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ABSTRACT OF THE DISSERTATION

On some singular Sturm-Liouville equations and a Hardy type

inequality
by HERNAN CASTRO

Dissertation Director:

Haim Brezis

The main body of this dissertation can be divided into two separate topics. The first topic
deals with a Hardy type inequality for functions belonging to the Sobolev space Wom'l(Q),
where m > 2 and Q is a smooth bounded domain in R, N > 1. We show that for such

functions u € W™ (Q), one has

()

where J, k are non-negative integers suchthat 1 < k< m—-1land 1</ 4+ k < m, and

< Cllullywmiq)
LY(Q)

d(x) is a smooth positive function which coincides with dist(x, 02) near 6%2.

The second topic deals with the study of the singular Sturm-Liouville operator Lou :=
—(x?*u')!, where a > 0. We develop a linear theory for such operator by introducing
suitable weighted Sobolev spaces and prove existence and uniqueness for equations of the
form Lqu+ u = f € L2 under both homogeneous and non-homogeneous boundary data
at the origin. In addition, the spectrum of the operator L4 is fully described.

Finally, we prove existence, non-existence and uniqueness results for positive solutions
of the non-linear singular Sturm-Liouville equation Lou = Au + uP, u(l) = 0, where

a >0, p>1and X € R are parameters.



Preface

This dissertation is a compilation of research papers written by the author during
the course of his Ph.D.. Chapters 1, 3 and 4 were written jointly with H. Wang (see
[25, 26, 27]), Chapter 2 was written jointly with J. Davila and H. Wang (see [24, 23]),
and Chapter 5 was written solely by the author and it has not been published elsewhere.
Only minor modifications have been made to the papers already published, mostly to
make the style and notation uniform. All the references have been regrouped, instead of

presenting them at the end of each chapter.
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Chapter 1

A Hardy type inequality for W™!(0, 1) functions!

(joint work with H. Wang)

1.1 Introduction

It is well known (see [40]) that if u € W1P(0,1) and u(0) = O then the so called

Hardy inequality holds for p > 1, that is

0/1 " ix < (ppl)po/lu'(xw’dx_ (1.1)

The constant ﬁ is optimal for this inequality and it blows up as p goes to 1. This

ulx)

behavior is confirmed by the fact that no such inequality can be proven when p =1, as

we can consider (see e.g. [10]) the non-negative function on (0, 1) defined by

1

v(x) = T logx’ (1.2)

A simple computation shows that this function belongs to W1(0,1), u(0) = 0, but
u(x)
X

When we turn to functions u € W?P(0,1), p > 1, with u(0) = /(0) = 0, there

LC((;()' AR <”E<X)>, GG

is not integrable.

are three natural quantities to consider:

X X x2

() ) vl 1
X

X
p > 1, it is clear that both ! 5 — / tu”(t)dt belong to LP(0, 1).
X X X

belong to

/ /
Thus (LJXX)) € LP(0,1). If p=1 one can no longer assert that U)(:;) Y )((X)

1This chapter has already been published in Calc. Var. Partial Differential Equations 39 (2010),
no. 3-4, 525-531.



u(x)

!/
L1(0, 1), but surprisingly <x> € L1(0,1). This reflects a “magic” cancellation of the

V() ux)

X X2

/!
i - : u(x
non-integrable terms in the difference < (x )> =
The same phenomenon remains valid when we keep increasing the number of derivat-

ives, and this is the main result of this chapter.

Definition 1.1. We say that u has the property (Pp,) if
ueWm™0,1) and u(0) = Du(0) = ... = D™ 1u(0) =0,

where D'u denotes the j-th derivative of wu.

Theorem 1.1. If u has the property (Py,) and j, k are non-negative integers, then

DY u(x)

xm—j—k

(i) Ifk>1and1<j+ k <m then

o (57)

The constant being the best possible.

has the property (Px) and

(k—1)!
1101) (m—j-1)! 127 ull 0,1y - (1.3)

(i) There exists w having the property (Pp,) such that

D' w(x)

xm—J

¢ LY0,1) forallje{0,1,..., m—1}. (1.4)

Remark 1.1. For functions u € W?2P(0,1), p > 1, with u(0) = ¢/(0) = 0, a slightly

stronger result holds, namely, when we estimate the LP norms of the three quantities

u)(:2<)’ Ul)((X) and <U(XX)>, we obtain

u'(x)

X

u(x)
2

< Bpllu"|,. and H (U(XX)>

< xXp Hu”Hp
p

< Yp HUHHp' (15)

p p

where ap,, Bp and 7y, are the best possible constants. It is easy to see that o, — oo and
Bp — oo when p approaches 1. However, a similar “magic” cancellation appears and 7y,

remains bounded as p goes to 1. A proof of this latter fact is presented in Section 1.3.



1.2 Proof of the Theorem

We begin with the following observation.

Lemma 1.2 (Representation formula). If u has property (Pn,), then

X

/ D™u(s)(x —s)™ tds.

0

1

) = G =

Proof. We proceed by induction. The case m = 1 is immediate since u € W1(0,1) if

and only if u is absolutely continuous. Now notice that

D™ Lu(x) :/Dmu(s)ds,
0

if we use the induction hypothesis, we obtain

X )

1
N pm o m—2 .
) = gy / / u()dt | (x — s)™2ds
0 \o
The proof is completed after using Fubini's Theorem. ]

Based on the function defined by (1.2), we have

Lemma 1.3. There exists a function w having property (Pp,), such that

D™ lw(x) D™ 2w(x) Dw(x) w(x)
: T e & Lt (1.6)

.....

Proof. In order to construct the function w, consider the function v defined in (1.2). As

v(x)

we said, v is a non-negative function on (0, 1), it has the property (P1), but ~ does

not belong to L1(0,1). Define w(x) as

X
1

w(x) = =2y / v(s)(x — )™ 2ds,
0

so w solves the equation D™ 'w(x) = v(x), with initial condition w(0) = Dw(0) =

... = D™2w(0) = 0. Notice that w has the property (P,,), D*w(x) >0, D*w(1) < oo



and
D™ kw(s) B

lim =0,
k-1

s—0

forallk=1,..., m — 1. We now show that w satisfies (1.6). Notice that

1
—i—oo:/v(x)dx
X
0

X

1
Dmfl
_ / D" w(x)
0

1
m—2
_ Dm2w(1)+/D QW(X) dx,
X

0

D™ ?w(x) . . : :
thus de = +oo. Similarly, if we keep integrating by parts we conclude that

0

1

x/

D" w(x)
xJ

L1(0,1)

We can proceed to prove the theorem

Proof of Theorem 1.1. The second part was proven in Lemma 1.3, so we will only prove
the first part. Since the result is immediate when j + k = m, in the following we always

assume that j+ k < m—1.

