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In this paper we provide a characterization of smooth alge-
braic varieties endowed with a faithful algebraic torus action 
in terms of a combinatorial description given by Altmann and 
Hausen. Our main result is that such a variety X is smooth if 
and only if it is locally isomorphic in the étale topology to the 
affine space endowed with a linear torus action. Furthermore, 
this is the case if and only if the combinatorial data describing 
X is locally isomorphic in the étale topology to the combina-
torial data describing affine space endowed with a linear torus 
action. Finally, we provide an effective method to check the 
smoothness of a Gm-threefold in terms of the combinatorial 
data.

© 2017 Elsevier Inc. All rights reserved.

Introduction

Let k be an algebraically closed field of characteristic zero and let T be the algebraic 
torus T = (Gm)k of dimension k where Gm is the multiplicative group of the field (k∗, ·). 
The variety T has a natural structure of algebraic group. We denote by M its character 
lattice and by N its 1-parameter subgroup lattice. In this paper a variety denotes an 
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integral separated scheme of finite type. A T-variety is a normal variety X endowed 
with a faithful action of T acting on X by regular automorphisms. The assumption that 
the T-action on X is faithful is not a restriction since given any regular T-action α, the 
kernel kerα is a normal algebraic subgroup of T and T/(kerα) is again an algebraic torus 
acting faithfully on X.

The complexity of a T-variety is the codimension of the generic orbit. Furthermore, 
since the action is assumed to be faithful, the complexity of X is given by dimX−dimT. 
The best known example of T-varieties are those of complexity zero, i.e., toric varieties. 
Toric varieties were first introduced by Demazure in [7] as a tool to study subgroups of 
the Cremona group. Toric varieties allow a combinatorial description in term of certain 
collections of strongly convex polyhedral cones in the vector space NQ = N ⊗Z Q called 
fans, see for instance [19,12,6].

For higher complexity there is also a combinatorial description of a T-variety. We will 
use the language of p-divisors first introduced by Altmann and Hausen in [2] for the 
affine case and generalized in [3] to arbitrary T-varieties. This description, that we call 
the A-H combinatorial description, generalizes previously known partial cases such as 
[14,8,11,24]. See [4] for a detailed survey on the topic.

Since the introduction of the A-H description, a lot of work has been done in gener-
alizing the known results from toric geometry to the more general case of T-varieties. 
On of the most basic parts of the theory that are still open is the characterization of 
smooth T-varieties of complexity higher than one. In particular, several classification
of singularities of T-varieties are given in [17], but no smoothness criterion is given in 
complexity higher than one. In this paper we achieve such a characterization in arbitrary 
complexity.

By Sumihiro’s Theorem [23], every (normal) T-variety admits an affine cover by 
T-invariant affine open sets. Hence, to study smoothness, it is enough to consider affine 
T-varieties. The A-H description of an affine T-variety X consists in a couple (Y, D), 
where Y is a normal semiprojective variety that is a kind of quotient of X, usually called 
the Chow quotient and D is a divisor on Y whose coefficients are not integers as usual, 
but polyhedra in NQ, see Section 1 for details.

It is well known that an affine toric variety X of dimension n is smooth if and only if 
it is equivariantly isomorphic to a T-invariant open set in An endowed with the standard 
T-action of complexity 0 by component-wise multiplication. Our main result states that 
an affine T-variety X of dimension n and of arbitrary complexity is smooth if and only if 
it is locally isomorphic in the étale topology to the affine space An endowed with a linear 
T-action, see Proposition 4. Furthermore, X is smooth if and only if the combinatorial 
data (Y, D) is locally isomorphic in the étale topology to the combinatorial data (Y ′, D′)
of the affine space An endowed with a linear T-action, see Theorem 7. The main ingredient 
in our result is Luna’s Slice Theorem [18].

In order to effectively apply Theorem 7, it is necessary to know the A-H description 
of An endowed with all possible linear T-actions. The case of complexity 0 and 1 are well 
known, see Corollary 9. In Proposition 12, we compute the combinatorial description of 



206 A. Liendo, C. Petitjean / Journal of Algebra 490 (2017) 204–218
all the Gm-action on A3. We apply this proposition to give several examples illustrating 
the behavior of the combinatorial data of smooth and singular affine Gm-varieties of 
complexity 2.

We state our results in the case of an algebraically closed field of characteristic zero 
since the A-H description is given in that case. Nevertheless, all our arguments are 
characteristic free. In the introduction of [2] it is stated that they expect their arguments 
to hold in positive characteristic with the same proofs. Hence, our results are also valid 
in positive characteristic provided the A-H description is valid too. In particular, see [1]
for Luna’s Slice Theorem in positive characteristic and [15] for a different proof of the 
A-H description in complexity one over arbitrary fields.

