3]. Let k be field and let X = SpecA be an affine 
variety over k. We start by introducing some notation from convex geometry (see e.g. 
[30] or [1, Section 1]).

1.1. Let T � Gn
m be a split algebraic torus over k. Denote by M = Hom(T, Gm) the 

character lattice of T and let N = Hom(Gm, T) be the lattice of one-parameter subgroups. 
We have a natural duality MR×NR → R given by (m, v) �→ 〈m, v〉, where MR = M⊗ZR

and NR = N ⊗Z R are the associated real vector spaces. We also let MQ = M ⊗Z Q and 
NQ = N ⊗Z Q be the corresponding rational vector spaces.

A rational cone in NR is a cone generated by a finite subset of N . If σ ⊆ NR is a 
rational cone, then we let σ∨ ⊆ MR be its dual cone, i.e., the cone of real linear forms 
on MR that are non-negative on σ. Recall that the dual cone σ∨ of a rational cone is 
again rational. The relative interior of a rational cone σ ⊆ NR, denoted by rel. int(σ), is 
the topological interior of σ in the span of σ inside NR.

For any face F ⊆ σ the set F � stands for the dual face of F in σ∨, i.e., F � = F⊥∩σ∨. 
A rational cone σ is strongly convex if 0 is a face of σ. This is equivalent to say that the 
dual σ∨ ⊆ MR is full dimensional. For any rational cone ω ⊆ MR we let ωM = ω ∩M .

Furthermore, given a subsemigroup S ⊆ M we let

k[S] =
⊕
m∈S

kχm

be the semigroup algebra of S defined by the relations χm ·χm′ = χm+m′ for all m, m′ ∈ S

and χ0 = 1.
For any integer d ≥ 0 and any polyhedron Δ ⊆ NR we let Δ(d) be the set of faces of 

dimension d. In particular, Δ(0) is the set of vertices of Δ.
Let σ ⊆ NR be a strongly convex rational cone. We define Polσ(NR) as the set of 

polyhedra in NR that can be written as a Minkowski sum Q + σ, where Q ⊆ NR is a 
rational polytope, i.e., a bounded polyhedron having its vertices in the rational vector 
space NQ.
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1.2. A T-variety is a normal variety endowed with an effective action of the algebraic 
torus T. Recall that a T-action X = SpecA is equivalent to an M -grading of the alge-
bra A. In algebraic terms, a T-action on X is effective if and only if the semigroup of 
weights of A generates M . In this case the weight cone σ∨ of A is the dual of a strongly 
convex rational cone σ ⊆ NR.

1.3. Let X = SpecA be an affine T-variety. Letting K0 = k(X)T be the field of T-invariant 
rational functions on X we can write

A =
⊕

m∈σ∨
M

Amχm

as an M -graded subalgebra of K0[M ]. Here, σ∨ ⊆ MR is the weight cone of A, χm is 
a weight vector in k(X), A0 = K0 ∩ A, and Am is an A0-module contained in K0. 
Furthermore, the weight vectors satisfy χ0 = 1, and χm ·χm′ = χm+m′ for all m, m′ ∈ M .

The complexity of the T-variety X is the transcendence degree of the field extension 
K0/k. Since the action is effective, it is also equal to rankM − dimX. In geometrical 
terms, when k = k̄ is algebraically closed the complexity is the codimension of the 
generic T-orbit.

A toric variety is a T-variety of complexity zero. An affine toric variety X = SpecA is 
completely determined by the weight cone σ∨ of A. Conversely, given a strongly convex 
rational cone σ ⊆ NR, we can define an affine toric variety by letting Xσ := Speck[σ∨

M ].
Another important class of affine T-varieties is provided by the surface case. If X is 

an affine Gm-surface, then the coordinate ring A = k[X] is endowed with a Z-grading. 
Up to reversing the grading, we can assume that the subspace A+ =

⊕
m∈Z>0

Amχm is 
nonzero. We distinguish three cases (see [14]).

(i) The elliptic case: A− =
⊕

m∈Z<0
Amχm = 0 and A0 = k.

(ii) The parabolic case: A− = 0 and A0 
= k.
(iii) The hyperbolic case: A− 
= 0.

More generally, an affine T-variety X = SpecA of complexity one is called elliptic if 
A0 = k (see [23, Section 1.1]).

To provide a description of affine T-varieties of complexity one, we need to consider 
the Weil divisors theory on regular algebraic curves. In the next paragraph, we recall the 
definitions we need.

1.4. Let C be a regular curve over k. By a point belonging to C we mean a closed point. 
Letting z ∈ C we let [κz : k] be the degree of the point z defined as the dimension 
of residue field κz of z over k (see [33, Proposition 1.1.15]). A point z ∈ C of degree 
one is called a rational point. For a nonzero rational function f ∈ k(C)∗ the associated 
principal divisor is
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div f =
∑
z∈C

ordz f · z ,

where ordz f is the order of f at the point z. The degree of a Weil Q-divisor D =∑
z∈C az · z is the rational number

degD =
∑
z∈C

[κz : k] · az .

If C is projective, then we have deg div f = 0 (see [33, Theorem 1.4.11]). In addition, we 
let �D� =

∑
z∈C�az� · z be the integral Weil divisor obtained by taking the integral part 

of each coefficient of D. Similarly, the Q-divisor {D} = D−�D� stands for the fractional 
part of D. The space of global sections of the Q-divisor D is defined by

H0(C,OC(D)) := H0(C,OC(�D�)) = {f ∈ k(C)∗ | div f + D ≥ 0} ∪ {0}.

When C is projective, H0(C, OC(D)) is usually called the Riemann–Roch space of D.

The following has been introduced in [1] for any complexity in the case where k is 
algebraically closed of characteristic zero. In our context, we give a similar definition.

Definition 1.5. Let C be a regular curve over k. Consider σ ⊆ NR a strongly convex 
rational cone. A σ-polyhedral divisor over C is a formal sum D =

∑
z∈C Δz · z, where 

each Δz ∈ Polσ(NR) and Δz = σ for all but finitely number of z. For every coefficient 
Δz of the σ-polyhedral divisor D we define hz as the piecewise linear map hz : MR → R

given by m �→ minv∈Δz(0)〈m, v〉. We remark that hz restricted to σ∨ ⊆ MR corresponds 
to the support function of Δz.

For any m ∈ MQ we define the evaluation of D as the Q-divisor

D(m) =
∑
z∈C

hz(m) · z .

We denote by Λ(D) the coarsest refinement of the quasifan of σ∨ such that the map 
m �→ D(m) is linear in each cone. We also define the degree of D as

degD =
∑
z∈C

[κz : k] · Δz ∈ Polσ(NR) .

A σ-polyhedral divisor D =
∑

z∈C Δz · z is called proper if it satisfies one of the 
following conditions.

(i) the curve C is affine, or
(ii) the curve C is projective, the polyhedron degD is a proper subset of σ, and for every 

m ∈ σ∨
M such that degD(m) = 0, a nonzero integral multiple of D(m) is principal.
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Actually, polyhedral divisors are combinatorial objects that allow us to construct 
multigraded algebras, as explained in the following.

Notation 1.6. To a σ-polyhedral divisor D =
∑

z∈C Δz ·z over C we associate the rational 
T-submodule

A[C,D] =
⊕

m∈σ∨
M

Am · χm ⊆ K0[M ],

where Am = H0(C,OC(D(m))
)

and K0 = k(C) .

Given m, m′ ∈ σ∨
M , the evaluations satisfy D(m) +D(m′) ≤ D(m +m′). Hence, for every 

f ∈ Am and every g ∈ Am′ , the product fg lies on Am+m′ . This multiplication rule 
turns the vector space A[C, D] into an M -graded subalgebra.

For a non-empty open subset C0 ⊆ C we let

D|C0 =
∑
z∈C0

Δz · z

be the restriction of D to C0.

The following yields a description of the coordinate ring of an affine T-variety of 
complexity one (for a proof see [21, Theorem 4.3]). This description intersects with some 
classical cases; see [35,34] for complexity one case, [1] for higher complexity, and [15] for 
the Dolgachev–Pinkham–Demazure presentation of affine complex C∗-surfaces. For the 
functorial properties of this description see [21, Proposition 4.5].

Theorem 1.7.

(i) If D is a proper σ-polyhedral divisor on a regular curve C over k, then the M -graded 
algebra A[C, D] =

⊕
m∈σ∨∩M Am, where

Am = H0(C,OC(D(m))),

is the coordinate ring of an affine T-variety of complexity one over k.
(ii) Conversely, to any affine T-variety X = SpecA of complexity one over k, one can 

associate a pair (CX , DX,γ) as follows.
(a) CX is the abstract regular curve over k defined by the conditions k[CX ] = k[X]T

and k(CX) = k(X)T.
(b) DX,γ is a proper σX-polyhedral divisor over CX , which is uniquely determined 

by X and by a sequence γ = (χm)m∈M of k(X) as in 1.3.
We have a natural identification A = A[CX , DX,γ ] of M -graded algebras with the 
property that every homogeneous element f ∈ A of degree m is equal to fmχm, for 
a unique global section fm of the sheaf OCX

(DX,γ(m)).
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Example 1.8. Let M = Z2 and let σ be the first quadrant in the vector space NR = R2. 
We also let Δ0 = (1/2, 0) + σ, Δ1 = L + σ and Δ∞ = (1/2, 0) + σ, where L is the line 
segment joining the points (0, 0) and (−1/2, 1/2).

Letting k be an arbitrary field and C = P1
k we let D be the σ-polyhedral divisor 

D = Δ0 · [0] + Δ1 · [1] + Δ∞ · [∞] over C. The degree of D is degD = L′ + σ, where L′

is the line segment joining the points (1, 0) and (1/2, 1/2).

Hence degD � σ and D is proper. Let A = A[C, D] and X = SpecA. A direct 
computation shows that the elements

u1 = t− 1
t

· χ(2,0), u2 = χ(0,1), u3 = χ(1,1), u4 = (t− 1)2

t
· χ(2,0), and

u5 = (t− 1)2

t
· χ(3,0)

generate the algebra A. Furthermore, a minimal set of relations satisfied by these gener-
ators is given by u2u5 − u3u4 = 0, u3u5 − u2

1u2 − u1u2u4 = 0 and u2
5 − u2

1u4 − u1u
2
4 = 0. 

Hence

A � k[x1, x2, x3, x4, x5]/(x2x5 − x3x4 , x3x5 − x2
1x2 − x1x2x4 , x

2
5 − x2

1x4 − x1x
2
4) .

The following result provides a calculation of the Altmann–Hausen presentation in 
terms of polyhedral divisors when we extend the scalars to an algebraic closure of k, see 
[21, Proposition 3.9].



738 K. Langlois, A. Liendo / Journal of Algebra 449 (2016) 730–773
Lemma 1.9. Assume that k is a perfect field, and let k̄ be an algebraic closure of k. The 
absolute Galois group of Gk̄/k acts on the closed points of the curve

Ck̄ = C ×Spec k Spec k̄

which can be identified with the set of the k̄-rational points of C(k̄). The orbit space 
C(k̄)/Gk̄/k can be identified with C. We denote by S : C(k̄) → C the quotient map. 
If D =

∑
z∈C Δz · z is a proper σ-polyhedral divisor over C, then

A[C,D] ⊗k k̄ = A
[
C(k̄),Dk̄

]
,

where Dk̄ is the proper σ-polyhedral divisor over C(k̄) defined by

Dk̄ =
∑
z∈C

Δz · S�(z) with S�(z) =
∑

z′∈S−1(z)

z′.

The proof of the following result is exactly the same as in [23, Lemma 1.6].

Lemma 1.10. Let A = A[C, D], where C is a regular curve over k with field of ratio-
nal functions K0 and D =

∑
z∈C Δz · z is a proper σ-polyhedral divisor. Consider the 

normalization A′ of the cyclic extension A[sχe], where e ∈ M , sd ∈ A homogeneous of 
degree de, and d ∈ Z>0. If k is algebraically closed in A′, then A′ = A[C ′, D′] where C ′

and D′ are defined by the following.

(i) If A is elliptic, then A′ is also and C ′ is the regular projective curve associated with 
the algebraic function field K0[s].

(ii) If A is non-elliptic, then A′ is also and C ′ = SpecA′
0, where A′

0 is the normalization 
of A0 in K0[s].

(iii) In both cases D′ =
∑

z∈C Δz · π∗(z), where π : C ′ → C is the natural projection.

2. Generalities on GGGa-actions

Let X = SpecA be an affine T-variety over an arbitrary field k. In this section, we 
study the relation between Ga-actions on X that are normalized by the torus action and 
homogeneous locally finite iterative higher derivations.

