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1. Basics on abelian varieties

Through this notes we work on C.

Definition 1.1. A complex torus A is a quotient V/Λ, with V ' Cg a C- vector
space and Λ ' Z2g a full rang lattice inside V . A polarization on A is an ample line
bundle1 L on A. An abelian variety is a complex torus admitting a polarization, so
(A,L) is polaraized abelian variety.

Remark 1.2. In particular, with the addition operation inherited from V , an
abelian variety is an abelian group.

By definition of ampleness, given a line bundle L on A we have that the map

ϕL⊗k : A ↪→ PH0(A,L⊗k)∗

x 7→ [s0(x) : s1(x) : · · · : sN (x)],

defined by the sections of L⊗k is an embedding for some k > 1. In fact, in the case
of polarized abelian varieties it suffices to take k = 3. Then an abelian variety is
also a projective variety.

Different encarnations of a polarization on A. The following data are equivalent:

• A first Chern class c1(L) ∈ H2(A,ZZ) of an ample line bundle L on A.
• A non degenerated alternating form E : V ×V → R such that E(Λ,Λ) ⊂ Z

and E(iv, iw) = E(v, w).
• A non degenerated Hermitian form H : V × V → C with H(Λ,Λ) ⊂ Z.

• An isogeny φL : A→ Â := Pic0(A)
• A Weil divisor Θ ⊂ A such that the subgroup {x ∈ A | t∗xΘ ∼ Θ} is finite.

Let E be an alternating form representing a polarization on A = V/Λ. There
exists a basis λ1, . . . , λg, µ1, . . . µg of Λ with respect to which E is given by the
matrix

(
0 D
−D 0

)
, whereD is a diagonal matrix with positive integer entries d1, . . . , dg

satisfiying di|di+1 for i = 1, . . . , g − 1.

Definition 1.3. The vector (d1, . . . , dg) is called the type of the polarization of L
and when it is of the form (1, . . . , 1) the polarization is principal.

Given an abelian variety (A,L), the sections of L⊗k, for some k > 0, provide an
embedding of A into a projective space:

ϕL⊗k : A ↪→ PH0(A,L⊗k)∗ ' PN

x 7→ [s0(x) : s1(x) : · · · : sN (x)],
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where s0, s1, . . . , sN form a basis of the space of sections H0(A,L⊗k).

Let H1(C,Z) ' Z2g be the group of closed paths in C (which does not depend
on the starting point) modulo homology. This group can be seen as a full rank
lattice inside of H0(C,ωC)∗, via the injective map

γ 7→
{
ω 7→

∫
γ

ω

}
assigning to a path γ the functional which integrates the holomorphic differentials
along γ.

Definition 1.4. The Jacobian of an algebraic curve C (or compact Riemann sur-
face) is the complex torus

JC = H0(C,ωC)∗/H1(C,Z).

The intersection product on H1(C,Z) induces an alternating form E on V :=
H0(C,ωC)∗. More precisely, if we choose a basis over Z, γ1, ..., γ2g of H1(C,Z) as

in the Figure 1, the intersection product has as matrix
(

0 1g

−1g 0

)
. As H1(C,Z) is a

full rank lattice in V , the {γi} form also a basis of V as R-vector space. One verifies
then, that with respect to this basis, the intersection matrix gives an alternating
form E on V defining a principal polarization Θ.

Figure 1. Curve of genus g

A one-dimensional abelian variety is also an algebraic curve of genus one, that
is, an elliptic curve. The Jacobian of a genus one curve is then isomorphic to the
curve itself.