1. Altmann–Hausen presentation of T-varieties

In this section, we present a combinatorial description of affine T-varieties. We use 
here the description first introduced by Altmann and Hausen in [2]. This description, that 
we call the A-H description, generalizes that of toric varieties [6] and many particular 
cases that were treated before, see [14,8,11,24]. Furthermore, this was later generalized 
to the non-affine case in [3]. See [4] for a detailed survey on the subject.

Let N � Zk be a lattice of rank k, and let M = Hom(N, Z) be its dual lattice. 
We let T = Spec(k[M ]) be the algebraic torus whose character lattice is M and whose 
1-parameter subgroup lattice is N . To both these lattices we associate rational vector 
spaces NQ := N ⊗Z Q and MQ := M ⊗Z Q, respectively. In all this paper, we let σ ⊆ NQ

be a strongly convex polyhedral cone, i.e., the intersection of finitely many closed linear 
half spaces in NQ which does not contain any line. Let σ∨ ⊆ MQ be its dual cone and 
let σ∨

M := σ∨ ∩M be the semi-group of lattice point in M contained in σ∨. Let Δ ⊆ NQ

be a convex polyhedron, i.e., the intersection of finitely many closed affine half spaces 
in NQ. Then Δ admits a decomposition using the Minkowski sum as

Δ := Π + σ = {v1 + v2 | v1 ∈ Π, v2 ∈ σ},

where Π is a polytope, i.e., the convex hull of finitely many points in NQ and σ is a 
strongly convex polyhedral cone. In this decomposition, the cone σ is uniquely deter-
mined by Δ. The cone σ is called the tail cone of Δ and the polyhedron Δ is said to be a 
σ-polyhedron. Let Polσ(NQ) be the set of all σ-polyhedra in NQ. The set Polσ(NQ) with 
Minkowski sum as operation forms a commutative semi-group with neutral element σ.

Let Y be a semiprojective variety, i.e., Γ (Y, OY ) is finitely generated and Y is 
projective over Y0 = Spec(Γ (Y, OY)). A polyhedral divisor D on Y is a formal sum 
D =

∑
Δi ·Di, where Di are prime divisors on Y and Δi are σ-polyhedron with Δi = σ

except for finitely many of them.
Let D be a polyhedral divisor on Y . We define the evaluation divisor D(u) for every 

u ∈ σ∨
M as the Weil Q-divisor Y given by



A. Liendo, C. Petitjean / Journal of Algebra 490 (2017) 204–218 207
D(u) =
∑

min
v∈Δi

〈u, v〉Di for all u ∈ σ∨
M .

A polyhedral divisor on Y is called a p-divisor if the evaluation divisor D(u) is a 
Q-Cartier semi-ample divisor for each u ∈ σ∨

M and big for each u ∈ relint(σ∨) ∩M . For 
every p-divisor D on Y we can associate a sheaf of OY -algebras

A(Y,D) =
⊕

u∈σ∨
M

OY (D(u)) · χu,

and its ring of global sections

A(Y,D) = Γ (Y,A(Y,D)) =
⊕

u∈σ∨
M

Au, where Au = Γ (Y,OY (D(u))) · χu.

To the M -graded algebra A(Y, D), we associate the scheme X(Y, D) = Spec(A(Y, D)). 
The main result by Altmann and Hausen in [2] is the following.

Theorem 1 (Altmann–Hausen). For any p-divisor D on a normal semi-projective vari-
ety Y , the scheme X(Y, D) is a normal affine T-variety of dimension dim(Y ) + dim(T). 
Conversely any normal affine T-variety is isomorphic to an X(Y, D) for some semi-
projective variety Y and some p-divisor D on Y .

The semi-projective variety Y serving as base for the combinatorial data in the above 
theorem is not unique. Indeed, in the following example we give three different presen-
tations for the same affine T-variety. Computations can be carried out following the 
method described in [2, Section 11]

Example 2. Let A3 = Spec(k[x, y, z]) endowed with the linear Gm-action given by λ ·
(x, y, z) → (λx, λ−1y, λz). We say that the weight matrix is (1 −1 1)t. In this case, 
the lattices M and N are isomorphic to Z and the tail cone must be σ = {0}, then A3

is equivariantly isomorphic to

(i) X(Y1, D1), where Y1 is the is the blow-up of A2 at the origin and D1 = [−1, 0] ·E, 
with E the exceptional divisor of the blow up.

(ii) X(Y2, D2), where Y2 is the is the blow-up of A2 at the origin and D2 = [0, 1] ·E+D, 
with E the exceptional divisor of the blow up and D the strict transform of any 
curve passing with multiplicity one at the origin.