Definition 2.1. Let ∂ = {∂(i)}i∈Z≥0 be a sequence of k-linear operators on A. We say 
that ∂ is a locally finite iterative higher derivation (LFIHD for short) if it satisfies the 
following conditions:

(i) The operator ∂(0) is the identity map.
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(ii) For any i ∈ Z≥0 and for all f1, f2 ∈ A we have the Leibniz rule

∂(i)(f1 · f2) =
i∑

j=0
∂(j)(f1) · ∂(i−j)(f2) .

(iii) The sequence ∂ is locally finite, i.e. for any f ∈ A there exists a positive integer r
such that for any i ≥ r, ∂(i)(f) = 0.

(iv) For all i, j ∈ Z≥0 and for any regular function f ∈ A we have

(
∂(i) ◦ ∂(j)

)
(f) =

(
i + j

i

)
∂(i+j)(f) .

Furthermore, if ∂ verifies only (i), (ii), (iv), we say that ∂ is a iterative higher derivation. 
If ∂ verifies only (i), (ii), we say ∂ is a Hasse–Schmidt derivation (see [36]).

Consider an action

φ : Ga ×X → X

of the additive group Ga over k. Then the comorphism φ∗ gives a sequence ∂ =
{∂(i)}i∈Z≥0 of k-linear operators on A defined by the following way. For any f ∈ A

we write

φ∗(f) =
∞∑
i=0

∂(i)(f) · xi ∈ A⊗k k[x], where k[x] = k[Ga]

is the polynomial algebra in one variable. An easy computation shows that ∂ is an 
LFIHD [27]. Conversely, given an LFIHD ∂ on A, its exponential map

ex∂ :=
∞∑
i=0

∂(i) xi

is the comorphism of a Ga-action on X = SpecA.

Remark 2.2. Consider an LFIHD ∂ on A. For a positive integer i we let(
∂(1)

)◦ i

= ∂(1) ◦ . . . ◦ ∂(1)

be the composition of i copies of ∂(1). Denoting by p the characteristic of the field k, we 
have the equality

∂(i) =
(
∂(1))◦ i0 ◦

(
∂(p))◦ i1 ◦ . . . ◦

(
∂(pr))◦ ir

,
(i0)!(i1)! . . . (ir)!
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where i =
∑r

j=0 ij · pj is the p-adic expansion1 of i. If further p = 0, then the Ga-action 
is therefore uniquely determined by the locally nilpotent derivation ∂(1).

In characteristic zero, the algebra of invariants of a Ga-action on the variety X =
SpecA is the kernel of the associated locally nilpotent derivation on A. The following 
definition describes the arbitrary characteristic case.

Definition 2.3. For an LFIHD ∂ on the algebra A its kernel is the subset

ker ∂ :=
{
f ∈ A | ∂(i)(f) = 0, for all i ∈ Z>0

}
.

This is the subalgebra of invariants AGa ⊆ A for the Ga-action corresponding to ∂. The 
LFIHD ∂ is non-trivial if ker ∂ 
= A. A subspace V ⊆ A is called ∂-invariant if for 
any i ∈ Z≥0, we have the inclusion ∂(i)(V ) ⊆ V . In particular, the subspace ker∂ is 
∂-invariant. For any f ∈ A we define the multiplication f∂ as the sequence of k-linear 
operators f∂ = {f i∂(i)}i∈Z≥0 . It is easy to check that f∂ is an LFIHD if and only if 
f ∈ ker ∂.

The next result provides some useful properties of Ga-actions, see [9, 2.1, 2.2] and [8, 
Example 3.5].

Proposition 2.4. For every non-trivial LFIHD ∂ on the algebra A the following hold.

(a) The subring ker ∂ ⊆ A is factorially closed, i.e., for all f1, f2 ∈ A we have f1f2 ∈
ker ∂ \ {0} implies f1, f2 ∈ ker ∂.

(b) The subring ker ∂ is algebraically closed in A.
(c) The subring ker ∂ is a subring of codimension one in A.
(d) If char(k) = p > 0 and A = k[y] is the polynomial ring in one variable, then there 

are some c1, . . . , cr ∈ k∗ and some integers 0 ≤ s1 < . . . < sr such that

ex∂(y) = y +
r∑

i=1
ci · xpsi

.

(e) If A∗ is the set of units of A, then A∗ ⊆ ker ∂ so that A∗ = (ker ∂)∗.
(f) A principal ideal (f) = fA is ∂-invariant if and only if f ∈ ker ∂.

Proof. Assertions (a), (b) and (c) are obtained by using the degree function

A \ {0} → Z≥0, f �→ degx ex∂(f) .

1 When p = 0 we make the convention that the p-adic expansion is i = i0.
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In particular, we remark that (b) implies that the ring ker ∂ is normal whenever A is 
normal. Assertion (d) is proven in [8, Example 3.5]. Assertion (e) is an easy consequence 
of (a).

Using arguments from [15, 2, 1.2 (b)] we give a short proof of (f). Assume that f is 
nonzero. By Definition 2.1 (iii) we can consider d ∈ Z≥0 such that f ′ := ∂(d)(f) 
= 0
and belongs to ker ∂. If the ideal (f) is ∂-invariant, then f ′ ∈ ker ∂ ∩ (f) so that f ′ = af

for some a ∈ A. By Proposition 2.4 (a) we obtain f ∈ ker ∂. Conversely, let a′ ∈ A. By 
Definition 2.1 (ii), for any i ∈ Z≥0 we have ∂(i)(a′f) = ∂(i)(a′)f and so the ideal (f) is 
∂-invariant. �

In the next lemma, we study the extensions of LFIHDs on the algebra A to the 
localization ring T−1A given by a multiplicative system T ⊆ A. We were inspired by 
well-known computations with the Hasse–Teichmüller derivatives (cf. [17, Section 2]). 
For this lemma, we let

E(i, j) =
{

(s1, . . . , sj) ∈ Z
j
>0 |

j∑
�=1

s� = i

}
for all integers i, j ∈ Z>0, such that j ≤ i .

Lemma 2.5. Let T be a subset of A stable under multiplication such that 0 /∈ T and 1 ∈ T .

(i) If ∂ be an iterative higher derivation on the algebra A, then ∂ extends to a unique 
iterative higher derivation ∂̄ = {∂̄(i)}i∈Z≥0 on the algebra T−1A given by

∂̄(i)
(

1
f

)
=

i∑
j=1

(−1)j

f j+1

∑
(s1,...,sj)∈E(i,j)

∂(s1)(f) . . . ∂(sj)(f)

for all f ∈ T and all i ∈ Z>0.
(ii) Furthermore, if ∂ is an LFIHD on A and if T ⊆ ker ∂, then the extension ∂̄ on 

T−1A is an LFIHD.

Proof. The existence and the uniqueness of ∂̄ is given in [26, 3.7, 5.8], [36, Section 3]. 
Proceeding by induction the computation of ∂̄(i)( 1

f ) is an easy consequence of Defini-
tion 2.1 (ii). The rest of the proof is straightforward. �

As a consequence of the previous lemma, we obtain a result on equivariant cyclic 
coverings of an affine variety with a Ga-action (see also [16, Lemma 1.8]).

Corollary 2.6. Let K = FracA. Consider an LFIHD ∂ on A and let f ∈ ker ∂ be a 
nonzero element. Let d ∈ Z>0 be an integer and let u be an algebraic element over K
satisfying ud − f = 0. If B is the integral closure of A[u] in its field of fractions, then ∂
extends to a unique LFIHD ∂′ on the algebra B such that u ∈ ker ∂′.
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Proof. By Lemma 2.5 we can extend the LFIHD ∂ on A to an iterative higher derivation 
on the field K, and on the polynomial ring K[t] by letting ∂̄(i)(t) = 0 for any i ≥ 1. 
Consider the morphism of K-algebras φ : K[t] → K[u], t �→ u. Let P ∈ K[t] be the 
monic polynomial generating the ideal kerφ.

We can write td − f = FP , for some F ∈ K[t]. Remark that F is monic since P and 
td − f are monic. Since A is integrally closed, we obtain F, P ∈ A[t]. Furthermore, for 
any i ∈ Z>0 we have ∂̄(i)(FP ) = ∂̄(i)(td − f) = 0. Note that A[t] is ∂̄-invariant and the 
restriction of ∂̄ to A[t] is an LFIHD. Therefore, by Proposition 2.4 (a), we have P ∈
A[t] ∩ ker ∂̄ defining an iterative higher derivation ∂′ on K[u]. Clearly, the normalization 
B of the ring A[u] is again ∂′-invariant. The rest of the proof is straightforward and we 
omitted it. �

In the sequel, we let

A =
⊕

m∈σ∨
M

Amχm ⊆ K0[M ]

as in Section 1, where χm is also seen as the character of the split torus T corresponding 
to the lattice vector m ∈ M . Let us introduce the notion of homogeneous iterative higher 
derivations.

Definition 2.7. Let ∂ be an iterative higher derivation. The sequence ∂ is homogeneous
if there exists e ∈ M such that

∂(i)(Amχm) ⊆ Am+ieχ
m+ie for all i ∈ Z≥0 and m ∈ M .

If ∂ is non-trivial, then the vector e is called the degree of ∂ and is denoted by deg ∂. For 
the case where k is of characteristic p > 0 we have the more general definition. Given 
r ∈ Z≥0 we say that ∂ is rationally homogeneous of degree e/pr (or of bidegree (e, pr) if 
we need to emphasize the vector e) if it satisfies the following.

(i) ∂(ipr)(Amχm) ⊆ Am+ieχ
m+ie, for all i ∈ Z≥0, and m ∈ M .

(ii) ∂(j) = 0 whenever pr does not divide j.

In [23, Section 1.2] it is shown that a usual derivation on a multigraded algebra which 
sends graded pieces into graded pieces is homogeneous. However this does not hold for 
higher derivations. Note also that the kernel of a homogeneous LFIHD ∂ on A is an 
M -graded subalgebra of A. In the sequel, we introduce some notation in order to have a 
geometrical interpretation of homogeneous and rationally homogeneous LFIHDs in the 
case where k is an algebraically closed field.2

2 Note that the Notation 2.8 and Proposition 2.9 can be generalized in the setting of group schemes and 
of Hopf algebras when k is arbitrary.
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Notation 2.8. Assume that k is algebraically closed. Letting e ∈ M be a vector we denote 
by Ge the group whose underlying set is T ×Ga and multiplication law is defined by

(t1, α1) · (t2, α2) = (t1 · t2, χ−e(t2) · α1 + α2),

where ti ∈ T and αi ∈ Ga. Actually, every semidirect product of T � Ga given by a 
character T → AutGa � Gm is isomorphic to some Ge.

The following proposition is similar to [16, Lemma 2.2]. For the convenience of the 
reader we give a short proof.

Proposition 2.9. Assume that the field k is algebraically closed.

(i) If A is M -graded and ∂ is a homogeneous LFIHD on A of degree e, then the corre-
sponding Ga-action is normalized by the T-action. This means that the actions of 
the torus and the additive group induce a Ge-action with comorphism given by

ψ∗(t, α) = t · eα∂(f),

where (t, α) ∈ Ge and f ∈ A.
(ii) Conversely, if Ge acts on X = SpecA, then the actions of the subgroups T and Ga

give an M -grading on A and a homogeneous LFIHD of degree e.
(iii) Assume further that char(k) = p > 0. Let Fpr : Ga → Ga, t �→ tp

r be the Frobenius 
map. Giving a rationally homogeneous LFIHD ∂ on A of degree e/pr is equivalent to 
having a Ga-action on X equal to φ ◦ (Fpr , idX), where φ is a Ga-action normalized 
by T.

Proof. (i) Given (t, α) ∈ Ge and f ∈ A, by homogeneity of ∂ we have

t · ∂(i)(f) = χie(t) ∂(i)(t · f), ∀i ∈ Z≥0. (1)

This gives

t · eα∂(f) =
∞∑
i=0

χie(t)αi ∂(i)(t · f) = eχ
e(t)α∂(t · f).

Hence for all (t1, α1), (t2, α2) ∈ Ge we obtain

ψ∗((t1, α1) · (t2, α2))(f) = eχ
e(t1)α1∂ ◦ eχe(t1t2)α2∂(t1t2 · f) = ψ∗(t1, α1)(ψ∗(t2, α2)(f)).

We conclude that ψ∗ defines a Ge-action on the variety X = SpecA.
(ii) The action of the subgroup Ga ⊆ Ge yields an LFIHD ∂ on the algebra A. For 

α ∈ Ga and f ∈ A we have ψ∗(1, α)(f) = eα∂(f). So for any t ∈ T we have
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t · eα∂(f) = ψ∗((1, χe(t)α) · (t, 0))(f) = eχ
e(t)α∂(t · f).

