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Lecture 1

Biregular automorphisms

For any projective algebraic variety X over a field k we set Auty(X) to be the group of biregular
maps of X to itself defined over k. If k = C, it has a structure of a Lie group whose connected
component of identity Aut(X) is a complex algebraic group and the group of connected compo-
nents Aut(X)€ is a countable discrete group. Over an arbitrary field k, one defines a group scheme
of locally finite type Aut(X) representing the functor from the category of finite algebras over k
to the category of groups defined by K +— Autx (X x K). By definition, its set of rational points
Aut(X)(K) is the group of automorphisms Auty (X). We still have the connected component of
identity Auty(X)° which is a group scheme of finite type. If p = char(k) # 0, this group scheme
may be non-reduced, and the reduced one is an algebraic group over k. The group

Aut(X)¢ := Aut(X)/ Aut(X)°

of connected components is a constant group scheme, it is defined by some abstract group I' together
with an action of the Galois group of k. Until very recently we did not know any example of
a smooth algebraic variety X for which the group Aut(X )¢ is not finitely generated. The first
example of such a variety (of dimension 6) was given by John Lesieutre in 2018 [?]. Since then
examples in all dimensions larger than one were given by T. Dinh and K. Oguiso [?].

For example, if X is a nonsingular projective algebraic curve of genus g over an algebraically
closed field k, the group Aut(X)" is isomorphic to PGL(2, k) if g = 0 and to itself, equipped with
a group law if g = 1. If ¢ > 1 Aut(X) is a finite group (of order < 84(g — 1) if char(k) = 0). If
k is not algebraically closed, the answer becomes more difficult. For example, if X (k) = (), then
Aut(X)? 22 O(2,k) 2 PGL(2,k) if g = 0 and if k is a number field or a field of rational functions
of a curve, then Aut(X) is finite if g = 1.

The study of Aut(X) is divided into two parts, the study of Aut(X)" and the study of the group
of connected components Aut(X)¢. The first part is mainly concerned with the geometric invariant
theory and we will be more interested in the discrete part Aut(X)¢. The class of varieties with

nontrivial group Aut(X)? is rather special. Each algebraic group G which stays connected when
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2 LECTURE 1. BIREGULAR AUTOMORPHISMS

we replace k with its algebraic closure fits in an extension
1 —-Lin(G) =G—-A—1, (1.1)

where A is a projective algebraic group (a complex torus if k = C) and Lin(G) is a connected linear
algebraic group, i.e. isomorphic to a closed subgroup of GL(n,k). Recall that to any irreducible
algebraic variety one can associate a regular map @ : X — Alb(X) where Alb(X) is an abelian
variety satisfying the following universal property: for any regular map a’ : X — A to an abelian
variety there exists a unique map ¢ : A — Alb(X) such that @' = ¢ o a. For example, when
X is a smooth algebraic curve, Alb(X') coincides with the Jacobian variety Jac(X). If we take
G = Aut(X)? in (??) and consider a natural homomorphism Aut(X)? — Aut(Alb(X)), then we
obtain that Lin(Aut (X)) is mapped to zero and the abelian quotient A is mapped injectively into
Alb(X) = Aut(Alb(X))O.

Assuming that Alb(X) is trivial, we find that Lin(Aut(X)°) acts on X. Each linear algebraic
group of positive dimension contains a subgroup isomorphic to G, (the additive group of the field)
or G,,, (the multiplicative group of the field), so there exists an open subset of X such that through
each point © € X passes a rational curve, the closure of the orbit of G, or G,,,. Thus X is a uniruled
variety, i.e. an algebraic variety that contains an open dense U which is the image of an open subset
of the product P! x B for some variety B.

To study the discrete part Aut(X )¢ we seek a representation of this group by automorphisms of
some discrete objects assigned to X in a functorial way.

The most natural action is the action of Aut(X )¢ on some cohomology theory. We assume that
k = C not to get involved in other arithmetical cohomology theories, e.g. the I-adic cohomology.

Let X be a nonsingular complex projective algebraic variety of dimension n (of real dimension
2n). Its cohomology H* (X, C) admits the Hodge decomposition

(X.0) = @) H(x),
ptq=k

where HP:4(X) = H%P(X). The dimensions of HP4(X) are called the Hodge numbers and de-
noted by h?”?(X). Via the de Rham Theorem, each cohomology class in H?'?(X) can be repre-
sented by a complex differential form of type (p, q), i.e. locally expressed in terms of the wedge-
products of p forms dz; and g-forms of type dz;. We also have

HP9(X) = HY(X, %), (12)
where Q% is the sheaf of holomorphic differential p-forms on X.

We set
HPY(X,A) = Hp+q(X, AN (HPYX)+ H"P(X)),

where A is a subring of C. Fix a projective embedding of X in some projective space P", then
cohomology class 1 of a hyperplane section of X belongs to H''(X,Z). Let L be the linear



operator on H*(X, A) defined by the cup-product with . We define the primitive cohomology

H?* (X, A)prim : = Ker(L" % : H*(X,A) — A), (1.3)
H* Y X AN pim = H* (X, A). (1.4)

The Hard Lefschetz Theorem asserts that
L H"M(X,Q) — H"(X, Q)
is an isomorphism. The cup-product (¢, ) +— ¢ Ut Un?=* defines a bilinear form
Qn: HY(X,A) x HF(X,A) — H?(X,A) = A,
where A = R, C and the last isomorphism is defined by the fundamental class of X.

The Hodge Index Theorem asserts that the cup-product (), satisfies the following properties

o Qu(HP(X),H"" (X)) = 0.if (p,q) # (d,);

o V1Y —1)n=R(=k=1)/2Q) (¢, $) > 0, for any ¢ € HPI(X)pyim, p +q = k.

Let us apply this to the case when n. = 2m. In this case, we have the cup-product on the middle
cohomology
H™(X,A) x HY(X,\) — H*™(X,\) = A.

By Poincaré Duality, this is the perfect symmetric duality modulo torsion (of course, no torsion if
A is a field). For A = R, it coincides with (),), and the Hodge Index Theorem asserts in this case
that (),, does not depend on 7 and its restriction to H"™" (X, R)rim is a definite symmetric bilinear
form of sign (—1)*("~1)/2 Assume that

Rl (X)) = et (1.5)

It follows from the Hard Lefschetz Theorem that L : H™~1(X,R)) — H™*!(X,R) is an isomor-
phism, hence
H™™(X,R) = H™™(X,R)prim L Rn™. (1.6)

This implies that the bilinear form @, restricted to H™™ (X, R) has Sylvester signature (1, h™"™(X)—
1) if m is odd and (h™ ™, 0) otherwise. Note that H"""" (X, R),im depends on a choice of an em-
bedding X — PY, so the previous orthogonal decomposition depends on it too.