(iii) X(Y3, D3), where ψ : Y3 → Y1 is any projective birational morphism with Y3 normal 
and D3 = ψ∗(D1) is the total transform of D1, see [17, lemma 2.1].

Amongst all the possible bases Y for the combinatorial description of a T-variety, there is 
one of particular interest for us. It corresponds to the definition of minimal p-divisor given 
in [2, Definition 8.7]. A p-divisor D on a normal semi-projective variety Y is minimal if 
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given a projective birational morphism ψ : Y → Y ′ such that D = ψ∗(D′), then we have 
ψ is an isomorphism. Given an affine T-variety X, the semi-projective variety Y where 
a minimal p-divisor describing X lives is called the Chow quotient for the T-action. In 
the previous example, the first two descriptions are minimal while the last one is only 
minimal if ψ is an isomorphism. Since every birational projective morphism between 
normal curves is an isomorphism, we have that in the case of complexity one T-varieties, 
all p-divisors are minimal.

Let X be an affine T-variety and let L → X be the trivial line bundle. We need to 
recall the construction of the Chow quotient of the T-action. By [2, Section 5], every 
linearization of the trivial line bundle is given by a character χu, u ∈ M and for every 
u ∈ M the set of semistable points is given by

Xss(u) = {x ∈ X | there exists n ∈ Z≥0 and f ∈ Anu such that f(x) 
= 0} .

The set Xss(u) is a T-invariant open subset of X admitting a good T-quotient to

Yu = Xss(u)//T = Proj
⊕

n∈Z≥0

Anu.

There exists a quasifan Λ ∈ MQ generated by a finite collection of (not necessarily 
strongly convex) cones λ such that for any u and u′ in the relative interior of the same 
cone λ ∈ Λ, we obtain the same set of semi-stable points, i.e., Xss(u) = Xss(u′). Thereby, 
we can index the open sets of semi-stable points Xss(u) using λ so that Xss(u) = Wλ

for any u ∈ relint(λ). Furthermore, if γ is a face of λ, Wλ is an open subset of Wγ . Let 
W = ∩

λ∈Λ
Wλ. The quotient maps

qλ : Wλ → Wλ//T = Proj
⊕

n∈Z≥0

Anu

for any u in the relative interior of λ form an inverse system indexed by the cones in 
the fan Λ. We let q : W −→ Y ′ = lim

←
Yλ be the inverse limit of this system. The 

semi-projective variety Y is then obtained by taking the normalization of the closure of 
the image of W by q in Y ′. In the following commutative diagram we summarize all the 
morphisms involved. We will refer to them by these names in the text. The morphism 
q : W → Y comes from the universal property of the normalization.

W

q

Wλ

qλ

Wγ

qγ

X

q0Y

ρ

Yλ Yγ

Y0 = Spec(A0)

(1.1)
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2. Smoothness criteria

Our main result in this paper is a characterization of smooth T-varieties in terms of the 
A-H combinatorial data. This will follow as an application of Luna’s Slice Theorem [18]. 
We will first recall this theorem and the required notation. Throughout this section G
will be used to denote a reductive algebraic group. The Slice Theorem describes the local 
structure in the étale topology of algebraic varieties endowed with a G-action. For details 
and proofs see [18,9]. We will follow the presentation in [13, Appendix to Ch. 1§D], see 
also [16]. For details on étale morphisms and the étale topology, see [10,22].

Let X, X ′ be algebraic varieties, f : X → X ′ be a morphism and x ∈ X. The 
morphism f is called étale at x if it is flat and unramified at x. We say that f is étale 
if it is étale at every point x ∈ X. For every x ∈ X, an étale neighborhood ψ of x is an 
étale morphism ψ : Z → X from some algebraic variety Z such that x ∈ ψ(Z). We say 
that two varieties X and X ′ are locally isomorphic in the étale topology at the points 
x ∈ X and x′ ∈ X ′ if they have a common étale neighborhood, i.e., if there exists a 
variety Z and a pair of étale morphisms ψ : Z → X and ψ′ : Z → X ′ such that x ∈ ψ(Z)
and x′ ∈ ψ′(Z).

If X is a G-variety, we say that the neighborhood ψ is G-invariant if Z is also a 
G-variety and ψ is equivariant. Furthermore, if both X and X ′ are G-varieties, we say 
that X and X ′ are equivariantly locally isomorphic in the étale topology at the points 
x and x′ if they have a common G-invariant étale neighborhood.

For the Slice Theorem we need a stronger equivariant notion of étale morphisms. Let 
φ : X → X ′ be a G-equivariant morphism of affine G-varieties. The morphism φ is called 
strongly étale if

(i) φ is étale and the induced morphism φ//G : X/ /G → X ′/ /G is étale.
(ii) φ and the quotient morphism π : X → X/ /G induce a G-isomorphism between X

and the fibered product X ′ ×X′//G X/ /G.