Identifying the coefficients we obtain (1). Thus the LFIHD ∂ is homogeneous for the 
M -grading given by the action of the subgroup T ⊆ Ge.

Assertion (iii) follows immediately from (i) and (ii). �
For an arbitrary field k we consider the following natural definition.

Definition 2.10. Assume that the torus T acts on X = SpecA. A Ga-action on X is 
normalized (resp. normalized up to a Frobenius map) by the T-action if the corresponding 
LFIHD ∂ is homogeneous (resp. rationally homogeneous).

To classify normalized Ga-action it is convenient to separate them into two types (see 
[16, 3.11] and [23, Lemma 1.11] for special cases).

Definition 2.11. A homogeneous LFIHD ∂ is of vertical type (or of fiber type) if 
∂̄(i)(K0) = {0} for any i ∈ Z>0. Otherwise ∂ is of horizontal type. We use similar 
terminology for normalized Ga-actions. An affine T-variety endowed with a non-trivial 
vertical (resp. horizontal) Ga-action is called vertical (resp. horizontal).

A homogeneous LFIHD of horizontal type is automatically non-trivial. In the vertical 
case, one can extend a homogeneous LFIHD on A to an LFIHD on the semigroup algebra 
K0[σ∨

M ].

Lemma 2.12. Let ∂ be a homogeneous LFIHD of vertical type on the M -graded algebra A. 
Then ∂ extends to a unique homogeneous locally finite iterative higher K0-derivation on 
the semigroup algebra K0[σ∨

M ].

Proof. By Lemma 2.5, the LFIHD ∂ extends to an iterative higher derivation ∂′ on 
K0[M ]. Since ∂ is of vertical type, Definition 2.1 (ii) implies that each ∂′ (i) is K0-linear. 
Consequently, if S ⊆ M is the subsemigroup of weights of the M -graded algebra A, then 
B := K0[S] = A ⊗k K0 is ∂′-invariant.

Let us show that ∂′|B is an LFIHD on B. Let fχm ∈ B be a homogeneous element 
with f ∈ K∗

0 . Write fχm = f ′hχm for some f ′ ∈ K0 and for some h ∈ Am. There exists 
r ∈ Z>0 such that for any i ≥ r,

∂′ (i)(fχm) = f ′∂(i)(hχm) = 0.

Since every element of B is a sum of homogeneous elements we conclude that ∂′|B is a 
locally finite iterative higher K0-derivation on B. Thus, ∂′|B extends to an LFIHD on 
the integral closure B̄ = K0[σ∨

M ]. �
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In the next lemma, we prove an elementary result concerning the LFIHDs of the poly-
nomial algebra in one variable. It will be useful in order to study horizontal Ga-actions 
in Section 5. We let ord0 be the natural valuation

ord0 : k[t] \ {0} → Z≥0,
∑
i

ait
i �→ min{i | ai 
= 0} .

Lemma 2.13. Assume that char(k) = p > 0. Let ∂ be an LFIHD on the polynomial algebra 
k[t] in one variable such that

ex∂(t) = t +
r∑

i=1
λix

psi
,

where λi ∈ k∗ and 0 ≤ s1 < . . . < sr are integers. We also fix a non-negative integer 
i ∈ Z≥0.

If � ∈ Z≥0 verifies � ≥ ips1 , then

∂(ips1 )(t�) = λi
1

(
�

i

)
t�−i

and therefore ord0 ∂
(ips1 )(t�) = � − i whenever 

(
�
i

)

= 0.

Proof. First of all, we have

ex∂(t�) = ex∂(t)� =
(
t +

r∑
i=1

λix
psi

)�

=
∑

i0+...+ir=�, i0,...,ir≥0

(
�

i0 . . . ir

)
ti0

r∏
α=1

(λαx
psα )iα .

Considering the term of degree ips1 in x of the previous sum, we get the following 
conditions:

ips1 = i1p
s1 + . . . + irp

sr and i0 + i1 + . . . + ir = �, (2)

where (i0, i1, . . . , ir) ∈ Zr+1
≥0 . Note that such an (r + 1)-tuple (i0, i1, . . . , ir) exists since 

� ≥ ips1 and so we can take

(i0, i1, . . . , ir) = (�− i, i, 0, . . . , 0).

Let us show that this is the minimal choice for i0 ∈ Z≥0. Indeed, let (γ0, γ1, . . . , γr) ∈ Zr
≥0

be an (r + 1)-uplet satisfying (2) with γ0 minimal. Then we have

�− i = �−
r∑

γαp
sα−s1 ≤ �−

∑
γα = γ0.
α=1 α=1
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Hence by minimality, γ0 = � − i, so that i =
∑r

α=1 γα. Thus,(
r∑
γα

γα

)
ps1 =

r∑
α=1

γαp
sα .

We obtain (γ0, γ1, . . . , γr) = (� −i, i, 0, . . . , 0). This implies in particular that ∂(ips1 )(t�) =
λi

1
(
�
i

)
t�−i as required. �

3. GGGa-actions on affine toric varieties

Let k be a field. In this section, we present a combinatorial description of normalized 
Ga-actions up to a Frobenius map on affine toric varieties over k.

For a rational cone σ ⊆ NR we recall that σ(1) denotes its set of extremal rays. As 
usual we write by the same letter a ray of σ and its primitive vector. The following is a 
classical definition, see for instance [12,23,4].

Definition 3.1. Let σ ⊆ NR be a strongly convex rational cone. A vector e ∈ M is called 
a Demazure’s root (or for simplicity called root) if the following hold.

(i) There exists ρ ∈ σ(1) such that 〈e, ρ〉 = −1.
(ii) For any ρ′ ∈ σ(1) \ {ρ} we have 〈e, ρ′〉 ≥ 0.

The extremal ray ρ satisfying 〈e, ρ〉 = −1 is called the distinguished ray of the root e ∈ M . 
We denote by Rtσ the set of Demazure’s roots of the cone σ. By [23, Remark 2.5] every 
element of σ(1) is the distinguished ray of a root of Rtσ.

Since the subset k[T]∗ generates the algebra k[T], Proposition 2.4 (e) implies that 
k[T] has no non-trivial LFIHDs. So without loss of generality, in the sequel, we may only 
consider toric varieties Xσ = Speck[σ∨

M ] given by a nonzero strongly convex rational 
cone σ ⊆ NR.

Example 3.2. Let e ∈ Rtσ be a root. Consider the homogeneous derivation ∂(1)
e on the 

semigroup algebra k[σ∨
M ] given by

∂(1)
e (χm) = 〈m, ρ〉χm+e for all m ∈ σ∨

M ,

where ρ is the distinguished ray of e. Then ∂(1)
e is locally nilpotent and yields a Ga-action 

on Xσ in the following natural way: the homogeneous LFIHD ∂e is given by the formula3

∂(i)
e (χm) =

(
〈m, ρ〉

i

)
· χm+ie for all i ∈ Z≥0 and m ∈ σ∨

M .

The kernel of ∂e is k[ρ�M ], where ρ� ⊆ σ∨ is the dual face of ρ.

3 We set the convention that 
(r1
r

)
= 0, for all r1, r2 ∈ Z≥0 with r1 < r2.
2
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Assume now that char(k) = p > 0. Starting from ∂e and an integer r ∈ Z≥0 we can 
also define a rationally homogeneous LFIHD ∂e,r of degree e/pr ∈ MQ. Its exponential 
map is

ex∂e,r =
∞∑
i=0

∂(i)
e xipr

.

We check easily that ker ∂e,r = k[ρ�M ]. In addition, for any m ∈ σ∨
M we have

degx ex∂e,r (χm) = pr〈m, ρ〉.

We start by describing the kernel and the possible degree vectors of a homogeneous 
LFIHD on k[σ∨

M ], where σ is a nonzero strongly convex rational cone.

Lemma 3.3. Consider a non-trivial homogeneous LFIHD ∂ on k[σ∨
M ]. Then the following 

statements hold.

(i) There exists ρ ∈ σ(1) such that ker ∂ = k[ρ� ∩ M].
(ii) The degree e ∈ M of the sequence ∂ is a Demazure’s root of σ and ρ is the distin-

guished ray of e.

Proof. (i) By Proposition 2.4 (a) we have ker ∂ = k[W ∩ σ∨
M ] for some linear subspace 

W ⊆ MR. Assume that W ∩ σ∨ is not a face of σ∨. Then W divides σ∨ into two parts. 
We can find m ∈ σ∨

M such that for any r ∈ Z≥0, m + re /∈ W . Since χm /∈ ker ∂, there 
is some r0 ∈ Z>0 satisfying ∂(r0)(χm) 
= 0. Hence ∂(r0)(χm) is homogeneous of degree 
m + r0e. By the previous argument

∂(r′1) ◦ ∂(r0)(χm) 
= 0 for some r′1 ∈ Z>0 .

By Definition 2.1 (iv) we have ∂(r0+r′1)(χm) 
= 0 and so we let r1 = r0+r′1. Proceeding 
by induction we can build a strictly increasing sequence of positive integers {rj}j∈Z≥0

verifying ∂(rj)(χm) 
= 0 for any j ∈ Z≥0. This contradicts the fact that ∂ is an LFIHD. 
Thus W ∩ σ∨ is a face of σ∨. Since ker ∂ is a subring of codimension one, we have 
W ∩ σ∨

M = ρ� ∩M for some extremal ray ρ ∈ σ(1).
(ii) If e ∈ σ∨

M , then the same argument as before gives a contradiction. The rest of 
the proof follows as in [23, Lemma 2.4]. �

In the following lemma, we state some properties of a homogeneous LFIHD on k[σ∨
M ].

Lemma 3.4. Let ∂ be a non-trivial homogeneous LFIHD on k[σ∨
M ] of degree e and with 

distinguished ray ρ. For every i ∈ Z≥0 we let ci : σ∨
M → k be such that ∂(i)(χm) =

ci(m)χm+ie. Then the sequence {ci}i∈Z≥0 of functions on σ∨
M satisfies the following 

conditions.
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(i) The map c0 is the constant map m �→ 1.
(ii) For all m, m′ ∈ σ∨

M we have

ci(m + m′) =
i∑

j=0
ci−j(m) · cj(m′). (3)

(iii) For every m ∈ σ∨
M there exists r ∈ Z≥0 such that ci(m) = 0 for all i ≥ r.

(iv) For every i, j ∈ Z≥0 we have(
i + j

i

)
ci+j(m) = ci(m + je) · cj(m) for all m ∈ σ∨

M .

(v) For every i ∈ Z≥0 we have ci(m +m′) = ci(m) for all m ∈ σ∨
M and all m′ ∈ ρ�∩M .

Proof. Assertions (i), (ii), (iii) and (iv) follow from the definition of LFIHD. Let us 
show (v). Since χm′ ∈ ker ∂, for any j ∈ Z>0 we have cj(m′) = 0. Applying (3) we obtain 
ci(m + m′) = ci(m). �

The next result provides a classification of normalized Ga-actions on Xσ. See [23, 
Theorem 2.7] for the case where char(k) = 0.

Theorem 3.5. Let σ ⊆ NR be a nonzero strongly convex rational cone. Every non-trivial 
Ga-action on Xσ normalized by the T-action is given by a homogeneous LFIHD of the 
form λ∂e, where ∂e is as in Example 3.2, e ∈ Rtσ and λ ∈ k∗.

Proof. Let ∂ be a non-trivial homogeneous LFIHD of degree e on k[σ∨
M ]. By Lemma 3.3, 

e is a root of σ and ker ∂ = k[ρ� ∩ M ], where ρ ∈ σ(1) is the distinguished ray of the 
root e.

Let us first show that there exists a lattice vector m ∈ σ∨
M such that 〈m, ρ〉 = 1. Let 

m′ ∈ σ∨
M not contained in the face ρ� so that 〈m′, ρ〉 > 1. By [23, Lemma 2.4], we have 

that m := m′ + (〈m′, ρ〉 − 1) · e ∈ σ∨
M satisfies 〈m, ρ〉 = 1.

We let ci : σ∨
M → k be the maps defined in Lemma 3.4. Let B = k[x] be the 

polynomial algebra of one variable. Using the basis (1, x, x2, . . .) we define a sequence 
of linear operators ∂̄ = {∂̄(i)}i∈Z≥0 on the k-linear space B as follows: fixing a vector 
m ∈ σ∨

M verifying 〈m, ρ〉 = 1 we define

∂̄(i)(xr) = ci(rm)xr−i for all i, r ∈ Z≥0 .

We claim that ∂̄ is well defined. Indeed, let i, r ∈ Z≥0 be such that i > r, then

∂(i)(χrm) = ci(rm)χrm+ie ∈ k[σ∨
M ] and 〈rm + ie, ρ〉 = r − i < 0

so that ci(rm) = 0 .