For any p > 0, let
H?(X,Z)ag C H"P(X,7)

be the subgroup of cohomology classes generated by the cohomology classes [Z], where Z is an
irreducible p-dimensional closed subvariety of X. Its elements are called algebraic cohomology
classes.
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We set
NP(X) = H?(X, 7)./ Torsion. (1.7)
This is a free abelian group of some finite rank p,(X). In the case of algebraic varieties defined over
a field k different from C one defines the Chow group CHP (X)) of algebraic cycles of codimension
p on X modulo rational equivalence (see [?], where they are denoted by A*(X)). Its quotient

CHaig(X) by the subgroup of p-cycles algebraically equivalent to zero is the closest substitute of
H?(X, 7).

The intersection theory of algebraic cycles defines the symmetric intersection product
CHF(X) x CH'(X) = CH"!(X), (v,8) = 7+
It descents to the intersection product

CHJ, (X) x CHY, (X) = CHEEH(X).

When k = C, there is a natural homomorphism CH?, ¢(X) = HPP(X,Z), however it may not be
injective if p > 1.

The group CH!(X) coincides with the Picard group Pic(X) of X, the group of divisors modulo
linear equivalence. It is naturally identified with the group of isomorphism classes of line bundles

(or invertible sheaves) on X . The group CH,clﬂg(X ) is denoted by NS(X) and is called the Néron-

Severi group of X. It is a finitely generated abelian group.

One defines the group NP (X)) of numerical equivalence classes of algebraic cycles as the quotient
group of CH?(X') modulo the subgroup of elements ~ such that v - 8 = 0 for all 5 € CH"P(X).
It is not known whether this definition coincides with the definition (??) whenk = C and p > 1.

The statement about the signature of the intersection product on N¢(X ) over fields of arbitrary
characteristic is a conjecture. It follows from Standard Conjectures of A. Grothendieck.

The group N'(X) coincides with the group Num(X) of numerical classes of divisors on X. It is
the quotient of the Néron-Severi group by the torsion subgroup.

Example 1.1. Assume n = 2,i.e. X is a nonsingular projective algebraic surface. Since H°(X, A) =
A, we have h%? = 1, and condition (??) is obviously satisfied. In this case

NY(X) = H*(X,Z)a14/Torsion = NS(X)/Torsion.

The number p; (X) is called the Picard number of X and is denoted by p(X'). Over C, we have the
Hodge decomposition

H*(X,C) = H*'(X) @ H"(X) @ H**(X).

The Hodge numbers h*? = %2 = dim H°(X, Q%) = dim Q?(X). By Serre’s Duality, dimc H°(X, Q%) =
dimc H?(X, Ox), where Ox is the sheaf of regular (=holomorphic) functions on X . This number
is classically denoted by by p, (X)) and is called the geometric genus of X. We have

p(X) < (X)) = bay(X) — 2py(X), (1.8)
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where by (X) denote the Betti numbers of X. In characteristic p > 0, this is not true anymore, it
could happen that p(X) = ba(X) (defined in terms of the l-adic cohomology) even when p, > 0.

We also have the Hodge decomposition
HY(X,C) = H"(X) @ H*(X).

The Hodge number h'® = h%! is denoted by q(X) and is called the irregularity of X. Ii p = 0, it
is equal to the dimension of the Albanese variety Alb(X).

Note that, in the case of surfaces, the Hodge Index Theorem can be proved without using the
Hodge decomposition, and it is true for arbitrary fields. It asserts that the free group N'(X)
equipped with the intersection pairing has the Sylvester signature (afer tensoring with R) equal
to (1,p—1).

To every nonsingular n-dimensional variety X we may assign a special class in Pic(X) or N*(X),
the canonical class K x. Over C it coincides with —¢q (X), where ¢ is the first Chern class of the
corresponding complex manifold. In fact, there is a theory of Chern classes for varieties over any
field. There are n Chern classes cy,...,c,. The top one ¢, is an integer that coincides with the
topological Euler-Poincaré characteristic e(X ) of X. The canonical class K x is defined as the linear
equivalence class of the divisor of zeros and poles of any rational n-form w on X. The dimension of
the linear space 2" (X) of regular differential top forms is denoted by p,(X) or h°(K x) expressing
the dimension of the space of sections of the line bundle 2%, it is called the geometric genus of X.
All n-dimensional varieties divided in n+ 1 classes according to how the function h°(m K x ) grows.
Thus we have h°(mK x) ~ mF, where k is called the Kodaira dimension of X and is denoted by
kod(X).

For example, if X is uniruled, then kod(X) = —oo (the converse is true if n < 3). If kod(X) = n,
a variety is said to be of general type. They are higher-dimensional analogs of algebraic curves of
genus g > 1.

In the case n = 2, we have 4 classes with kod(X) = —00,0, 1, 2. The surfaces with kod(X) =
—oo admit a birational map X — V, where V is a projective bundle over a curve C, or V = Pn%-
The surfaces with kod(X') = 0 come in four types

e Abelian surfaces, i.e. abelian varieties of dimension 2;

e K3 surfaces characterized by the condition that Kx = 0 and m(X) = {1} (orifk # C no
finite unramified covers of degree larger than 1 exist). An equivalent condition is that Kx = 0
and e(X) = 24.

e Enriques surfaces characterized by the condition that e(X) = 12 and 2Kx = 0. If p # 2,
they are isomorphic to the quotients of a K3 surface by a fixed-point-free involution.

e Hyperelliptic surfaces. Certain finite quotients of products £ x C', where E is an elliptic
curve.
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Surfaces with kod(X) = 1 are characterized by the condition that there exists a fibration f : X —
C over a curve with general fiber whose divisor class [F] is proportional to K x over Q. It is an
elliptic curve if p # 2,3 or maybe isomorphic to a cuspidal cubic curve if p = 2,3. Algebraic
surfaces of Kodaira dimension 0 and 1 are 2-dimensional analogs of elliptic curves.

Example 1.2. Assume that X : Fy(zo,...,z,) = 0 is a hypersurface in P"*! with n > 0. We
have Kx ~ (d —n — 1)h, where h is the class of a hyperplane section of X. So, if d # n + 1,
any automorphism preserves K x and hence preserves the class h. This means that Aut(X) C
PGL(n +1). Also, if n > d + 1, X is not uniruled and hence Aut(X) is trivial, hence Aut(X) is
finite.

The computation of this group is rather hard even for curves. The classification of projective
groups of automorphisms of curves of curves of degree d in characteristic 0 is known for d < 5. For
d = 4 this is a classical result that goes back to A. Wiman [?] for nonsingular curves (see [?, 6.5.2]
for a modern exposition) and Ciani [?], [?] for singular irreducible quartics. For d = 5 it is due to
V. Snyder [?] and E. Ciani [?]. No classification in positive characteristic is known yet.

Also there are known some bounds on the aut| Aut(X)| in terms of degree d (see [?]). For exam-
ple, it is known that | Aut(X)| < 6d? except when d = 4 and X is the Klein quartic in which case
| Aut(X)| = 168 and d = 6 and X is a Wiman sextic with | Aut(X)| = 360.

