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Abstract
In this article we obtain point-wise asymptotic estimates for solutions to

{
−div (w|∇u|p−2∇u) = w|u|q−2u in Ω,

u ∈ D1,p(Ω;wdx)

for a critical exponent q > p in the sense of Sobolev. To do so, we firstly study
the quasi-linear equation

{
divA(x, u,∇u) = B(x, u,∇u) in Ω,

u ∈ H1,p
loc (Ω;wdx)

where A and B are functions satisfying A(x, u,∇u) ∼ w(|∇u|p−2∇u +
|u|p−2u) and B(x, u,∇u) ∼ w(|∇u|p−1 + |u|p−1) for p > 1 and a p-
admissible weight function w. We fill a gap in the literature and we establish
interior regularity results of weak solutions to this kind of quasi-linear equations.
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1 Introduction
We are interested in obtaining some qualitative and quantitative properties of weak
solutions to the following equation−div

(
w |∇u|p−2 ∇u

)
= w |u|q−2

u in Ω

u ∈ D1,p,w(Ω),
(1)

for q > p > 1 critical for a weighted Sobolev embedding and D1,p,w(Ω) a weighted
Sobolev space that will be made precise later. The main motivation behind studying
this problem comes from the results in [8] where the existence and non-existence to
extremals to a Sobolev inequality with monomial weights was analyzed (see [4, 7]). It
is known that extremals to a Sobolev inequality can be viewed as positive solutions to
(1) for an appropriate weight function w, and our goal is to obtain as much information
as possible regarding said extremals and, in general, of solutions to (1).

Equations like (1) have been studied in the past. The most studied case is without
a doubt the unweighted linear/semi-linear case, meaning w = 1 and p = 2, but also
significant progress has been done for the case w = 1 and p ̸= 2. The literature is vast in
both cases and we do not intend to cover everything that has been done (the interested
reader could check [6, 11, 12, 19, 20, 25, 26, 32, 33, 35], a list which is nowhere near
exhaustive).

Among the previously mentioned results we would like to single out one that it is
relevant for this work. Cao, Peng and Yan [6] studied for 1 < p < N the equation

{
−∆pu = |u|p

∗−2
u+ µ |u|p−2

u in Ω

u = 0 on ∂Ω,

where ∆p is the p-Laplace operator and p∗ = Np
N−p is the critical Sobolev exponent.

The main result of that work deals with the existence of infinitely many solutions to
said equation, however we would like to point out a result from the Appendix of that
work. There it is shown that weak solutions to{

−∆pu = |u|p
∗−2

u in RN

u ∈ W 1,p(RN )
(2)

satisfy the following decay estimate

|u(x)| ≤ C

(
1

1 + |x|

)N−p
p−1 −θ

(3)

for any θ > 0. This result almost captures the behavior satisfied by positive solutions
(e.g. extremals U(x) to the Sobolev inequality): it has been shown by [32, 35] that any
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positive solution to (2) must be of the form

CN,p

(
a

1
p−1

a
p

p−1 + |x− x0|
p

p−1

)N−p
p

∼ C

(
1

1 + |x|

)N−p
p−1

for large |x| ,

for some a > 0 and x0 ∈ RN . One of our main goals is to obtain a result similar to (3)
for the weighted equation (1).

To achieve the aforementioned goal, we firstly need some local regularity results for
solutions to (1). Regarding that let us mention a few relevant results. In the unweighted
case w = 1, Serrin [33] studied, among other things, the local regularity of solutions to
the unweighted quasi-linear equation

divA(x, u,∇u) = B(x, u,∇u) in Ω ⊆ RN ,

where A : Ω× R× RN → RN and B : Ω× R× RN → R are functions satisfying

|A(x, u, z)| ≤ a |z|p−1
+ b |u|p−1

+ e,

|B(x, u, z)| ≤ c |z|p−1
+ d |u|p−1

+ f,

A(x, u, z) · z ≥ a−1 |z|p − d |u|p − g,

for a constant a > 0 and measurable functions b, c, d, e, f, g : Ω → [0,∞) satisfying suit-
able integrability conditions. In his work, Serrin proved that under suitable integrability
conditions of the functions b, c, d, e, f, g the solutions are locally bounded and they
satisfy a Harnack inequality, which allow him to show Hölder regularity of solutions.

The weighted case w ≠ 1 has also been studied and there has been important
progress in this situation. As before, we do not plan to give an exhaustive list of such
works but the interested reader might want to look at the following list of papers
[3, 10, 14–16, 18, 21, 27–31, 34, 36]. As with the unweighted case we would like to single
out a few of the works dealing with weights that we think are relevant. One line of
progress that we would like to follow regarding weighted quasilinear equations perhaps
begins with the works of Muckenhoupt and Wheeden [29, 30] who characterized the
weights w for which one has the boundedness in the Lp(RN , w dx) space (1 < p < ∞)
of two important operators: the Hardy’s maximal function defined as

Mf(x) = sup
B

λ(B)−1

ˆ
B

f dx,

where the supremum is taken over all balls containing x, and the singular integral
operator

T (f)(x) =

ˆ
RN

f(y) |x− y|1−N
dx

In [29] it was shown that Hardy’s maximal operator M is bounded in the weighted
Lp(Ω, w dx) if and only if the weight w belongs to the class Ap, that is if there exists a

3



constant C > 0 such that(ˆ
B

w dx

)(ˆ
B

w− 1
p−1 dx

)p−1

≤ Cλ(B)p (4)

holds for every ball B. And in [30] it was proved that the singular integral operator T
is bounded in the weighted Lp space if w is in Aq for some q > 1.

From the results of [29, 30] we can then look at the work of Fabes, Kenig and
Serapioni [14] who obtained local regularity results (for instance a Harnack inequality
and Hölder regularity of weak solutions just as in Serrin’s work) for the operator
div(A(x)∇u) where A(x) is a matrix valued function with eigenvalues behaving like
w(x) for some w ∈ A2. The main tool used in [14] is De Giorgi variable truncation
method [13], and a rather important insight from [14] is that for De Giorgi’s method to
work the key ingredient is having a local Sobolev inequality: there must be constants
k > 1 and C > 0 such that

( 
B

|u|2k w dx

) 1
2k

≤ Cr

( 
B

|∇u|2 w dx

) 1
2

∀u ∈ C∞
c (B), (5)

where B is a ball of radius r > 0 and
ffl
B
fw = w(B)−1

´
B
fw. In [14] it is shown that

inequality (5) holds true for w ∈ A2 (and other weights) and suitable k > 1 depending
on w.

As we mentioned above, a necessary tool to analyze (1) is to establish local regularity
of solutions for weighted quasi-linear equations of the type

divA(x, u,∇u) = B(x, u,∇u) in Ω ⊆ RN .

Although the scientific community expects that local regularity results regarding
this problem are true for the weighted case w ̸= 1, to the best of our knowledge
there are no references in the current literature that addresses the problem in the
following generality: to make a bridge between the work of Serrin [33] and the work of
Fabes-Kenig-Serapioni [14].

Making that bridge is a secondary goal of this work, and to do so let us make
precise the hypotheses we will be using throughout this article. The function w will be
a weight function, meaning a locally Lebesgue integrable non-negative function over
an open set Ω ⊆ RN satisfying at least the following two conditions: if we abuse the
notation and write w(B) =

´
B
w dx we require that w satisfies the doubling property

in Ω, meaning that there exists a doubling constant γ > 0 such that

w(2B) ≤ γw(B) (6)

holds for every (open) ball such that 2B ⊂ Ω, where ρB denotes the ball with the
same center as B but with its radius multiplied by ρ > 0. The smallest possible γ > 0
for which (6) holds for every ball will be denoted by γw > 0 from now on. Additionally
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we will suppose that

0 < w < ∞ λ− almost everywhere (7)

where λ denotes the N -dimensional Lebesgue measure. Observe that these conditions
ensure that the measure w dx and the Lebesgue measure λ are absolutely continuous
with respect to each other.

We will also use weighted Sobolev spaces, so we need to say a few words about
them. Theses spaces are defined as subspaces of the following weighted Lebesgue space

Lp,w(Ω) = {u : Ω → R measurable :

ˆ
Ω

|u|p w dx < ∞}

equipped with the norm

∥u∥pp,w =

ˆ
Ω

|u|p w dx.

In order to work with weighted Sobolev spaces one needs to establish some conditions
over the weights so that the corresponding spaces have sufficient structural properties.
In addition to the basic conditions (6) and (7), we will suppose that the weight w
satisfies a Poincaré inequality: it is known (see for instance [24, Chapter 20]) that if w
is a doubling weight satisfying
(PI) Local weighted (1, p)-Poincaré inequality : There exists ρ ≥ 1 such that if u ∈ C1(Ω)

then for all balls B ⊂ Ω of radius l(B) one has

1

w(B)

ˆ
B

|u− uB,w|w dx ≤ C1l(B)

(
1

w(ρB)

ˆ
ρB

|∇u|p w dx

) 1
p

where w(B) =
´
B
w dx and

uB,w =
1

w(B)

ˆ
B

uw dx

is the weighted average of u over B,
then w is automatically p-admissible, that is, it also satisfies the following properties

(PII) Uniqueness of the gradient : If (un)n∈N ⊆ C1(Ω) satisfy

ˆ
Ω

|un|p w dx −→
n→∞

0 and
ˆ
Ω

|∇un − v|p w dx −→
n→∞

0

for some v : Ω → RN , then v = 0,
(PIII) Local Poincaré-Sobolev inequality : There exist constants C3 > 0 and χ > 1 such

that for all balls B ⊂ Ω one has(
1

w(B)

ˆ
B

|u− uB,w|χp w dx

) 1
χp

≤ C2l(B)

(
1

w(B)

ˆ
B

|∇u|p w dx

) 1
p

5



for bounded u ∈ C1(B),
(PIV) Local Sobolev inequality : There exist constants C2 > 0 and χ > 1 (same as above)

such that for all balls B ⊂ Ω one has

(
1

w(B)

ˆ
B

|u|χp w dx

) 1
χp

≤ C2l(B)

(
1

w(B)

ˆ
B

|∇u|p w dx

) 1
p

for u ∈ C1
c (B).

Remark 1.1. Suppose for a moment that the weight w verifies the following: there
exist constants C,D > 0 such that

w(BR(y))

w(Br(x))
≤ C

(
R

r

)D

, for all 0 < r ≤ R < ∞ with Br(x) ⊆ BR(y) ⊆ Ω. (8)

It follows from [22, Theorem 5.1 and Corollary 9.8] and [1, Theorem 4] that

(
1

w(B)

ˆ
B

|u− uB,w|
Dp

D−p w dx

)D−p
Dp

≤ C2l(B)

(
1

w(B)

ˆ
B

|∇u|p w dx

) 1
p

∀u ∈ C∞(B)

(9)
and as a consequence we also have

(
1

w(B)

ˆ
B

|u|
Dp

D−p w dx

)D−p
Dp

≤ C2l(B)

(
1

w(B)

ˆ
B

|∇u|p w dx

) 1
p

∀u ∈ C∞
c (B).

(10)
On the one hand, observe that this is precisely what happens for the N -dimensional

Lebesgue measure λ as one can see that it satisfies

λ(BR)

λ(Br)
=

(
R

r

)N

,

so in the unweighted case one has D = N and the classical local Poincaré-Sobolev and
local Sobolev inequalities are readily recovered.

