FOURTH LATIN AMERICAN SCHOOL ON ALGEBRAIC GEOMETRY AND ITS

APPLICATIONS

Professor: Igor Dolgachev

TEACHER ASSISTANTS: PAOLA COMPARIN, DIANA TORRES, SERGIO

Troncoso

Date: December 2019

EX 1: Compute the Picard Group of the projective plane \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$.

- **EX 2:** Recall that on \mathbb{P}^2 we have the well known *Bezout's Theorem: Given two curves C and C' in* \mathbb{P}^2 of degree d and d' respectively, we have $C \cdot C' = dd'$. Find a similar formula to $\mathbb{P}^1 \times \mathbb{P}^1$.
- **EX 3:** Let C, C' be two smooth projective curves and let $X = C \times C'$ be the product variety of this curves. Compute the self-intersection of canonical divisor K_X^2 , the topological Euler characteristic and the algebraic Euler characteristic.

Hint: Use the projection maps $p: X \longrightarrow C$ and $q: X \longrightarrow C'$. In order to compute $\chi(X)$ use the Noether's formula $12\chi(X) = K_X^2 + \chi_{top}(X)$.

- **EX 4:** Consider the family of complete intersection surfaces $S_{d_1,...,d_r} \subseteq \mathbb{P}^{r+2}$. Show that $S_4, S_{2,3}$ and $S_{2,2,2}$ are the only K3 surfaces.
- **EX 5:** Compute the group of automorphisms of \mathbb{P}^n .
- **EX 6:** Show that $\operatorname{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)$ is isomorphic to $(PGL(2) \times PGL(2)) \rtimes \mathbb{Z}/2\mathbb{Z}$.
- **EX 7:** The Cremona Transformation is defined as follows:

$$\varphi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$$
$$[x:y:z] \mapsto [xy:xz:yz]$$

Find the points where φ is not defined. After blowing-up at those points we have a resolution of φ . Compute the self-intersection of the strict transforms of the lines $L_1 = \{x = 0\}, L_2 = \{y = 0\}$ and $L_3 = \{z = 0\}$.

- **EX 8:** Describe the group of automorphisms of the blow-up at p = [1:0:0] of \mathbb{P}^2 .
- **EX 9:** 1. Compute the linear system of conics in \mathbb{P}^2 .
 - 2. Recall that the Veronese map $\varphi_d : \mathbb{P}^n \to \mathbb{P}^m$ is the map sending $(x_0 : \ldots : x_n)$ to all possible monomials of total degree d, thus $m = \binom{n+d}{d} 1$.

Observe that the map induced by the linear system of the previous point is an embedding of \mathbb{P}^2 in \mathbb{P}^5 whose image is the Veronese surface $\varphi_2(\mathbb{P}^2)$.

EX 10: Let X be a K3 surface with $H^0(\Omega_X^2) = \mathbb{C}\omega_X$ and let $\sigma \in Aut(X)$ of finite order n. σ is called *symplectic* if $\sigma^*\omega_X = \omega_X$, non-symplectic otherwise. The fixed locus of σ is $Fix(\sigma) = \{p \in X : \sigma(p) = p\}$.

We consider the quartic K3 surface (Fermat quartic) defined by the equation in complex projective 3-space \mathbb{P}^3 by:

$$x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0$$

and consider the automorphism of \mathbb{P}^3 induced by the automorphism the following automorphism of \mathbb{C}^4 :

$$\Sigma: \mathbb{C}^4 \to \mathbb{C}^4, \ \Sigma(x_0, x_1, x_2, x_3) = (-x_0, -x_1, x_2, x_3).$$

This is an involution of \mathbb{P}^3 and the equation of the Fermat quartic is invariant. Thus the restriction of Σ to X_4 is an involution σ of X_4 .

- 1. Show that σ acts symplectically on X_4 .
- 2. Show that the fixed locus $Fix(\sigma)$ consists of 8 isolated points. (in fact one can show (not easy) that if f is a automorphism of prime order with 8 isolated fixed points, thus f is a symplectic involution).
- **EX 11:** Consider the automorphism of order 3 of \mathbb{P}^3 induced by

$$\Sigma_3: \mathbb{C}^4 \to \mathbb{C}^4, \ \Sigma_3(x_0, x_1, x_2, x_3) = (x_0, x_1, \zeta_3 x_2, \zeta_3^2 x_3)$$

where ζ_3 is a primitive root of unity of order 3.

- 1. Compute all the homogeneous polynomials of degree 4 in the variables (x_0, x_1, x_2, x_3) that are invariant under the automorphism Σ_3 . (hint: start with the monomials)
- 2. Let Y_4 be the K3 quartic surface defined as the zero set of a polynomial of the previous question. Show that Σ_3 restricts to a symplectic automorphism σ_3 of Y_4 and describe the fixed locus.