The classification of projective groups of automorphisms of hypersurfaces is in a rudimentary
state. We know the classification of projective automorphisms of cubic surfaces over algebraically
closed fields of arbitrary characteristic. There is no yet a complete classification of projective auto-
morphisms of quartic surfaces although people are working on this (see [?]).

We know now the classification of automorphism groups of nonsingular cubic hypersurfaces in P
over algebraically closed fields of characteristic O [?].

Of course computers can help to provide a possible list of groups in each degree but it would be
hard to deduce from this the equations of the curves.

If n = d+ 1, we have Kx = 0 and hence Aut(X ) maybe larger than the group of projective
automorphisms. In many cases it is an infinite group.

Example 1.3. Since a variety X of general type is not uniruled, its automorphism group coincides
with Aut(X)¢. If Kx is ample, it coincides with a finite subgroup of projective automorphisms
under a projective embedding given by |mK x| for some m > 0. If Kx is not ample, by a theorem
of Matsumura [?] (see a modern proof in [?]) it is still a finite group. There are known some bounds
for the order of the automorphism group of an n-dimensional algebraic variety of general type in
terms of the volume of X

150
VOI(X7KX) = lim. sup M

n
m—00 m

[?].
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In the case of nonsingular minimal varieties vol(X, Kx) = K%.If n = 1, vol(X, Kx) = 2g — 2.
It is conjectured that | Aut(X)| < evol(X, Kx) for some constant c. In the case of surfaces, the
best bound is 422K§< in a striking analogy with the Hurwitz bound for curves [?].

Let n = 2m and r : Aut(X)® — O(IN™(X)) is the representation of Aut(X) in the group of
isometries of its numerical lattice N?™(X). If m = 1, the kernel of r is always finite. In fact,
N'(X) is a finite quotient of NS(X), it is enough to prove that the group of automorphisms that act
trivially on NS(X) is finite. But its elements preserve the class h of a hyperplane section and hence
act linearly on X. So they form an algebraic group G and its connected component of identity G°
is contained in Aut(X)° and G /GY is a finite group.

Since N (X) is a definite lattice if n = 2(2m — 1), we see that Aut(X) coincides with Ker(r) up
to a finite group. However, if n = 4k + 2, the quadratic form on N (X ) has a hyperbolic signature
(1,7 — 1), where r = rank N?™(X) and the quotient group Aut(X)/Ker(r) could be infinite.

Example 1.4. Let X be a nonsingular quartic surface in P2, Since d = n + 1 in this case, Kx = 0.
A quartic surface is a special case of a K3 surface. Suppose ¥ = 0 and N'(X) = Zh. Then it
follows from above that the image of p is trivial.

Now let us look at the kernel. It could be non-trivial. To see this we consider an example of a K3
surface which is obtained as the double cover of P? branched along a nonsingular plane curve of
degree 6. We can write its equation in the form

w2 + fﬁ(xaya Z) =0

if char(k) # 2 and

’U}2 + f3($7 Y, Z)w + f6(xv Y, Z) = 07
where f3, fg are homogeneous forms of degrees 3 and 6, if char(k) = 2. We should consider this
equation as a surface of degree 6 in the weighted projective space P(1, 1, 1, 3). The transformation
(1:7 Y, z, w) = (l‘, Y, z, —lU) (resp. ($7 Y, %z, ’UJ) = (337 Yy, w + fg(l‘, Y, Z)) is an automorphism of
order 2.

Let us prove that this is the only exceptional case for K3 surface X with non-trivial automorphism
group and p(X) = 1. We first assume that k = C. We already know that Aut(X) is finite. Let
g € Aut(X) be an element of order  which we may assume to be a prime number.

Let T(X) be the orthogonal complement of Pic(X) = H*(X,Z)ag in H*(X, Z). It is called the
lattice of transcendental cycles. Its rank is equal to 22 — p(X). In our case it is equal to 21. In fact,
one can define the group 7'(Z)q of (rational) transcendental cycles for any irreducible complex
algebraic variety of dimension n admitting a resolution of singularities X and prove that it is a
birational invariant [?]. We first define

H"(k(2)) = lig H" (U, Q),

where U runs through the partially ordered set of open subsets of Z. Then we set

T"(Z)q :=Image(H"(Z) — H"(k(Z)). (1.9)
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One can prove that if a finite group G acts on Z with quotient Z/G, then
T(Z/G)o = T(2)§ ={z € T(Z)g: g"(z) = x} (1.10)

[?, Proposition 5].

Consider the representation of the cyclic group G = (g) on Q?(X) = Cw. It is given by a
homomorphism
xX:G—=C o (w)=x(g9)w.

An automorphism g is called symplectic if x is trivial and non-symplectic otherwise. The reason for
the name is that w has no zeros or poles and defines a holomorphic symplectic structure on X .

Suppose g is non-symplectic. Consider the quotient surface Y = X/G. Since Q%(X)% = {0}, it
follows from the properties of the Kodaira dimension of algebraic surfaces and their classification
that a nonsingular model of Y is either an Enriques surface or a rational surface. In the first case
the set X of fixed points of G is empty and |G| = 2. The Picard group of an Enriques surface ius
equal to 10 and it embeds into Pic(X') under the inverse image map Pic(X/G) — Pic(X). We get
a contradiction with our assumption that p(X) = 1. If Y is rational, then 7'(Y") = {0}, applying
(2?), we obtain that T(X)“ = {0}. The group G acts on T(X) and decompose T'(X) = 72!
into irreducible G-modules. Each such module is either trivial or isomorphic to Z/(P(t)), where

P(t) = 5_;11 is of rank [ — 1. Since T(X)® = {0} there are no trivial summands, and hence [ — 1
divides rank 7'(X) = 21. Since only 1,3, 7,21 divide 21, the only possibility is that [ = 2 and ¢
acts as the minus identity. In this case, g acts locally at a fixed point by (u,v) — (—u,v) (since w
is locally given by du A dv) and the quotient surface is a nonsingular (the local ring of the image of
the fixed point is analytically isomorphic to C[[u?,v]], i.e. the point is nonsingular). The surface Y’
is rational and p(Y) = 1 (otherwise p(X) > 1). The only rational surface with this property is P2.

This is is our exceptional case.

Assume that g acts symplectically. In this case G acts trivially on T'(X). In fact, since H?(X, Z)aig C
HY'(X) and w € H?%(X), the multiplication map by w defines an embedding of 7'(X) into
C = H*(X,C). Since g*(w) = w and the embedding is g-equivariant, and hence G acts trivially
on T(X).