Hence, ∂̄(i)(xr) = ci(rm)xr−i = 0 for all i > r.
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By Lemma 3.4, the sequence of operators ∂̄ is an LFIHD on B. For instance, let us 
show that ∂̄ satisfies Definition 2.1 (iv). Letting i, j ∈ Z≥0 we have

∂̄(i) ◦ ∂̄(j)(xr) = ∂̄(i)(cj(rm)xr−j) = ci((r − j)m) · cj(rm)xr−i−j .

Since e ∈ Rtσ is a root having ρ as distinguished ray, it follows that

v := rm + je− (r − j)m = j(m + e) ∈ ρ� ∩M.

By Lemma 3.4 (v), we have

ci((r − j)m) = ci((r − j)m + v) = ci(rm + je).

Therefore by Lemma 3.4 (iv), we conclude that

∂̄(i) ◦ ∂̄(j)(xr) =
(
i + j

i

)
ci+j(rm)xr−i−j =

(
i + j

i

)
∂̄(i+j)(xr),

as required. Conditions (i), (ii), (iii) of Definition 2.1 follow from similar straightforward 
computations.

Since ∂̄ is homogeneous for the natural graduation of B, by Proposition 2.4 (d) there 
exists λ ∈ k such that every ci verifies

ci(rm) =
(
r

i

)
λi

for any r ∈ Z≥0. We use the convention λ0 = 1 whenever λ = 0. Let w ∈ σ∨
M be a lattice 

vector. The elements

w + 〈w, ρ〉e, 〈w, ρ〉e + 〈w, ρ〉m

belong to ρ� ∩M . By Lemma 3.4 (v) this implies

ci(w) = ci (w + 〈w, ρ〉e + 〈w, ρ〉m) = ci (〈w, ρ〉m) =
(
〈w, ρ〉

i

)
λi. (4)

Since ∂ is non-trivial, we have λ ∈ k∗. By virtue of (4) the sequence ∂ is given by the 
LFIHD λ∂e (see Example 3.2). �
Example 3.6. Let M = Z2 and let σ be the strongly convex rational cone generated in 
the vector space NR = R2 by the vectors and ρ = (0, 1) and ρ′ = (2, −1). The dual 
cone σ∨ is the cone in MR generated by the vectors (1, 0) and (1, 2). Let A = k[σ∨

M ] and 
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let X = SpecA be the corresponding toric variety. The algebra A is generated by the 
elements

u1 = χ(1,0), u2 = χ(1,1) and u3 = χ(1,2) .

The generators satisfy the relation u1u3 = u2
2 and so A = k[x, y, z]/(xz−y2). The lattice 

vector e = (0, −1) ∈ M is a root of σ since 〈e, ρ〉 = −1 and 〈e, ρ′〉 = 1.

The corresponding LFIHD ∂e of Example 3.2 is given by

∂(0)
e (x) = x, ∂(i)

e (x) = 0, for all i > 0 ;

∂(0)
e (y) = y, ∂(1)

e (y) = x, ∂(i)
e (y) = 0, for all i > 1 ;

∂(0)
e (z) = z, ∂(1)

e (z) = 2y, ∂(2)
e (z) = x, ∂(i)

e (z) = 0, for all i > 2 .

Hence, the corresponding normalized Ga-action φ is defined by

φ : Ga ×X → X, where (λ, (x, y, z)) �→ (x, y + λx, z + 2λy + λ2z) .

As an immediate consequence of Theorem 3.5, we obtain a description of all normalized 
Ga-actions up to a Frobenius map.

Corollary 3.7. Let σ ⊆ NR be a nonzero strongly convex rational cone. Then for every root 
e ∈ Rtσ with distinguished ray ρ, every integer r ∈ Z≥0, and every scalar λ ∈ k∗, there is 
a non-trivial rationally homogeneous LFIHD ∂ on the algebra k[σ∨

M ] whose exponential 
is given by

ex∂(χm) =
∞∑
i=0

(
〈m, ρ〉

i

)
λi χm+iexipr

for all m ∈ σ∨
M .

Conversely, every rationally homogeneous LFIHD on k[σ∨
M ] arises in this way.
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In the next corollary, we generalize to the case of positive characteristic some re-
sults in [23, Section 2]. See also [20, Corollary 3.5] for a more general statement in the 
characteristic zero case. The proofs are similar to those in [23] so we omit them.

Corollary 3.8. Let σ ⊆ NR be a strongly convex rational, then the following hold.

(i) For any normalized up to a Frobenius map Ga-actions in Speck[σ∨
M ] the algebra of 

invariants is finitely generated.
(ii) There is a finite number of rationally homogeneous LFIHDs on k[σ∨

M ] with pairwise 
distinct kernels.

4. GGGa-actions of vertical type

In this section, we classify normalized Ga-actions of vertical type on an affine T-variety 
X = SpecA of complexity one over a field k. See [24] for higher complexity when the 
base field is algebraically closed of characteristic zero.

To achieve our classification, we place ourselves in the context of Section 1 by letting 
A = A[C, D], where C is a regular curve over k and D =

∑
z∈C Δz · z is a proper 

σ-polyhedral divisor. Hence,

A[C,D] =
⊕

m∈σ∨
M

Am · χm ⊆ K0[M ],

where Am = H0(C,OC(D(m))
)

and K0 = k(C) .

The following result gives some general properties of homogeneous LFIHDs on the 
M -graded algebra A. Recall that the affine T-variety X = SpecA is called elliptic if 
A0 = k.

Lemma 4.1. Let ∂ be a homogeneous LFIHD on A of degree e. Then the following state-
ments hold.

(i) If ∂ is vertical, then e /∈ σ∨ and ker ∂ =
⊕

m∈τM
Amχm for some codimension one 

face τ of the cone σ∨. In particular, the algebra ker ∂ is finitely generated.
(ii) If A is non-elliptic, then ∂ is vertical if and only if e /∈ σ∨.

Proof. (i) By Lemma 2.12 we may extend ∂ to a homogeneous LFIHD ∂̄ on the semigroup 
K0-algebra K0[σ∨

M ]. By Lemma 3.3 we have e ∈ Rtσ and so e /∈ σ∨. Moreover, we obtain 
ker ∂̄ = K0[τM ] for some codimension one face τ of σ∨. Thus,

ker ∂ = A ∩ ker ∂̄ =
⊕

m∈τM

Amχm.

As a consequence of [1, Lemma 4.1], the algebra ker ∂ is finitely generated.
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(ii) Assume that A is non-elliptic and let ∂̄ be the extension of ∂ on the K0-algebra 
K0[M ]. If e /∈ σ∨, then for any i ∈ Z>0 we have ∂(i)(A0) = Aie = {0}. Since K0 =
FracA0, we conclude that ∂ is vertical. �

As remarked in [23, Remark 3.2], in the elliptic case, the M -graded algebra admits in 
general LFIHDs ∂ of horizontal type satisfying deg ∂ /∈ σ∨.

In the following, we introduce some combinatorial data on A = A[C, D] in order to 
describe its vertical normalized Ga-actions.

Notation 4.2. Let e ∈ Rtσ be a root of σ with distinguished ray ρ and recall that 
D(e) =

∑
z∈C minv∈Δz(0)〈e, v〉 · z. We denote by Φe the A0-module H0(C, OC(D(e))). 

Furthermore, if ϕ ∈ Φe is a nonzero section, then for any vector m ∈ σ∨ belonging to MQ

we have

divϕ ≥ −D(e) ≥ D(m) −D(m + e). (5)

Starting with the previous combinatorial data, we may construct a homogeneous 
LFIHD of vertical type, as follows:

Lemma 4.3. Let e ∈ Rtσ be a root of σ with distinguished ray ρ and let ϕ ∈ Φe be 
a section. Denote ∂̄ = ϕ ∂e, where ∂e is the LFIHD on the K0-algebra K0[σ∨

M ] corre-
sponding to the root e as in Example 3.2. Then for any i ∈ Z≥0 we have ∂̄(i)(A) ⊆ A. 
Consequently, the sequence

∂e,ϕ :=
{
∂̄(i)|A : A → A

}
i∈Z≥0

defines a homogeneous LFIHD of vertical type on A.

Proof. Fix i ∈ Z>0 and let f ∈ Am be nonzero such that div f + �D(m)� ≥ 0. If 
∂(i)(fχm) 
= 0 and ϕ 
= 0, then by (5) we have

div
(
∂(i)(fχm)/χm+ie

)
+ �D(m + ie)�

= idivϕ + div f + �D(m + ie)� ≥ i(D(m/i) −D(m/i + e)) − �D(m)� + �D(m + ie)�
≥ {D(m)} − {D(m + ie)}.

Since the coefficients of the Q-divisor {D(m)} − {D(m + ie)} belong to ] − 1, 1[ we 
have

div
(
∂(i)(fχm)/χm+ie

)
+ �D(m + ie)� ≥ 0,

proving that A is ∂-invariant. The rest of the proof is straightforward and left to the 
reader. �
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Our next theorem gives a classification of normalized vertical Ga-actions on an affine 
T-variety X = SpecA[C, D] of complexity one.

Theorem 4.4. Let A = A[C, D]. If e ∈ Rtσ is a root of σ with distinguished ray ρ and 
ϕ ∈ Φe is a section, then ∂e,ϕ is a homogeneous vertical LFIHD on A. Conversely, every 
homogeneous vertical LFIHD on A is of the form ∂e,ϕ, where e ∈ Rtσ and ϕ ∈ Φe.

Proof. The direct implication corresponds to Lemma 4.3. To prove the converse state-
ment, let ∂ be a non-trivial homogeneous vertical LFIHD on A. By Lemma 2.12, 
∂ extends to a locally finite iterative higher K0-derivation ∂̄ on the semigroup alge-
bra K0[σ∨

M ]. By Theorem 3.5, ∂̄ is given by ϕ∂e as in Example 3.2, for some ϕ ∈ K∗
0 and 

some root e ∈ Rtσ.
To conclude the proof, let us show that ϕ ∈ Φe. Let ρ be the distinguished ray of e. 

For every point z ∈ C we let vz be a vertex of Δz where the minimum minv∈Δz(0)〈e, v〉
is achieved so that

D(e) =
∑
z∈C

〈e, vz〉 · z .

For every z ∈ C we let ωz = {m ∈ σ∨ | hΔz
(m) = 〈m, vz〉}. The set ωz ⊆ MR is a full 

dimensional cone in MR (see [1, Section 1]).
Let also mz ∈ σ∨

M \ ρ�M be a lattice vector such that mz and mz + e belong to ωz, 
degD(mz) ≥ g and 〈mz, ρ〉 /∈ pZ, where p is characteristic of the field k and g the genus 
of the curve C. It is always possible to choose such mz since ωz is full dimensional, the 
polyhedral divisor D is proper, and the lattice vector ρ is primitive. According to the 
Riemann–Roch Theorem we have Amz


= {0}.
Furthermore, the inclusion ∂(1)(Amz

χmz ) ⊆ Amz+eχ
mz+e implies ϕAmz

⊆ Amz+e. 
Consequently, for any z ∈ C we have

divϕ ≥ D(mz) −D(mz + e) .

The coefficient of the divisor D(mz) −D(mz + e) at the point z ∈ C is −〈vz, e〉. Thus, 
divϕ ≥ −D(e) and we have ϕ ∈ Φe, as required. �

In analogy with the toric case, the family of vertical normalized Ga-actions on 
X = SpecA having pairwise distinct kernels is a finite set. The next result provides 
a combinatorial criterion for A to admit a homogeneous non-trivial LFIHD of vertical 
type.

Corollary 4.5. Let A = A[C, D] and let ρ ⊆ σ be an extremal ray. Then, the M -graded 
algebra A admits a non-trivial vertical homogeneous LFIHD such that the distinguished 
ray of e = deg ∂ ∈ Rtσ is ρ if and only if one of the following conditions holds.

(i) C is affine, or
(ii) C is projective and ρ ∩ degD = ∅.
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Proof. If C is an affine curve, then every divisor on C has a global nonzero section 
and so for any e ∈ Rtσ we have dim Φe > 0. In this case, the corollary follows from 
Theorem 4.4.

Assume that C is projective and fix a root e ∈ Rtσ with distinguished ray ρ. Let us 
notice that for any m ∈ ρ�M we have e + m ∈ Rtσ. Furthermore

D(e + m) ≥ D(m) + D(e) and so degD(m + e) ≥ degD(m) + degD(e) .

Hence, if ρ ∩degD = ∅, then we have dim Φe+m > 0 for some m ∈ ρ�M , by the Riemann–
Roch Theorem and by the properness of D.