On the other hand, (8) is automatically satisfied for any doubling weight w because
one can iterate (6) to obtain

w(BR)

w(Br)
≤ C

(
R

r

)log2 γw

.

With the above observation in mind it is appropriate to denote by Dw = log2 γw
and to call Dw the dimension of the weight w (this is related to the Assouad dimension
of the measure w dx, see [2, 17, 23]). Also we will use the notation χw = Dw

Dw−p .
As mentioned at the beginning, the above properties are useful in the definition

of weighted Sobolev spaces: for an open set Ω ⊆ RN we define the weighted Sobolev

6



space H1,p,w(Ω)

H1,p,w(Ω) = the completion of {u ∈ C1(Ω) : u,
∂u

∂xi
∈ Lp,w(Ω) for all i } (11)

equipped with the norm

∥u∥p1,p,w = ∥u∥pp,w +

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥p
p,w

. (12)

Observe that property (PII) guarantees that functions in this space have a unique
gradient (see [24, Section 1.9]).

Having established the ambient space we can now give the main results of this
article. As we mentioned before the goal of this work is to obtain qualitative and
quantitative properties of weak solutions to (1). To do so we firstly study the local
regularity of weak solutions the following quasi-linear problem{

divA(x, u,∇u) = B(x, u,∇u), in Ω ⊆ RN

u ∈ H1,p,w
loc (Ω),

(13)

where A : Ω × R × RN → RN and B : Ω × R × RN → R are functions verifying the
Serrin-like conditions

A(x, u, z) · z ≥ w(x) (|z|p − d |u|p − g) , (H1)

|A(x, u, z)| ≤ w(x)
(
|z|p−1

+ b |u|p−1
+ e
)
, (H2)

|B(x, u, z)| ≤ w(x)
(
c |z|p−1

+ d |u|p−1
+ f

)
, (H3)

for measurable functions b, c, d, e, f, g : Ω → R+ satisfying suitable integrability con-
ditions that will vary from theorem to theorem. With the above into consideration,
throughout the rest of this article the function w will be a non-negative locally integrable
weight functions satisfying (6), (7) and the local weighted (1, p)-Poincaré inequality
(PI).

The first result deals with the local boundedness of weak solutions, namely we have
Theorem 1.1. Suppose that 1 < p < Dw where Dw is the dimension of the weight w
defined at Remark 1.1, additionally suppose that for 0 < ε < 1 one has

b, e ∈ L
Dw
p−1 ,w(Ω), c ∈ L

Dw
1−ε ,w(Ω), and d, f, g ∈ L

Dw
p−ε ,w(Ω). (14)

For fixed x0 ∈ Ω and R > 0 such that B2R(x0) ⊂ Ω suppose u ∈ H1,p,w
loc is a local weak

solution to
divA(x, u,∇u) = B(x, u,∇u) in B2R(x0)
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then

∥u∥L∞(BR(x0))
≤ CR

( 
B2R(x0)

|u|p w dx

) 1
p

+ kR

 ,

where CR > 0 depends on ε, Dw, N, a, p and the quantities

bR := Rp−1

( 
B2R(x0)

|b|
Dw
p−1 w

) p−1
Dw

, cR := R

( 
B2R(x0)

|c|
Dw
1−ε w

) 1−ε
Dw

,

dR := Rp

( 
B2R(x0)

|d|
Dw
p−ε w

) p−ε
Dw

, eR := Rp−1

( 
B2R(x0)

|e|
Dw
p−1 w

) p−1
Dw

,

fR := Rp

( 
B2R(x0)

|f |
Dw
p−ε w

) p−ε
Dw

, gR := Rp

( 
B2R(x0)

|g|
Dw
p−ε w

) p−ε
Dw

.

The constant kR is defined by

kR = (eR + fR)
1

p−1 + g
1
p

R .

The above result requires that ε > 0 in (14). If we consider the case ε = 0 we no
longer have local boundedness, but we do obtain that u is Ls,w integrable for all s < ∞
as the following results shows
Theorem 1.2. Let 1 < p < Dw where Dw is the dimension of the weight w defined at
Remark 1.1. Suppose that one has

b, e ∈ L
Dw
p−1 ,w(Ω), c ∈ LDw,w(Ω), and d, f, g ∈ L

Dw
p ,w(Ω). (15)

For fixed x0 ∈ Ω and R > 0 such that B2R(x0) ⊂ Ω suppose u ∈ H1,p,w
loc is a local weak

solution to
divA(x, u,∇u) = B(x, u,∇u) in B2R(x0)

then for all 1 ≤ s < ∞ we have( 
BR(x0)

|u|s w dx

) 1
s

≤ CR,s

( 
B2R(x0)

|u|p w dx

) 1
p

+ kR

 ,

for some constant CR,s > 0 depending on s, Dw, N and the structure of A and B,
namely p, a > 0 and the quantities

bR := Rp−1

( 
B2R(x0)

|b|
Dw
p−1 w

) p−1
Dw

, cR := R

( 
B2R(x0)

|c|Dw w

) 1
Dw

,

dR := Rp

( 
B2R(x0)

|d|
Dw
p w

) p
Dw

, eR := Rp−1

( 
B2R(x0)

|e|
Dw
p−1 w

) p−1
Dw

,
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fR := Rp

( 
B2R(x0)

|f |
Dw
p w

) p
Dw

, gR := Rp

( 
B2R(x0)

|g|
Dw
p w

) p
Dw

.

The value of kR is

kR = (eR + fR)
1

p−1 + g
1
p

R .

If we keep relaxing the integrability conditions on the structural parameters
b, c, . . . , g we still are able to obtain some integrability of u as the following result shows
Theorem 1.3. Let 1 < p < Dw where Dw is the dimension of the weight w defined at
Remark 1.1. Suppose that one has

b ∈ L
Dw
p−1 ,w(Ω), c ∈ LDw,w(Ω), d ∈ L

Dw
p ,w(Ω),

e ∈ L
Dwr

Dw−r ,w(Ω), f ∈ Lr,w(Ω), and g ∈ Lt,w(Ω),
(16)

where r, t verify
1

p− 1

(
1

r
− p

Dw

)
=

1

p

(
1

t
− p

Dw

)
=

1

s

for some s ≥ Dwp
Dw−p . For fixed x0 ∈ Ω and R > 0 such that B2R(x0) ⊂ Ω suppose

u ∈ H1,p,w
loc is a local weak solution to

divA(x, u,∇u) = B(x, u,∇u) in B2R(x0)

then we have( 
BR(x0)

|u|s w dx

) 1
s

≤ CR,s

( 
B2R(x0)

|u|p w dx

) 1
p

+ kR

 ,

for some constant CR,s > 0 depending on s, Dw, N and the structure of A and B,
namely p, a and the quantities

bR := Rp−1

( 
B2R(x0)

|b|
Dw
p−1 w

) p−1
Dw

, cR := R

( 
B2R(x0)

|c|Dw w

) 1
Dw

,

dR := Rp

( 
B2R(x0)

|d|
Dw
p w

) p+ε
Dw

.

The value of kR is

kR = (eR + fR)
1

p−1 + g
1
p

R ,

where

eR := Rp−1

( 
B2R(x0)

|e|
Dwr

Dw−r w

) 1
χwr

, fR := Rp

( 
B2R(x0)

|f |r w

) 1
r

,
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gR := Rp

( 
B2R(x0)

|g|t w

) 1
t

.

Next we show the validity of the Harnack inequality, that is we have
Theorem 1.4 (Harnack inequality). Under the same hypotheses of Theorem 1.1 with
the additional assumption that u is a non-negative weak solution of divA = B in B3R

then

max
BR

u ≤ CR

(
min
BR

u+ kR

)
(17)

where CR and kR are as in Theorem 1.1.
And as it is usual in this context, once one is able to obtain the Harnack inequality,

then a local Hölder regularity result readily follows
Theorem 1.5. Suppose that 1 < p < Dw and that the hypotheses of Theorem 1.1 are
satisfied, but in addition we suppose that

b ∈ L
Dw

p−1−ε ,w(Ω)

for some ε > 0. If u ∈ H1,p,w is a (local) weak solution of

divA(x, u,∇u) = B(x, u,∇u) in Ω,

then u is locally Hölder continuous.
Remark 1.2. As we mentioned before, Theorems 1.1 to 1.5 are to be expected as they
naturally connect the results of Serrin [33] with the work of Fabes-Kenig-Serapioni [14].

With the above local regularity results we are now able to study (1), that is we
now turn to the equation−div

(
w |∇u|p−2 ∇u

)
= w |u|q−2

u in Ω,

u ∈ D1,p,w(Ω),
(18)

where q = Dwp
Dw−p is the local weighted Sobolev exponent associated to the weight w

and D1,p,w(Ω) is the closure of C∞
c (Ω) under the (semi) norm ∥∇u∥p,w. If we further

suppose that the weight w is such that the global weighted Sobolev inequality

Sp,w

(ˆ
Ω

|u|q w dx

) 1
q

≤
(ˆ

Ω

|∇u|p w dx

) 1
p

(19)

is satisfied for all u ∈ C∞
c (Ω) then one has D1,p,w(Ω) ↪→ Lq,w(Ω) and we are able to

prove the following decay estimate for weak solutions to the critical equation (18).
Theorem 1.6 (Decay estimate of weak solutions). Suppose w satisfies (19) in addition
to (6), (7) and (PI). If u ∈ D1,p,w(Ω) is a weak solution of

−div(w |∇u|p−2 ∇u) = w |u|q−2
u in Ω,
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there exist R > 0, C > 0 and λ > 0 such that if x ∈ Ω satisfies |x| ≥ R then

|u(x)| ≤ C

|x|
Dw−p

p +λ
.

Remark 1.3. If we know specifics about the weight w, then Theorem 1.6 can be
improved to obtain that weak solutions satisfy

|u(x)| ≤ C

|x|
Dw−p
p−1 −ε

for large |x| and any ε > 0. To obtain such result one uses Theorem 1.6 together
with a comparison principle. We will show this later for the case of monomial weights
w(x) = xA and power type weights w(x) = |x|a in Section 4.

The rest of this article is dedicated to the proofs of the above results. In Section 2
we study (13) and obtain the proofs of Theorems 1.1 to 1.5 whereas in Section 3 we
turn to the proof of Theorem 1.6. Finally in Section 4 we exhibit specific examples of
weights for which our results apply and how the specificity of each weight allows us to
improve on Theorem 1.6 to obtain sharper results.

2 Local estimates
To prove the local regularity of solutions we follow the works of Serrin [33] and Kenig-
Fabes-Serapioni [14]. The main ingredient in these proofs is Moser’s iteration technique
which relies on using a suitable version of uβ as a test function for (13). To do so we
consider α ≥ 1 and 0 ≤ k ≤ l and we define F : [k,∞) → R as

F (x) = Fα,k,l(x) =

{
xα if k ≤ x ≤ l,

lα−1 (αx− (α− 1)l) if x > l.
(20)

Observe that F ∈ C1([k,∞)) with |F ′(x)| ≤ αlα−1. We also consider x̄ = |x|+ k and
G : R → R defined as

G(x) = Gα,k,l(x) = sign(x)
(
F (x̄) |F ′(x̄)|p−1 − αp−1kβ

)
(21)

where β = 1 + p(α− 1). Then clearly G is a piecewise smooth function which is linear
if |x| > l − k and that both F and G satisfy

|G(x)| ≤ F (x̄) |F ′(x̄)|p−1

x̄F ′(x̄) ≤ αF (x̄)

F ′(x̄) ≤ αF (x̄)1−
1
α
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and

G′(x) =


β

α
|F ′(x̄)|p if |x| < l − k,

|F ′(x̄)|p if |x| > l − k.