D/ . .
To prove that Xmi(fz has the property (Px), we proceed by induction. For k = 1 and
. D/
any j=0,..., m-—1, Xmuj(xz has the property (P1) because
D’
WO (= — 1)1 Lu(0) = 0.
xm—Jj—1
x=0

Now assume the result holds for some k. Notice that if j + k+1 < m — 1 then

D( DY u(x) > _ Dlu(x) ( k1) DY u(x)

xmI—k—1 ) = Sm—G+1-k M 7J k"



the right-hand side of which has property (Px) by the induction assumption. Thus we
DY u(x)

conclude that D <m___> has the property (Px), completing the induction step.
xm—j—k-1

Now we prove the estimate (1.3). Notice that

o (28) F (o (). o

i=0

and that

0 (e ) = O (18)

xm—J—k (m—j—k—1) xm=J=i"
Using the representation formula for v from Lemma 1.2, we obtain

X

/ D™ u(s)(x — s)™—I-i-Lds. (1.9)

0

1

D) = ==

By combining (1.7), (1.8) and (1.9) we obtain

o @:(ﬁ) -y C)(_l)k_i(m y /XDm“(S)(X_xS"?TdS

i=0 "
T (m— _1 k—1)! O/XDmu(s) U _Xf,?:-” <X i S>k ds.

X

“m—y —1 k—1)! /Dm”(s) (1 B §>m+kil G)H %ds'
0

Therefore,

1 X
DY u(x) 1
k[ =222 <
/‘D (xm—f—k>‘dx_(m—j—k—1)!x
0
1

1 .
x/|D’"u(s)| /(1—i)m_J_k_l (;)k_lédx ds
s

0




1
T m— k-1

1 1
></|Dmu(s)| /(1 — )M kgt | ds
0 s

1
1 L B
< Gy 1Pl [ =07
0
(k - 1)!
= 71 1P e

The optimality of the constant is guaranteed by the optimality of Holder's inequality. The

proof of the theorem is now completed. L]

In view of the above results it is natural to ask whether a similar estimate holds in

higher dimension. More precisely we raise

Open Problem 1.1. 2 Assume 2 is a smooth bounded domain in RV with N > 2. Let
u(x) be in WG (Q). For x € Q, denote by §(x) = d(x,0), the distance from x to the

boundary of Q. Let d(x) be a positive smooth function in Q such that d(x) = §(x) near

u(x
0Q. Is it true that Q € WH(Q)? If so, can one obtain the corresponding Hardy-type

d(x)
/‘D (ZEX) ’ dX S C HDzUHLl(Q) ’
Q

estimate

for some constant C?

The difficulty arises when one considers, for example, N = 2 and the domain Q2 =

R2 = {(x1,%) : x> > 0,x; € R}. Theorem 1.1 implies that for u € C2([0, 1] x [0, 1])

Jla ()

Q
However we do not know if the following is true,

/

2Chapter 2 contains the solution to this problem. See also [24].

one has

XmdXQ.

2
dxido < C / ‘M(XlzXz)
0x;
Q

0 [u(x1, x)
o (if) ‘ dxidxy < C||D?u| 1 -




1.3 W"™P functions

We begin by proving the result stated in Remark 1.1. Notice that for u € W?2(0, 1)

satisfying u(0) = /(0) = 0, we can write

(LI(XX)>/ = ;O/Xsu”(s)ds.

For p > 1, we can apply Holder's inequality and Fubini's theorem to obtain,

Iy

p 1 P X
xv " 4
dx< [ 5 sP |u"(s)|” dsdx
0 0
1 1

1
:/s"\u”(s)\p /xP+1dX ds

0 s

1
_ 1 " p .
- PO/‘U (5)]° (1 —sP)ds

1
1 " p
pO/\u (s)|° ds,

where p’ and p are given by % + % = 1. Hence

1],

1
Thus, if we define 7y, as in (1.5), we have proven that 7y, < p~», that is 7y, remains

IN

<p |,

bounded as p goes to 1.
As one might expect, an analogous to Theorem 1.1 can be proven for W™P functions.

The result reads as follows:

Theorem 1.4. If u belongs to W™P(0,1), p > 1 and satisfies u(0) = Du(0) = ... =
D™= 1u(0) = 0. Then fork>1and 1 <j+k<m,

P (55)

. B(pk, p(m—j —k —1) +1)»
Lp(0.1) (m—j—k—1)!

1D™ullp0,1) - (1.10)



1
where B(a, b) = / t371(1 — t)>=1 denotes Euler’s Beta function.
0

Proof. From the proof of Theorem 1.1, we have

(5) - [0 ()T ) e

After applying Holder's inequality, Fubini's theorem and a change of variables one

obtains that

L j p
[l (=)
0

p
X

dx<<(m J—k—=1)!

)
/|Dmu(s)|p (/1(1 — t)Pim=i=k=1) ppk=1qt | s
)P

X

<<(m J—k—1)
1

X /|Dmu(s)|p /(1 — t)Pim=i=k=1) ppk=1qt | s
0 0

:B(pk,p(m—j—k—1)+1)<(m*j1k*1)!) X

1
« /|Dmu(5)|p ds.
0



Chapter 2

A Hardy type inequality for W' (Q) functions’

(joint work with J. Davila and H. Wang)

2.1 Introduction

In [25] (see Chapter 1), the following one dimensional Hardy type inequality was proven

(see [25, Theorem 1.2]): Suppose that u € W?1(0, 1) satisfies u(0) = v/(0) = 0, then

“E{X) € W10, 1) with “XX) — 0 and

0

()

As explained in [25], this inequality is somehow unexpected because one can construct

v(x) nor Lg)

<
£1(0,1)

“”HLl(o,l)' (2.1)

a function u € W21(0,1) such that u(0) = v/(0) = 0 and that neither

X X
/
belong to L1(0,1); however, as (2.1) shows, for such function u, the difference u)((x) -
!/
u)(<>2<) = (U(XX)> is in fact an L' function, reflecting a “magical’ cancellation of the

non-integrable terms.