Conversely, assume that ρ ∩ degD 
= ∅. Since we have 〈e, ρ〉 = −1, there exists a 
vertex v of degD such that 〈e, v〉 < 0 and therefore degD(e) < 0. Under these latter 
conditions we have dim Φe = 0. Again, we conclude by Theorem 4.4 in the case where C
is projective. �
Example 4.6. Let the notation be as in Example 1.8. Let ρ be the ray of σ spanned 
by (1, 0) and let ρ′ be the ray of σ spanned by (0, 1). We have degD ∩ ρ 
= ∅ and 
degD ∩ ρ′ = ∅. Hence, Corollary 4.5 shows that only ρ′ can be the distinguished ray of 
the degree e of an LFIHD ∂ of vertical type.

5. GGGa-actions of horizontal type

The purpose of this section is to classify all horizontal Ga-actions on affine T-varieties 
of complexity one over a perfect field in terms of polyhedral divisors. The reader may 
consult [23, Section 3.2] for the case where k is algebraically closed and of characteristic 
zero. Let as before A = A[C, D], where C is a regular curve over k and D =

∑
z∈C Δz · z

is a proper σ-polyhedral divisor. Hence,

A[C,D] =
⊕

m∈σ∨
M

Am·χm ⊆ K0[M ], where Am = H0(C,OC(D(m))
)

and K0 = k(C) .

In this section, several results will require the assumption that k is perfect so the 
classification will only hold in this case. Nevertheless, the statements that we can prove 
without asking for k to be perfect are stated in general.

According to the Rosenlicht Theorem [31], in the case where k is algebraically closed, 
the following lemma implies in particular that an affine horizontal T-variety of complexity 
one has an open orbit for its corresponding T �Ga-action.

Lemma 5.1. Let X = SpecA, where A = A[C, D] and let ∂ be a homogeneous LFIHD 
on A. Then ∂ is horizontal if and only if k(X)Ga ∩ k(X)T = k.

Proof. Let L = k(X)Ga ∩ k(X)T. Assume that ∂ is horizontal and that k(X)T/L is an 
algebraic field extension. Consider F ∈ k(X)T a nonzero invariant rational function. 
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Remarking that k(X)Ga is the field of fractions of the ring ker∂, we can find a ∈ ker ∂
such that aF is integral over ker ∂. Since A is normal, aF ∈ A, and by Proposition 2.4 (b)
we have aF ∈ ker ∂. Hence F ∈ k(X)Ga , contradicting the fact that ∂ is of horizontal 
type. Since k(X)T/k is of transcendence degree one, we have that L/k is algebraic. 
By our convention k is algebraically closed in k(X) which yields L = k. The converse 
implication follows directly from the definition of horizontal and vertical LFIHDs. �

Our next lemma shows that the existence of a homogeneous LFIHD on the algebra 
A = A[C, D] imposes some restrictions on the curve C. We refer the reader to [16, 3.5], 
[23, 3.16] for the case where the base field is algebraically closed of characteristic zero.

Lemma 5.2. Assume that A = A[C, D] admits a homogeneous LFIHD ∂ of horizontal 
type. Consider ω (resp. L) the cone (resp. sublattice) generated by the weights of ker∂
and let ωL = ω ∩ L. Then the following statements hold.

(i) The kernel of ∂ is a semigroup algebra, i.e.,

ker ∂ =
⊕

m∈ωL

k · ϕmχm, where ϕm ∈ k(C)∗ .

(ii) We have C � P1
k, in the case where A is elliptic.

(iii) If k is perfect, then C � A1
k in the case where A is non-elliptic.

Proof. (i) Let a, a′ ∈ ker ∂ \ {0} be homogeneous elements of the same degree. By 
Lemma 5.1, we have a/a′ ∈ k(X)Ga ∩k(X)T = k. Thus ker ∂ is a semigroup algebra. By 
Proposition 2.4 (b) we have that ker∂ is integrally closed, hence normal. This yields (i).

(ii) Let K = FracA and consider E = KGa . By [9, Lemma 2.2] there exists a variable 
x over the field E such that E(x) = K. By (i), the extension E/k is purely transcendental 
and so is K/k. Since k(C) ⊆ K, the regular projective curve C is unirational. According 
to the Luröth Theorem, it follows that C � P1

k.
(iii) Assume that A is non-elliptic. Let k̄ be an algebraic closure of k, so that the 

field extension k̄/k is separable. Let B be the algebra A ⊗k k̄. Then B is a normal 
finitely generated M -graded domain (see Lemma 1.9). Note th at the graded piece B0
is A0 ⊗k k̄. Consequently, ∂ extends to a homogeneous LFIHD of horizontal type on 
the k̄-algebra B. Now, we can apply the geometrical argument in [23, Lemma 3.16] to 
conclude that we have B0 � k̄[t], for some variable t over k̄. By separability of k̄/k, this 
yields A0 � k[t] (see e.g. [32,6]). �

The preceding lemma implies that the kernel of a horizontal homogeneous LFIHD on 
A is finitely generated. This result can be obtained independently from [20, Theorem 1.3]
in the characteristic zero case. Note also that the kernel of a non-trivial LFIHD on a 
normal unirational surface V over a perfect field k such that k[V ]∗ = k∗ is a polynomial 
algebra (see [28, Theorem 2]).
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5.3. In view of the above results, in the following we let C = A1
k or C = P1

k. Assume 
that A has a homogeneous LFIHD ∂ of horizontal type and let

ker ∂ =
⊕

m∈ωL

k · ϕmχm

be the kernel of ∂. We also assume that k(C) = k(t) for some local parameter t and, 
when C is affine, we let k[C] = k[t] be its coordinate ring.

Lemma 5.4. Keeping the notation as above, the following statements hold.

(i) If C = A1
k, then for any m ∈ ωL we have divϕm + D(m) = 0.

(ii) Assume that C = P1
k. Then there exists a point z∞ ∈ C such that for any m ∈ ωL

the effective Q-divisor divϕm + D(m) has at most z∞ in its support.
(iii) The cone ω is a maximal cone of the quasifan Λ (D) (see Definition 1.5) in the 

non-elliptic case, and of Λ(D|P1
k
\{z∞}) for the elliptic case.

(iv) The rank of the lattice L is equal to n = rankM . The lattice M is spanned by 
e := deg ∂ and L. Furthermore, if d is the smallest positive integer such that de ∈ L, 
then we can write every vector m ∈ M in an unique way as m = l + re for some 
l ∈ L and some r ∈ Z such that 0 ≤ r < d.

(v) If k is perfect, then the point z∞ in (ii) is rational, i.e., the residue field of z∞ is k.

Proof. (i) Given a lattice vector m ∈ σ∨
M we let

Am = fm · k[t] ,

where fm ∈ k(t). Assume that m ∈ ωL. Then we have ϕm = Ffm, for some nonzero 
F ∈ k[t]. By Proposition 2.4(a) the polynomial F is constant. Hence,

divϕm + �D(m)� = 0.

Consequently, for any r ∈ Z≥0 we obtain

r�D(m)� = −r divϕm = − divϕrm = �D(rm)�.

This shows that D(m) is integral when m ∈ ωL.
(ii) Assume that there exists m ∈ ωL such that

divϕm + D(m) ≥ [z∞] + [z0] ,

where z0, z∞ are distinct points of C. Denote by ∞ the point at the infinity in C = P1
k

for the local parameter t. Let p0(t), p∞(t) ∈ k(t) be two rational functions verifying the 
following: if the point z0 (resp. z∞) belongs to A1

k = Speck[t], then p0(t) (resp. p∞(t)) is 
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the monic polynomial generator of the ideal of z0 (resp. z∞) in k[t]. Otherwise, z0 = ∞
(resp. z∞ = ∞) and we let p0(t) = 1/t (resp. p∞(t) = 1/t).

Let f := p0(t)/p∞(t). The rational functions fϕm and f−1ϕm belong to Am. By 
Proposition 2.4 (a) we have

fϕmχm · f−1ϕmχm = ϕ2mχ2m ∈ ker ∂, and so fϕmχm, f−1ϕmχm ∈ ker ∂ ,

yielding a contradiction with Lemma 5.2 (i). Hence, divϕm + D(m) is supported in at 
most one point.

(iii) By (i) and (ii), the map m �→ D(m) in the non-elliptic case, and the map 
m �→ D|P1

k
\{z∞}(m) in the elliptic case, are linear in the cone ω. This implies that there 

exists a maximal cone ω0 belonging to Λ(D) in the non-elliptic case, and belonging to 
Λ(D|P1

k
\{z∞}) in the elliptic case, such that ω ⊆ ω0.

Let us show the reverse inclusion ω0 ⊆ ω. Let m ∈ ω0. Changing m by an integral 
multiple, we may assume m ∈ L and D(m) integral. By Lemma 5.2 (i) and Proposi-
tion 2.4 (c), the cone ω is full dimensional in MR. Hence, there exists m′ ∈ ωL such that 
m + m′ ∈ ωL. Consider a nonzero section fm ∈ Am such that

div fm + D(m) = 0

in the non-elliptic case, and such that

(div fm + D(m)) |P1
k
\{z∞} = 0

in the elliptic case. It follows that

fmχm · ϕm′χm′
= λϕm+m′χm+m′

for some λ ∈ k∗. Therefore, fmχm ∈ ker ∂ and again by Proposition 2.4 (a) we have 
m ∈ ω.

(iv) According to the fact that σ∨
M spans M and that ∂ is a homogeneous LFIHD 

on A, for any m ∈ M we have m + se ∈ L for some s ∈ Z. Changing r := −s by the 
remainder of the Euclidean division of r by d, if necessary, we obtain m = l + re, where 
l ∈ L and 0 ≤ r < d. The minimality of d implies that this latter decomposition is 
unique.

(v) Assume that k is perfect and fix k̄ an algebraic closure of k. Consider the algebra 
B = A ⊗k k̄. If we let D =

∑
z∈C Δz · z, then by Lemma 1.9 the polyhedral divisor

Dk̄ =
∑
z∈C

Δz · S�(z)

over P1
¯ satisfies
k
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B =
⊕

m∈σ∨
M

Bmχm, where Bm = H0(P1
k̄,OP1

k̄

(Dk̄(m))) .

We can also extend ∂ to a homogeneous LFIHD ∂k̄ of horizontal type on B. For any 
m ∈ ωL we have ϕmχm ∈ ker ∂k̄ and there exists a rational non-negative number λm

such that

divϕm + D(m) = λm · z∞.

Applying S� to the previous equality we obtain

divk̄ ϕm + Dk̄(m) = λm · S�(z∞).

Assume that z∞ is not a rational point and that λm > 0 for some lattice vector m ∈ ωL. 
Changing m by a multiple we may suppose that λm is greater than 1. Since the field 
extension k̄/k is separable, the polynomial pz∞(t) in the proof of (ii) has at least two 
distinct roots, say z1, z2 ∈ k̄. Note that the points z1, z2 belong to the support of S�(z∞). 
Considering the non-constant rational function

f = (t− z1)/(t− z2),

we fall again into a contradiction with Lemma 5.2 (i) since

fϕmχm · f−1ϕmχm = ϕ2mχ2m ∈ ker ∂k̄, and so fϕmχm, f−1ϕmχm ∈ ker ∂k̄ . �
In the sequel, we let the notation be as in 5.3. Without loss of generality, whenever 

k is perfect, in the elliptic case we can assume that z∞ is the rational point ∞ for the 
local parameter t.

Lemma 5.5. Let k be a perfect field. The following statements hold.

(i) If C = P1
k, then the normalization of the subalgebra A[t] ⊆ k(t)[M ] is A′ =

A[A1
k, D|A1

k
], where A1

k = Speck[t].
(ii) If the degree of ∂ belongs to ω and the evaluation of the polyhedral divisor D|A1

k

is linear, then ∂ extends to a homogeneous LFIHD ∂′ on A′ of horizontal type. 
Furthermore, we have ker ∂ = ker ∂′.

(iii) Let d be the smallest positive integer such that for any m ∈ ωM the divisor D(d ·m)
is integral. Then we have d ·M ⊆ L.

Proof. (i) This follows from [21, Theorem 2.5].
(ii) Letting

A′ =
⊕

∨

A′
mχm, where A′

m = H0(A1
k,OA1

k
(D|A1

k
(m))) ,
m∈σM
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for any m ∈ σ∨
M we can write A′

m = ϕm · k[t] with ϕm is a nonzero rational function 
satisfying

divϕm + �D|A1
k
(m)� = 0 .

If m ∈ ωL, we can assume that ϕm is as in Lemma 5.4 (ii).
By Lemma 2.5, we may extend ∂ to a homogeneous iterative higher derivation ∂′ on 

the semigroup algebra k(t)[M ]. Denote by ∂′ (i) the i-th term of ∂′. Consider f ∈ A′
m for 

a lattice vector m ∈ σ∨
M and fix an integer i ∈ Z>0. We will show that ∂′ (i)(fχm) ∈ A′.