Now we use that X9 = () (otherwise X/G is a K3 surface that admits an unramified cover of
degree [ contradicting the definition of a K3 surface). Its local action in a neighborhood of a fixed
point is of the form (u,v) — (€u, el_lv), where ¢; is a primitive [th root of 1. The image of a fixed
pointin Y = X/(g) is double rational point of type A;_; (or ordinary node). The formal completion
of its local ring is isomorphic to C[[u!,v!, uv]] = C[[U,V]]/(UV — Z")]. One can resolve this
singular point by finding a nonsingular surface Y together with a proper birational map f : Y - Y
such that it is an isomorphism outside the singular point to P! and the pre-image of the singular
point is a chain of [ smooth rational curves. One can show that Q% = (Q%()(g) = Q?( = C, and it
follows from the classification of surfaces that Y is a K3 surface with certain (known) number k(1)

of curves isomorphic to PL. They are linearly independent over Q. In particular, p(Y) > 1 + k()
and dim 7'(Y") < 21 — k(I) < 20 and we get a contradiction with formula (??).
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If char(k) = p > 0, the argument is more involved. First, we can still define 7'(X ) by using the
étale [-adic cohomology (I has nothing to do with the notation for the order of g). Formula (??) is
still true but we have to assume that the order of ¢ is prime to p = char(k). If g acts sympectically,
the argument goes through without change and we get a contradiction. If g acts non-symplectically,
then its must be coprime to p (since there are no non-trivial p-roots of 1). Then again the argument
applies and we get that the only possibility is that X is a double cover of P2. So, we obtain that no
non-trivial group of order prime to p can act on X unless its order is 2 and X is a double cover of
the plane. I believe that I can deal with the case when the order is divisible by p but so far I have not
found a proof.

Example 1.5. Now suppose that the Picard number p of a nonsingular quartic surface X is larger
than one. For example, assume that X contains a line ¢ and a smooth curve C), of degree n inter-
secting ¢ at n — 1 points. Consider the pencil of planes through the line /. Each plane H; from the
pencil intersects the surface along the line ¢ and a cubic curve F; in H. We have F3 -/ = 3 and
Fy - C,, = 1. We can choose the intersection point £} N C,, as the origin in the group law on the
cubic curve. For any point z € X \ ¢ we find a unique F} containing x and then define 7'(z) to be
the point on F} such that  + T'(xz) = 0 in the group law. This defines a birational automorphism
of X but since it is a minimal surface it extends to a biregular automorphism. Let us see how g acts
on the Picard group. We certainly have g(F}) = g(h — ¢) = F; = h — £ and g(C,,) = C,,, where h
is the class of a plane section. It follows from the definition of the group law on a plane cubic that
4+ g(£) ~ 6Cy, + mF; for some integer m (we assume that X is general in the sense that all cubic
curves F} are irreducible). Let

be the matrix of the transformation g* of Pic(X) in terms of the basis formed by e; = [h — (], e5 =
[Cy],e3 = [{]. Let

0 1 3
A=(ej-ej)=11 -2 n-1
3 n—1 =2

be the matrix of the intersection form in the same basis. Here we use that for any smooth rational
curve R on a K3 surface we have R? = —2. This follows from the adjunction formula Kp =
(R+ Kx) - R. Since g* preserves the intersection form we have

'S-A-S=A.
Computing the product, we find that n = 2n + 10. Thus the matrix of the transformation is

1 0 2n+10
S:=(0 1 6

0 0 -1
Letv = —(n+5)e; — 3ea + e3. We check that v - (aej + bea 4 ce3) = —(6n+14)c = av-e2 = 0.

Thus the vector o = ﬁ € Pic(X)Y = {x € Pic(X)g : - v € Z forany v € Pic(X)} (the
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dual Picard lattice). Our transformation coincides with the reflection

T o
Teo : T T+ 2—20z
o
Here for any quadratic lattice L with symmetric bilinear form (v, w) — v-w and any vector o € LV
with 2%5 € Z, the reflection transformation is defined by the formula

T
Ta:x'—>$+272ct.
o

Example 1.6. Suppose X acquires an ordinary double point xg, i.e. locally it is given by equation
uv +w? = 0. Let 7 : X’ — X be a minimal resolution of this singular point. As I said before,
R = 77 1(z9) = P! and 7 is an isomorphism over X \ {z(}. Let M be the sublattice of the Picard
lattice Pic(X') generated by the class r = [R] and the class h of the pre-image of a plane section of
X. We have h? = 4,72 = —2,r - h = 1. Consider the following birational transformation 71" of X.
Take a general point x, join it with the line (z, zo). It intersects X at some other point «’ different
from x(. We take for the image 7'(x) of z. This transformation extends to a biregular automorphism
g of X’. Let us compute its action in the basis h,r. Consider the projection p,, of X to a plane
II = P2 with center at z:5. We can identify IT with the exceptional plane of the blow-up of P3 at x.
The curve R in this plane is a smooth conic C. Every line through x( defines a tangent direction
at o in P and hence defines a point in II. This is our projection point of any point on this line. If
we take a plane through g, then the transformation 7" leaves invariant the plane section. Since the
proper transform of this plane in X" is the class h — r, we see that g*(h — r) = h — r. We also see
that the pre-image of the conic in X’ is equal to 2h — 2r = r + g*(r). This gives g*(r) = 2h — 3r-.
Together with the equality g*(h — ) = h — r, we obtain g*(h) = 3h — 4r. Thus the matrix of the

isometry g* is
3 2
A= (_ 4 _3> |

Again we see that this is a reflection with respect to the vector o = %(h —2r) with a? = —1,

Now we assume that we have another node x1. So we have now two transformations g; and g and
we can ask whether they commute or not. We write the matrices in the basis h, 71 = [R1], 72 = [Ra].

4 3 0 4 0 3 16 3 12
g=|-3 -20), ¢g=(0 1 0[, gi-go=(-12 -2 -9
0 0 1 —3 0 -2 -3 0 -2

We find that the characteristic polynomial of the product is equal to (¢ — 1)3. It is of infinite order.

Now suppose we have a third ordinary node (there at most 16 of them on a quartic surface). One
can check that the projection transformations g1, go, g3 is the free product of cyclic groups of order
2 unless they lie on a line which is of course contained in the surface.

Note that we know the classification of all finite groups that can act symplectically on a K3 surface
in any characteristic (see [?], [?], [?] if k = C and [?] if k is of arbitrary characteristic). We know
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all possible cyclic groups that act on a K3 surface if k = C or p > 3 [?]. Any finite group G of
automorphisms of a K3 surface fits in the extension

15GY™ G50y — 1.

where C}; is a cyclic group of some order k and G®™P is the subgroup of symplectic automor-
phisms. We know all possible G*¥™P and all possible C but we still do not have a complete list of
finite groups of automorphisms even for k = C. There is an extensive research on non-symplectic
automorphisms of K3 surfaces. We refer an interested reader to Math.Sci. Net.
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LECTURE 1. BIREGULAR AUTOMORPHISMS



Lecture 2

Birational automorphisms

Algebraic varieties also form a category with respect to rational maps X --+ Y. As we know
from Claire Voisin’s lectures they are defined by equivalence classes of morphisms defined on open
dense subset, or in case of irreducible varieties by homomorphisms of the field of rational functions
k(Y) — k(X). An automorphism in this category is a birational automorphism, i.e. an invertible
rational map. We denote the group of birational automorphisms by Bir(X).