With estimate (2.1) already proven, it was natural to raise the following question:
Assume Q is a smooth bounded domain in RV with N > 2 and let u be in WZ'(Q). For
x € Q, denote by §(x) = dist(x, 0R2) the distance from x to the boundary of Q, and let

d:Q — (0,4+00) be a smooth function such that d(x) = §(x) near 082. Is it true that

1The contents of this chapter have been accepted for publication at J. Eur. Math. Soc.; part of the
results were announced in: C. R. Math. Acad. Sci. Paris 349 (2011), no. 13-14, 765-767.
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u(x)

d(x) W:L 1(Q)? If so, can one obtain the corresponding Hardy-type estimate

[ |p (563|128l

for some constant C7?
The purpose of this work is to give a positive answer to the above question. In fact,

this is a special case of the following:

Theorem 2.1. Let Q be a bounded domain in RN with smooth boundary 8Q. Given
x € Q, we denote by 6(x) the distance from x to the boundary 02. Let d : Q — (0, +0o0)
be a smooth function such that d(x) = 6(x) near 0S2. Suppose m > 2 and let j, k be
non-negative integers such that 1 < k < m—1and 1 < j+ k < m. Then for every

du(x :
u e WI(Q), we have d(x)m(l)k € Wé“l(Q) with

where 8! denotes any partial differential operator of order | and C > 0 is a constant

< Cllullwmig) - (22)
LY(Q)

depending only on Q2 and m.

The rest of this chapter is organized into three sections: In Section 2.2 we introduce
the notation used throughout this work and give some preliminary results. In order to
present the main ideas used to prove Theorem 2.1, we begin in Section 2.3 with the proof
of Theorem 2.1 for the special case m = 2, then in Section 2.4 we provide the proof of

Theorem 2.1 for the general case m > 2.

2.2 Notation and preliminaries

Throughout this work, we denote by RY = {(y1, ..., yn-1.yn) € RN 1 yy >0} the
upper half-space, and BN (xp) := {x € RV : |x — xo| < r}, also, when xo = 0, we write
BN := BN(0).

Let Q be a bounded domain in RN with smooth boundary 8Q. Given x € 2, we denote
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by §(x) the distance from x to the boundary 0%, that is

0(x) :==dist(x,00) =inf{|x —y| : y € 0Q}.

For € > 0, the tubular neighborhood of 00 in €2 is the set Q2. '= {x € Q : d(x) < e}.
The following is a well known result (see e.g. [39, Lemma 14.16]) and it shows that § is

smooth in some neighborhood of 6.

Lemma 2.2. Let Q and 0 : Q — (0,00) be as above. Then there exists g > 0 only
depending on S, such that |q, : 2, — (0, 00) is smooth. Moreover, for every x € (g,

there exists a unique yy, € 052 so that

X = Yy +0(x)Vaq(¥x),

where vaq denotes the unit inward normal vector field associated to 0f2.

Since 0L is smooth, for fixed X € OS2, there exists a neighborhood V(%) C 02, a

radius r > 0 and a map

d: BN 5 V(%) (2.3)

which defines a smooth diffeomorphism. Define

Ni(X) ={x € Q¢ : yx€V(X)}, (2.4)

where €g and yy are as in Lemma 2.2. We denote by ¢ : B[V_l X (—€o,€0) — RN the

map defined as

O(7,t) = (7) + yw - voa(P(¥)), (2.5)
where ¥ = (y1, ..., yn—1), and we write
N(%) = (BN ! x (—€0,€0)) - (2.6)

About the map & we have the following:
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Lemma 2.3. The map ¢|B;\/71X(O£O) is a diffeomorphism and
Ni(%) = (BN 1 x (0,e0)) .

Proof. This is a direct corollary of the definition of ® through ®, and Lemma 2.2.

O

Remark 2.1. The map ¢|B’{V—1X(O’EO) gives a local coordinate chart which straightens the
boundary near X5. This type of coordinates are sometimes called flow coordinates (see

e.g. [12] and [45]).

From now on, C > 0 will always denote a constant only depending on £ and possibly

the integer m > 2. The following is a direct, but very useful, corollary.
Corollary 2.4. Let f € LY(N (%)) and & be given by (2.5). Then
1 €0 €0
¢ [ [irewmandar< [ irwlaxsc [ [1#@@ )l dmds
B,Nfl 0 Ni (%) B’{V*1 0

Proof. Since ®[gn-1, () is a diffeomorphism, we know that for all (7, yn) € BN-1 x
(0, &0) we have

< |det DP(y, yn)| < C.

aOf =

The result then follows from the change of variables formula. L]

The following lemma provides us with a partition of unity in RV, constructed from
the neighborhoods N (Xp). Consider the open cover of 09 given by {V(X) : X € 002},
where V(X) C 022 is defined in (2.3). By the compactness of 02, there exists points
{%, ..., X} C 02, so that 002 = /LAjl V(X/). Notice that by the definition of AM'(Xp) in

M

(2.6) we also have that |J N(X)) is an open cover of 8Q in RN. The following is a
=1

classical result (see e.g. [10, Lemma 9.3] and [1, Theorem 3.15]).

Lemma 2.5 (partition of unity). There exist functions pg, p1, - .., o € C®(RN) such

that
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M
(i) 0<p <1foralll=0,1,...,Mand > pj(x) =1 forall x € RN,
1=0

(i) suppp; C N (X)), forall I =1,..., M,
(ii) pole € C(Q).

In order to simplify the notation, we will denote by &' any partial differential operator

2

of order | where [ is a positive integer<. Also, 0; will denote the partial derivative with

respect to the /-th variable, and 8,21 = 0;00;.

Remark 2.2. We conclude this section by showing that, to prove Theorem 2.1, it is
enough to prove estimate (2.2) for smooth functions with compact support. Suppose
u € WimH(Q), then there exists a sequence {u,} C C3°(Q), so that ||u — Unllym1(qy — 0

as n — oo. In particular, after maybe extracting a sub-sequence, one can assume that
8/un —d8uae inQ, foralo</<m.