By the properness of D and Lemma 5.4 (ii) with z∞ = ∞, we can find a lattice vector 
m′ ∈ ωL verifying the following. The vectors m, m′ belong to a same maximal cone of 
Λ(D) and the coefficient in ∞ of the divisor divϕm′ + D(m′) is integral, positive, and 
greater than that of − div f − �D(m)�. Therefore

div fϕm′ + �D(m′ + m)� = div f + �D(m)� + divϕm′ + D(m′) ≥ 0.

In particular, ϕm′f belongs to Am+m′ . Hence it follows that

ϕm′χm′
∂′ (i)(fχm) = ∂(i)(ϕm′fχm′+m) ∈ Am′+m+ieχ

m′+m+ie.

By our assumption we have e ∈ ω = σ∨ so that m + ie ∈ σ∨
M . Since D|A1

k
is linear and 

D(m′) is integral, we obtain the following identities of Q-divisors over A1
k:

− divϕm′+m+ie = �D|A1
k
(m′ + m + ie)� = �D|A1

k
(m′)� + �D|A1

k
(m + ie)� .

Hence,

ϕm′+m+ie = λϕm′ · ϕm+ie for some λ ∈ k∗.

Consequently, this implies

ϕm′χm′
∂′ (i)(fχm) ∈ Am′+m+ieχ

m′+m+ie ⊆ ϕm′ · ϕm+ie · k[t]χm′+m+ie .

This yields

∂′ (i)(fχm) ∈ ϕm+ie · k[t]χm+ie = A′
m+ieχ

m+ie ⊆ A′,

as required. We conclude that the subalgebra A′ is ∂′-invariant.
Next, we show that ∂′ is a homogeneous LFIHD on A′. Let m′ be as above. We have 

tϕm′χm′ ∈ A. Thus, there exists s ∈ Z>0 such that

ϕm′χm′
∂′ (i)(t) = ∂(i)(tϕm′χm′

) = 0 for any i ≥ s.

Hence ∂′ acts locally finitely on t and so the same holds for A[t]. Let f ∈ A′
m and choose 

s′ ∈ Z>0 such that the sheaf OP1 (�D(m + s′m′)�) is globally generated. Thus,

k
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ϕs′m′fχm+s′m′ ∈ A′
m+s′m′ = k[t] ⊗k Am+s′m′ ⊆ A[t] .

Since ϕs′m′χs′m′ is in the kernel of ∂ we conclude that ∂′ acts locally finitely on fχm. 
This proves that ∂′ is an LFIHD. The fact that ∂′ is of horizontal type is straightforward 
and the proof is left to the reader.

It remains to show that ker ∂ = ker ∂′. By Lemma 5.2 (i) the kernel ker ∂′ is the 
semigroup algebra given by ωL′ , where L′ is a sublattice of maximal rank. Since ker ∂ ⊆
ker ∂′ we have L ⊆ L′ and L′/L is a finite abelian group. Let

ker ∂ =
⊕

m∈ωL

k · ϕmχm and ker ∂′ =
⊕

m∈ωL′

k · ϕ′
mχm .

Letting m ∈ L′ we let r ∈ Z>0 be such that rm ∈ L. Then, by Lemma 5.4 (i) and (ii)
we can write λϕrm = ϕ′

rm = (ϕ′
m)r, where λ ∈ k∗. So ϕ′

mχm is integral over ker ∂. By 
normality of A and since ker ∂ is algebraically closed in A one has ϕ′

mχm ∈ ker ∂. Hence 
L′ = L and so ker ∂ = ker ∂′.

(iii) Up to multiplying the LFIHD ∂ by a homogeneous kernel element, we may assume 
that deg ∂ = e ∈ ω. In particular, the algebra

Aω =
⊕

m∈ωM

Amχm is ∂-invariant.

By virtue of assertions (i) and (ii) in the lemma, we may suppose that C = A1
k. 

Let m ∈ ωM . We have Adm+m′ = Adm · Am′ = ϕdmAm′ for all m′ ∈ ωM . Hence, the 
principal ideal (ϕdmχdm) in the ring Aω is ∂|Aω

-invariant. By Proposition 2.4 (f), we 
have ϕdmχdm ∈ ker ∂ and so dm ∈ ωL. This yields d · ωM ⊆ ωL and (iii) follows. �

The following result provides a geometrical characterization of horizontal non-
hyperbolic affine Gm-surfaces. See [16, Theorems 3.3 and 3.16] for the case where the 
base field is C.

Corollary 5.6. Assume k is perfect. Let N = Z and σ = R≥0, so that D is uniquely 
determined by the Q-divisor D(1). If the graded algebra A admits a homogeneous LFIHD 
of horizontal type, then the following statements hold.

(i) If C = A1
k, then the fractional part {D(1)} has at most one point in its support.

(ii) If C = P1
k, then {D(1)} has at most two points in its support.

In each case, the support of {D(1)} consists of rational points. In particular, every hor-
izontal non-hyperbolic affine Gm-surface over k is toric.

Proof. (i) We first prove the result in the case where k is algebraically closed. Let d be 
the smallest positive integer such that D(d) is an integral divisor. Letting f ∈ k(t) a 
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generator of Ad, i.e. Ad = f · A0, we let B be the integral closure of A[ d
√
fχ] in its field 

of fractions. Up to a principal divisor, we may assume D(1) < 0 and so f ∈ k[t] is a 
polynomial. By Lemma 5.5 (ii), we have fχd ∈ ker ∂.

By Corollary 2.6, we obtain the existence of an LFIHD ∂′ on B extending ∂ and 
satisfying d

√
fχ ∈ ker ∂′. Write B = A[C ′, D′] for some polyhedral divisor D′ on a 

regular affine curve C ′ = SpecB0. Actually, B0 is the normalization of k[t, d
√
f ] and also 

a polynomial algebra of one variable over k (see Lemma 5.2 (iii)). The fact that B∗
0 = k∗

and that B0 is an unique factorization domain implies that f = (t − z)r for some z ∈ k
and some r ∈ Z>0. Since div f + d ·D(1) = 0 one concludes that {D(1)} is supported in 
at most on the point z.

Assume now that k is not algebraically closed and that {D(1)} is supported in at 
least two points. Extending the scalar to the algebraic closure k̄ gives a contradiction by 
Lemma 1.9.

(ii) Multiplying ∂ by a homogeneous element in its kernel, we may assume that the 
degree of ∂ is non-negative. By Lemma 5.5 (ii), the LFIHD ∂ extends to a homogeneous 
LFIHD ∂′ of horizontal type on the normalization A′ of the algebra A[t]. Note that 
the graded algebra A′ is given by the polyhedral divisor D|A1

k
. Applying (i) for the 

non-elliptic graded algebra A′, the fractional part {D|A1
k
(1)} has at most one point in its 

support. So {D(1)} is supported in at most two points. This yields (ii).
Let us show the latter claim. By a similar argument, we deduce that in any case 

the support of {D(1)} consists of rational points (see Lemma 1.9). Assume that A is 
non-elliptic. Since {D(1)} is supported in at most one rational point, without loss of 
generality, we can let

D(1) = − e

d
· 0, where 0 ≤ e < d, and gcd(e, d) = 1 .

A straightforward computation shows that

A =
⊕

b≥0, ad−be≥0

k taχb,

see e.g. [16, Lemma 3.8] and [23, Example 3.20]. The algebra A admits an effective 
Z2-grading endowing X = SpecA with a structure of a toric surface. Assume that A
is elliptic. Using the fact that every integral divisor over P1 of degree 0 is principal, we 
can reduce to the case where D is supported in the points 0 and ∞. We conclude by a 
similar argument as in [23, Example 3.21]. �

As a consequence of Corollary 5.6, we obtain the following result.

Corollary 5.7. With the notation in 5.3, we let Aω =
⊕

m∈ωM
Amχm and let τ =

ω∨ ⊆ NR. Then Aω � A[C, Dω] as M -graded algebras, where Dω is τ -proper polyhe-
dral divisor over the curve C satisfying the following conditions.
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(i) If A is non-elliptic, then Dω = (v + τ) · 0 for some v ∈ NQ.
(ii) If A is elliptic, then Dω = (v + τ) · 0 + Δ′

∞ · ∞ for some v ∈ NQ and some 
Δ′

∞ ∈ Polτ (NR) satisfying v + Δ′
∞ � τ .

Proof. (i) We will follow the argument in [23, Lemma 3.23]. Note that the degree e of ∂
belongs to ω. For � ∈ ωL denote by ∂� the homogeneous LFIHD ϕ� · ∂. The subalgebra

B(�+e) =
⊕
r≥0

Ar(�+e)χ
r(�+e)

is ∂�-invariant. Since the homogeneous LFIHD ∂�|B(�+e) is of horizontal type, we can 
apply Corollary 5.6 to conclude that {D(� + e)} is supported in at most one point. By 
Lemma 5.4 (i), for all �, �′ ∈ ωL we have

− divϕ�′+D(�+e) = D(�+�′+e) = D(�′+e)−divϕ� , and so {D(�+e)} = {D(�′+e)} .

Thus, the union of the supports of the divisors {D(� + e)} has at most one element, 
where � runs over ωL. By the linearity of D in ω and Lemma 5.4 (iv), up to a principal 
polyhedral divisor, the polyhedral divisor Dω of Aω is supported in at most one point. 
This point needs to be rational so (i) follows.

(ii) By multiplying ∂ with a kernel element, we may assume e ∈ ω. Let A′
ω be the 

normalization of Aω[t]. By Lemma 5.5, elements of degree m ∈ ωM in A′
ω correspond to 

the product of a global section of D|A1
k
(m) and the character χm. In addition, ∂ extends 

to a homogeneous LFIHD of horizontal type on A′
ω. By (i), the union of the supports of 

the divisors {D|A1
k
(m)}, where m runs trough ωM , has at most one rational point. This 

concludes the proof. �
For our next theorem, which is a key ingredient in our classification result, we in-

troduce the following notation. Let D be a proper σ-polyhedral divisor over A1
k or P1

k
such that the coefficient Δ0 at zero is v + σ for some v ∈ NQ. Let M̂ = M × Z and let 
N̂ = N × Z. We also let σ̂ be the cone in N̂R generated by (v, 1) and (σ, 0) if C = A1

k
and by (v, 1), (σ, 0) and (Δ∞, −1) if C = P1

k.

Theorem 5.8. Let D be a σ-proper polyhedral divisor over a regular curve C. Assume that 
D satisfies one of the following conditions.

(i) If C is affine, then C = A1
k = Speck[t] and D = (v + σ) · 0 for some v ∈ NQ.

(ii) If C is projective, then C = P1
k and D = (v + σ) · 0 + Δ∞ · ∞ for some v ∈ NQ and 

for some Δ∞ ∈ Polσ(NR).

Let d be the smallest positive integer such that dv ∈ N . For any m ∈ M we let h(m) =
〈m, v〉. Then there exists a homogeneous LFIHD ∂ of horizontal type on A = A[C, D]
with deg ∂ = e if and only if the following statements hold.
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(a) If chark = p > 0, then there exists a sequence of integers 0 ≤ s1 < s2 < . . . < sr
such that for i = 1, . . . , r we have 

(
psie, −1/d − h(psie)

)
∈ Rt σ̂.

(b) If chark = 0, then 
(
e, −1/d − h(e)

)
∈ Rt σ̂.

Under these latter conditions, the LFIHD ∂ is of following form. Let ζ = d
√
t. Let us 

consider the LFIHD ∂ζ on the algebra k[ζ] with exponential map

ex∂ζ (ζ) = ζ +
r∑

i=1
λix

psi
, (6)

where λ1, . . . , λr ∈ k∗ (resp. with ∂(1)
ζ = λ d

dζ , where λ ∈ k∗) whenever chark > 0 (resp. 
chark = 0). Then the i-th term of ∂ is given by the equality

∂(i)(tlχm) = ζ−dh(m+ie)∂
(i)
ζ (ζdh(m)tl)χm+ie for all tlχm ∈ A . (7)

Proof. Assume that D satisfies (i) and fix an LFIHD ∂ on the algebra A of horizontal 
type and of degree e. Let B be the normalization of the subalgebra

A
[
ζ−dh(e)χe

]
⊆ k(ζ)[M ].