Observe that as l → ∞ we have F (x̄) ∼ x̄α and G(x) ∼ β
α x̄

β so the function G(x)

will play the role of xβ . Finally, observe that if η ∈ C∞
c (Ω) and if u ∈ H1,p,w

loc (Ω) then
φ = ηpG(u) is a valid test function in

ˆ
Ω

A(x, u,∇u)∇φ+ B(x, u,∇u)φ = 0

thanks to the results in [24, Chapter 1] regarding weighted Sobolev spaces for p-
admissible weights we can now prove the local boundedness of weak solutions.

Since no confusion is present, throughout the proofs in this chapter we will write
D = Dw and χ = χw = D

D−p > 1.

Proof of Theorem 1.1. For the case R = 1 and x0 ∈ Ω such that B2(x0) ⊂ Ω we follow
the proof of [33, Theorem 1] with a few modifications: recall that for such χ then the
local Sobolev inequality (10) is valid, and by using (H1)-(H3) we can write

|A(x, u, z)| ≤ w
(
|z|p−1

+ b̄ūp−1
)
,

|B(x, u, z)| ≤ w
(
c |z|p−1

+ d̄ūp−1
)
,

A(x, u, z) · z ≥ w
(
|z|p − d̄ūp

)
,

(22)

where

b̄ = b+ k1−pe,

d̄ = d+ k1−pf + k−pg,

and ū = |u|+ k for k ≥ 0 defined as1

k =

(( 
B2

|e|
D

p−1 w

) p−1
D

+

( 
B2

|f |
D

p−ε w

) p−ε
D

) 1
p−1

+

(( 
B2

|g|
D

p−ε w

) p−ε
D

) 1
p

,

where to simplify the notation from now on we use B2 to denote B2(x0). Observe that
this choice of k together with the assumptions over the functions b through g imply that

 
B2

∣∣b̄∣∣ D
p−1 w ≤ C,

 
B2

∣∣d̄∣∣ D
p−ε w ≤ C, (23)

for some constant C > 0 depending on b, d, e, f, g and w(B2).

1If e = f = g = 0 we can take any k > 0 and at the very end we can pass to the limit k → 0+.
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As we mentioned at the beginning of this section for the local weak solution u
and arbitrary non-negative η ∈ C∞

c (B2) we can consider φ = ηpG(u) as a valid test
function and with the aid of (22) one can obtain the a.e. estimate

A · ∇φ+ Bφ = ηpG′(u)A · ∇u+ pηp−1G(u)A · ∇η + ηpG(u)B

≥ ηpG′(u)w
(
|∇u|p − d̄ūp

)
− pηp−1 |∇ηG(u)|w

(
|∇u|p−1

+ b̄ūp−1
)

− ηp |G(u)|w
(
c |∇u|p−1

+ d̄ūp−1
)

≥ |ηF ′(ū)∇u|p w − p |F (ū)∇η| |ηF ′(ū)∇u|p−1
w − pb̄ |F (ū)∇η| |ηūF ′(ū)|p−1

w

− cηF (ū) |ηF ′(ū)∇u|p−1
w − d̄

(
α−1β |ηūF ′(ū)|p + ηF (ū) |ηūF ′(ū)|p−1

)
w

so that if v = F (ū) one reaches

A · ∇φ+ Bφ ≥ |η∇v|p w − p |v∇η| |η∇v|p−1
w − pαp−1b̄ |v∇η| |ηv|p−1

w

− cηv |η∇v|p−1
w − (1 + β)αp−1d̄ |ηv|p w. (24)

After averaging the above inequality over B2 we obtain

 
B2

|η∇v|p w ≤ p

 
B2

|v∇η| |η∇v|p−1
w + pαp−1

 
B2

b̄ |v∇η| |vη|p−1
w

+

 
B2

cvη |η∇v|p−1
w + (1 + β)αp−1

 
B2

d̄ |vη|p w, (25)

and each term on the right hand side can be estimated using (10), (14), and (23) as
follows:

 
B2

|v∇η| |η∇v|p−1
w ≤

( 
B2

|v∇η|p w
) 1

p
( 

B2

|η∇v|p w
)1− 1

p

(26)

 
B2

b̄ |v∇η| |vη|p−1
w ≤ C

(( 
B2

|v∇η|p w
)
+

( 
B2

|v∇η|p w
) 1

p
( 

B2

|η∇v|p w
)1− 1

p

)
(27)

 
B2

cvη |η∇v|p−1
w ≤ C

( 
B2

|vη|p w
) ε

p

(( 
B2

|v∇η|p w
) 1−ε

p
( 

B2

|η∇v|p w
)1− 1

p

+

( 
B2

|η∇v|p w
)1− ε

p

)
(28)
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B2

d̄ |vη|p w ≤ C

( 
B2

|vη|p w
) ε

p

(( 
B2

|v∇η|p w
) p−ε

p

+

( 
B2

|η∇v|p w
) p−ε

p

)
(29)

therefore if one considers

z =

(ffl
B2

|η∇v|p w
) 1

p

(ffl
B2

|v∇η|p w
) 1

p

and

ζ =

(ffl
B2

|ηv|p w
) 1

p

(ffl
B2

|v∇η|p w
) 1

p

then, because α ≥ 1, (25) becomes

zp ≤ C
(
zp−1 + αp−1(1 + zp−1) + ζε(zp−1 + zp−ε) + (1 + β)αp−1ζε(1 + zp−ε)

)
which with the aid of [33, Lemma 2] gives

z ≤ Cα
p
ε (1 + ζ).

The above translates to

( 
B2

|η∇v|p w
) 1

p

≤ Cα
p
ε

(( 
B2

|ηv|p w
) 1

p

+

( 
B2

|v∇η|p w
) 1

p

)
(30)

and because of (10) we obtain

( 
B2

|ηv|χp w
) 1

χp

≤ Cα
p
ε

(( 
B2

|ηv|p w
) 1

p

+

( 
B2

|v∇η|p w
) 1

p

)
. (31)

To continue one considers a sequence of cut-off functions as follows: we take
ηn ∈ C∞

c (Bhn) such that ηn ≡ 1 in Bhn+1 and |∇ηn| ≤ C2n where hn = 1 + 2−n. If
one recalls that the weight is doubling so that w(Bhn) ≤ γww(Bhn+1) we deduce from
(31) that (after passing to the limit l → ∞)

( 
Bhn+1

|ūα|χp w

) 1
χp

≤ C2nα
p
ε

( 
Bhn

|ūα|p w

) 1
p

, (32)
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which is valid for all α ≥ 1. We observe that using (32) for αn = χn ≥ 1 gives

( 
Bhn+1

|ū|sn+1 w

) 1
sn+1

≤ Cχ−n

2nχ
−n

χ
p
εnχ

−n

( 
Bhn

|ū|sn w

) 1
sn

,

where sn = pχn. Because χ > 1 then
∑∞

k=0 kχ
−k and

∑∞
k=0 χ

−k are convergent series
so we can iterate the above inequality to obtain

( 
Bhn+1

|ū|sn+1 w

) 1
sn+1

≤ C

( 
B2

|ū|p w
) 1

p

,

which after passing to the limit n → ∞ yields2

∥u∥L∞(B1)
≤ C

[( 
B2

|u|p w
) 1

p

+ k

]
,

and the result follows in the case R = 1.
If R ̸= 1 a standard scaling argument allows us to reduce the situation to the case

R = 1. We include this argument as it will be used a few more times in the following
proofs. If we consider ũ(y) = u(Ry) where u is a weak solution of divA = B in B2R(x0),
then ũ is a weak solution of divÃ = B̃ in B2(y0) where y0 = R−1x0 and

Ã(y, ũ, z̃) = Rp−1A(Ry, ũ, R−1z̃), B̃(y, ũ, z̃) = RpB(Ry, ũ, R−1z̃).

It is clear that if A and B satisfy (H1),(H2),(H3) then Ã and B̃ satisfy

Ã(y, ũ, z̃) · z̃ ≥ w̃(y)
(
|z̃|p − d̃ |ũ|p − g̃

)
, (H̃1)

|A(y, ũ, z̃)| ≤ w̃(y)
(
|z̃|p−1

+ b̃ |ũ|p−1
+ ẽ
)
, (H̃2)

|B(y, ũ, z̃)| ≤ w̃(y)
(
c̃ |z̃|p−1

+ d̃ |ũ|p−1
+ f̃

)
, (H̃3)

where

w̃(y) = w(Ry), c̃(y) = Rc(Ry)

b̃(y) = Rp−1b(Ry), ẽ(y) = Rp−1e(Ry),

d̃(y) = Rpd(Ry), f̃(y) = Rpf(Ry), g̃(y) = Rpg(Ry),

2Note that L∞,w(B1) = L∞(B1) because 0 < w < ∞ a.e. in Ω.
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hence we can apply the case R = 1 to ũ to obtain

∥u∥L∞(BR(x0))
= ∥ũ∥L∞(B1(y0))

≤ C

( 
B2(y0)

|ũ|p w̃

) 1
p

+ k̃

 ,

where

k̃ =

( 
B2(y0)

|ẽ|
D

p−1 w̃

) p−1
D

+

( 
B2(y0)

∣∣∣f̃ ∣∣∣ D
p−ε

w̃

) p−ε
D


1

p−1

+

( 
B2(y0)

|g̃|
D

p−ε w̃

) p−ε
D


1
p

,

and the result follows if we observe that

( 
B2(y0)

∣∣∣b̃∣∣∣ D
p−1

w̃

) p−1
D

= Rp−1

( 
B2R(x0)

|b|
D

p−1 w

) p−1
D

,

( 
B2(y0)

|c̃|
D

1−ε w̃

) 1−ε
D

= R

( 
B2R(x0)

|c|
D

1−ε w

) 1−ε
D

,

( 
B2(y0)

∣∣∣d̃∣∣∣ D
p−ε

w̃

) p−ε
D

= Rp

( 
B2R(x0)

|d|
D

p−ε w

) p−ε
D

,

( 
B2(y0)

|ẽ|
D

p−1 w̃

) p−1
D

= Rp−1

( 
B2R(x0)

|e|
D

p−1 w

) p−1
D

,

( 
B2(y0)

∣∣∣f̃ ∣∣∣ D
p−ε

w̃

) p−ε
D

= Rp

( 
B2R(x0)

|f |
D

p−ε w

) p−ε
D ,

( 
B2(y0)

|g̃|
D

p−ε w̃

) p−ε
D

= Rp

( 
B2R(x0)

|g|
D

p−ε w

) p−ε
D

.

■

Remark 2.1. If the global Sobolev inequality (19) is satisfied then there is no need to
average the integrals in the above proof. For instance, to obtain (29) we used Hölder’s
inequality to write

 
B2

d̄ |vη|p w ≤
( 

B2

d̄
D

p−εw

) p−ε
D
( 

B2

|vη|p w
) ε

p
( 

B2

|vη|χp w
) p−ε

χp
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and then we used the local Sobolev inequality (10) to estimate the last term as

( 
B2

|vη|χp w
) p−ε

χp

≤ C

( 
B2

|∇(vη)|p w
) p−ε

p

≤ C

[( 
B2

|η∇v|p w
) p−ε

p

+

( 
B2

|v∇η|p w
) p−ε

p

]
.