The theory of minimal models implies that, in the case of surfaces, Bir(X) = Aut(X) if X isa
minimal surface of Kodaira dimension > 0. For higher-dimensional minimal models with Kodaira
dimension > 0, Aut(X) is a subgroup of finite index in Bir(X'). There is something in between, the
group of pseudo-automorphisms. A birational map f : X --» Y is called a pseudo-automorphism
if there exists an open subset U in X of codimension > 2 and an open subset V' in Y with the same
property such that the restriction of f to U defines an isomorphism U = V.

Let us start with the case when X = P". We have Aut(P}’) = PGL(n + 1,k). But Biry (P}) is
much much bigger. It was first intensively studied by Luigi Cremona and Ernest de Jonquiéres and
is called the Cremona group of degree n. It is denoted by Cr,, (k). Obviously, Cr,, (k) contains the
group of projective transformations of P” isomorphic to PGL(n + 1, k). Its elements correspond to
transformations defined by linear homogeneous polynomials. It is clear that Cr; (k) = PGL(2, k),
so we assume n > 1.

A Cremona transformation ® can be defined, algebraically, as an automorphism of the field of
rational functions on P” isomorphic to k(z1, . . ., z,) or, geometrically, as an invertible rational map
given by a formula

O P --5 P") [z0,...,%n] — [Fo(Toy. -y @n), .., Fu(xo, ..., 2n)], 2.1

where Fy, ..., F, are mutually coprime homogeneous polynomials of some degree d (called the
algebraic degree of the transformation). The set of indeterminacy points Bs(®) of @ is equal to the
intersection of the n 4 1 hypersurfaces V' (F;) (in scheme-theoretical sense). It has a structure of a
closed subscheme of P, called the base scheme of ®. The pre-image of a hyperplane > a;t; = 0

13
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under the transformation given by equation (2?) is a hypersurface > a; F;(to,...,t,) = 0. The
pre-image of the intersection of n hyperplanes defining a general point z € P" is the intersection
of n corresponding hyperplanes. The transformation is generically one-to-one if this intersection
(considered as the scheme-theoretical intersection) is equal to the union of Bs(®) and a single point,
the pre-image of x under ®. Of course, the assumption that the point x is general is essential. There
is a closed subset, even outside of Bs(®), such that the closure of the fiber of ® : P" \ Bs(®) over
this point is of positive dimension.

When n = 2, according to the famous Noether Theorem, the group Cro(C) is generated by
PGL2(C) and the standard quadratic transformation T, defined, algebraically, by (z1,22)
(1/21,1/22), and, geometrically, by [to,t1,t2] + [tita,tota, tot1]. It is an involution, i.e. T2 is
the identity.

A convenient way to partially describe a Cremona transformation ¢ uses the definition of the
characteristic matrix. As any rational map, ® defines a regular map ®; of an open Zariski subset
U = P"\ Bs(®) to P". Let ' denote the Zariski closure of the graph of ®;; in P" x P". Let 7 and
o be the first and the second projection maps, so that we have the following commutative diagram.

Te 2.2)

Let f‘cp be a resolution of singularities of I'g, if it exists. If n = 2, it always exists and, moreover,
we can choose it to be minimal, so that it is uniquely defined, up to isomorphism. It is known that
any birational map of nonsingular varieties is a composition of the blow-ups with smooth centers.
For any such map f : X — Y one can see what happens with the Picard group; we have

Pic(X) = f*(Pic(Y)) & Ze,

where e is the class in Pic(X) of the exceptional divisor f~!(Z), wherw Z is the center of the
blow-up. This allows one to define two bases in Pic(I'y), one comes from 7 and another one comes
from 0. We have Pic(X) = Z", and the transition matrix of these two bases is the characteristic
matrix of T'.

We write ,
(2
Cg] = > dihjhy~" € CH"(P" x P")
i=0
as in Voisin’s Lecture. Since ® is birational dy = d,, = 1. The map P is described by the numbers
(di,...,dn—1), the characteristic vector of ®. The geometric meaning of them is that d; is equal to
the degree of the pre-image ® 1 (L?) of a codimension 4 linear subspace L’ in P". In particular d;

is equal to the algebraic degree of ®. The characteristic vector of @~ is equal to (dp,_1, ..., d1).
If n = 3, then the characteristic vector is (dy, d2), where, in general d; # ds. For example, we
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have quadro-quadratic or quadro-cubic Cremona transformation of P3. Many examples known in
classical literature are collected in Hilda Hudson book [?]. The numbers (dy, . . ., d,,) satisfy certain
inequalities. For example, there are inequalities discovered by Cremona:

diyj < did;

There are also some inequalities coming from Hodge index inequalities discussed in Lazarsfeld’s
book [?, vol. 1, 1.6]. For example,

d? > d;_1diyq.

For example, (2, 3, 5) satisfies the Cremona inequality but does not satisfy the Hodge inequality. It
is a big problem, even for n = 3, to prove that any vector satisfying the Cremona and the Hodge
inequalities is realized as the characteristic vector of a Cremona transformation. It suffices to show
that the Chow class defined by this vector represents an irreducible subvariety of P™ x P". It was
shown by June Huh, that the latter is true if one multiplies by sufficiently large positive integer [?,
Theorem 21]. Then it will represent a correspondence not a birational isomorphism.

Example 2.1. Let ® be given by the automorphism of k(¢1, ..., t,) defined by inverting ¢;. The
corresponding Cremona transformation is defined by

D [xg,...,xp) > [T Ty, XX Ty e e, TO T 1]

It is called the standard Cremona transformation. We denote it by 7},. The characteristic vector of T,
is equal to (dy,...,d,—1), Where d; = (7;) The transformation preserves the n-dimensional torus

equal to the complement of the hyperplanes x; = 0 and restricts to this torus as the automorphism

x> L

Example 2.2. Let f; o, f4_1, f¢ be homogeneous forms of the indicated degrees in variables
T1, T2, x3. Consider the transformation given by the formula:

[0, 1, X2, 23] = [—x0 fa—2 — fa—1, fa—221, fa—2%2, fa—2x3]. (2.3)
Let
Vy: a:%fd(:xl, cosy) Fxofago1(z1, . xn) + falzr, ..o zn) = 0. (2.4)

In affine open subset zg # 0, the point [0, ..., 0] is a singular point of V; of multiplicity d — 2.
We observe that the surface V; given by equation (??) is left invariant under ®. A line joining any

point Q = [yo, ..., yn] € P2 with P = [1,0,...,0] is preserved under the transformation. Indeed,
we write it in a parametric form (s, tyo, . . ., ty,] and plugging in equation (2?), we see that the line
goes to [—s — t;j:;gg ,ty1, ..., tyy], it is the same line. This is also an involution, because if we

do it again we get the identity transformation of each line. Restricting the transformation to Vg,
we obtain a birational transformation defined by the projection from the point P. In the case when
d = 4, it was considered in Example ??.
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Assume now that n = 2. Then any birational morphism is a composition of the blow-ups at points.
Let X be a basic rational surface, i.e. a rational surface that admits a birational morphism to P2