Since d is smooth, the above implies that foraex e Qandallj >0, 1< k<m-—1and

1<j+k<m:
du(x) _TRu(x) - 1
* (qams) = agamrcs 2400 (Gegmrs )
R un(x)

- n||_>r20 FOLERG + & up(x)0" (d(x)’}”’_l_k>
~ lim 8 <a”“(x>>

n—oco d(x)m—J—k

Therefore, Fatou’'s Lemma applies and we obtain

6‘fu X .. Gfu X
ok <()k> < liminf ||8% <n()k> .
d(X)m J L1(Q) n—oo d(X)m J LY(Q)
2In general, one would say: “For a given multi-index a = (ay, ..., ay), we denote by 8% the partial

differential operator of order | = || = a1 + - - -+ an”. Since we only care about the order of the operator,
it makes sense to abuse the notation and identify o with its order |a| = /.
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Once (2.2) has been proven for u, € C§°(£2), we get

o (57%)

and thus we can conclude that

< Cllunllwma ey -
L)

< Climinf {[unllymi(o) = Cllullwmi(g) -

LY(Q)
Finall - 55 her with the fact th & uy(x) oo () and the den
inally estimate (2.2) together wit t e fact that W € C°(Q) and the density
o
of C§°(Q2) in WEI(Q) gives that — 2% ¢ k()

d(x)m—J—k
2.3 Thecase m=2

We begin this section by proving estimate (2.2) in Theorem 2.1 for Q = RY, m =2,

Jj=0and k=1.

Lemma 2.6. Suppose that u € C°(RY). Then foralli=1,..., N

()

Proof. Consider first the case i = N. This is similar to (2.1), but for the sake of com-

< 2|ully21(rn
LYRY) WERL)

pleteness, we will provide the proof. Notice that we can write

o (u(y, y/v)> /
— t)tdt,
Oyn ( YN vy ] 8y3 uy. t)

hence by integrating the above we obtain

//' (“(yy’V)>’d vdy < // /‘ (¥, t)‘tdtdy,\/dy
Oyn Yii
2
= / /‘82u()7, t)‘t/lzdythdy
ayN YN
RN-1 0 t
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OO 1
//‘ ‘ — dyndtdy
YN
0
= / / ~—u(y, t)]| dtdy,
Oyy
RN-1 0

hence
GZU(y)‘
dy < / dy. 2.7
/‘55//\/( )‘ Y= i | =7
RY
1 |du :
When 1 </ < N —1, we need to estimate o |3y —(y)| dy. To do so, consider the
N
RY I
change of variables y = W(x), where
\U(Xl ..... Xiy oo X/\/) = (Xl ..... Xi + XNy -, XN)- (28)
Notice that det DW(x) = 1, hence
1 |Ou(y) / 1
— dy = v dx.
{ wl o |77 ) x 3%( ()

RY RY

Observe that if we let v(x) = u(W(x)), we can write
1 dou 0 v(x)> 0 (u(y))
V(x)) = -
XN ay,( () Oxn ( XN Oyn \ Yn

Applying estimate (2.7) to u and v yields

(2.9)

y=U(x)

]4 - E?;(\U(X))‘dxg R/ ai(iml .+ R/ a;(y%)) o
(N Ty e
e P

N
RY RY
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Finally, notice that

0%v(x) _ 0%u(y) , Ouly) 0%u(y) (2.10)
Oy Oy y=W(x) OYiOYN |y=w(x) Oy7 y=W(x)
Thus, after reversing the change of variables when needed, we obtain
1 6u(y)‘ ’ ’
— V(x))| dx
/ YN | Oy (V0))
RY
8%u(y) 82u(y) 82u(y)
< 2/ d +2/ d +/ d
oyR Y OyiOyn dy?
RY RY RY
S 2 ||U”W21(RQ\_’) .
]

Recall (see Section 2.2) that for every Xy € 9<2, there exist the neighborhood N, (%) C
Q given by (2.4) and the diffeomorphism ® : BN=1 x (0,e0) — Ny (%) given by (2.5).

Moreover, we know that d(x) is smooth over N} (Xp). Hence we have

Lemma 2.7. Let Xy € 02 and N4 (Xq) be given by (2.4), and suppose u € C*(N4(%X0)).
Then foralli=1,..., N

Jor(222)

Proof. We first use Corollary 2.4 and obtain

S CHUHW?J N (X .
L ) (W (%))

N+4o) ’ <5é ) " CBN ( j: ) N
Let v(¥, yn) = u(®(F, yn)). We claim that
LR, [l (222 s e

We will prove (2.11) at the end, so that we can conclude the argument. Since v €
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Ce(BN=1 x (0,€0)) C CS°(RY), we can apply Lemma 2.6 and obtain

[l (5

Notice that by the chain rule and the fact that @ is a diffeomorphism, we get that for

>‘ dyndy < Cllvye 1(BN1x(0,e0)) -
BN 1

al1<ij<N

N N
07v (T yn)| < C | D 182U xmaym | + D 18t ko)
p.q=1 p=1

so we with the aid of Corollary 2.4, we can write

€0
HVHW?J(Bl" 1% (0,e0)) <C / /(Z ‘apq”|x ¢(yy/v)| +Z |a | x= qa(ny)‘) dyndy
gi-1 0 \Pd

<Z ‘agqu(x)‘ + Z |8pU(X)> dx

Ny (%)

< Cllullwzi v, ) -

To conclude, we need to prove (2.11). To do so, notice that u(x) = v(®~1(x)), and

6(x) = c(®1(x)), where c(¥, yn) = yn. Thus, by using the chain rule we obtain

o <<L5/E>)3> x=(F,yn) le\;aj (C(J/)>

and since @ is a diffeomorphism, we obtain

()

Estimate (2.11) then follows by integrating the above inequality. O]

& )'5,‘(‘1’71)1(4’()7,)//\/)),

2 (i)

N
<C),
j=

x=(7.yn) y=(.yn) .

We end this section with the proof of the main result when m = 2.