Consider the affine line C ′ = Speck[ζ] and the polyhedral divisor D′ = (dv + σ) · 0
over C ′. Since d = min{r ∈ Z>0 | re ∈ L} (see Lemma 5.4 (iv)), the algebra A[C ′, D′] is 
precisely B (see [21, Theorem 2.5]). According to Lemma 4.1 (ii) we have e ∈ σ∨ and so 
A 
[
ζ−dh(e)χe

]
is a cyclic extension of the ring A. Since ϕdeχ

de ∈ ker ∂ by Corollary 2.6, 
∂ extends to a unique LFIHD ∂′ on B. Using further that dv ∈ N we obtain a natural 
isomorphism of M -graded algebras

ϕ : B → E, ζlχm �→ ζdh(m)+lχm,

where E = k[σ∨
M ][ζ]. Consider ϕ∗∂

′ the homogeneous LFIHD of horizontal type on E
given by

ϕ∗∂
′ (i) = ϕ ◦ ∂′ (i) ◦ ϕ−1,

where i ∈ Z≥0. Now, Lemma 5.5 (iii) implies that kerϕ∗∂
′ = k[σ∨

M ] so that ϕ∗∂
′ =

χe · ∂ζ for some non-trivial LFIHD ∂ζ . An easy computation shows that the LFIHD 
∂ = ϕ−1

∗ (ϕ∗∂
′) is as in (7).

Assume that chark = p > 0 and let us show that (a) holds. By Proposition 2.4 (d), 
the exponential map of ∂ζ is given as in (6) for some integers 0 ≤ s1 < . . . < sr. If p
does not divide d, then consider l ∈ Z≥0 \ pZ such that dl ≥ ps1 . Note that tl ∈ A. By 
Lemma 2.13 and (7) we obtain the equality

∂(ps1 )(tl) = λ1dlt
−1/d−h(ps1e)+lχps1e .

Since ∂(ps1 )(tl) ∈ A \ {0}, it follows that −1/d − h(ps1e) ∈ Z.
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Otherwise, assume that p divide d. By the minimality of d there exists m ∈ σ∨
M such 

that dh(m) is not divisible by p. Taking l ∈ Z≥0 such that dl ≥ max{ps1 , −dh(m)} we 
have tlχm ∈ A \ {0} and so Lemma 2.13 implies

∂(ps1 )(tlχm) = λ1dh(m)t−1/d−h(ps1e)+lχm+ps1e ∈ A \ {0} .

Hence in any case e1 := (ps1e, −1/d − h(ps1e)) ∈ M̂ , where M̂ = M × Z.
Let us remark that

A[C,D] =
⊕

(m,l)∈σ̂∨
M̂

kχ(m,l) = k[σ̂∨
M̂

],

where χ(m,l) = tlχm and σ̂ is the cone generated by (v, 1) and (σ, 0). Since e ∈ σ∨, an 
easy computation shows that e1 = (ps1e, −1/d −h(ps1e)) ∈ Rt σ̂ for the distinguished ray 
ρ = (dv, d). So by Corollary 3.7 the M̂ -graded algebra A admits rationally homogeneous 
LFIHDs of degree e1/p

s1 coming from the root e1. One of such rationally homogeneous 
LFIHDs is given by the equality

ex∂1(tlχm) =
∞∑
i=0

(
d(l + h(m))

i

)
λi

1t
l−i(1/d+h(ps1e))χm+ips1exips1

,

where λ1 ∈ k∗ is as (6). Furthermore, by Corollary 2.6 we extend ∂1 to a homogeneous 
LFIHD ∂′

1 on the M -graded algebra B. Assume that r ≥ 2. One can see ex∂
′ and ex∂

′
1 as 

automorphisms of the algebra B[x] by letting ex∂
′(x) = ex∂

′
1(x) = x. Hence, using this 

convention we have

ex∂
′ ◦ (ex∂

′
1)−1 = exϕ

−1
∗ (χe∂ζ,1),

where ∂ζ,1 is the LFIHD on k[ζ] defined by

ex∂ζ,1(ζ) = ζ +
r∑

i=2
λix

psi
.

Consequently, the map ex∂
′ ◦ (ex∂′

1)−1 yields a homogeneous LFIHD ∂′′
1 on A. Actually, 

replacing ∂ζ,1 by ∂ζ , the LIFHD ∂′′
1 satisfies (7). Again, it follows that e2 := (ps2e,

−1/d − h(ps2e)) ∈ M̂ is a root of σ̂. One concludes by induction that (a) holds.
If chark = 0, then the locally nilpotent derivation ∂(1)

ζ on the algebra k[ζ] is equal to 
λ ∂

∂ζ for some λ ∈ k∗. Using (7) we have

∂(1)(t) = λdt−1/d−h(e)+1χe ∈ A \ {0}

and so assertion (b) holds. This concludes the proof in the case where condition (i) holds.
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Assume now that (ii) holds. Let A′ be the normalization of A[t] in the field FracA. By 
Lemma 5.5 (iii), we have d ·M = h−1(Z) ⊆ L, where L is the sublattice of M generated 
by the set of weights of ker ∂. Hence, changing ∂ by ϕm · ∂ for m ∈ σ∨

d·M , without loss of 
generality, we may assume e ∈ σ∨

M .
More precisely, replacing e by e + m for some m ∈ σ∨

d·M does not change assertions 
(a), (b) in the theorem. With this new assumption, again by Lemma 5.5, we extend ∂ to 
a homogeneous LFIHD ∂̄ on A′ of horizontal type. By the previous argument (the case 
where C = A1

k) applied to (A′, ∂̄) and since ∂̄ stabilizes k[σ̂∨∩M̂ ] we obtain (a) and (b).
It remains to show that if a lattice vector e verifies assertions (a), (b), then one can 

build a homogeneous LFIHD on A = A[C, D] of horizontal type and of degree e as in (7). 
Assume that chark > 0 and let ei = (e, −1/d − h(psie)). By (a) we have ei ∈ Rt σ̂ and 
we can consider the rationally homogeneous LFIHDs ∂e1,s1 , . . . , ∂er,sr on the semigroup 
algebra k[σ̂∨

M̂
] (see Example 3.2). Using the isomorphism ϕ and considering every ex∂ei,si

as automorphism of the ring A[x], a computation shows that the composition

ex∂e1,s1 ◦ ex∂e2,s2 ◦ . . . ◦ ex∂er,sr

defines an LFIHD as in (7). In the case where chark = 0, a similar argument can be 
applied (see also [23, Examples 3.20 and 3.21]). We leave the details to the reader. �

For the proof of our next lemma, which is the last ingredient for our main theorem, 
we need the following remark.

Remark 5.9. Assume that k is perfect and let r ∈ Z>0. Then the Frobenius map F :
k → k mapping λ �→ λpr is a field automorphism. Let t be a new variable and let x = tp

r . 
We will compute the ramification of the field extension k(t)/k(x). Let P (x) =

∑
aix

i ∈
k[x] be an irreducible polynomial. Then

P (x) = P (tp
r

) = (F ∗(P )(t))p
r

, where F ∗(P )(t) =
∑

F−1(ai)ti .

Hence F ∗(P )(t) is irreducible in k[t]. Let C and C ′ be unique projective curves over k
whose function fields are k(t) and k(x), respectively (both isomorphic to P1

k). The in-
clusion k(x) ⊆ k(t) induces a purely inseparable morphism π : C → C ′. Our previous 
computation shows that for every z ∈ C the pullback of z as Weil divisor is given by 
π∗(z) = pr · z′, where z′ ∈ C ′ lies in the schematic fiber of z.

Let D =
∑

z∈C Δz · z be proper σ-polyhedral divisor over a regular curve C. Recall 
that hz stands for the support function of the σ-polyhedron Δz for all z ∈ C, see 
Definition 1.5.

Lemma 5.10. Assume that k is perfect. Let D be a proper σ-polyhedral divisor over 
C = A1

k or C = P1
k, respectively. Assume that there exists a maximal cone ω on the 

quasifan Λ(D) or Λ(D|A1 ), respectively, such that for any z ∈ C different from 0 and ∞

k
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we have hz|ω = 0. Let ∂ be an LFIHD of degree e on the algebra A[C, Dω] given by 
formula (7). Let p = chark if chark > 0 and p = 1 if chark = 0. Then ∂ extends to 
an LFIHD on A = A[C, D] if and only if for any m ∈ σ∨

M such that m + ps1e ∈ σ∨
M the 

following hold.

(i) If hz(m + ps1e) 
= 0, then �pkhz(m + ps1e)� − �pkhz(m)� ≥ 1, ∀z ∈ C, z 
= 0, ∞.
(ii) If h0(m + ps1e) 
= h(m + ps1e), then �dh0(m + ps1e)� − �dh0(m)� ≥ 1 + dh(ps1e).
(iii) If C = P1

k, then �dh∞(m + ps1e)� − �dh∞(m)� ≥ −1 − dh(ps1e).

Here h is the linear extension of h0|ω to MR, d ∈ Z>0 is the smallest positive integer 
such that dh is integral and k is the unique non-negative integer such that d = d′pk with 
gcd(d′, p) = 1.

Proof. Considering m ∈ σ∨
M we can write h(m) = 〈m, v〉 for some v ∈ NQ. Since every 

hz is upper convex, hz(m) ≤ 0 ∀z ∈ C \ {0, ∞}, and obviously h0(m) ≤ h(m). Letting

AM =
⊕
m∈M

k[t] · ϕmχm,

where ϕm = t−�h(m)� and localizing by a homogeneous element of ker∂, by Lemma 2.5, 
∂ extends to a homogeneous LFHID on AM . We also denote this extension by ∂. Hence, 
∂ extends to an LFIHD on A if and only if the extension ∂ on AM stabilizes A. In 
addition, we may assume that k = k̄ is algebraically closed since the extension ∂k̄ of ∂
on AM ⊗k k̄ stabilizes A ⊗k k̄ if and only if ∂ stabilizes A.

For the characteristic zero case, the proof is available in [23, Lemma 3.26]. In the 
sequel, we assume chark = p > 0. The proof is divided into three steps, (similar to [23, 
Lemma 3.26]) where we assume h = 0, h(m) integral for all m and finishing with the 
general case.

Case h = 0. In this case we have d = 1, L = M and by Theorem 5.8, ∂ = χe∂t
for some LFIHD ∂t on k[t]. By Proposition 2.4 (d), the LFIHD ∂t is determined by a 
sequence of integers 0 ≤ s1 < . . . < sr. Furthermore, since hz ≤ 0 for any z ∈ A1

k, then 
h∞ ≥ 0 in the elliptic case. Fixing m ∈ σ∨

M such that m + ps1e ∈ σ∨
M the conditions of 

our lemma become:

(i′) If hz(m + ps1e) 
= 0, then �hz(m + ps1e)� − �hz(m)� ≥ 1 ∀z ∈ A1
k.

(iii ′) If C = P1
k, then �h∞(m + ps1e)� − �h∞(m)� ≥ −1.

Under the above assumption we have

Am = H0(C,OC(D(m))) ⊆ k[t]

and ∂ stabilizes A if and only if
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f(t) ∈ Am ⇒ ∂
(i)
t (f(t)) ∈ Am+ie, ∀m ∈ σ∨

M , ∀i ∈ Z≥0 ,

or equivalently,

div f + �D(m)� ≥ 0 ⇒ div ∂(i)
t (f) + �D(m + ie)� ≥ 0, ∀m ∈ σ∨

M , ∀i ∈ Z≥0 .

This is also equivalent to

ordz f + �hz(m)� ≥ 0 ⇒ ordz ∂
(i)
t (f) + �hz(m + ie)� ≥ 0,

∀m ∈ σ∨
M , ∀i ∈ Z≥0, ∀z ∈ C . (8)

We will first show the lemma in the case where C = A1
k. Let us show first that 

(i′) implies (8) and so ∂ stabilizes A. If hz(m + ps1e) 
= 0 with m ∈ σ∨
M such that 

m + ps1e ∈ σ∨
M . Then we have hz(m) 
= 0 so that f ∈ (t − z)k[t].

Let i ∈ Z≥0. If ∂(i)
t (f) = 0, then ∂(i)

t (f) ∈ Am+ie. Otherwise, ∂(i)
t (f) 
= 0 and so 

m + ie ∈ σ∨. Letting i = lps1 for some l ∈ Z≥0, we have ordz ∂
(i)
t (f) ≥ ordz(f) − l. 

Hence it follows that

ordz ∂
(i)(f) + �hz(m + ie)� ≥ ordz(f) + �hz(m)� + (�hz(m + lps1e)� − �hz(m)� − l).

By convexity of σ∨ for 1 ≤ j ≤ l we have m + jps1e ∈ σ∨. If hz(m + ie) = 0, then 
ordz ∂

(i)(f) + �hz(m + ie)� ≥ 0 and (8) holds. Otherwise, hz(m + ie) 
= 0 and again 
hz

(
m + (l − j)ps1e

)

= 0 for 1 ≤ j ≤ l. Combining the previous inequality with (i′), and 

the fact that ordz f + �hz(m)� ≥ 0 we obtain

ordz ∂
(i)(f) + �hz(m + ie)� ≥ ordz(f) + �hz(m)�

+
l∑

j=1
(�hz(m + (l − j)ps1e + ps1e)�

− �hz(m + (l − j)ps1e)� − 1) ≥ 0 .