X =Xy N Xy 25T Xy TS X = P2 2.5)

where ; : X; — X,;_; is the blow-up of a point z; € X;_;. Note that the images of the points z;
in P? may coincide (we say that these points are infinitely near to their images). Let

E; = Wi_l(a}i>, & = (71'1‘_;,_1 o.. .7TN)71(EZ). (2.6)

Let e; denote the cohomology class [£;] of the (possibly reducible) curve &;. It satisfies e? =
e; - Kx = —1. One easily checks that e; - e; = 01if ¢ # j. Let g = 7*([¢]), where ¢ is a
line in P2. We have ej - e; = 0 for all i. The classes eg, €1, ..., ey form a basis in NI(X)
which we call a geometric basis. The Gram matrix Jy of a geometric basis is the diagonal matrix
diag(1, —1,...,—1). Thus the factorization (??) defines an isomorphism of quadratic lattices

b IVN = NYX), e — e,

where eg, ..., ey is the standard basis of the standard odd unimodular quadratic lattice 1 LN of
signature (1, V). It follows from the formula for the behavior of the canonical class under a blow-
up that K x is equal to the image of the vector

ky =—-3ey+e +...+epn.

This implies that the quadratic lattice K )L( is isomorphic to the orthogonal complement of the vector
ky in I™V. It has a basis formed by the vectors

Gp =€y — €] —e2 —€e3, ] =€ —€2,...,ey =€n_1 — EN.

Each basis vector satisfies o? = —2 and «; - a; € {0,1}. A lattice isomorphic to this lattice is
denoted by E. One can describe it by a graph whose vertices are the vectors «; and two vertices
are connected by an edge if «; - ; = 1. We get the following graph:

(03] (e %) (0 %] ay Qs (873 aN_20ON_]

Qo

If 4 < N < 8, they are the Dynkin diagrams of types Ay, D5, Eg, E7 and Eg familiar from the
theory of Lie algebras and Lie groups. Any basis vector «; defines a reflection isometry

ritv v+ (Vo).

The subgroup of the orthogonal group O(E ) generated by these reflections is denoted by W (Ey).
It is called the Weyl group of Ex. If N = 8,9, 10 it coincides with this group. If N < 13, itis a
subgroup of finite index of O(Ey).
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One can define similar diagrams by extending the arms in all directions to get a graph 7}, , ., where
the numbers mean the lengths of the arms including the 3-valent point. This defines a lattice E, ;
and the Weyl group W, , , := W (E,, 4,»). Our diagrams correspond to (p, ¢, ) = (2,3, N — 3).

The following theorem is due to S. Kantor and goes back to the end of the 19th century. It has
been reproved in modern terms by M. Nagata and others.

Theorem 2.3. Let (e, ...,en) be a geometric basis defined by the birational morphism 7. Then
the geometric basis (e(, €, ..., e\ is expressed in terms of (eg,e1, ..., en) by a matrix A which
defines an orthogonal transformation of I equal to the composition of reflections with respect to
the root basis (a, ..., an—1) of En.

The matrix A is the characteristic matrix of ®. For any plane H(a) : Y a;y; = 0 in P?, its pre-
image under the rational map ® is equal to a curve V'(a) := > a;P;(t) = 0 of degree d, where P,
are the polynomials defining . One can show that the class a1 (66) = deg—mie1 —---—mpyen,
where m; are the multiplicities of a general hypersurface V' (a) at the points z; (this has to be
carefully defined if the points are infinitely near).

Also, the class m(c*(€})) is the class of a curve C; in P? whose image under 7 is the point y;
defined by e}. We have o*(e},) = d;eg — myje; — - - - — mp;en, where d; is the degree of the curve
C; and my; are the multiplicities of C; at the points ;. Thus the characteristic matrix A has the
following form

d dq dn
—m —mii MmN
A=
-my —mNy1 ... —MNN

The matrix A is orthogonal with respect to the inner product given by the matrix Jy.

Example 2.4. Let us find the characteristic matrix of the standard Cremona transformation 75. The
base locus consists of three points p; = [1,0,0],p2 = [0,1,0],p3 = [0,0,1]. The lines (p;, p;)
are blown down to the point p;, where 7, j, k are distinct. This shows that the characteristic matrix

looks like
2 1 1 1

-1 0 -1 -1
-1 -1 0 -1
-1 -1 -1 0

We notice that it acts as the reflection with respect to the vector
=€) — €1 — €y — €3

with o2 = —2.

One must be warned that the assigning to a Cremona transformation in the plane its characteristic
matrix is not a homomorphism. A subgroup G of Cr,, (k) is called regularizable if there exists a
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rational surface and a birational map ¢ : X — P2 such that ¢! o G o0 ¢ C Aut(X). Here we may
assume that X is a basic rational surface. Any finite group is regularizable but not every infinite
group is. Let (eg,eq,...,e,) be a geometric basis in N'(X). Let G be a regularizable subgroup
of Cra(k) which is realized as a group of biregular automorphisms of X. Then we can realize
the characteristic matrix of any g € G as a matrix of the automorphism 7! o g o 7 in the basis
(eg,€1,.-.,6en). This will give a matrix realization of the natural action homomorphism G’ —
O(N'(X)) and also a homomorphism G’ — O(Kx) = O(E,,). The image of this homomorphism
is contained in the reflection group W 3 ,,—3.

Example 2.5. Let X = X (p1,...,ps) be the blow-up of N points. If N < 8, the groups W (Exy)
are finite. This means that the group Aut(X)¢ is finite. However, the group Aut(X)? could be
non-trivial. This always happens if N < 3. If we assume additionally that — K x is ample (in this
case the surface X is called a del Pezzo surface of degree 9 — N), then Aut(X)? is trivial. The
condition — K x is ample is satisfied if and only if no root (i.e. a vector a € Ey with o? = —2)
is represented by an effective divisor. If p = 0 all automorphism groups of del Pezzo surfaces are
known. If p > 0 they are known if N < 6.

It follows from the theory of minimal models of G-surfaces (i.e, surfaces equipped with an action
of a finite group G and morphism equal to G-equivariant morphisms) that any finite subgroup of
Cra(k) is isomorphic to a group of automorphisms of a del Pezzo surface or a conic bundle (a conic
bundle is a subfibration of a P?-bundle over a curve whose fibers are conics). fibration over a curve
with general fiber isomor. When k is algebraically closed of zero characteristic all such groups can
be listed [?].