Proof of Theorem 2.1 when m = 2. When j = 1 and k = 1 the estimate (2.2) is trivial.
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Taking into account Remark 2.2, we only need to prove

P (&)

for u e C°(2) and i =1,2,..., N. To do so, we use the partition of unity given by

< C||U||W2,1(Q) (2.12)
LY(Q)

M

Lemma 2.5 to write u(x) = Y u(x) on Q where y/(x) = p/(x)u(x),  =0,1,..., M.
1=0

Now, without loss of generality, we can assume that d(x) = §(x) for all x € €2¢,, and that

d(x) > C > 0 for all x € supppp N 2. Notice that in supppg N 2, we have

o € C*®(supppo N ), with HZI H

d < C”UOHWll(suppor‘]Q)

W11 (supp poNS2)

To take care of the boundary part, notice that u; € CP(N4 (X)) for I =1,..., M, so

Lemma 2.7 applies and we obtain

‘ o <13'<(xx>)>

To conclude, notice that o; (dEXD % 0; <Lé/((x))>+6 <UO(( ))> on  and that |p;(x)|,
=1 X

|0i01(x)| and ‘8 ,o,(x)‘ are uniformly bounded for all / =0,1, ..., M, therefore

Ha,- <g/8> Sﬁ a’<gl((>)<<))> Ll(/\/+(>~</))+Hai <L<J;((>)<<))> L1(supppon)

L) =1

M

<C (Z ||UI||W2-1(N+(>~<,)) + ”UOHWLl(supppoﬂQ))
=1

S C HU/||W2.1(N+()~<I)) , forall I=1,..., M.
LG (%)

M
<C (Z 1l v, gy + ||”||W1~1<suppponsz)>
=1

< Cllullwai(qy

thus completing the proof. ]

2.4 The general case m > 2

To prove the general case, we need to generalize Lemma 2.6 in the following way
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Lemma 2.8. Suppose u € C(RY). Then forallm>1andi=1,..., N we have

[ uly)
i (y)

Proof. The case m = 1 is a trivial statement, whereas m = 2 is exactly what we proved

S C ||u||Wm1(]Ry) .
LA(RY)

in Lemma 2.6. So from now on we suppose m > 3. We first notice that when / = N, the
result follows from the proof of [25, Theorem 1.2] when j = 0 and k = 1. We refer the
reader to [25] for the details.

When 1 </ < N — 1, we can proceed as in the proof of Lemma 2.6. Define v(x) =

u(W(x)) where W is given by (2.8). Notice that when m > 3, instead of equation (2.9)

1 a v(x) o [ uly)
18y,(w( X)) = (x,’\’,”‘l) ~ Ayn (y,’\,”‘l)

and instead of (2.10) we have

omv(x) zm: <m> Mu(y)
(9X,’\7/7 '—o / 6‘ylm7I8y/V

Hence the estimate is reduced to the already proven result for i = N. We omit the

we have

y=V(x)

y=V(x)

details. O
We also have the analog of Lemma 2.7.

Lemma 2.9. Let Xy € 02 and N (Xo) as in Lemma 2.7. Let u € C§°(N1(%)). Then

foralm>1andi=1,..., N we have

P (so)

Proof. The proof involves only minor modifications from the proof of Lemma 2.7, which

< Cllullwmin s0)) -
LYW (%0))

we provide in the next few lines. Corollary 2.4 gives

[ 2 (509mr) <6<x§xm))

+(x0

dx < C dyndy.

x=®(7.yn)
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If v(y, yn) = u(®(¥. yn)). then
u(x) V(y y/v)

Just as for (2.11), estimate (2.13) follows from the fact that ® is a smooth diffeomorph-

dyndy.

dyndy < CZ / /

x=®(7,yn) j= 15’\’ =)

(2.13)

ism. Since v € C®(BN! x (0,€0)) C C(RY), we can apply Lemma 2.8 and obtain

// ( ny>>

BN-1 0
Notice that by the chain rule and the fact that ® is a smooth diffeomorphism, we get

dyndy < C ||V||V\/mv1(8[‘"1><(0,eo)) :

0™V (T, yw) < €D 10"u0) xcarm)] -

I<m

where the left hand side is a fixed m-th order partial derivative, and in the right hand side
the summation contains all partial differential operators of order / < m. Again with the

aid of Corollary 2.4, we can write

€0

Mmooz <€ [ [ (00hman) dydy

/S’TIB'N71 0

< CZ / ‘Blu(x)‘ dx

SN (50)

< Cllullwmaar, so)) -

And of course we have

Lemma 2.10. Suppose u € C3°(2). Then forallm=>1andi=1,..., N we have

P (so=)

We omit the proof of the above lemma, because it is almost a line by line copy of the

S C HUHWm,l(Q) .
LH(Q)
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proof of the estimate (2.12) in Section 2.3 using the partition of unity. We are now ready

to prove Theorem 2.1.

Proof Theorem 2.1. For any fixed integer m > 3, just as what we did for the case m = 2,

it is enough to prove the estimate (2.2) for u € C§°(€2). Notice that since
“Gju‘}wm—j,l(Q) < ||U||Wm,1(Q) forall 0 <j < m,
it is enough to show

< C ||U||Wm,1(Q) ) (214)
L)

P (&)

for u € Cg°(2) and 1 < k < m — 1. We proceed by induction in k. The case k =1

corresponds exactly to Lemma 2.10. If one assumes the result for k, then we have to

estimate for i =1, ..., N

Using the induction hypothesis for m = m — 1 yields

on the other hand, by using the induction hypothesis and the fact that d is smooth in Q,

< ClGiullym-riqy < Cllullwmi(qy
LY(Q)

we obtain

< Clludid|lyymiq) < Cllullwmi(q) -
LY(Q)

o ()

thus concluding the proof. ]

Therefore

< Cllullwmi(qy
L)
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Chapter 3

A singular Sturm-Liouville equation under homogeneous

boundary conditions’

(joint work with H. Wang)

3.1 Introduction
This chapter concerns the following Sturm-Liouville equation

— (x4 (x)) + u(x) = f(x) on (0,1],
(3.1)
u(l) =0,

where a is a positive real number and f € L2(0, 1) is given. In this work we will study the
existence, uniqueness and regularity of solutions of equation (3.1), under suitable homo-
geneous boundary data. We also discuss spectral properties of the differential operator
Lu:=— (x2*u) +u.