However, if the global Sobolev inequality holds then the same follows without averaging,
that is we would have

ˆ
B2

d̄ |vη|p w ≤ C

(ˆ
B2

|vη|p w
) ε

p

((ˆ
B2

|v∇η|p w
) p−ε

p

+

(ˆ
B2

|η∇v|p w
) p−ε

p

)

and similarly for (26)-(28) and (31). In particular when the global Sobolev inequality
holds we have a version of Theorem 1.1 where the following estimate holds

∥u∥L∞(BR(x0))
≤ CR

[
∥u∥Lp,w(B2R(x0))

+ kR

]
,

and the integrals defining kR are also not averaged.

Proof of Theorem 1.2. It is enough to consider the case R = 1 because the scaling
argument remains the same. Additionally, thanks to the interpolation inequality in
Ls,w, it is enough to find a sequence sn −→

n→∞
+∞ for which one has

( 
B1

|ū|sn w

) 1
sn

≤ Cn

( 
B2

|ū|p w
) 1

p

,

where ū = |u|+k. As in the proof of Theorem 1.1, by using the test function φ = ηpG(u)
we reach to the inequality

 
B2

|η∇v|p w ≤ p

 
B2

|v∇η| |η∇v|p−1
w + pαp−1

 
B2

b̄ |v∇η| |vη|p−1
w

+

 
B2

cvη |η∇v|p−1
w + (1 + β)αp−1

 
B2

d̄ |vη|p w,

but because ε = 0 we cannot repeat (28)-(29). For the terms involving c and d̄ we can
write for M > 0 the following

 
B2

cvη |η∇v|p−1
w =

1

w(B2)

(ˆ
B2∩{ c≤M }

cvη |η∇v|p−1
w +

ˆ
B2∩{ c>M }

cvη |η∇v|p−1
w

)

≤ M

( 
B2

|vη|p w
) 1

p
( 

B2

|η∇v|p w
)1− 1

p

+

(
1

w(B2)

ˆ
B2∩{ c>M }

cDw

) 1
D ( 

B2

|vη|χp w
) 1

χp
( 

B2

|η∇v|p w
)1− 1

p
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≤ M

( 
B2

|vη|p w
) 1

p
( 

B2

|η∇v|p w
)1− 1

p

+ C

( 
B2

|v∇η|p w
) 1

p
( 

B2

|η∇v|p w
)1− 1

p

+ C

(
1

w(B2)

ˆ
B2∩{ c>M }

cDw

) 1
D ( 

B2

|η∇v|p w
)

and

 
B2

d̄ |vη|p w =
1

w(B2)

(ˆ
B2∩{ d̄≤M }

d̄ |vη|p w +

ˆ
B2∩{ d̄>M }

d̄ |vη|p w

)

≤ M

 
B2

|vη|p w +

(
1

w(B2)

ˆ
B2∩{ d̄>M }

d̄
D
p w

) p
D ( 

B2

|vη|χp w
) 1

χ

≤ M

 
B2

|vη|p w + C

( 
B2

|v∇η|p w
)

+

(
1

w(B2)

ˆ
B2∩{ d̄>M }

d̄
D
p w

) p
D ( 

B2

|η∇v|p w
)
.

Because c ∈ LD,w and d̄ ∈ L
D
p ,w then for any δ > 0 we can find M > 0 such that

C

(
1

w(B2)

ˆ
B2∩{ c>M }

cDw

) 1
D

+

(
1

w(B2)

ˆ
B2∩{ d̄>M }

d̄
D
p w

) p
D

≤ δ,

therefore for any α ≥ 1 we can find δ > 0 sufficiently small and a constant Cα > 0
such that

 
B2

|η∇v|p w ≤ Cα

[( 
B2

|v∇η|p w
) 1

p

+

( 
B2

|vη|p w
) 1

p

]( 
B2

|η∇v|p w
)1− 1

p

+ Cα

( 
B2

|v∇η|p w
)
+ Cα

( 
B2

|vη|p w
)
.

The above inequality allows us to use [33, Lemma 2] once again and obtain an inequality
analogous to (30), namely

( 
B2

|η∇v|p w
) 1

p

≤ Cα

(( 
B2

|ηv|p w
) 1

p

+

( 
B2

|v∇η|p w
) 1

p

)
(33)

the main difference being that the constant Cα is no longer explicit. Nonetheless we
can continue the argument from the proof of Theorem 1.1 by choosing appropriate
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cut-off functions η to reach( 
Bhn

|ū|sn w

) 1
sn

≤ Cn

( 
B2

|ū|p w
) 1

p

,

where sn = pχn and hn = 1 + 2−n, where now we do not obtain a uniform estimate
for Cn. Finally, because 1 ≤ h ≤ 2 we know that

w(Bh)

w(B1)
≤ γw

so that ( 
B1

|ū|sn w

) 1
sn

≤ Cn

( 
B2

|ū|p w
) 1

p

and the result is proved. ■

Remark 2.2. Similar to Remark 2.1, if the global Sobolev inequality holds then there
is no need to average the integrals in the above proof and as a consequence we obtain
the following estimate in Theorem 1.2

∥u∥Ls,w(BR(x0))
≤ CR,s

[
∥u∥Lp,w(B2R(x0))

+ kR

]
,

where once again kR needs to be changed to the non-averaged version.

Proof of Theorem 1.3. This is similar to the proof of Theorems 1.1 and 1.2 and [33,
Theorem 1’]. As before, we only do the case R = 1. For F and G as in (20) and (21)
respectively we take φ = ηpG(u) as test function for some η ∈ C∞

c (B2) with 0 ≤ η ≤ 1.
The main difference here is that we take ū = |u| as we need to keep track of the terms
involving e, f, g instead of including them in b̄ and d̄ through the use of k > 0. With
that in mind and using that F ′(ū) ≤ αF (ū)1−

1
α we have

A · ∇φ+ Bφ ≥ ηpG′(u)w (|∇u|p − dup − g)− pηp−1 |∇ηG(u)|w
(
|∇u|p−1

+ bup−1 + e
)

− ηp |G(u)|w
(
c |∇u|p−1

+ dup−1 + f
)

≥ |ηF ′(ū)∇u|p w − p |∇ηF (ū)| |ηF ′(ū)∇u|p−1
w

− pαp−1b |F (ū)∇η| |ηF (ū)|p−1
w − c |ηF (ū)| |ηF ′(ū)∇u|p−1

w

− (1 + β)αp−1d |ηF (ū)|p w − pαp−1e |F (ū)∇η| |ηF (ū)|
β
α−1

w

− αp−1f |ηF (ū)| |ηF (ū)|
β
α w − βαp−1g |ηF (ū)|p

α−1
α w

which after averaging over B2 gives

 
B2

|η∇v|p w ≤ p

 
B2

|v∇η| |η∇v|p−1
w + pαp−1

 
B2

b |v∇η| |vη|p−1
w
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+

 
B2

cvη |η∇v|p−1
w + (1 + β)αp−1

 
B2

d |vη|p w + pαp−1

 
B2

e |v∇η| |ηv|
β
α−1

w

+ αp−1

 
B2

f |ηv|
β
α w + βαp−1

 
B2

g |ηv|
p(α−1)

α w, (34)

where v = F (ū).
With an inequality similar to (30) or (33) as our goal we estimate each term in the

above inequality. The terms involving b, c, d are bounded exactly as in Theorem 1.2,
that is we obtain

p

 
B2

|v∇η| |η∇v|p−1
w + pαp−1

 
B2

b |v∇η| |vη|p−1
w +

 
B2

cvη |η∇v|p−1
w

+(1+β)αp−1

 
B2

d |vη|p w ≤ Cα

[( 
B2

|v∇η|p w
) 1

p

+

( 
B2

|vη|p w
) 1

p

]( 
B2

|η∇v|p w
)1− 1

p

+ Cα

( 
B2

|v∇η|p w
)
+ Cα

( 
B2

|vη|p w
)
,

for some constant Cα > 0.
For the other terms let s1, s2, s3 ≥ 1, and consider α ≥ 1 such that 1

s1
+ 1

p + β−α
αχp =

1
s2

+ β
αχp = 1 then for any δ > 0 small we can use Hölder’s inequality and (10) to

obtain a constant Cδ > 0 such that

 
B2

e |v∇η| |ηv|
β
α−1

w ≤
( 

B2

|e|s1 w
) 1

s1
( 

B2

|v∇η|p w
) 1

p
( 

B2

|ηv|χp w
) β−α

αχp

≤ C

( 
B2

|e|s1 w
) 1

s1
( 

B2

|v∇η|p w
) 1

p
( 

B2

|∇(ηv)|p w
) β−α

αp

≤ Cδ

(( 
B2

|e|s1 w
) pα

s1(p−1)

+

( 
B2

|v∇η|p w
))

+ δ

( 
B2

|∇(ηv)|p w
)
.

Similarly

 
B2

f |ηv|
β
α w ≤

( 
B2

|f |s2 w
) 1

s2
( 

B2

|ηv|χp w
) β

αχp

≤ C

( 
B2

|f |s2 w
) 1

s2
( 

B2

|∇(ηv)|p w
) β

αp

≤ Cδ

(( 
B2

|f |s2 w
) pα

s2(p−1)

+

( 
B2

|v∇η|p w
))

+ δ

( 
B2

|η∇v|p w
)
,
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and if 1
s3

+ p(α−1)
αχp = 1

 
B2

g |ηv|
p(α−1)

α w ≤
( 

B2

|g|s3 w
) 1

s3
( 

B2

|ηv|χp w
) p(α−1)

αχp

≤ C

( 
B2

|g|s3 w
) 1

s3
( 

B2

|∇(ηv)|p w
) p(α−1)

αp

≤ Cδ

(( 
B2

|g|s3 w
) α

s3

+

( 
B2

|v∇η|p w
))

+ δ

( 
B2

|η∇v|p w
)
.

If we put the above estimates in (34) for δ > 0 small enough we obtain a constant
Cα > 0 such that

 
B2

|η∇v|p w ≤ Cα

[( 
B2

|v∇η|p w
) 1

p

+

( 
B2

|vη|p w
) 1

p

]( 
B2

|η∇v|p w
)1− 1

p

+ Cα

[( 
B2

|v∇η|p w
)
+

( 
B2

|vη|p w
)]

+ Cα

[( 
B2

|e|s1 w
) pα

s1(p−1)

+

( 
B2

|f |s2 w
) pα

s2(p−1)

+

( 
B2

|g|s3 w
) α

s3

]

which with the aid of [33, Lemma 2] one more time gives( 
B2

|η∇v|p w
) 1

p

≤ Cα

[( 
B2

|η∇v|p w
) 1

p

+

( 
B2

|ηv|p w
) 1

p

+Mα

]

where

M =

( 
B2

|e|s1 w
) p

s1(p−1)

+

( 
B2

|f |s2 w
) p

s2(p−1)

+

( 
B2

|g|s3 w
) 1

s3

.