Strongly étale morphism play the role of “local isomorphism” in the Slice Theorem. Let 
now H be a closed subgroup of G and V an H-variety. The twisted product G �H V is 
the algebraic quotient of G × V with respect to the H-action given by

H × (G× V ) → G× V, (h, (g, v)) �→ h · (g, v) = (gh−1, hv) .

For a smooth point x ∈ X, we denote by Gx the stabilizer of x and by TxX the fiber at 
x of the tangent bundle of X. Furthermore, for a closed orbit G ·x, we denote by Nx the 
fiber at x of the normal bundle to the orbit G · x.

Theorem 3 (Luna’s Slice Theorem). Let X be an smooth affine G-variety. Let x ∈ X

be a point such that the orbit G · x is closed and fix a linearization of the trivial bundle 
on X such that G · x ⊂ Xss. Then, there exists an affine smooth Gx-invariant locally 
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closed subvariety Vx of Xss (a slice to G ·x) such that we have the following commutative 
diagram

G �Gx TxVx G �Gx Vx
st. ét.st. ét.

Xss

Nx//Gx (G �Gx Vx)//G
ét.ét.

Xss//G

Our main result will follow from the following proposition that translates Luna’s Slice 
Theorem into the language of the A-H presentation. Let X = X(Y, D). Recall that the 
morphism ρ : Y → Y0 in the A-H presentation is the natural morphism from the Chow 
quotient Y used in the presentation and the algebraic quotient Y0 = X/ /T.

Proposition 4. Let X = X(Y, D) be an affine T-variety of dimension n. Assume that 
Y is minimal. Then, X is smooth if and only if for every point y of Y0 there exists a 
neighborhood U ⊆ Y0, an algebraic variety Z, a smooth toric variety X ′ of dimension n, 
and strongly étale morphisms a : Z → X(ρ−1(U), D|ρ−1(U)) and b : Z → X ′ where T
acts on X ′ via a subtorus of the big torus action. In particular, every smooth point in 
a T-variety is T-equivariantly locally isomorphic in the étale topology to a point in the 
affine space endowed with a linear T-action.

Proof. We prove first the “if” of the first assertion. By assumption Y0 is covered by 
the open sets U and so the open sets ρ−1(U) cover Y . Furthermore, every X(ρ−1(U),
D|ρ−1(U)) is an open set in X by [3, Proposition 3.4] and for every y ∈ Y0 the fiber 
q−1
0 (y) of the algebraic quotient q0 : X → Y0 is contained in X(ρ−1(U), D|ρ−1(U)). This 

shows that X is covered by the smooth T-stable open sets X(ρ−1(U), D|ρ−1(U)). Hence, 
every point x ∈ X is locally isomorphic in the étale topology to a open set in a smooth 
toric variety X ′. Since smoothness is preserved by étale morphisms, we have that X is 
smooth.

Assume now that X is smooth and let again q0 : X → Y0 = X/ /T be the algebraic 
quotient. Then for every y ∈ Y0, q−1

0 (y) contains a unique closed orbit that we will 
denote Cy. Choose a linearization of the trivial bundle given by the character χu such 
that Cy ⊂ Xss := Xss(u). By the top row in the commutative diagram in Theorem 3, 
for any point x ∈ Cy we have a closed smooth Tx-stable subvariety Vx of X and strongly 
étale morphisms

X ′ := T �Tx TxVx Z := T �Tx Vx
b a

Xss.

Let U be the image of Xss in Y0 by q0. Recall that in the commutative diagram (1.1)
the variety Xss = Xss(u) = Wλ and so by the commutativity of the diagram and [3, 
Proposition 3.4] we have that X(ρ−1(U), D|ρ−1(U)) = Xss. Since the Tx-actions on T and 
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on TxVx are linear, we have that X ′ is a smooth toric variety where T acts as a subtorus 
of the big torus. This proves the “only if” part of the first assertion.

For the last statement, it is well known that every smooth affine toric variety of 
dimension n can be embedded as an open set in the affine space equivariantly with 
respect to the big torus action. Let c : X ′ ↪→ An be such an embedding. Since an open 
embedding is étale, the compositions c ◦ b and a are the required étale neighborhoods for 
every x ∈ Xss ⊆ X. �
Remark 5. The statement that every smooth point in a T-variety is T-equivariantly 
locally isomorphic in the étale topology to a point in the affine space endowed with 
a linear T-action is generalization of the classical result that every smooth point in a 
variety is locally isomorphic in the étale topology to a point in the affine space.