The classical ODE theory says that if for instance the right hand side f is a continuous
function on (0, 1], then the solution set of equation (3.1) is a one parameter family of
C?(0, 1]-functions. As we already mentioned, the first goal of this work is to select
“distinguished” elements of that family by prescribing (weighted) homogeneous boundary
conditions at the origin. In [27] (see Chapter 4), we will study equation (3.1) under
non-homogeneous boundary conditions at the origin.

When 0 < a < % we have both a Dirichlet and a (weighted) Neumann problem. When
a > % we only have a “Canonical” solution obtained by prescribing either a (weighted)

Dirichlet or a (weighted) Neumann condition; as we are going to explain in Remark 3.19,

'This chapter has already been published in J. Funct. Anal. 261 (2011), no. 6, 1542-1590.
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the two boundary conditions yield the same solution.

3.1.1 Thecase 0<a< 3.
We first consider the Dirichlet problem.

Theorem 3.1 (Existence for Dirichlet Problem). Given0 < a0 < % and f € L2(0,1), there

exists a function u € H,QOC(O, 1] satisfying (3.1) together with the following properties:

(i) lim u(x)=0.

x—07F

(i) ue C%1722(0, 1] with ||u||cor-2a < C||f]|,2.

(iii) x**u’ € H*(0, 1) with sz"‘u’HH1 < C|If2.

(iv) x**~tu e HY(0,1) with ||x**~tul| ,, < CIIf|.2 .

(v) x**u € H3(0,1) with ||x**ul|, < C|If]l2.
Here the constant C only depends on .

Before stating the uniqueness result, we would like to give a few remarks of about this

Theorem.

Remark 3.1. There exists a function f € C3°(0, 1) such that near the origin the solution

given by Theorem 3.1 can be expanded in the following way
U(x) = axt72% 4 aox374% 4 gax570 . (3.2)

where a; # 0. See Section 3.3.1 for the proof.

Remark 3.2. Theorem 3.1 only says (x**u/) = x**u"+2ax?*~ 11/ isin L?(0,1). A natural
question is whether each term on the right-hand side belongs to L2(0,1). The answer is
that, in general, neither of them is in L2(0, 1); in fact, they are not even in L(0,1). One
can see this phenomenon in equation (3.2), where we have that x?*~1/(x) ~ x?®u" (x) ~

x1¢110,1).
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Remark 3.3. Part (iii) in Theorem 3.1 implies that u € W1P(0,1) forall 1 < p < &
with |||l » < C||f||,2, where C is a constant only depending on a. However, one cannot
expect that u € lei(o, 1) even if f € C§°(0,1), as the power series expansion (3.2)

—2a

shows that ' ~ x near the origin.

Remark 3.4. Concerning the assertions in Theorem 3.1, we have the following implications:
(i) and (iii) = (iv); (iv) = (ii); (iii) and (iv) = (v). Those implications can be found in
the proof of Theorem 3.1.

Remark 3.5. The assertions in Theorem 3.1 are optimal in the following sense: there
exists f € 12(0,1) such that u ¢ C%P[0,1], VB > 1 — 2a; and one can find another
f € L2(0,1) such that x>*~1y ¢ H?(0,1), x**u' ¢ H?(0,1), and x>**u ¢ H3(0,1). See
Section 3.3.1 for the counterexamples.

Remark 3.6. Theorem 3.1 tells us that both x?*u/ and x?*~!u belong to H'(0, 1), so in
particular they are continuous up to the origin. It is natural to examine their values at the

origin and how they are related to the right-hand side f € L2(0,1). We actually have

1

Xing+x2°‘u’(x) :/f(x)g(x)dx, (3.3)
0
and .
Xlr&xzo‘_lu(x) = 1_12a/f(x)g(x)dx, (3.4)

0

where the function g is the solution of

—(x**¢'(x))' + g(x) =0 on (0,1],
g(1) =0,

[im =1.
><l>04r g(X)

See Section 3.3.1 for the proof of this Remark. The existence and regularity of such
function g is the main topic of [27] (see Chapter 4). The uniqueness of such g comes

from Theorem 3.2 below.

Theorem 3.2 (Uniqueness for the Dirichlet problem). Let 0 < a < % Assume that
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€ H2 (0, 1] satisfies

—(x**U'(x)) + u(x) =0 on (0,1],
u(1) =0, (3.5)

[im =0.
Jim, w69

Then u=0.

In order to simplify the terminology, we denote by up the unique solution to (3.1)
given by Theorem 3.1. Next we consider the regularity property of the solution up when

the right-hand side f has a better regularity.

Theorem 3.3. Let0 < a < % and f € lei(o, 1). Let up be the solution to (3.1) given

by Theorem 3.1. Then x**~tup € W?P(0,1) forall 1 < p < 5= with

200—1

HX ”DHWZ.p < Clfllwre

where C is a constant only depending on p and a.

Remark 3.7. One cannot expect that x> lup € Wz'i(o, 1) even if f € C§°(0,1), as

the power series expansion (3.2) shows that (x>*1up(x))"” ~ x~2% near the origin.

Remark 3.8. When o > % we cannot prescribe the Dirichlet boundary condition Iim+ u(x) =
x—0

0. Actually, for a > % there is no H2 (0, 1]-solution of

loc

—(x*U'(x)) +u(x)=f on (0,1],
u(1) =0, (3.6)

lim wu(x) =0,
x—0t ( )

for either f = 1 or some f € C5°(0, 1). See Section 3.3.1 for the proof.

Next we consider the case 0 < a < % together with a weighted Neumann condition.

Theorem 3.4 (Existence for Neumann Problem). Given 0 < o < % and f € L2(0,1),

there exists a function u € H,2O (0, 1] satisfying (3.1) together with the following proper-

ties:
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(i) ue HY(0,1) with |Jul|;n < C||f|,2.

(i) lim, x22=3/(x) = 0.

(ii) x**~1u' € L2(0,1) and x>*u" € L2(0,1), with
] 2+ ] 2 < CHFlLe

In particular, x**u’ € H*(0, 1).
Here the constant C only depends on o.
Remark 3.9. Notice the difference between Dirichlet and Neumann with respect to prop-

erty (iii) of Theorem 3.4. See Remark 3.2.

Remark 3.10. The boundary behavior Iim+ xzo‘*%u’(x) = 0 is optimal in the following
x—0

sense: for any 0 < x < %, define

Ka(x) = sup ‘xzo‘_%u’(x)‘.
Ifll,2<1

Then 0 < ¢ < Ku(x) < 2, for some constant § only depending on .. See Section 3.3.2
for the proof.