We can proceed as in the previous theorems by using (10), selecting η and passing
to the limit l → ∞ to obtain( 

Bhn+1

|u|pαχ w

) 1
pαχ

≤ Cα,n

( 
Bhn

|u|pα w

) 1
pα

+M

 , (35)

where hn = 1 + 2−n and α ≥ 1 is chosen so that

1

s1
+

1

p
+

β − α

αχp
=

1

s2
+

β

αχp
= 1 (36)

1

s3
+

p(α− 1)

αχp
= 1. (37)
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Observe that (36) implies that s1 = χs2 and as a consequence M is finite if s2 ≤ r
and s3 ≤ t. Therefore we can iterate (35) by selecting α = αn ≥ 1 satisfying (36)-(37).
Recalling that χ = D

D−p we note that the iteration can be done provided

s2 ≤ r and (36) :
1

pαχ
≥ 1

p− 1

(
1

r
− p

D

)
=

1

s

s3 ≤ t and (37) :
1

pαχ
≥ 1

p

(
1

t
− p

D

)
=

1

s

which mean that after a finite number of steps we will obtain

( 
B1

|u|s w
) 1

s

≤ Cα,n0

[( 
B2

|u|p w
) 1

p

+M

]
,

for some n0 ∈ N. ■

Proof of Theorem 1.4. As before, we only consider the case R = 1. Theorem 1.1 says
that u is bounded on any compact subset of B3 hence for any β ∈ R and any δ > 0
the function φ = ηpūβ is a valid test function provided ū = u+ k+ δ and η ∈ C∞

c (B3).
Here k is defined exactly as in Theorem 1.1.

We begin with the case which differs the most from the proof of [33, Theorem 5].
Suppose that v = log ū and by following the idea of the proof in [33] we reach to

(p−1)

ˆ
B3

|η∇v|p w ≤ p

ˆ
B3

|∇η| |η∇v|p−1
w+p

ˆ
B3

b̄ηp−1 |∇η|w+
ˆ
B3

cη |η∇v|p−1
w

+ p

ˆ
B3

d̄ηpw, (38)

for any η ∈ C∞
c (B3). To continue denote by z =

(´
B3

|η∇v|p w
) 1

p

and with the aid of
Hölder’s inequality (38) becomes

zp ≤ C1z
p−1 + C2,

where

C1 =
p

p− 1

(ˆ
B3

|∇η|p w
) 1

p

+
1

p− 1

(ˆ
B3

|cη|p w
) 1

p

,

C2 =
p

p− 1

ˆ
B3

b̄ηp−1 |∇η|w +
p

p− 1

ˆ
B3

d̄ηpw,

which thanks to Young’s inequality implies

zp ≤ C(Cp
1 + C2),
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for some constant C. To continue we estimate C1 and C2 using appropriate η. For any
0 < h < 2 such that Bh ⊂ B2 (not necessarily concentric) we have that B 3h

2
⊂ B3 and

we consider η ∈ C∞
c (B 3h

2
) such that η ≡ 1 in Bh and |∇η| ≤ Ch−1. We use such η in

(38) and we perform the following estimates

ˆ
B3

|∇η|p w ≤ C

hp
w(B 3h

2
),

ˆ
B3

b̄ηp−1 |∇η|w ≤
Cw(B 3h

2
)

h

(
w(B3)

w(B 3h
2
)

) p−1
D ( 

B3

∣∣b̄∣∣ D
p−1 w

) p−1
D

≤
Cw(B 3h

2
)

hp

( 
B3

∣∣b̄∣∣ D
p−1 w

) p−1
D

,

ˆ
B3

|cη|p w ≤ Cw(B 3h
2
)

(
w(B3)

w(B 3h
2
)

) (1−ε)p
D ( 

B3

|c|
D

1−ε w

) (1−ε)p
D

≤ C
w(B 3h

2
)

h(1−ε)p

( 
B3

|c|
D

1−ε w

) 1−ε
D

,

ˆ
B3

d̄ηpw ≤ Cw(B 3h
2
)

(
w(B3)

w(B 3h
2
)

) p−ε
D ( 

B3

∣∣d̄∣∣ D
p−ε w

) p−ε
D

≤ C
w(B 3h

2
)

hp−ε

( 
B3

∣∣d̄∣∣ D
p−ε w

) p−ε
D

,

where we have used (8) repeatedly. Therefore one obtains

 
Bh

|∇v|p w ≤ 1

w(Bh)

ˆ
B3

|η∇v|p w

≤ 1

w(Bh)
(Cp

1 + C2)

≤ C
w(B 3h

2
)

w(Bh)

(
h−p + h−(1−ε)p + h−(p−ε)

)
≤ C

(
h−p + h−(1−ε)p + h−(p−ε)

)
,

where now C depends on
ffl
B3

∣∣b̄∣∣ D
p−1 w,

ffl
B3

|c|
D

1−ε w and
ffl
B3

∣∣d̄∣∣ D
p−ε w.
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Finally, the local Poincaré-Sobolev inequality (9) tells us that

 
Bh

|v − vBh
|w ≤

( 
Bh

|v − vBh
|p w

) 1
p

≤ Ch

( 
Bh

|∇v|p w
) 1

p

≤ C (1 + hpε + hε)
1
p ,

and because h ≤ 2 for any ball Bh ⊆ B2 we conclude that

 
Bh

|v − vBh
|w ≤ C

where C > 0 is a constant not depending on h, in other words, v ∈ BMO(B2, w dx)
and the John-Nirenberg lemma for doubling measures [24, Appendix II] tells us that
there exists constants p0, C > 0 such that

 
B

ep0|v−vB |w ≤ C

for all balls B ⊆ B2, in particular this gives( 
B2

ep0vw

)
·
( 

B2

e−p0vw

)
≤ C2,

and because v = log ū we have obtained

 
B2

ūp0w ≤ C

( 
B2

ū−p0w

)−1

.

If we denote by Ψ(p, h) =
(ffl

Bh
ūpw

) 1
p

then the above becomes

Ψ(p0, 2) ≤ CΨ(−p0, 2). (39)

The rest of the proof consists in using φ = ηpūβ for β ̸= 1− p, 0 as test function. If
v = ūα for α given by pα = p+ β − 1 then following the ideas from [33] leads to
• If β > 0 then

( 
B3

|ηv|χp w
) 1

χp

≤ Cα
p
ε (1 + β−1)

1
ε

[( 
B3

|ηv|p w
) 1

p

+

( 
B3

|∇ηv|p w
) 1

p

]
.
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If η ∈ C∞
c (Bh) is such that η ≡ 1 in Bh′ for 1 ≤ h′ < h ≤ 2 with |∇η| ≤ C(h−h′)−1

then( 
Bh′

|v|χp w

) 1
χp

≤ C

(
w(B3)

w(Bh′)

) 1
χp
(
w(Bh)

w(B3)

) 1
p α

p
ε (1 + β−1)

1
ε

h− h′

( 
Bh

|v|p w
) 1

p

,

but since 1 ≤ h′ < h ≤ 2 we have

w(B3)

w(Bh′)
≤ w(B4h′)

w(Bh′)
≤ γ2

w and
w(Bh)

w(B3)
≤ 1

hence

Ψ(χp, h′) ≤ C
α

p
ε (1 + β−1)

1
ε

h− h′ Ψ(p, h). (40)

• Similarly, for 1− p < β < 0 one has

Ψ(χp, h′) ≤ C
(1− β−1)

1
ε

h− h′ Ψ(p, h). (41)

• If β < 1− p then one obtains

Ψ(χp′, h′) ≤ C
(1 + |α|)

p
ε

h− h′ Ψ(p, h). (42)

If we observe that Ψ(s, r) −→
s→∞

max
Br

ū and Ψ(s, r) −→
s→−∞

min
Br

ū we can repeat the

iterative argument from the proof of [33, Theorem 5] to deduce that (40) and (41) imply

max
B1

ū ≤ CΨ(p′0, 2)

for some p′0 ≤ p0 chosen appropriately, whereas (42) will give

min
B1

ū ≥ C−1Ψ(−p0, 2).

Finally we can use (39) to obtain a constant C > 0 depending on the structural
parameters such that

max
B1

ū ≤ Cmin
B1

ū

and because ū = u+ k + δ we conclude by letting δ → 0+. ■

Remark 2.3. Observe that kR in Theorem 1.1 can be further estimated as follows: if
one supposes that solutions are defined in BR0

for some R0 > 0 then because of (8) we
can write

( 
B2R

|h|s w
) 1

s

≤
(
w(BR0)

w(B2R)

) 1
s

( 
BR0

|h|s w

) 1
s

≤ CR
D
s
0 R−D

s

( 
BR0

|h|s w

) 1
s
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for any s > 0 and 0 < 2R < R0 then one can give a better estimate on CR and kR in
terms of R > 0 because for example one can see that if b ∈ L

D
p−1−ε ,w(Ω) then

bR := Rp−1

( 
B2R(x0)

|b|
D

p−1−ε w

) p−1−ε
D

≤ CRp−1−ε
0 Rε

( 
BR0

|b|
D

p−1 w

) p−1
D

≤ CR0,bR
ε,

similarly we obtain that

fR ≤ CR0,fR
ε, gR ≤ CR0,gR

ε,

so that if

k0 =

( 
BR0

|e|
D

p−1−ε w

) p−1−ε
D

+

( 
BR0

|f |
D

p−ε w

) p−ε
D


1

p−1

+

( 
BR0

|g|
D

p−ε w

) p−ε
Dp

then kR ≤ k0 max {R
ε

p−1 , R
ε
p }. Therefore if R0 < 1 we have that

kR ≤ k0R
ε
p .

Proof of Theorem 1.5. This is standard once we know the Harnack inequality is valid.
We just highlight the main steps. For x0 ∈ Ω by a suitable scaling we can suppose that
B2 = B2(x0) ⊆ Ω and we can consider for 0 < r ≤ 1 the functions

M(r) = max
Br

u m(r) = min
Br

u

If we define uM = M − u then uM is a weak solution of an equation of the form

divÃ = B̃ in B2

for suitable Ã and B̃ which satisfy the same structural hypotheses as A and B because
u is bounded in B1. The only thing to keep in mind is that b̃, c̃, . . . , g̃ also depend on
maxB1

|u|. The Harnack inequality then implies that

M(r)−m
(r
3

)
≤ Cmax

B r
3

uM ≤ C

(
min
B r

3

uM + k̃

)
= C̃

(
M(r)−M

(r
3

)
+ k̃
)
.

The same situation occurs for the function um = u−m(r) as it can be shown that

M
(r
3

)
−m(r) = max

B r
3

um ≤ C̃

(
min
B r

3

um + k̃

)
= C

(
m
(r
3

)
−m(r) + k̃

)
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and if ω(r) = M(r)−m(r) denotes the oscillation of u in Br we are led to

ω
(r
3

)
≤ C̃ − 1

C̃ + 1
ω(r) +

2C̃

C̃ + 1
k̃,

but Remark 2.3 tells us that if r < 1 then k̃ = k̃r ≤ k̃0r
ε
p for some k̃0 depending

solely on b, c, . . . , g and maxB1
|u|. Also by increasing its value one can suppose that

1 ≤ C̃ = C̃r ≤ C0 so that we have

ω
(r
3

)
≤ θ

(
w(r) + τr

ε
p

)
for constants θ, τ > 0. The rest of the argument to conclude that u is Hölder continuous
at x0 is exactly as in the proof of [33, Theorem 8] thus we omit it. ■

3 Behavior at infinity
In this section we obtain a decay estimate for weak solutions to the equation{

−div(w |∇u|p−2 ∇u) = w |u|q−2
u in Ω

u ∈ D1,p,w(Ω)
(43)

where q = χwp = Dwp
Dw−p and the set Ω ⊆ RN (bounded or not) is such that there exists

a constant Sp,w(Ω) = Sp,w > 0 for which the global weighted Sobolev inequality (19)
holds.