For the proof of our main result in Theorem 7, we need the following version of [2, 
Theorem 8.8]. The statement and proof of this Lemma and the corresponding statement 
in [2] are very similar. For the proof, we refer the reader to the original paper. Here, we 
only highlight the main points where the proof in [2] requires to be adapted.

Lemma 6. Let X = X(Y, D) and X ′ = X(Y ′, D′) be affine T-varieties, where D and 
D′ are minimal p-divisors on normal semi-projective varieties Y and Y ′, respectively. If 
ψ : X ′ → X is a strongly étale morphism, then, there exists an étale surjective morphism 
ϕ : Y ′ → Y such that X ′ is equivariantly isomorphic to X(Y ′, ϕ∗(D)).

Conversely, if ϕ : Y ′ → Y is an étale surjective morphism and D is a minimal 
p-divisor on Y , then D′ = ϕ∗(D) is minimal and there is a strongly étale morphism. 
ψ : X(Y ′, D′) → X(Y, D).

Proof. For every u ∈ M , the existence of an étale morphism (X ′)ss(u)/ /T → Xss(u)/ /T
is assured by the fact that ψ is strongly étale. Since D and D′ are minimal, we obtain, as in 
the proof of [2, Theorem 8.8], an étale morphism ϕ : Y ′ → Y . In this case, the morphism 
κ therein can be taken as the identity, see [2, p. 600 l.1]. Hence, [2, Theorem 8.8] yields 
X ′ = X(Y ′, ϕ∗(D)) equivariantly.

Conversely, in this case we have a morphism of p-divisors (ϕ, id, 1) : D′ → D. Hence, 
by [2, Proposition 8.6] we obtain the existence of a morphism ψ : X(Y ′, D′) → X(Y, D). 
By the diagram in equation (1.1), the A-H presentation is local relative to the algebraic 
quotient morphism q0 : X → Y0 = X/ /T. Hence, we can assume we have a morphism 
X = Xss(u) = Wλ → Y = Yλ = Wλ/ /T. Let now W = X ×Y Y ′ be the fiber product. 
By definition, the morphism W → X is strongly étale and the Chow quotient of W
is Y ′. By [2, Theorem 8.8] and its proof, since we have morphism ϕ : Y ′ → Y between 
the Chow quotients, we obtain again that κ therein can be taken as the identity and so 
W = X(Y ′, ϕ∗(D)). �

Let now D and D′ be p-divisors on normal semi-projective varieties Y and Y ′ respec-
tively. We say that (Y, D) is locally isomorphic in the étale topology to (Y ′, D′) if for 
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every pair of points y ∈ Y and y′ ∈ Y ′ we have a variety V and étale neighborhoods 
ψ : V → Y and ψ′ : V → Y ′ such that ψ∗(D) = (ψ′)∗(D′). We can now prove our main 
theorem.

Theorem 7. Let X = X(Y, D) be an affine T-variety of dimension n. Assume that (Y, D)
is minimal. Then, X is smooth if and only if for every point y ∈ Y0 there exists a 
neighborhood U ⊆ Y0, a linear T-action on An given by the combinatorial data (Y ′, D′)
with D′ minimal, an algebraic variety V , and étale morphisms α : V → Y and β : V → Y ′

such that ρ−1(U) ⊆ α(V ) and α∗(D) = β∗(D′). In particular, the combinatorial data 
(Y, D) is locally isomorphic in the étale topology to the combinatorial data of the affine 
space endowed with a linear T-action.

Proof. Since X is covered by the smooth T-stable open sets X(ρ−1(U), D|ρ−1(U)). We 
obtain that every point x ∈ X is locally isomorphic in the étale topology to a open set 
in An endowed with a linear T-action. Hence X is smooth. This shows the “if” of the 
first assertion.

Assume now that X is smooth. By the diagram in equation (1.1), the A-H presentation 
is local relative to the algebraic quotient morphism q0 : X → Y0 = X/ /T. Hence, we can 
assume we have a morphism X = Xss(u) = Wλ → Y = Yλ = Wλ/ /T. By Proposition 4, 
there exists an algebraic variety Z, a smooth toric variety X ′ of dimension n, and strongly 
étale morphisms a : Z → X(ρ−1(U), D|ρ−1(U)) and b : Z → X ′ where and T acts in X ′

via a subtorus of the big torus action. By the diagram in Theorem 3 we obtain the 
following diagram of étale morphisms

X ′ := T �Tx TxVx Z := T �Tx Vx
b a

X = Xss

Y ′ = Nx//Tx V := (T �Tx Vx)//T αβ
Y = Xss//T

The result now follows by applying twice Lemma 6 to the right and left square in the 
above diagram and by embedding the smooth affine toric variety X ′ linearly on the affine 
space An as in the proof of Proposition 4. �
Remark 8. By Theorem 7, local models for smooth T-varieties can be obtained via the 
downgrading procedure described in [2, section 11]. In Section 3, we will use this pro-
cedure to compute the local models for Gm-threefolds. Here, we now give as a simple 
corollary the well known criterion for the smoothness of a complexity one T-variety [17].