Example 2.6. Assume N = 9. The lattice Eg is degenerate. Its radical is generated by the vector
Kx € K)L( (because K2 = 0 in this case). The lattice K)L(/ZKX is isomorphic (as a lattice) to Eg.
The Weyl group W (Ey) fits in the extension

1 — 78 — W(Ey) — W(Eg) — 1. 2.7)

Take now the points p1, ..., pg equal to the intersection points of two nonsingular cubics F1, Fb.
The rational map P? --» P! given by the pencil of cubics generated by Fi, F can be lifted to a
biregular map f : X — P!, Its general fiber is isomorphic to a general member of the pencil. We
obtain an example of a rational elliptic surface. We can take the exceptional curves Fg over pg as
a section. It defined a group law on each nonsingular points. The Mordell-Weil group of a general
fiber (considered as an elliptic curve over k(P!)) acts birationally on X (by translations). When all
fibers of the fibration are irreducible, the Mordell-Weil group is isomorphic to Z® and its action on
Pic(X) defined an isomorphism with the kernel of W (Eg) — W (Eg) from exact sequence (2?).



Lecture 3

Kummer surfaces and dynamics

Let us use what have learnt to explain the structure of automorphism group of a Kummer surface.
In general, a Kummer variety Kum(A) associated with an abelian variety A is the quotient of A
by the involution 7 : @ — —a. For example, when n = dim A = 1, it is isomorphic to P'. If
g > 2 it is alway singular and its locus of singular points consists of 229 points locally isomorphic
to the affine cone over the Veronese curve of degree g. If A is principally polarized, i.e. contains an
ample divisor © with the property h°(©) = 1, then the linear system 20| maps A two-to-one to
P2°~1 with the image isomorphic to Kum(A). The images of the divisors 7.*(©), where 7. denote
the translation automorphism of A with respect to a 2-torsion point ¢, are cut out by hyperplanes
with multiplicity 2 (the hyperplanes are called tropes). They contain 29~1(29 — 1) singular points
of Kum(A). Each singular point lies in 297(29 — 1) tropes. This defines the famous Kummer
configuration (N}) of points and hyperplanes, where N = 229 and k = 2971(29 — 1).

Each translation automorphism 7, descends to a projective automorphism of Kum(A) c P2°~1,
Its set of fixed points in the projective space consists of two projective subspaces of dimension
29~ 1. Each intersects Kum(A) in a subvariety isomorphic to the Kummer variety of a principally
polarized abelian variety of dimension g — 1. If A = Jac(C'), then this variety if the Prym variety
of the pair (C, ¢).

We will be concerned with the case g = 2. An example of a principally polarized abelian surface
is the Jacobian variety of a genus 2 curve C. In this case X = Kum(Jac(C)) is a quartic surface in
IP3 with 16 nodes. It also has 16 tropes, planes that cut out in X a conic taken with multiplicity 2.
Each conic contains 6 nodes, they can be identified with 6 Weierstrass points of C. In this case the
set of fixed points of the translation automorphism in IP3 consists of two skew lines. Each intersect
Kum(A) at 4 points, the double cover of P! branched along these four points is the Prym variety of
the pair (C, €).

The minimal resolution Y of X is a K3 surface. It contains 17 linearly independent classes: the
class of a hyperplane section h and the classes e; of 16 exceptional curves of the resolution. It
also contains 16 classes T; of smooth rational curves equal to the proper transforms of trope-conics.

19
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They can be expressed (over Q) in terms of the previous 17 classes. The Picard number p satisfies
17 < p < 20. The maximal number is achieved at the Fermat surface 2% + y* + 2% +w* = 0 which
is birationally isomorphic to the Kummer surface isogenous to the product of the elliptic curve with
complex multiplication by y/—1 with itself.

The Kummer surface is self-dual, i.e. its projective dual variety (the closure of all tangent planes
to nonsingular points in the dual projective space) is isomorphic to itself. This defines a birational
automorphism of X, called a swirch. It exchanges singular points with tropes. Two switches differ
by a translation automorphism.

We will assume that p = 17 and explain the structure of Bir(Kum(Jac(C))) = Aut(Y).

It contains several obvious isomorphisms

e 16 automorphisms defined by projections from 16 modes;
e 15 projective transformations induced by translations t. of Jac(C');

e a switch;

It contains also much less obvious involutions

e 60 Hutchinson-Gopel involutions;

e 192 Hutchinson-Weber involutions.

Let us define them. A Gdpel tetrad is a set of four nodes such that any plane containing three of
them is not a trope plane. A Weber hexad is a set of 6 nodes such that no four are contained in a
trope and no four is a Gopel tetrad. There are 60 Gopel tetrads and 192 Weber hexads (see Hudson’s
book [?], he was a brother of Hilda Hudson).

In 1902 John Hutchinson showed that, for each Gopel tetrad, one can write the equation of the
Kummer surface in the form

q(xy + zw, xz + yw, 2w + yz) + xyzw = 0,

where ¢ is a quadratic form in 3 variables [?]. One immediately checks that the substitution
(z,y,z,w) — (1/x,1/y,1/z,1/w) transforms this equation to itself. This means that the stan-
dard Cremona involution defines an automorphism of order 2 of the Kummer surface. This is a
Hutchinson-Gopel involution. One can realize this birational automorphism on a birational model
of X called the Weddle surface. It is a quartic surface in P* with 6 nodes. It contains the 15 lines
joining the pairs of these points and the rational twisted cubic passing through the six nodes. The
linear system of quadric surfaces passing through the six nodes defines a birational map from the
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Weddle surface to the Kummer surface that blows down the 15 lines and the twisted cubic to the 16
nodes of the Kummer surface. Hutchinson showed that the Weddle surface can be given by equation

/

Yz w a a
/

det | VPV T b b/ _0,
rzW Yy ¢ ¢
zyw z d d

where the coordinates of the six nodes are [1, 0, 0, 0], [0, 1,0, 0], [0, 0, 1,0], [0, 0,0, 1], [a, b, ¢, d], [a', ¥, ¢, d'].
The standard Cremona transformation 7% leaves the equation invariant and defined an birational in-
volution of the Weddle surface and hence also of the Kummer surface.

Hutchinson had made another remarkable discovery [?].

Let V (F3) be a nonsingular cubic surface in P3. The Hessian matrix of second partial derivatives
of F3(xg,x1,x2,x3) has linear homogeneous polynomials as its entries. The determinant of this
matrix defines a quartic surface H, called the Hessian surface of V (F3). It has 10 nodes and 10
lines, each node lies on 3 lines and each line contains 3 nodes. For any Weber hexad on X the map
given by quadrics through the hexad defines a birational map ¢ : X --+ H from X to the Hessian
surface [ of some cubic surface. Now H has a natural birational involution. The surface H can be
defined as the locus of points = [ag, a1, az, a3] € P? such that the polar quadric V(> ai%) is
singular. Then ¢ assigns to x € H the singular point of the polar quadric is a birational involution
7 of H [?, 1.1.4]. When lifted to a nonsingular model it becomes a biregular involution that has no
fixed points. The quotient is an Enriques surface. It is very special one since it depends only on
4 parameters (the moduli of cubic surfaces). It contains a set of 10 smooth rational curves whose
mutual intersections are described by the famous Petersen graph with G5-symmetry.

Uas

Now the composition ¢~! o 7 o ¢ is a birational involution of our Kummer surface. This is the
Hutchinson-Weber involution.