With the aid of the results regarding the equation divA = B we are able to prove
that weak solutions to (43) are locally bounded.
Lemma 3.1. Let q = χwp and u ∈ D1,p,w(Ω) be a weak solution of

−div(w |∇u|p−2 ∇u) = w |u|q−2
u in Ω.

Then for every R > 0 such that B4R(x0) ⊆ Ω then there exists C > 0 depending on
R > 0 and on ∥u∥D1,p,w(Ω) such that

∥u∥L∞(BR(x0))
≤ C.

Proof. Observe that equation (43) can be written in the from divA = B for b = c =
e = f = g = 0 and d = |u|q−p. We first use Theorem 1.2 in the version mentioned in
Remark 2.2 as from that result we know that if d ∈ L

Dw
p ,w(Ω) then for every s ≥ 1

and R > 0 the weak solution u satisfies

∥u∥Ls,w(B2R(x0))
≤ CR,s ∥u∥Lp,w(B4R(x0))

,
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and CR,s depends on s and on Rp
(´

B4R(x0)
|d|

Dw
p w

) p
D

. But because u ∈ D1,p,w(Ω)

the Sobolev inequality (19) tells us that u ∈ Lq,w(Ω), hence d ∈ L
Dw
p ,w(B4R(x0)) ⇔

q = χwp. In particular, this shows that u ∈ Ls,w(B2R(x0)) and as a consequence
d = |u|q−p ∈ L

Dw
p−ε ,w(B2R(x0)) for every 0 < ε < p therefore we can use Theorem 1.1

in the version mentioned in Remark 2.1 to conclude that

∥u∥L∞(BR(x0))
≤ C,

where C depends on R > 0 and the norm of u in D1,p,w(Ω). ■

Now we would like to estimate the decay of the Lq,w norm of weak solutions outside
balls of large radii in Ω.
Lemma 3.2. Suppose q = χwp. If u ∈ D1,p,w(Ω) is a weak solution of (43), then
there exists R0 > 0 and τ > 0 such that if R ≥ R0 then

∥u∥Lq,w(Ω\BR) ≤
(
R0

R

)τ

∥u∥Lq,w(Ω\BR0
) .

Here BR denotes an arbitrary ball of radius R.
Remark 3.1. Observe that in the case of unbounded Ω the above gives an estimate
near infinity of the Lq,w norm of u.

Proof. Because u ∈ D1,p,w(Ω) then the function φ = ηpu for η ∈ W 1,∞(RN ) is a valid
test function in ˆ

Ω

|∇u|p−2 ∇u∇φw =

ˆ
Ω

|u|q−2
uφw.

On the one hand, using ts ≤ Cpε
1−ptp + εsp

′
for suitable small ε > 0 (depending only

on p), we obtain that

ˆ
Ω

|∇u|p−2 ∇u∇φw =

ˆ
Ω

|∇u|p−2 ∇u∇(ηpu)w

=

ˆ
Ω

|∇u|p−2 ∇u ·
(
ηp∇u+ pηp−1u∇η

)
w

=

ˆ
Ω

|η∇u|p w + p

ˆ
Ω

ηp−1 |∇u|p−2 ∇u · u∇ηw

≥
ˆ
Ω

|η∇u|p w − p

ˆ
Ω

(
ε |η∇u|p + Cpε

1−p |u∇η|p
)
w

≥ (1− pε)

ˆ
Ω

|η∇u|p w − Cpε
1−p

ˆ
Ω

|u∇η|p w

=
1

2

ˆ
Ω

|η∇u|p w − Cp

ˆ
Ω

|u∇η|p w.
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On the other hand, since q > p we can write
ˆ
Ω

|u|q−2
uφw =

ˆ
Ω

|u|q ηpw

=

ˆ
Ω

|u|q−p |ηu|p w

≤
(ˆ

supp η

|u|q w
)1− p

q
(ˆ

Ω

|ηu|q w
) p

q

.

Hence
ˆ
Ω

|∇(ηu)|p w =

ˆ
Ω

|η∇u+ u∇η|p w

≤ 2p−1

ˆ
Ω

|η∇u|p w + 2p−1

ˆ
Ω

|u∇η|p w

≤ 2p−1

(
2

ˆ
Ω

|∇u|p−2 ∇u∇φw + Cp

ˆ
Ω

|u∇η|p w
)
+ 2p−1

ˆ
Ω

|u∇η|p w

≤ Cp

ˆ
Ω

|u∇η|p w + 2p
(ˆ

supp η

|u|q w
)1− p

q
(ˆ

Ω

|ηu|q w
) p

q

,

and the global Sobolev inequality (19) tells us that there exists a constant Sp,w such
that

Sp
p,w

(ˆ
Ω

|ηu|q w
) p

q

≤
ˆ
Ω

|∇(ηu)|p w

therefore we obtain

Sp
p,w

(ˆ
Ω

|ηu|q w
) p

q

≤ Cp

ˆ
Ω

|u∇η|p w + 2p
(ˆ

supp η

|u|q w
)1− p

q
(ˆ

Ω

|ηu|q w
) p

q

. (44)

We now choose η. First of all, because ∥u∥q,w is finite for any given ε > 0 we can
find R0 = R0(ε) > 0 such that if R ≥ R0 then

ˆ
Ω\BR

|u|q w ≤ ε.

With this in mind we choose R0 > 0 such that

2p

(ˆ
Ω\BR0

|u|q w

)1− p
q

≤
Sp
p,w

2
,

and we suppose that R ≥ R0 from now on. We consider η ∈ W 1,∞(RN ) such that
η(x) = 0 for x ∈ BR, η(x) = 1 for x /∈ B2R, and |∇η| ≤ CR−1. If we use such η in (44)
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we obtain a constant C > 0 independent of R such that

(ˆ
Ω

|ηu|q w
) 1

q

≤ C

(ˆ
Ω

|u∇η|p w
) 1

p

. (45)

Additionally, by the choice of η we can suppose that |∇η| ≤ CR−1 and we obtain
ˆ
Ω

|u∇η|p w ≤ CR−p

ˆ
Ω∩B2R\BR

|u|p w

≤ CR−p (w(B2R))
1− p

q

(ˆ
Ω∩B2R\BR

|u|q w

) p
q

≤ CR−p

(
w(BR0)

(
2R

R0

)Dw
)1− p

q
(ˆ

Ω∩B2R\BR

|u|q w

) p
q

= C

(
w(BR0

)

RDw
0

)1− p
q

RDw(1− p
q )−p

(ˆ
Ω∩B2R\BR

|u|q w

) p
q

≤ CRDw(1− p
q )−p

(ˆ
Ω∩B2R\BR

|u|q w

) p
q

= C

(ˆ
Ω∩B2R\BR

|u|q w

) p
q

(46)

where we have used (8) and the fact that q = χwp. From (45) and (46) we obtain
ˆ
Ω

|ηu|q w ≤ C

ˆ
Ω∩B2R\BR

|u|q w,

for some constant C > 0 depending on p, q,R0 but independent of R. To continue,
observe that since η ≡ 1 on Bc

2R we can write

ˆ
Ω\B2R

|u|q w ≤
ˆ
Ω

|ηu|q w

≤ C

ˆ
Ω∩B2R\BR

|u|q w

= C

ˆ
Ω\BR

|u|q w − C

ˆ
Ω\B2R

|u|q w,

thus, if θ = C
C+1 ∈ (0, 1) then we obtain

ˆ
Ω\B2R

|u|q w ≤ θ

ˆ
Ω\BR

|u|q w. (47)
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Consider now f(R) =
´
Ω\BR

|u|q w, then (47) tells us that there exists θ ∈ (0, 1)

such that for every R ≥ R0 one has

f(2R) ≤ θf(R),

in particular one could take R = Rn = 2nR0 for n ≥ 0 and conclude that f(2nR0) ≤
θf(2n−1R0), or after iterating

f(2nR0) ≤ θnf(R0).

Observe that if R ≥ R0 then one can find n ≥ 1 such that 2n−1R0 ≤ R < 2nR0 then
n > log2(RR−1

0 ) and as a consequence we obtain

f(R) ≤ f(2nR0) ≤ θnf(R0) ≤ θlog2(RR−1
0 )f(R0).

and because xlog2 y = ylog2 x so we have shown

ˆ
Ω\BR

|u|q w ≤
(
R0

R

)− log2 θ ˆ
Ω\BR0

|u|q w

and the result is proved for τ := − 1
q log2 θ > 0. ■

Lemma 3.3. Suppose that q = χwp and that u ∈ D1,p,w(Ω) is a weak solution of

−div(w |∇u|p−2 ∇u) = w |u|q−2
u in Ω.

Then for each s > q there exists R0 > 0 (depending on s) such that if R ≥ R0 then
there exists C = C(p, q, w; s) > 0 for which

∥u∥Ls,w(Ω\B2R) ≤
C

R
Dw−p

p −os(1)
∥u∥Lq,w(Ω\BR) ,

where os(1) is a quantity that goes to 0 as s → ∞.

Proof. Firstly notice that thanks to the Ls,w interpolation inequality it is enough to
exhibit a sequence sn −→

n→∞
+∞ for which one has

∥u∥Lsn,w(Ω\B2R) ≤
C

R
p

q−p−on(1)
∥u∥Lq,w(Ω\BR) .

Then we observe that in the context of (13) we can view the equation as

divA = B

where b = c = e = f = g = 0 and d = |u|q−p. The assumption u ∈ D1,p,w(Ω) tells us
that φ = ηpG(u) is a valid test function and we can follow the notation of the proof
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Theorem 1.1, in fact, since e = f = g = 0 we can further suppose that k > 0 is arbitrary
in the definition of both F and G. Starting with (24) we now integrate over Ω to obtain

ˆ
Ω

|η∇v|p w ≤ p

ˆ
Ω

|v∇η| |η∇v|p−1
w + (β + 1)αp−1

ˆ
Ω

d |vη|p w,

where v = F (ū) and β = 1+p(α−1). From the above and the global Sobolev inequality
(19) we obtain

(ˆ
Ω

|ηv|q w
) p

q

≤ Cα

(ˆ
Ω

|v∇η|p w +

ˆ
Ω

d |vη|p w
)
,

for some Cα = O(αp). We can pass to the limit l → ∞ the above inequality to deduce
that (ˆ

Ω

|ηūα|q w
) p

q

≤ Cα

(ˆ
Ω

|∇η|p |ū|αp w +

ˆ
Ω

ηp |u|q−p |ū|pα w

)
,

where we have used d = |u|q−p. If we pass to the limit k → 0+ then we reach

(ˆ
Ω

|ηuα|q w
) p

q

≤ Cα

(ˆ
Ω

|∇η|p |u|αp w +

ˆ
Ω

ηp |u|q+p(α−1)
w

)
.

Observe that because q > p we can do the following estimate
ˆ
Ω

ηpuq+p(α−1)w =

ˆ
Ω

uq−p (ηuα)
p
w

≤
(ˆ

supp η

|u|q w
)1− p

q
(ˆ

Ω

|ηuα|q w
) p

q

,

therefore we have(ˆ
Ω

|ηuα|q w
) p

q

≤ Cα

ˆ
Ω

|∇η|p |u|αp w + Cα

(ˆ
supp η

|u|q w
)1− p

q
(ˆ

Ω

|ηuα|q w
) p

q

.