This yields (8) in the case where C = A1
k.

Now, we show the converse. Assume that C = A1
k and that ∂ stabilizes A. Recall that 

∂ stabilizes A if and only if (8) holds. If ω is the unique maximal cone in Λ(D), then 
hz is identically zero for all z ∈ C and so (i′) is trivially satisfied. Therefore the lemma 
follows in this case.

In the sequel, we assume that Λ(D) has at least two maximal cones. Let ω0 ∈ Λ(D)
be a maximal cone different from ω. Then there exists a lattice vector m ∈ rel. intω0
such that hz(m) ∈ Z and ∂(lps1 )(ϕm) 
= 0 for some l ∈ Z≥0. Note that here ker ∂ =⊕

m∈ωM
k · ϕmχm. Taking m big enough we may suppose that −hz(m) ≥ lps1 and by 

Lemma 2.13 we may suppose that

ordz ∂
(lps1 )
t (ϕm) = −hz(m) − l.
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By (8) we have

�hz(m + lps1e)� − hz(m) − l ≥ 0. (9)

Letting h̄z be the linear extension of hz|ω0 we have

�hz(m + lps1e)� = �hz(m) + lh̄z(ps1e)� = hz(m) + �lh̄z(ps1e)� . (10)

Now, (9) and (10) yield

lh̄z(ps1e) ≥ �lh̄z(ps1e)� ≥ l

and so h̄z(ps1e) ≥ 1. Finally, letting m ∈ σ∨
M , we obtain

�hz(m + ps1e)� ≥ �hz(m)� + �h̄z(ps1e)� ≥ �hz(m)� + 1 .

This yields (i′) and so concludes the proof of the lemma in the case where C = A1
k.

Assume now that C = P1
k. Then for z ∈ C \ {∞} and for any m ∈ σ∨

M such that 
Am 
= 0, we can find ϕm,z ∈ Am satisfying ordz(ϕm,z) + �hz(m)� = 0. Replacing ϕm by 
ϕm,z in the previous argument and using Lemma 2.13 for z = ∞ in an analog way as in 
the above proof, we obtain the equivalence between (8) and (i′), (iii ′).

Case h integral. Again in this case we have d = 1. Let v ∈ N be such that 
〈m, v〉 = h(m) for all m ∈ ωM . Let us consider the polyhedral divisor defined by 
D′ = D + (−v + σ) · 0 if C is affine, and by D′ = D + (−v + σ) · 0 + (v + σ) · ∞ if 
C is projective. Now A is equivariantly isomorphic to A[C, D′] and A[C, D′] is as in the 
case where h = 0. Conjugating ∂ by the equivariant isomorphism A � A[C, D′] (see [21, 
Proposition 4.5]), the algebra A is ∂-invariant if and only if assertions (i′), (iii ′) hold 
for the polyhedral divisor D′. An easy computation shows that this is equivalent to D
satisfying (i), (ii), (iii).

General case. Now, we assume that h is not integral, i.e., that d > 1. Let us consider 
the normalization B of the cyclic extension A[ζ−dh(w)χw] ⊆ k(ζ)[M ], where ζd = t and 
w ∈ rel. int(ω) ∩M satisfies gcd(dh(w), d) = 1. We remark that B is naturally M -graded. 
Furthermore,

K ′
0 =

{a

b
| a, b ∈ Bm, m ∈ M, and b 
= 0

}
= k(ζ) .

Hence, B = A[C ′, D′], where C ′ � P1
k if A is elliptic and C ′ � A1

k otherwise. We let k
and d′ be the unique pair of positive integers such that d = d′pk with gcd(d′, p) = 1. Let 
π : C ′ → C be the morphism induced by the field inclusion K0 = k(t) ⊆ k(ζ) = K ′

0. 
Then by Lemma 1.10, Remark 5.9 and [33, Section 3.12, Exercise 3.8], we obtain

D′ =

⎧⎨⎩d · Δ0 · [0] +
∑

z′∈C′\{0} p
k · Δz · z′, if C = A1

k

d · Δ0 · [0] +
∑

′ ′ pk · Δz · z′ + d · Δ∞ · [∞], if C = P1

z ∈C \{0,∞} k
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This yields h′
0 = dh0, h′

∞ = dh∞ and h′
z′ = pkhz, where π(z′) = z and h′

z′ is the 
support function of the coefficient Δ′

z′ of D′ at z′. Moreover, h′
0|ω is integral and so the 

algebra B satisfies the conditions of the previous case (h integral). We let h′ : MR → R

be the linear extension of h′
0|ω.

Let

BM =
⊕
m∈M

ϕ′
m · k[ζ] · χm, where ϕ′

m = ζ−dh(m) .

Since AM ⊆ BM is a cyclic extension, by Corollary 2.6 the LFIHD ∂ on AM extends to 
an LFIHD ∂′ on BM . Furthermore, ∂ stabilizes A if and only if ∂′ stabilizes B (see the 
argument in [23, Lemma 3.26]).

By the previous case, B is stabilized by ∂′ if and only if for every m ∈ σ∨
M such that 

m + ps1e ∈ σ∨
M , the following conditions are satisfied.

(i′′) If h′
z′(m + ps1e) 
= 0, then �h′

z′(m + ps1e)� − �h′
z′(m)� ≥ 1, ∀z′ ∈ C ′, z′ 
= 0, ∞.

(ii ′′) If h′
0(m + ps1e) 
= h′(m + ps1e), then �h′

0(m + ps1e)� − �h′
0(m)� ≥ 1 + dh′(ps1e).

(iii ′′) If C = P1
k, then �h′

∞(m + ps1e)� − �h′
∞(m)� ≥ −1 − h′(ps1e).

Now, the lemma follows replacing h′ by dh, h′
0 by dh0, h′

∞ by dh∞ and h′
z by pkhz for 

all z′ ∈ C ′, z 
= 0, ∞. �
The following is our main result in this section. It gives a classification of horizon-

tal LFIHDs on affine T-varieties of complexity one over a perfect field. It is a direct 
consequence of the results in this section.

Theorem 5.11. Assume that the base field k is perfect. Let p = chark if chark > 0 and 
p = 1 if chark = 0. Let D be a proper σ-polyhedral divisor over a regular curve C and 
let A = A[C, D]. Let ω ⊆ MR be a rational cone and let e ∈ M be a lattice vector.

Then there exists a homogeneous LFIHD on A of horizontal type with deg ∂ = e and 
with ω as weight cone of ker ∂ if and only if the following conditions hold.

(i) C = A1
k or C = P1

k.
(ii) If C = A1

k, then ω is a maximal cone in the quasifan Λ(D), and there exists a 
rational point z0 ∈ C such that hz|ω is integral ∀z ∈ C, z 
= z0.

(ii ′) If C = P1
k, then there exists a rational point z∞ such that (ii) holds for C0 :=

P1
k \ {z∞}.

Without loss of generality, we may suppose that z0 = 0, z∞ = ∞, and hz|ω = 0 ∀z ∈
C, z 
= 0, ∞. Let also h be the linear extension of h0|ω to MR given by h(m) = 〈m, v〉
for some v ∈ NQ, let d > 0 be the smallest integer such that dh is integral and let k be 
the unique non-negative integer such that d = d′pk, with gcd(d′, p) = 1. Let τ = ω∨ and 
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denote by τ̂ the cone in N̂R generated by (v, 1) and (τ, 0) if C = A1
k and by (v, 1), (τ, 0)

and (Δ∞, −1) if C = P1
k.

(iii) There exists s1 ∈ Z≥0 such that 
(
ps1e, −1/d − h(ps1e)

)
∈ Rt τ̂ .

For any m ∈ σ∨
M such that m + ps1e ∈ σ∨

M the following hold.

(iv) If hz(m + ps1e) 
= 0, then �pkhz(m + ps1e)� − �pkhz(m)� ≥ 1, ∀z ∈ C, z 
= 0, ∞.
(v) If h0(m + ps1e) 
= h(m + ps1e), then �dh0(m + ps1e)� − �dh0(m)� ≥ 1 + dh(ps1e).
(vi) If C = P1

k, then �dh∞(m + ps1e)� − �dh∞(m)� ≥ −1 − dh(ps1e).

More precisely, all possible homogeneous LFIHD ∂ on A of horizontal type with e, ω
satisfying (i)–(iv) are given by the formula (7) in Theorem 5.8. If chark > 0, then ∂ is 
described by a sequence of integers 0 ≤ s1 < s2 < . . . < sr, where every 

(
psie, −1/d −

h(psie)
)

belongs to Rt τ̂ . Moreover,

ker ∂ =
⊕

m∈ωL

kϕmχm,

where L = h−1(Z) and ϕm ∈ Am satisfies the relation

divϕm + D(m) = 0 if C = A1
k; or (divϕm)|C0 + D(m)|C0 = 0 if C = P1

k.

Example 5.12. Let the notation be as in Example 1.8. By Theorem 5.11, there exists a 
homogeneous LFIHD on A with degree deg ∂ = e = (1, 2) and with weight cone ω of ker ∂
equal to the cone generated by (0, 1) and (1, 1) in MR. Indeed, (i) holds since C = P1

k
and (ii ′) holds with z0 = 0 and z∞ = ∞. With this choice, hz|ω = 0 for all z ∈ C, 
z 
= 0, ∞. The vector v ∈ NR such that h(m) = 〈m, v〉 corresponds to v = (1/2, 0). The 
cone τ is generated in NR by (1, 0) and (−1, 1) and the cone τ̂ in N̂R is generated by 
(1, 0, 2), (−1, 1, 0) and (1, 0, −2). Taking s1 = 0, we have that (e, −1) = (1, 2, −1) ∈ Rt τ̂
so that (iii) holds. Furthermore, a straightforward verification shows that (iv), (v) and 
(vi) hold.

Example 5.13. We assume in this example that the ground field k is algebraically closed 
of characteristic 2. Let us consider the Bertin surface

W2,5 = {x2y = x + z5} ⊆ A3
k

of type (2, 5). This is a smooth affine surface endowed with the Gm-action

λ · (x, y, z) = (λ5x, λ−5y, λz),

where λ ∈ Gm and (x, y, z) ∈ W2,5. Consider the polyhedral divisor
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D =
{

1
5

}
· [0] +

[
0, 1

5

]
· [1]

over the affine line A1 = A1
k. Here we have N = M = Z. The elements

x = t−1χ5, y = (t + 1)tχ−5, z = χ1

generate the Z-graded algebra A = A[A1, D] and satisfy the equation of W2,5. Hence we 
may identify the Gm-surface X = Spec A with W2,5. The quotient map by the Gm-action 
is

π : (x, y, z) �→ t = xy + 1.

The fiber π−1(1) consists in two distinct toric curves which intersect only at the origin:

π−1(1) = {(0, y, 0) | y ∈ k} ∪ {(z5, 0, z) | z ∈ k}.

In the setting of Theorem 5.11, we may take z0 = 0 so that τ = R≥0 and

τ̂ = R≥0(1, 0) + R≥0(1, 5).

If e = 1 and s := s1 = 2, then (2se, −1
5 − 2se

5 ) = (4, −1) is a Demazure root of τ̂ with 
distinguished ray (1, 5). Condition (iv) of Theorem 5.11 is not fulfilled. The corresponding 
homogeneous iterative higher derivation ∂ verifies the formula

eα∂(tlχm) =
∞∑
i=0

(
5l + m

i

)
tl−iχm+4iα4i

for any (m, l) ∈ Z2. This implies directly that

eα∂(x) = x and eα∂(z) = z + α4x,

and so the subalgebra k[x, z] ⊆ A is ∂-stable. However, we have ∂(4)(y) = tχ−1 /∈ A.
Now let us take e = 1 and s = 6. Then (2se, −1

5 − 2se
5 ) = (64, −13) is a Demazure 

root of τ̂ . The conditions of Theorem 5.11 are satisfied and the associated LFIHD ∂′ has 
exponential map

eα∂
′
(tlχm) =

∞∑
i=0

(
5l + m

i

)
tl−13iχm+64iα64i.

Therefore

eα∂
′
(x) = x, eα∂

′
(z) = z + α64x13,

and
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eα∂
′
(y) = x−1(1 + eα∂

′
(t)) = y + α64x11z4 + α256x50z + α320x63.

The kernel of ∂′ is the subalgebra k[x] ⊆ A.

Remark 5.14. A generalization of [23, Section 4.1] allows to define and compute the ho-
mogeneous Makar-Limanov invariant of an affine T-variety of complexity one of arbitrary 
characteristic. Due to lack of space, we omit this straightforward generalization.
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