Algebraic geometers typically gather their objects of study in families to inves-
tigate a general property or single out interesting elements. Ideally, the set of all
the objects forms itself an algebraic variety where one can apply known tools. This
leads to the notion of moduli space, which is the variety parametrising the objects.
Fortunately, there exists a nice parameter space for all principally polarized abelian
varieties (ppav) of fixed dimension g (up to isomorphism classes). Let hg be the
Siegel upper half plane

hg := {τ ∈Mg×g(C) | τ t = τ, Im τ > 0}
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and

Sp2g(Q) =

{
M ∈ GL2g(Q) : M

(
0 1g

−1g 0

)
tM =

(
0 1g

−1g 0

)}
the symplectic group, which acts on hg by

M =

(
a b
c d

)
∈ Sp2g(Q), M · τ = (a+ bτ)(c+ dτ)−1

Thus, every point in the quotient hg/Spg represents an isomorphism class of a
principally polarized abelian variety of dimension g: for each τ ∈ hg set Aτ =
Cg/τZg ⊕ Zg, then

Aτ ' Aτ ′ as ppav ⇔ ∃ M ∈ Sp2g(Z) s.t. τ ′ = M · τ.

In the sequel, we denote by Ag the moduli space of principally polarized abelian
varieties of dimension g. Observe that the dimension of this space is the same as

the dimension of the space of symmetric matrices of size g, thus dimAg = g(g+1)
2 .

Let Mg be the moduli space of smooth projective curves of genus g, it is an
irreducible algebraic variety of dimension 3g − 3. By associating to each smooth
curve [C] ∈Mg its Jacobian we get the Torelli map:

t :Mg → Ag, [C] 7→ (JC,Θ).

Theorem 1.5. The Torelli map t is injective.

Comparing the dimensions of both spaces, one deduces that the general prin-
cipally polarized abelian variety of dimension < 3 is the Jacobian of some curve.

1.1. Prym varieties. Consider a finite covering f : C̃ → C of degree d between

two smooth projective curves and let g and g̃ denote the genera of C and C̃ respec-
tively. By the Hurwitz formula these genera are related by

(1.1) g̃ = d(g − 1) +
degR

2
+ 1

where R denotes the ramification divisor of f , that is the set of points in C̃ (counted
with multiplicities) where the map is not locally a homeomorphism. The map f
induces a map between the Jacobians of the curves, the norm map. As a group, the
Jacobian JC is generated by the points of the curve C, and in fact JC parametrizes
classes of linear equivalence of divisors of degree zero. With this in mind one can

simply define the norm map as the push forward of divisors from C̃ to C:

Nmf : JC̃ → JC,

[∑
i

nipi

]
7→

[∑
i

nif(pi)

]
where the sum is finite,

∑
ni = 0 with ni ∈ Z and the bracket denotes the class

of linear equivalence. The kernel of Nmf is not necessarily connected but since
Nmf is a homomorphism of groups the connected component containing the zero

is naturally a subgroup of JC̃. This subgroup is the Prym variety of f denoted by

(1.2) P (f) := (Ker Nmf )0 ⊂ JC̃.



4 ANGELA ORTEGA

Moreover, the restriction Ξ of the principal polarization Θ on JC̃ to P (f), defines a

polarization so (P (f),Ξ) is an abelian subvariety of the Jacobian JC̃ of dimension

dimP (f) = dim JC̃ − dim JC = g̃ − g.
The Prym variety can be regarded as the complementary variety of the image of

f∗ : JC → JC̃ inside of JC̃.

Theorem 1.6. (Wirtinger, Mumford) Let f : C̃ → C of deg d ≥ 2 g ≥ 1. Then Ξ
defines a principal polarization if and only if it is one of the following cases:

(a) f is étale of degree 2, in this case Θ|P ≡ 2Ξ, with Ξ principal.
(b) f is a double covering ramified in exactly 2 points, so Θ|P ≡ 2Ξ.

(c) g(C̃) = 2, g = 1 (any degree).
(d) g = 2, d = 3, f is non-cyclic.