We now select η. Because u ∈ D1,p,w(Ω) and that (19) holds then we know that
u ∈ Lq,w(Ω), therefore for any given ν > 0 we can find R0 = R0(ν) > 0 such that

ˆ
Ω∩{ |x|≥R }

|u|q w ≤ ν, ∀R ≥ R0.

With this in mind we choose R0 = R0(α) > 0 such that

Cα

(ˆ
Ω∩{ |x|≥R0 }

|u|q w

)1− p
q

≤ 1

2
,
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and we suppose that R ≥ R0.
For n ≥ 0 we consider Rn = R(2 − 2−n) and a smooth non-negative function η

such that η(x) = 0 for |x| ≤ Rn, η(x) = 1 for |x| ≥ Rn+1 and satisfies |∇η| ≤ C2n

R ,

supp η ⊆ Ω \BRn

supp∇η ⊆ Ω ∩BRn+1
\BRn

,

therefore so that(ˆ
Ω

|ηuα|q w
) 1

αq

≤ 2
1
αpC

1
pα
α

(ˆ
Ω

|∇η|p |u|αp w
) 1

pα

.

and if for n ≥ 1 we take αn =
(

q
p

)n
then we obtain

(ˆ
Ω\BRn+1

|u|
qn+1

pn w

) pn

qn+1

≤ 2
pn−1

qn C
pn−1

qn

αn R− pn

qn

(ˆ
Ω\BRn

|u|
qn

pn−1 w

) pn−1

qn

,

or equivalently, if sn = qn

pn−1 and Un = ∥u∥Lsn,w(Ω\BRn ),

Un+1 ≤ 2
pn−1

qn C
pn−1

qn

αn

R
pn

qn

Un,

which after iterating gives

Un ≤

∏n−1
i=1 2

pi−1

qi C
pi−1

qi

αi

R
∑n−1

i=1 (
p
q )

i

U1.

If we observe that Cα = O(αp) so that for every large i we have

C
pi−1

qi

αi ≤ C
pi−1

qi

(
q

p

)i pi

qi

for some constant C > 0, and thus the product
∏n−1

i=1 2
pi−1

qi C
pi−1

qi

αi is convergent because
q > p, then the result follows by noticing that U1 ≤ ∥u∥Lq,w(Ω\BR), Un ≥ ∥u∥Lsn,w(B2R),
and that

n−1∑
i=1

(
p

q

)i

=
p

q − p
− q

q − p

(
p

q

)n

=
p

q − p
− on(1),

because q = Dwp
Dw−p > p. ■

Now we are in position to prove Theorem 1.6:
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Proof of Theorem 1.6. Consider the value of R0 > 0 given in Lemma 3.2, and suppose
that x ∈ Ω \B2R0 . Fix 0 < r < R0

4 so that B2r(x) ⊆ Ω and use Lemma 3.1 to obtain

|u(x)| ≤ ∥u∥L∞(Br(x))
≤ Cr ∥u∥Lp(Br(x))

≤ Cr,s ∥u∥Ls(Br(x))
,

for any s > p. If we consider R = |x|
4 , then by geometric considerations we deduce that

B2r(x) ⊆ Ω \B2R hence

∥u∥Ls,w(B2r(x))
≤ ∥u∥Ls,w(Ω\B2R) .

Now we select s > q large enough so that os(1) ≤ τ
2 in Lemma 3.3, where τ > 0 is

taken from Lemma 3.2, by doing that we obtain

∥u∥Ls,w(Ω\B2R) ≤
C

R
p

q−p−os(1)
∥u∥Lq,w(Ω\BR)

≤ C

R
p

q−p−
τ
2

∥u∥Lq,w(Ω\BR)

≤ C

R
p

q−p−
τ
2

(
R0

R

)τ

∥u∥Lq,w(Ω\BR0
) ,

therefore, by putting all together we obtain

|u(x)| ≤ CRτ
0

R
p

q−p+
τ
2

∥u∥Lq,w(Ω\BR0
) =

C

|x|
p

q−p+λ
,

for some constant C > 0 independent of |x| ≥ 2R0, and the result is proved for R̃ = 2R0.
■

4 A better decay estimate for some particular weights
w

The result from Theorem 1.6 can be improved if one knows two facts regarding the
weighted p-Laplace operator Lw(u) = −div(w |∇u|p−2 ∇u):

• The operator satisfies a comparison principle, meaning that if Lw(u) ≤ Lw(v)
weakly in Ω and u ≤ v over ∂Ω then u ≤ v in Ω.

• There exists a constant C > 0 such that

Lw(|x|s1) ≥ Cw |x|s2

for suitable s1, s2 and large |x|.
The first condition is easily verified in general (and in a stronger version for particular

weights) as one can see in Appendix B, however the second condition depends heavily
on the type of weight. In this section we discuss some particular cases that have been
of interest recently.
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4.1 The unweighted case w = 1

As we mentioned in the introduction, the decay estimate we have obtained is an
adaptation of a result from [6] in the unweighted case, namely in that work they prove
Proposition 4.1 (Lemma B.3 in [6]). If u ∈ W 1,p(RN ) is a weak solution of

−∆pu = |u|p
∗−2

u

then there exists λ > 0 such that

|u(x)| ≤ C

1 + |x|
N−p

p +λ
.

The above result is improved by using the comparison principle for ∆p to obtain
Proposition 4.2 (Proposition B.1 in [6]). If u ∈ W 1,p(RN ) is a weak solution of

−∆pu = |u|p
∗−2

u

then
|u(x)| ≤ C

1 + |x|
N−p
p−1 −ε

for every ε > 0.

4.2 Monomial weights: w = xA

In the case of monomial weights

wA(x) = xA = |x1|a1 · . . . · |xN |aN

we can also improve the decay estimate from Theorem 1.6. It is clear that wA verifies
(7) and that wi(x) := |xi|ai belongs to L1

loc(R) for ai > −1. Also wi is doubling (see for
instance [24, Corollary 15.35]), moreover, if ai ≥ 0 one can obtain the best doubling
constant γw as follows: observe that for BR(x0) = (x0 −R, x0 +R) we have

wi(BR(x0)) = R1+aiwi(B1(
x0

R
)),

therefore
wi(B2R(x0))

wi(BR(x0))
= 21+ai

wi(B1(
x0

2R ))

wi(B1(
x0

R ))
≤ 21+ai

because of the following
Lemma 4.1. For any x0 ∈ R and a > 0 we have

wa(B1(x0)) ≤ wa(B1(2x0)),

with equality if x0 = 0.
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We will prove this lemma in Appendix A, but observe that as a consequence we
deduce that for the cube3 BR =

∏N
i=1(x0,i −R, x0,i +R) one has

wA(B2R(x0))

wA(BR(x0))
≤ 2NA

for NA = N + a1 + a2 + . . .+ aN and that NA is the smallest possible choice for the
exponent on the right-hand side. This shows that DA = NA, which agrees with [4, 7]
where it was proved that for every A = (a1, . . . , aN ) ∈ RN with ai ≥ 0 there exists a
constant Sp,A > 0 such that

Sp,A

(ˆ
RN

A

|u|q xA dx

) 1
q

≤

(ˆ
RN

A

|∇u|p xA dx

) 1
p

, ∀u ∈ C∞
c (RN

A ) (48)

where q = NAp
NA−p and RN

A is defined as

RN
A = { (x1, . . . , xN ) ∈ RN : xi > 0 whenever ai > 0 } ,

therefore the Sobolev exponent q from (48) coincides with the local Sobolev exponent
obtained in Remark 1.1 from the doubling constant γA = 2NA .

Observe also that [9, Section 5] tells us that the weight wA verifies
ˆ
B

∣∣u− uB,xA

∣∣p xA dx ≤ Cl(B)p
ˆ
B

|∇u|p xA dx for all balls B ⊂ RN
A ,

so that (PI) is readily satisfied for wA.
If H1,p,A

0 (RN
A ) denotes the closure of C∞

c (RN
A ) then the results of Section 3 are valid,

and with the aid of the comparison principle Proposition B.1 we obtain the following
Theorem 4.1. Suppose A = (a1, a2, . . . , aN ) ∈ RN , NA > p with ai ≥ 0 for all i. If
u ∈ H1,p,A

0 (RN
A ) is a weak solution of{

−div(xA |∇u|p−2 ∇u) = xA |u|q−2
u in RN

A ,

u = 0 on ∂(RN
A ),

where q = NAp
NA−p . Then

|u(x)| ≤ C

1 + |x|
NA−p

p−1 −ε

for every ε > 0.

Proof. From Theorem 1.6 we know that there exists λ > 0 and constants R0 ≥ 1,
C1 > 0 such that

|u(x)| ≤ C1 |x|−t ∀ |x| ≥ R0,

3So far we have worked with balls, but the geometry of RN allows us to work with cubes instead by only
including a geometric constant when needed.
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where t = NA

p − 1 + λ. We notice that there exists σ > 0 such that

t+ 2 + σ + (p− 2)(t+ σ + 1) < t(q − 1),

and we observe that for any 1 < s < NA−p
p−1 we have

−div

(
xA
∣∣∣∇(|x|−s

)∣∣∣p−2

∇
(
|x|−s

))
= C2x

A |x|−s−2−(p−2)(s+1)
,

where C2 = s |s|p−2
(NA − (p − 2)(s + 1) − 2 − s) > 0. Hence for |x| ≥ R0 and

u+ = max {u, 0 } we have

−div
(
xA |∇u+|p−2 ∇u+

)
≤ xAuq−1

+

≤ C1x
A |x|−t(q−1)

≤ C1x
A |x|−(t+σ)−2−(p−2)((t+σ)+1)

= −C1

C2
div

(
xA
∣∣∣∇(|x|−(t+σ)

)∣∣∣p−2

∇
(
|x|−(t+σ)

))
.

Because u+ = 0 over ∂(RN
A ) the comparison principle tells us that

u+(x) ≤ C3 |x|−t−σ ∀ |x| ≥ R0,

for some sufficiently large constant C3 > 0. We can iterate this process for t̃ = t+ σ
provided we can find σ̃ > 0 such that t̃+ 2 + σ̃ + (p− 2)(t̃+ σ̃ + 1) < NA−p

p−1 , hence we
deduce that

u+(x) ≤ C |x|−
NA−p

p−1 +ε ∀ |x| ≥ R0.

for every ε > 0. The above can be repeated for (−u)+ and the result is proved. ■

If we use Proposition B.2 instead of Proposition B.1 we obtain the following variant
of Theorem 4.1. If we observe that

∂(RN
A ) =

N⋃
i=1

{x ∈ RN : xi = 0 }

=
⋃
i∈I1

{x ∈ RN : xi = 0 } ∪
⋃
i∈I2

{x ∈ RN : xi = 0 }

=: Γ1 ∪ Γ2,

where I1 = { i : 0 ≤ ai < 1 } and I2 = { i : ai ≥ 1 } then we have
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Theorem 4.2. Suppose A = (a1, a2, . . . , aN ) ∈ RN , NA > p with ai ≥ 0 for all i. If
u ∈ H1,p,A(RN

A ) is a weak solution of{
−div(xA |∇u|p−2 ∇u) = xA |u|q−2

u in RN
A ,

u = 0 on Γ1,

where q = NAp
NA−p . Then

|u(x)| ≤ C

1 + |x|
NA−p

p−1 −ε

for every ε > 0.