Remark 3.11. Theorem 3.4 implies that u € C9[0,1], so it is natural to consider the

dependence on f of the quantity lim wu(x). One has
x—07t

x—0t

1
lim u(x) = / F(x)h(x)dx, (3.7)
0

where h is the solution of

—(x>*H (x)) + h(x) =0 on (0,1],
h(1) =0,

lim x?*h'(x) = 1.
x—0t

In particular, equation (3.7) implies that the quantity Iim+ u(x) is not necessarily 0. See
x—0
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Section 3.3.2 for the proof of this Remark. The existence and regularity of h is part of

[27], but the uniqueness of h comes from Theorem 3.5 below.

Theorem 3.5 (Uniqueness for the Neumann Problem). Let 0 < o < 3. Assume that

u € H2 (0, 1] satisfies

—(x**u'(x)) +u(x) =0 on(0,1],
u(1) =0, (3.8)

lim x?*u/(x) = 0.
x—0F

Then u=0.

We denote by up the unique solution of (3.1) given by Theorem 3.4. We now state

the following regularity result.

Theorem 3.6. Let 0 < o < & and f € L2(0,1). Let uy be the solution of (3.1) given

by Theorem 3.4.

(i) If f € W2 (0, 1), then uy € W2P(0,1) forall 1 < p < 5= with
HUNHWZP(O,l) < Cllfllwae -

(i) If f € W22:(0,1), then x2=Lyh € W2P(0,1) forall 1 < p < =, with

1% uhllwzogo,1) < € IF w2

Here the constant C depends only on p and o.

Remark 3.12. One cannot expect that uy € W22 (0,1) nor x2@~1u), € W22 (0,1).
Actually, there exists an f € Cg°(0,1) such that, uy ¢ W23 (0,1) and x2e-ly, ¢
W22 (0,1). See Section 3.3.2 for the proof.

We now turn to the case a > % It is convenient to divide this case into three

sub-cases. As we already pointed out, we only have a “Canonical” solution obtained by

prescribing either a (weighted) Dirichlet or a (weighted) Neumann condition.
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3.1.2 Thecase:<oa<3

Theorem 3.7 (Existence for the “Canonical” Problem). Given % < a< % and f €

L2(0, 1), there exists u € H2 (0, 1] satisfying (3.1) together with the following properties:

loc

(i) ue €032 yjth Hu||CO%72a < C||fll;2 . In particular,

1
li 1—-Inx) 2 =0.
lim (1=1n2)7 u(x)

(i) lim, x22=3 1/ (x) = 0.

(i) x**~1u" € 12(0,1) and x>*u" € L2(0,1), with
et | o+ [P 2 < CHIFIlL

In particular, x**u’ € H*(0, 1).
Here the constant C depends only on a.

Remark 3.13. The same conclusions as in Remark 3.9-3.11 still hold for the solution given

by Theorem 3.7.

Theorem 3.8 (Uniqueness for the “Canonical” Problem). Let% < a< % Assume

ue H?

loc

(0, 1] satisfies
—(x**U'(x)) +u(x) =0 on(0,1],
u(l)=0.
If in addition one of the following conditions is satisfied
i 20 /(%) = 0,
(i) lim x4/ (x)
(i) lim (1 —1Inx)""u(x) =0 when a = 1,
x—0+
(iii) u€ L=7(0,1) when 3 < a < 3,

(iv) Xir& x2=1y(x) =0 when & <a < 3,
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then u = 0.

Again, to simplify the terminology, we call the unique solution of (3.1) given by The-
orem 3.7 the "Canonical” solution and denote it by uc. We now state the following

regularity result.

Theorem 3.9. Let o = 3, k be an positive integer, and f € H*(0,1). Let uc be the
solution to (3.1) given by Theorem 3.7. Then uc € H*T1(0,1) and xuc € H**2(0,1)
with

luc [ + Ixucllpgere < ClIFfl e
where C is a constant depending only on k.

Remark 3.14. A variant of Theorem 3.9 is already known. For instance in [32], the authors
study the Legendre operator Lu = — ((1 — X2)U/)/ in the interval (—1, 1), and they prove
that the operator A = L+/ defines an isomorphism from D¥(A) := {u € Hk*1(—=1,1) : (1 — x?)u(x) € Hk+2

to HX(—1,1) for all k € N.

Theorem 3.10. Let £ < a < % and f € Wl'ﬁ(O, 1). Let uc be the solution to (3.1)
given by Theorem 3.7. Then both uc € WYP(0,1) and x>**~1u. € W1P(0,1) for all

luclwee + X227 e[ pyo < CIFllwre

where C is a constant depending only on p and o.

Remark 3.15. One cannot expect that uc € W-z=1(0, 1) nor x2e—lyl e Wlz-1(0,1).
Actually, there exists an f € C§°(0, 1) such that uc ¢ W'z1(0,1) and x2e= 1yl

erﬁ(o, 1). See Section 3.3.2 for the proof.

3.1.3 Thecase :<a<1

Theorem 3.11 (Existence for the “Canonical” Problem). Given % <a<landf e

L2(0, 1), there exists a function u € H2 (0, 1] satisfying (3.1) together with the following

loc

properties:
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(i) u e LP(0,1) with ||u||,» < C||f||,2, where p is any number in [L,00) if o = 2, and

/9:40(2_3 /f%<a<1.
1
(i) lim (1=1nx)"% u(x) = 0 if o = 3 im. X2 3u(x) =0 if2 <a<1.

(i) Xir& XQO‘*%U’(X) =0.

(iv) x>2=1i/ € 12(0,1) and x>**u" € L%(0,1), with
b 2+ D] 2 < CHFlLe

In particular, x**u’ € H*(0,1).
Here the constant C depends only on .

Remark 3.16. The boundary behavior in assertion (ii) of Theorem 3.11 is optimal in the

following sense: for any 0 < x < % and % < a <1, define

3

sup ‘(1 - Inx)_% u(x)‘ , when a = —,

~ IFl,2<1 4
Ka(x) =

3
sup ‘Xza_%u(x)‘ , when - < a < 1.
IFl,2<1 4

Then0 < < f(a(x) < C, for some constants ¢ and C only depending on .. See Section

3.3.2 for the proof.