Proof. Uses that (f∗)∗Θ̃ ≡ nΘ and that P and f∗JC are complementary subvari-
eties of a ppav. �

Assume now that f is an étale double covering, according to (2.1) the dimension
of the corresponding Prym variety is dimP (f) = 2(g − 1)− g = g − 1. Thus, this

construction provides us a way to associate to each étale double covering f : C̃ → C
over a smooth curve C of genus g a principally polarized abelian variety, this is the
Prym map. In order to make the definition precise we need to introduce the moduli
space

Rg := {[C, η] | [C] ∈Mg, η ∈ Pic0(C), η⊗2 ' OC}
parametrizing all the étale double coverings over curves of genus g up to isomor-
phism. Given a pair [C, η] ∈ Rg the isomorphism η⊗2 ' OC endows OC ⊕ η with a
ring structure (actually with a structure of OC-algebra). Thus, the corresponding

double covering is given by taking the spectrum C̃ := Spec(OC ⊕ η) and the map
f is just the natural projection Spec(OC ⊕ η) → C = SpecOC , induced by the
inclusion O ↪→ OC ⊕ η. There are finitely many “square roots” of OC , that is, line
bundles η with η⊗2 ' OC . In other words, the forgetful map

Rg →Mg, [C, η] 7→ η

is finite of degree 22g − 1 and hence dimRg = dimMg = 3g − 3. The Prym map is
then defined as

Prg : Rg → Ag−1 [C, η] 7→ (P (f),Ξ).

By comparing the dimensions on both sides, one sees that dimRg ≥ dimAg−1 =
g(g−1)

2 for g ≤ 6, so it makes sense to ask if for low values of g the Prym map is
dominant, i.e. if we can realize a (general) principally polarized abelian varieties of
dimension ≤ 6 as the Prym variety of some covering. The following theorem gives
a positive answer to this question and summarizes the situation for the classical
Prym map, to which proof several mathematicians have contributed.

Theorem 1.3. (a) The Prym map is dominant if g ≤ 6.
(b) The Prym map is generically injective if g ≥ 7.
(c) The Prym map is never injective.

Let Pg−1 denote the image of Prg. Wirtinger showed ([19]) that the closure

Pg−1 is an irreducible subvariety in Ag−1 of dimension 3g− 3, so Pg−1 = Ag−1 for
g ≤ 6, which implies part (a). Moreover, he also proved that the Jacobian locus in
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Ag−1 (i.e. the image of the Torelli map t) is contained in Pg−1. In this sense, Pryms
are a generalization of Jacobians. Part (b) was first proved by R. Friedman and R.
Smith ([8]) and for g ≥ 8, by V. Kanev ([9]) by using degeneration methods. More
geometric proofs were given by G. Welters ([18]) and later by O. Debarre ([4]), on
the spirit of the proof of Torelli’s theorem. The fact that the Prym map is non-
injective was first observed by Beauville ([2]) who produced, using Recillas’ trigonal

construction, examples of non-isomorphic coverings (C̃1, C), (C̃2, C2) in Rg for g ≤
10, whose Prym varieties are isomorphic as principally polarized abelian varieties.
Later, Donagi’s tetragonal construction ([5]) (of which Recillas’ construction is a
degeneration) provides examples for the non-injectivity of the Prym map in any
genus. When g < 6 the fibers of the Prym map are positive dimensional and they
are geometrically well-understood.

2. Non-principally polarized abelian varieties

One can of course consider more general coverings to construct abelian varieties,
for instance coverings of degree higher than 2 or ramified ones. In these cases one
obtains abelian varieties which are no longer principally polarized. In this section
we will discuss cyclic coverings ramified at 2r points with r ≥ 0.

By definition, an étale cyclic covering C̃ → C of degree d admits an automor-

phism σ of order d on C̃ such that C = C̃/〈σ〉. For simplicity, we can asume that
d is a prime number (otherwise one can factorize the map through cyclic coverings
of smaller degree). If the cyclic covering is branched over a divisor B ⊂ C, the
ramification index at each ramified point is d, i.e. all the branches come together in
that point. In particular, if degB = dm, for some integer m > 0, the ramification
divisor is of degree 2r = (d − 1)dm. Similarly to the double étale case, giving a
ramified cyclic covering is equivalent to give a triple (C,B, η) with η a line bundle
on C satisfying η⊗d ' OC(B). More precisely, take a section s of OC(B) vanishing
exactly along B (If B = ∅, take s the constant section 1). Denote by |η| the total
space of η and let p : |η| → C the bundle projection. If t is the tautological section
of the line bundle p∗η → |η|, then the locus where the section p∗s − t vanishes

defines the curve C̃ inside |η|.
Recall that points in the Jacobian represent line bundles of degree zero on the

corresponding curve. Hence, every automorphism of a curve induces an automor-
phism of its Jacobian by taking the pullback of the bundle under the automorphism.