Proof. The proof goes exactly as the previous proof, the only difference being that
Proposition B.2 tells us that we do not need u+(x) ≤ C3 |x|−t−σ over the set Γ2 to
obtain said inequality all over the set {x ∈ RN

A : |x| ≥ R0 }. We omit the details. ■

4.3 Power type weights: w = |x|a

In the case of the power type weights w(x) = |x|a we can also improve the decay
estimate from Theorem 1.6. First of all we recall that the result of Caffarelli-Kohn-
Nirenberg [5] which tells us that for every a ∈ R there exists a constant Sp,a > 0 such
that

Sp,a

(ˆ
RN

a

|u|q |x|a dx

) 1
q

≤

(ˆ
RN

a

|∇u|p |x|a dx

) 1
p

, (49)

where q = Nap
Na−p , Na = N + a and RN

0 is the punctured plane RN
0 = RN \ { 0 }.

Moreover, the weight wa(x) = |x|a satisfies wa(BR(x0)) = RN+awa(B1(
x0

R )) so that

wa(B2R(x0))

wa(BR(x0))
= 2N+awa(B1(

x0

2R ))

wa(B1(
x0

R ))
≤ 2N+a

because we have
Lemma 4.2. For any x0 ∈ RN and a > 0 we have

wa(B1(x0)) ≤ wa(B1(2x0)),

with equality if x0 = 0.
We prove this lemma below in Appendix A, and because the operator

−div(|x|a |∇u|p−2 ∇u) also satisfies the comparison principle Proposition B.2 we have
Theorem 4.3. Suppose a > 0 and Na > p. If u ∈ H1,p,a(RN ) is a weak solution of

−div(|x|a |∇u|p−2 ∇u) = |x|a |u|q−2
u,

where q = Nap
Na−p . Then

|u(x)| ≤ C

1 + |x|
Na−p
p−1 −ε
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for every ε > 0.

Proof. This is analogous to the proof of Theorem 4.1. We again deduce the existence
of λ > 0 and constants R0 ≥ 1, C1 > 0 such that

|u(x)| ≤ C1 |x|−t ∀, |x| ≥ R0,

where t = Na

p − 1 + λ. Now for any 1 < s < Na−p
p−1 we have

−div
(
|x|a ∇

(
|x|−s

))
= s |s|p−2

(Na − (p− 2)(s+ 1)− 2− s) |x|a−(p−2)(s+1)−s−2

= C2 |x|a−(p−2)(s+1)−s−2
,

where C2 > 0. Hence for |x| ≥ R0 and u+ = max {u, 0 } we have

−div
(
|x|a |∇u+|p−2 ∇u+

)
≤ −C1

C2
div

(
|x|a

∣∣∣∇(|x|−(t+σ)
)∣∣∣p−2

∇
(
|x|−(t+σ)

))
,

where σ > 0 verifies

t+ 2 + σ + (p− 2)(t+ σ + 1) < t(q − 1).

We use the comparison principle Proposition B.2 and the same iterative argument
from the proof Theorem 4.1 to obtain a constant C > 0 for which

u+(x) ≤ C |x|−
Na−p
p−1 +ε ∀ |x| ≥ R0.

holds for every ε > 0. Finally, because the same estimate can be obtained for (−u)+
the proof is completed. ■
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A Doubling constant of power type weights
Observe that Lemma 4.1 is just Lemma 4.2 for the case N = 1, so we only need to
prove the latter.
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Proof of Lemma 4.2. We separate the proof into two cases: |x0| ≥ 2 and 0 ≤ |x0| < 2.
Observe that

x ∈ B1(x0) ⇒ |x| < 1 + |x0| ,
x ∈ B1(2x0) ⇒ |x| > 2 |x0| − 1,

so 1 + |x0| ≤ 2 |x0| − 1 ⇔ |x0| ≥ 2 then B1(x0) and B1(2x0) are disjoint and we can
write

wa(B1(x0)) =

ˆ
B1(x0)

|x|a dx

≤ (1 + |x0|)aλ(B1(x0))

≤ (2 |x0| − 1)aλ(B1(2x0))

≤
ˆ
B1(2x0)

|x|a dx

= wa(B1(2x0)),

due to the invariance of the Lebesgue measure with respect to translations. If 0 ≤
|x0| < 2 then E = B1(x0) ∩B1(2x0) ̸= ∅ and we have

wa(B1(x0)) = wa(B1(x0) \B1(2x0)) + wa(E)

= wa(B1(2x0)) + wa(B1(x0) \B1(2x0))− wa(B1(2x0) \B1(x0)),

and if x ∈ B1(x0) \B1(2x0) then |x− x0| < 1 with |x− 2x0| ≥ 1 therefore

|x|2 < 1 + 2 |x0|2 .

Similarly, if x ∈ B1(2x0) \B1(x0) then |x− 2x0| < 1 with |x− x0| ≥ 1 so that

|x|2 > 1 + 2 |x0|2 ,

and by the invariance of the Lebesgue measure under reflections we see that

wa(B1(x0) \B1(2x0)) ≤ (1 + 2 |x0|2)
a
2 λ(B1(x0) \B1(2x0))

= (1 + 2 |x0|2)
a
2 λ(B1(2x0) \B1(x0))

≤ wa(B1(2x0) \B1(x0)),

so that

wa(B1(x0)) ≤ wa(B1(2x0)),

and the proof is completed. ■
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B Comparison principles
A simple comparison principle can be easily obtained for the operator Lw(u) =
−div(w |∇u|p−2 ∇u) as it can be seen in the following
Proposition B.1. For a connected open set Ω suppose u, v ∈ D1,p,w(Ω) satisfy u ≤ v
over ∂Ω and

−div
(
w |∇u|p−2 ∇u

)
≤ −div

(
w |∇v|p−2 ∇v

)
,

weakly, that is
ˆ
Ω

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
∇φw dx ≤ 0 ∀φ ∈ H1,p,w

0 (Ω), φ ≥ 0,

then u ≤ v in Ω.

Proof. The function φ = (u− v)+ is a valid test function hence we obtain
ˆ
Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· (∇u−∇v)w ≤ 0,

where Ω+ = {x ∈ Ω : u(x) > v(x) }. However the integrand is non-negative due to the
convexity of the function s 7→ |s|p, so there are two possibilities, either Ω+ = ∅ in
which case we obtain that u ≤ v and the result is proven, or ∇u = ∇v in which case
u = v + C on Ω+ for some constant C. But since u = v on ∂Ω+ we conclude that
u = v on Ω+ which is impossible. ■

This proposition is enough for the proof of Theorem 4.1 but it is not enough
for Theorem 4.2. A standard comparison principle for an operator L could be: If
Lu ≤ Lv in Ω and u ≤ v over ∂Ω then u ≤ v in Ω, however if the operator Lu is
−div

(
xA |∇u|p−2 ∇u

)
then it is only needed to impose the condition u ≤ v over a

portion of the boundary. Recall that the monomial weight is defined as

xA =

N∏
i=1

|xi|ai ,

where ai ≥ 0 for all i ∈ { 1, 2, . . . , N } and that the study made in [7, 8] pointed out
that the cases where i is such that ai ≥ 1 might require a different treatment, therefore
we consider the following partition of the set { 1, 2, . . . , N }:

I1 = { i ∈ { 1, 2, . . . , N } : 0 ≤ ai < 1 } , I2 = { i ∈ { 1, 2, . . . , N } : ai ≥ 1 } ,

and define

Γ1 = {x ∈ RN : xi = 0 for some i ∈ I1 } , Γ2 = {x ∈ RN : xi = 0 for some i ∈ I2 } .

The following result says that in order to have a comparison principle it is enough to
impose the inequality u ≤ v over the portion of ∂Ω not intersecting Γ2.
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Proposition B.2. For a connected open set Ω suppose u, v ∈ D1,p,A(Ω) satisfy u ≤ v
over ∂Ω \ Γ2 and

−div
(
xA |∇u|p−2 ∇u

)
≤ −div

(
xA |∇v|p−2 ∇v

)
,

weakly then u ≤ v in Ω.

Proof. Consider ηε ∈ C∞(RN ) defined as ηε(x) =
∏

i∈I2
ρε(xi) where ρε ∈ C∞(R)

satisfies
ρ(x) = 0 if x ≤ ε, ρ(x) = 1 if x ≥ 2ε, |ρ′(x)| ≤ Cε−1.

Observe that φ = ηε(u− v)+ is a valid test function because u− v ≤ 0 over ∂Ω \Γ2

and ηε = 0 over Γ2. Hence one obtains

ˆ
Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· (∇u−∇v) ηεx

A dx

+

ˆ
Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· ∇ηε (u− v)xA dx ≤ 0

where Ω+ = {x ∈ Ω : u(x) > v(x) }. As a consequence we get

ˆ
Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· (∇u−∇v) ηεx

A dx

≤
∣∣∣∣ˆ

Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· ∇ηε (u− v)xA dx

∣∣∣∣ .
However∣∣∣∣ˆ

Ω+

u |∇u|p−2 ∇u · ∇ηεx
A dx

∣∣∣∣ ≤ (ˆ
Ω+

|u∇ηε|p xA dx

) 1
p
(ˆ

supp∇ηε

|∇u|p xA dx

)1− 1
p

≤ C

(ˆ
supp∇ηε

∣∣∣u
ε

∣∣∣p xA dx

) 1
p
(ˆ

supp∇ηε

|∇u|p xA dx

)1− 1
p

but if x ∈ supp∇ηε then xi0 ≤ 2ε for some i0 ∈ I2 and as a consequence

ˆ
supp∇ηε

∣∣∣u
ε

∣∣∣p xA dx ≤ C
∑
i∈I2

ˆ
supp∇ηε

∣∣∣∣ uxi

∣∣∣∣p xA dx ≤ C
∑
i∈I2

ˆ
Ω

∣∣∣∣ uxi

∣∣∣∣p xA dx ≤ C ∥u∥p1,p,A ,

by the weighted Sobolev-Hardy inequality [7, Theorem 1]. Hence

∣∣∣∣ˆ
Ω+

u |∇u|p−2 ∇u · ∇ηεx
A dx

∣∣∣∣ ≤ C ∥u∥1,p,A

(ˆ
supp∇ηε

|∇u|p xA dx

)1− 1
p

.
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Similarly we have∣∣∣∣ˆ
Ω+

v |∇u|p−2 ∇u · ∇ηεx
A dx

∣∣∣∣ ≤ C ∥v∥1,p,A

(ˆ
supp∇ηε

|∇u|p xA dx

)1− 1
p

∣∣∣∣ˆ
Ω+

u |∇v|p−2 ∇v · ∇ηεx
A dx

∣∣∣∣ ≤ C ∥u∥1,p,A

(ˆ
supp∇ηε

|∇v|p xA dx

)1− 1
p

∣∣∣∣ˆ
Ω+

v |∇v|p−2 ∇v · ∇ηεx
A dx

∣∣∣∣ ≤ C ∥v∥1,p,A

(ˆ
supp∇ηε

|∇v|p xA dx

)1− 1
p

.

In summary we have obtained

ˆ
Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· (∇u−∇v) ηεx

A dx

≤ C
(
∥u∥1,p,A + ∥v∥1,p,A

)
·

[(ˆ
supp∇ηε

|∇u|p xA dx

)1− 1
p

+

(ˆ
supp∇ηε

|∇u|p xA dx

)1− 1
p

]

and as ε → 0+ we deduce that
ˆ
Ω+

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· (∇u−∇v)xA dx ≤ 0

so we can proceed as in the proof of Proposition B.1 to conclude. ■
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