Theorem 3.1 (S. Kondo, 1998). The group of birational automorphisms of a general Kummer

surface is generated by the itemized involutions.

Let me give you an idea how one proves such a theorem. It is based on Borcherd’s method. There
are 24 even unimodular negative-definite lattices of rank 24. One of them is distinguished itself by
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the property that it does no contain vectors v with v - v = —2. It is called the Leech lattice and it is
denoted by A. The orthogonal sum of A and the rank 2 lattice Z f + Zg defined by the matrix ({ })
is denoted by 1 25. It is a unique unimodular even lattice of signature (1,25). The lattice I1; 25
has many vectors of square norm —2. For example, vectors of the form (\, f + %(—2 — A2)g),
where A € A. They are called Leech roots. John Conway has shown that the group of isometries of
I, 25 generated by all roots (i.e. vectors of square norm —2) has a fundamental domain €2 which is
a convex polyhedron bounded by hyperplanes orthogonal to the Leech roots. The symmetry group
of € is the semi-direct product A x O(A). Now suppose we can find a primitive embedding of the
Picard lattice i : Pic(X) <+ Il 5. Then the pre-image of Q in Pic(X) intersects the nef cone
of X (this a convex cone in Pic(X) ® R of vectors that intersect any class of a curve on X non-
negatively) along some convex polytope €2’ bounded by some exterior hyperplanes that bound the
nef cone and some interior hyperplanes. One could be lucky (as in the case of Kummer surfaces) to
be able to show that the reflection into an interior wall corresponds to an action of some involution
of the surface. Then we fix the class of an ample divisor 7, apply g to 1 and then find a composition
of the reflections 7 = r; o - - - o to obtain that (r o g)(n) € €. If no symmetry of ' are realized
by an automorphism of X, we conclude that r o ¢ is the identity transformation, hence g belongs
to the subgroup of Aut(f( ) generated by the involutions o; such that o* is a reflection into an inner
bounding hyperplane.

The same method applies to some other cases. For example one can find the group of birational
automorphisms of the Hessian quartic (Dolgachev-Keum), of the Kummer surface of the product
of two non-isogenous general elliptic curves (Keum-Kondo), a general 15-nodal quartic surface
(Dolgachev-Shimada), and also some families of special Enriques surfaces (Shimada, Allcock-
Dolgachev, Mukai-Ohashi).

Now let us switch the topic and discuss some relationship with complex dynamics. It studies the
behavior of iterates of a holomorphic automorphism of a complex manifold.

We start with a planar Cremona transformation f : P2 --» P2, Take a line £ and apply the nth
iterate f™ to it to obtain a curve f" () of certain degree ds(n). A fundamental theorem of Marat
Gizatullin says that there are four different types of behavior of the function d¢(n). Note that this
function depends only on the conjugacy class of f in the Cremona group.

n) is bounded. Then f is conjugate to a projective automorphism or f is of finite order.

n) is bounded by a linear function. Then f preserves a pencil of rational curves.

dy
L] d f
d¢(n) is bounded by a quadratic function. Then f preserves a pencil of elliptic curves.

(
(
(
e ds(n) is an exponential function of 7.

Define the dynamical degree of f to be the number

A(f) = Timy, s 0od s (n) /7.
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We have A\(f) = 1if f is not of the last type in which case A)F') > 1 The number A(f) is always
an algebraic integer. In fact, it is very special one.

An algebraic integer « is called a Pisot number if it has one real root > 1 and all other roots have
absolute value < 1. An algebraic integer « is called a Salem number if it has one real root A > 1,
one real root 1/ and all other roots have absolute value equal to 1. It is known that the set of
Pisot numbers is a closed subset of R. It is contained in the closure of the set of Salem numbers
and its minimum is equal to the real root of 2> — 2 — 1 which is approximately equal to 1.324717
(it is called the plastic or padovian number). The smallest accumulation point is the golden ratio
%(1 + 1/5). All Pisot numbers between these two numbers are known.

We do not know the smallest Salem number, it is conjectured to be the Lehmer number Arepmer
equal to the real root of the polynomial

Pa)=a+2% @+ +2¥ +r+1

It is equal approximately to 1.7628.. The computer search proves that its is indeed the smallest
Salem number of degree less than or equal to 42.

We have the following theorem

Theorem 3.2. o A\(f) > land ds(n) is a Pisot number and f is not conjugate to an automor-
phism of a rational surface.

e \(f) > 1and \(f) is a Salem number and f is conjugate to an automorphism of a rational
surface

The fact that A(f) is an algebraic integer is not obvious at all. To prove one uses the notion of a
stable rational map. This is a transformation such that the characteristic matrix Char(f") is equal to
Char(f)™. This happens if and only if Bs(f) N Bs(f~!) = 0. By a result of J. Diller and C. Favre,
one can replace f by a conjugate transformation such that it becomes algebraically stable. In this
case we can compute A(f) as the spectral radius of the characteristic matrix. It is equal to largest
absolute value of its eigenvalues. They showed that the characteristic polynomial of the matrix is a
Pisot or Salem polynomial, hence the spectral radius is equal to A(f).

Using the notion of the spectral radius, one can define the dynamical degrees A;(g). of a bireg-
ular automorphism g of any smooth algebraic variety by considering its action on the cohomology
H?¢(X,C) (in fact, it is enough to look at H?*(X, C) alg). For algebraic surfaces, there is only one
dynamical degree A(g), and it is always a Salem number.

It was show by C. McMullen that the Lehmer number is realized as the dynamical degree of an
automorphism of a K3-surface [?] and an automorphism of a rational surface obtained from the
projective plane by blowing up a special set of 10 points on an irreducible cuspidal cubic curve [?].
The polynomial P(x) is the characteristic polynomial of an element of the Weyl group W (Ejg)
equal to the product of the reflections 7, (it does not depend on their order). It is called the Coxeter
element of the Weyl group.
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It was proven by K. Oguiso [?] that the Lehmer number cannot be realized as the dynamical
degree of an automorphism of an Enriques surface. There is still going a search for the smallest
Salem number realized as an automorphism of an Enriques surface.

It is known that the automorphism group of an Enriques surface is very large. In fact, Enriques
surfaces depend on 10 moduli and, for a moduli general surface S, the group Aut(S) is isomorphic
(in its representation on O(N'(S))) to a subgroup of finite index, namely the 2-level congruence
subgroup {g € W(E) : i(g(z) — ) € N'(X)}. When the surface specializes, the group
becomes smaller, in fact even could become finite group. All such surfaces were classified over C
by S. Kondo and V. Nikulin and over fields of arbitrary characteristic by T. Katsura, S. Kondo and
G. Martin. Since the dynamical degree of an automorphism of finite order is equal to 1 one looks
for a family of Enriques surfaces that closest in some sense to surfaces with finite automorphism
group. An example of such a family is the family of Enriques surfaces that are obtained from the
Hessian surfaces of cubic surfaces with automorphism group G4 as the quotient by the fixed-point-
free involution.
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