If we denote by the same letter the automorphism on JC̃ induced by σ, it is more
convenient to define the Prym variety of the covering f as

P (f) := Im(1− σ) ⊂ JC̃

which is an abelian subvariety of JC̃ of dimension

dimP (f) = g̃ − g = (d− 1)(g − 1) + r =: p

with polarization Ξ given by the restriction of the principal polarization Θ̃ on JC̃;
it is a polarization of type D = (1, . . . , 1, d, . . . , d), where 1 occurs p− (g− 1) times
and d occurs g − 1 times if r = 0, and 1 occurs p− g times and d occurs g times if
r > 0. This definition coincides with (2.2) since in that case Im(1−σ) = ker(1+σ)0.
Let

Rg(d, r) := {(C,B, η) | η ∈ Picm(C), B reduced divisor in |η⊗d|}
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denote the moduli space parametrizing all the étale cyclic coverings of degree d over
a curve of genus g and let ADp be the moduli space of abelian varieties of dimension
p and polarization type D. In this case the Prym map is given by

Prg(d, r) : Rg(d, r)→ ADp , [C̃
f→ C] 7→ (P (f),Ξ).

In order to compute the dimension of its image one needs to know when this map
is generically finite. This is the case when the differential map of Prg(d, r) is
injective at a generic point of Rg(d, r) or equivalently, when the codifferential map
d∗Prg(d, r) is surjective. One of the advantages of considering cyclic covering is
that the tangent space at 0 ∈ P (f) to the Prym variety can be identified with the
direct sum of space of sections

T0P '
d−1⊕
i=1

H0(C,ωC ⊗ ηi)∗,

where each summand is an eigenspace for the action of σ on H0(C̃, ωC̃)∗. Notice
that the forgetful map [C,B, η] 7→ [C,B] is finite over the moduli space Mg,dm of
dm-pointed smooth curves of genus g. Therefore the cotangent space to a generic
point [C, η,B] ∈ Rg(d, r) can be identified to the cotangent space to Mg,dm at
[C,B]. By identifying the cotangent spaces

T ∗(P,Ξ)A
D
p ' Sym2(T0P )∗, T ∗[C,η,B]Rg(d, r) ' H

0(C,ω2
C(B)),

we obtain that the codifferential of Pg(d, r) at a generic point [C,B, η] is given by
the multiplication of sections

d∗Prg(d, r) : Sym2(T0P )∗ → H0(C,ω2
C ⊗O(B)).

In the cases when this map is surjective a the generic point [(C,B, η)] we get that
the Prym map Prg(d, r) is generically finite onto its image.

Theorem 2.1. ([11]) If

• g ≥ 2 and r ≥ 6 for d even or r ≥ 7 for d odd;
• g ≥ 3 and d = r = 4 or 5 or (d, r) = (2, 4) or (3, 6);
• g ≥ 5 and d = r = 2 or 3;

the Prym map Prg(d, r) is generically finite.

In the case of ramified double coverings we know that the Prym map is generically
injective as soon as the dimensions of the moduli spaces in the source and target
allow it (see [12], [13], [17]), except when g = 3, r = 4, where degP3(2, 4) = 3;
there are actually at least to two different ways to interpret this degree ([1], [16]).
As we have seen in the previous section, it is particularly appealing to study the
geometry of the fibres of the Prym map. Let BD be the component of the moduli
space ADp of elements (P,Ξ) such that the polarization Ξ is compatible with σ, i.e.