Corollary 9. Let X = X(Y, D) be an affine T-variety of complexity one, where Y is a 
smooth curve and D =

∑
Δi · zi is a p-divisor on Y . Then X is smooth if and only if
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(i) Y is affine and the cone spanned in NQ×Q by (0, tail(D)) and (1, Δi) is smooth for 
all i.

(ii) Y = P1 and X is equivariantly isomorphic to an open set in the affine space endowed 
with a linear T-action.

Furthermore, if X is rational then there is a Zariski cover of X by open sets isomorphic 
to open sets in the affine space endowed with linear T-actions.

Proof. Let X = X(Y, D) be an affine T-variety of complexity one. Recall that all p-
divisors in complexity one are minimal. Assume first that Y is projective. In this case 
we have that Y0 is reduced to a point. Theorem 7 yields that the combinatorial data 
(Y, D) is locally isomorphic in the étale topology to the combinatorial data (Y ′, D′) of 
the affine space endowed with a linear T-action. Let α : V → Y and β : V → Y ′ be the 
étale morphisms in Theorem 7. Since Y0 is a point, we have U = Y0 and the condition 
ρ−1(U) ⊆ α(V ) ensures that α is surjective. Hence, V is a projective curve. Further-
more, by the downgrading procedure described in [2, section 11], every linear T-action 
on the affine space with algebraic quotient reduced to a point is given by a p-divisor 
on a complete toric variety. Since the complexity is one we have Y ′ = P1. Now, by the 
Riemann–Hurwitz formula, we obtain that α and β are isomorphisms. This proves (ii).

In the case where Y is affine, we have that Y0 = Y and Theorem 7 yields that the 
combinatorial data (Y, D) is locally isomorphic in the étale topology to the combinatorial 
data (Y ′, D′) of the affine space endowed with a linear T-action. By the downgrading 
procedure in [2, section 11], we obtain that every complexity one linear T-action on the 
affine space with algebraic quotient of dimension one is given by a p-divisor on Y ′ = A1

supported at the origin D′ = Δ0 · [0] and such that the cone spanned in NQ × Q by 
(0, tail(D′)) and (1, Δ0) is smooth. This proves (i).

The last statement of the corollary follows directly from (i) and (ii). �
Remark 10. By the results from the second author in [21], even in the case where X is 
rational, there is not always a Zariski cover of X by open sets isomorphic to open sets 
in the affine space endowed with linear T-actions in complexity higher than one.

3. Smooth threefolds with complexity two torus actions

To be able to effectively apply Theorem 7 as a smoothness criterion, it is useful to 
compute all possible A-H presentations for the affine space An endowed with a linear 
torus action. As we show in the previous section, a smoothness criterion in complexity 
1 is well known and is easily reproved as a corollary of our criterion. In this section 
we compute all A-H presentations for the affine space A3 with a linear torus action of 
complexity 2. This yields an effective smoothness criterion for threefolds endowed with 
a T-action of complexity 2.
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Definition 11. Let X be an affine T-variety, let q ∈ C[X] be a semi-invariant polynomial 
and let k be an positive integer. Then ϕk : Xk = Spec(C[X][y]/(q(x) − yk)) → X is 
called a cyclic cover of X of order k along the divisor D = {q(x) = 0}.

To be able to perform computations, we need to put the base variety Y in a special 
form. This corresponds to taking a suitable T-invariant cyclic cover along a coordinate 
axis that ensures that the algebraic quotient of the new action is an affine space of 
dimensions 0 1 or 2, respectively and in the case where it is 0-dimensional, that the 
corresponding toric variety quotient has a smooth toric chart.

This technical restriction in our Proposition below is not a serious drawback since 
cyclic covers are well understood for the A-H presentation following the work of the 
second author, see [20] and any Gm-variety given in terms of the A-H presentation can 
be easily taken to this special form. Furthermore, recall that a cyclic cover of An along 
a coordinate axis is isomorphic to An. Hence, the cyclic covers under consideration take 
the affine space into the affine space with a different T-action.

In the following proposition, we denote a section of the matrix F = (a b ±c)t by 
s = (α β γ ). We also denote gcd(i, j) by ρ(i, j) and we set δ = gcd( a

ρ(a,c) , 
b

ρ(b,c) ).