σ∗Ξ ≡ Ξ. In particular, BD = ADp when d = 2. One checks that ImPrg(d, r) ⊂ BD.
By computing the dimension of BD ([11]) one can prove that only in the following
cases Prg(d, r) is generically finite and dominant over BD ([11]):

(g, n, r) (6,2,0) (3,2,2) (1,2,3) (4,3,0) (2,7,0) (2,3,3)
degPrg(n, d) 27 3 1 16 10 ?
p = dimP 5 4 3 6 6 5
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The degree of the Prym map Pr2(3, 3) seems to be unknown. We would like to
emphasize that the fibre of the different Prym maps carries a peculiar structure, so
the way of computing the degree has been ad hoc for each case.

3. The Prym map Pr6 : R6 → A5.

The case of étale double coverings over a genus 6 curve deserves special attention.
We have dimR6 = dimA5 = 15 and the map Pr6 being dominant implies that it
is also generically finite. Can one determine the degree or even describe its generic
fibre? There is not only a positive answer to this question but also a beautiful
one. The degree of Pr6 : R6 → A5 is 27, which is also the number of lines on
every smooth cubic surface. This is not a coincidence because the monodromy
group of the Prym map equals the Weyl group W (E6), which governs the incidence
structure of the lines in the smooth cubic surface ([6]). On the other hand, Pr6

fails to be finite over the locus of all the Jacobians of curves of genus 5, as well as
over the locus of intermediate Jacobians of cubic threefolds.2 The fibres and the
blow up of the Prym map along these loci are explicitly described in [6]. There
is even a procedure to pass from an element to another on a general fibre of Pr6:
the tetragonal construction. First, notice that a general curve [C] ∈ M6 carries
exactly 5 g1

4 ’s, that is line bundles of degree 4 on C whose space of sections is
two-dimensional. Thus, a g1

4 on C is equivalent to having a 4:1 map C → P1.

Now, given a double covering [f : C̃ → C] ∈ R6 and a g1
4 on C one can construct

two other coverings in R6 as follows. Let C(4) (respectively C̃(4)) be the 4th.

symmetric product of C (respectively C̃), so they parametrize divisors of degree 4

on the corresponding curves. Define the curve X̃ by the cartesian diagram

X̃ �
� //

16:1 f
(4)

|X̃
��

C̃(4)

24:1 f(4)

��
P1 = g1

4
� � // C(4)

where f (4) is the natural map p1 + · · ·+ p4 7→ f(p1) + · · ·+ f(p4). The involution σ

on C̃ induces an involution σ̃ : p1 + · · ·+p4 7→ σ(p1)+ · · ·+σ(p4) on X̃. It turns out

that X̃ consists of two disjoint non-singular connected components X̃0, X̃1 and the
involution σ̃ acts without fixed points on each of these components. Moreover, the

restriction of the map f (4) to X̃0 and X̃1 defines 8:1 maps fitting in the following
diagram

X̃0

8:1

��

f0

~~

t X̃1

8:1

��

f1

  
X0

4:1

((

X1

4:1

vvP1

2The intermediate of a cubic threefold Y is the complex torus H1,2(Y )/H3(Y,Z).
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where Xi := X̃i/σ̃ for i = 0, 1. Therefore, from an element [C̃
f→ C] ∈ R6 together

with a pencil g1
4 on C we have constructed two other elements in R6, namely

[X̃0
f0→ X0] and [X̃1

f1→ X1], together with g1
4 ’s on X0 and X1. These 3 pairs

are in general non-isomorphic to each other, nevertheless the associated Pryms are

isomorphic ([5]). If one applies the construction to [X̃0
f0→ X0] using the obtained

g1
4 one gets back the original two coverings, but if one uses another pencil on X0

one gets two other non-isomorphic coverings. By repeating this procedure on the
coverings using different pencils on their base curves, we obtain eventually all the
elements on the fibre. This is also the structure on the lines of a smooth cubic
surface. Two coverings in the fibre are related by the tetragonal construction as

two lines on a cubic surface are incident. The triad {(C̃, C), (X̃0, X0), (X̃1, X1)}
corresponds to a triangle in the surface. The fact that each line in the cubic surface
is a “side” of five triangles is reflected in the construction by the five g1

4 ’s that
a curve C possesses. This particular case shows that the fibers of the Pym map
displays rich and beautiful geometry.
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