Proposition 12. Let X = A3 endowed with an effective Gm-action. Then, after a suitable 
T-invariant cyclic cover along a coordinate axis, we have X � A3 � X(Y, D) and the 
weight matrix F , Y and D are given in the following list:

(1) F equals (a b −c)t with a, b and c positive integers; Y is isomorphic to a weighted 
blow-up π : Ã2 → A2 of A2 centered at the origin having an irreducible exceptional 
divisor E; and D is given by

D =
{
αρ(a, c)

c

}
⊗D1 +

{
βρ(b, c)

c

}
⊗D2 +

[
γ

δ
,
γ

δ
+ 1

δc

]
⊗ E,

with D1, D2 the strict transforms of the coordinate axes in A2.
(2) F equals (a b c)t with a, b and c positive integers; Y is isomorphic to the weighted 

projective space P(a, b, c) having a smooth standard chart U3 = {x3 
= 0}; and D is 
given by

D =
[
αρ(a, c)

c
; +∞

[
⊗D1 +

[
βρ(b, c)

c
; +∞

[
⊗D2 +

[γ
δ
; +∞

[
⊗D3,

with D1, D2 and D3 the coordinate axes in P(a, b, c).
(3) F equals (0 b c) with b and c positive integers; Y is isomorphic to P1 × A1; and 

D is given by

D =
[
βρ(b, c)

c
; +∞

[
⊗D2 +

[
−βρ(b, c)

c
; +∞

[
⊗D3,

with D2 = {0} × A1 and D3 = {∞} × A1.
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(4) F equals (0 b −c)t with b and c positive integers; Y is isomorphic to A2; and D
is given by

D =
[
γρ(b, c)

b
,
βρ(b, c)

c

]
⊗D2,

with D2 a coordinate axis in A2.
(5) F equals (0 0 1)t; Y is isomorphic to A2; and D = 0 with tail cone [0, +∞[.

Proof. Let A3 be endowed with a faithful linear action of Gm. It is clear that the matrices 
F in the above list cover all possible cases of faithful linear action of Gm on A3. We 
will give the ingredients to compute the A-H presentation by the downgrading method 
described in [2, section 11]. Therein, the combinatorial data is obtained by a routine 
computation from the following exact sequence

0 Z
F

Z3
P

s

Z2 0 .

In general, in cases (1) and (2) it is impossible to compute the cokernel matrix P . 
Nevertheless, the choices made of a suitable cyclic cover in these two cases allows us to 
compute P and from this data. Indeed, a direct verification show s that the cokernel 
matrix P can be chosen, respectively, as follows:

(1) P =
(

c
ρ(a,c) 0 a

ρ(a,c)

0 c
ρ(b,c)

b
ρ(b,c)

)
,

(2) P =
(

c
ρ(a,c) 0 − a

ρ(a,c)

0 c
ρ(b,c) − b

ρ(b,c)

)
,

(3) P =
(

1 0 0
0 c

ρ(b,c) − b
ρ(b,c)

)
,

(4) P =
(

1 0 0
0 c

ρ(b,c)
b

ρ(b,c)

)
,

(5) P =
(

1 0 0
0 1 0

)
.

To obtain now the combinatorial data from the exact sequence above we follow [2, 
section 11]. Let vi, for i ∈ {1, 2, 3} be the integral vector determined by the i-th column 
vector of P . The set {vi | i = 1, 2, 3} is the set of 1-dimensional cones of the fan of the 
toric variety Y . Moreover each non-zero integral vector vi corresponds to a prime divisor 
Di of Y being a part of the support of the p-divisor D. The coefficients corresponding 
to each prime divisor Di is now given by s 

(
R3

≥0 ∩ P−1(vi)
)
. �

In the remaining of this section, we provide several illustrative examples showing the 
different behaviors of the A-H description in the case of complexity 2 threefolds with 
respect to our smoothness criterion.
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Example 13 (A smooth T-variety over an open set in an abelian variety). Let E1 =
{h1(u1, v1) = 0} ⊂ A2 = Spec(k[u1, v1]) and E2 = {h2(u2, v2) = 0} ⊂ A2 =
Spec(k[u2, v2]) be two planar affine smooth elliptic curves passing with multiplicity one 
through the origin. Let Y be the blow up of E1 ×E2 at the origin of A4 = A2 ×A2. Let 
X = X(Y, D), where

D =
{

1
3

}
⊗D +

[
0, 1

3

]
⊗E,

where D is the strict transform of {u1 = 0}×E2 ⊆ E1×E2 in Y and E is the exceptional 
divisor of the blowup. We will show that X is smooth. By Theorem 7, we only need to 
show that for every y ∈ Y0 = X/ /T � E1 × E2 there is an étale neighborhood U such 
that X

(
ρ−1(U),D|ρ−1(U)

)
is T-equivariantly isomorphic to an étale neighborhood of A3

endowed with a linear Gm-action. Hence, we only need to show that, étale locally over 
y ∈ Y0, the divisor D appears in the list in Proposition 12. Indeed, it corresponds to case 
(1) with F = (1 1 −3)t taking s = (0 1 0).

On the other hand, with the method in [2, section 11], we can verify that X = X(Y, D)
is isomorphic to the closed Gm-stable subvariety of A5 = Spec (k[x1, y1, x2, y2, z]) with 
weight matrix (1 3 3 3 −3)t given by the equations

{ 1
z · h1(x3

1z, y1z) = 0 ; 1
z · h2(x2z, y2z) = 0

}
⊂ A5.

By the Jacobian criterion, we can check that X is indeed smooth.

Example 14 (A smooth T-variety with non-rational support divisor). Let E1 = {h(u, v) =
u2 − v(v − α)(v − β) = 0} ⊂ A2 = Spec(k[u, v]) be a planar affine smooth elliptic curve. 
Let X = X(Y, D), where Y is the blowup of A2 at the origin and

D =
{

1
2

}
⊗D1 +

{
−1

3

}
⊗D2 +

[
0, 1

6

]
⊗ E,

where D1 is the strict transform of the curve {h(u, v) = 0}, D2 is the strict transform 
of {u = 0} and E is the exceptional divisor of the blowup. Again, by Theorem 7, 
we only need to show that, étale locally over y ∈ Y0 = X/ /Gm � A2, the divisor D
appears in the list in Proposition 12. In an étale neighborhood of the origin in A2 it 
corresponds to case (1) with F = (2 3 −6)t taking s = (−1 1 0). Furthermore, 
the same local model works in an étale neighborhood of every point different from (0, α)
and (0, β). In an étale neighborhood U of these two points, the divisor D is given by 
D|U =

{1
2
}
⊗D1 +

{
−1

3
}
⊗D2. Such a p-divisor corresponds to a T-invariant open set 

of case (2) with F = (2 3 6)t taking s = (−1 1 0), see [3, Proposition 3.4].
On the other hand, we can verify that X = X(Y, D) is isomorphic to the closed 

Gm-stable subvariety of A4 = Spec(k[x, y, z, t]) with weight matrix (2 6 −6 3)t given 
by the equation
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{ 1
z · h(x3z, yz) = t2

}
⊂ A5.

By the Jacobian criterion, we can check that X is indeed smooth.

Example 15 (A singular T-variety with smooth combinatorial data). Let C = {h(u, v) =
u + v(1 − v)2 = 0} � A1 ⊂ A2 = Spec(k[u, v]). Let X = X(Y, D), where Y is the blowup 
of A2 at the origin and

D =
{

1
2

}
⊗D1 +

{
−1

3

}
⊗D2 +

[
0, 1

6

]
⊗ E,

where D1 is the strict transform of the curve C, D2 is the strict transform of {u = 0}
and E is the exceptional divisor of the blowup. By Theorem 7, X is smooth if and only 
if, étale locally over y ∈ Y0 = X/ /Gm � A2, the divisor D appears in the list in Propo-
sition 12. In an étale neighborhood of every point different from (0, 1) it corresponds to 
case (1) with F = (2 3 −6)t taking s = (−1 1 0). Nevertheless, D1 and D2 inter-
sect non-normally on the preimage of (0, 1). Since all toric divisors intersect normally, 
such point does not admit an étale neighborhood U such that X

(
ρ−1(U),D|ρ−1(U)

)
is 

equivariantly isomorphic to an étale open set on a toric variety.
On the other hand, we can verify that X = X(Y, D) is isomorphic to the Gm-stable 

subvariety of A4 = Spec(k[x, y, z, t]) with weight matrix (2 6 −6 3)t given by the 
equation

{x3 + y(1 − yz)2 = t2} ⊂ A4.

By the Jacobian criterion, we can check that the point (0, 1, 1, 0) is singular.

Example 16 (A singular T-variety with irreducible support). Let X = X(Y, D), where Y
is the blowup of A2 at the origin and

D = [−p, 0] ⊗ E,

where E is the exceptional divisor of the blowup and p is an integer strictly greater than 
one. By Theorem 7, X cannot be smooth since an exceptional divisor only appears on 
case (1) in the list in Proposition 12 and therein, the width of the coefficient polytope is 
at most 1. On the other hand, we can verify that X is equivariantly isomorphic to the 
quotient of A3 = Spec(k[x, y, z]) by the finite cyclic group μp of the p-th roots of the 
unit acting via ε · (x, y, z) = (εx, εy, z). Since such action is not a pseudo-reflection, the 
quotient is singular [5]. The Gm-action is given in A3 by weight matrix (1 1 −1)t.
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