Remark 3.17. The same conclusions as in Remark 3.9 and 3.10 hold for the solution given

by Theorem 3.11.

Theorem 3.12 (Uniqueness for the “Canonical” Problem). Let 3 < a < 1. Assume that

u € H?, (0, 1] satisfies

loc

—(x**'(x)) +u(x) =0 on(0,1],

u(l) =0.
If in addition one of the following conditions is satisfied

; li 200,/ — O,
() fim X (x)
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(i) Jim_x u(x)
(iii) u e Lz1(0,1),
then u = 0.

We still call the unique solution of (3.1) given by Theorem 3.11 the “Canonical” solution

and denote it by uc. Concerning the regularity of uc for % < a < 1 we have the following

Theorem 3.13. Let % <a<landfe leﬁ(o, 1). Let uc be the solution to (3.1)
given by Theorem 3.11. Then both uc € W1P(0,1) and x>**~tul. € WP(0,1) for all

1§D<T1_1W/th

lucllpwre + HX2a71UICHW1,p < C|fllwe .

where C is a constant depending only on p and a.

Remark 3.18. The same conclusion as in Remark 3.15 holds here.

3.14 Thecasea>1

Theorem 3.14 (Existence for the “Canonical’ Problem). Given a > 1 and f € L2(0, 1),

there exists a function u € H2 (0, 1] satisfying (3.1) together with the following proper-

loc

ties:
(i) ue L?0,1) with ||ull 2 < |If]l2-
i) lim x2u(x) =0.
(i) lim x%u(x)
3a
i) lim x2 u'(x) =0.
(i) lim x% u/(x)
(iv) x*u' € L3(0,1) and x**u" € L2(0, 1) with [|x*u'|| .2+ ||x*>*u"|| ., < CIIF|| 2, where
C is a constant depending only on a. In particular, x**u" € H*(0, 1).

Theorem 3.15 (Uniqueness for the “Canonical” Problem). Let o > 1. Assume that

ue H2 (0,1] satisfies

loc

—(x>*/(x)) +u(x)=0 on(0,1],

u(l) =0.



32

If in addition one of the following conditions is satisfied

. N

(i) ||m+x3+25u’(x) =0 whena =1,
x—0

o N

(i) ||n8+xl+25u(x):0 when o = 1,
X—

(ii) fim_ X% e Tw u(x) = 0 whena > 1,
(iv) Xirrng x%exll% u(x) =0 when o > 1,
(v) ueL1(0,1),

then u = 0.

As before, we call the solution of (3.1) given by Theorem 3.14 the “Canonical” solution

and still denote it by uc.

Remark 3.19. For a > % the existence results (Theorem 3.7, 3.11, 3.14) and the unique-
ness results (Theorem 3.8, 3.12, 3.15) guarantee that the weighted Dirichlet and Neumann

conditions yield the same “Canonical” solution uc.

3.1.5 Connection with the variational formulation

Next we give a variational characterization of the unique solutions up, uy and uc given

by Theorem 3.1, 3.4, 3.7, 3.11, 3.14. We begin by defining the underlying space
X*={u€ Hj,(0,1): ue L?0,1) and x*v' € L*(0,1)}, & > 0. (3.9)

For u, v € X% define

1 1

a(u,v) = /X2aU/(X)V/(X)dX+/U(X)V(X)dX

0 0
and

I(u) = a(u, u).

The space X* becomes a Hilbert space under the inner product a(-, ). See Section 3.A

for a detailed analysis of the space X<.
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Notice that the elements of X% are continuous away from 0 (in fact they are in

H},.(0,1]), so the following is a well-defined (closed) subspace
Xg={ueX*:u(l)=0}. (3.10)

Also, as it is shown in the Section 3.A, when 0 < a < % the functions in X% are

continuous at the origin, making
Xgo = {u € X§ : u(0) =0} (3.11)

a well defined subspace.
LetO<a< % and f € L?(0,1). Then the Dirichlet solution up given by Theorem 3.1

is characterized by the following property:

1 1

up € Xgy, and vrg)i(r& ;/(v)—/f(x)v(x)dx :;/(UD)—/f(X)LID(X)dX, (3.12)
0 0

while the Neumann solution uy given by Theorem 3.4 is characterized by:

1 1
1 1
uy € X§, and min /(v)—/f(x)v(x)dx :/(uN)—/f(x)uN(X)dx. (3.13)
vexg | 2 2
0 0
Let o > % and f € L2(0,1). Then the “Canonical” solution uc given by Theorem 3.7,

3.11, or 3.14 is characterized by the following property:

1 1

uc € Xg, and vng)i(na ;/(v)—/f(x)v(x)dx = ;/(uc)—/f(x)uc(x)dx. (3.14)
0 0

The variational formulations (3.12), (3.13) and (3.14) will be established at the beginning

of Section 3.3, which is the starting point for the proofs of all the existence results.
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3.1.6 The spectrum

Now we proceed to state the spectral properties of the differential operator Lu =
— (x2°‘u’)/+ u. We can define two bounded operators associated with it: when 0 < o < 4,
we define the Dirichlet operator Tp,
Tp:L2(0,1) — L2(0,1)
(3.15)
f — TDf = Uup,
where up is characterized by (3.12). We also define, for any o > 0, the following

“Neumann-Canonical” operator Ty,

To:L2(0,1) — L2(0,1)

1
uy ifo<a< =, (3.16)
fos Tof = L2
uc ifazi,

where up and uc are characterized by (3.13) and (3.14) respectively. By Theorem 3.35
in the Section 3.A, we know that Tp is a compact operator for any 0 < a < % while T4
is compact if and only if a < 1.

In what follows, for given v € R, the function J,: (0,00) — R denotes the Bessel
function of the first kind of parameter v. We use the positive increasing sequence {Jj« } r—1
to denote all the positive zeros of the function J, (see e.g. [63] for a comprehensive
treatment of Bessel functions). The results about the spectrum of the operators Tp and

T, read as:

Theorem 3.16 (Spectrum of the Dirichlet Operator). For 0 < a < 3, define vg = 332,

and let ok = 14 (1 — @)?j7 . Then

o(To) = {0} U {W =2 }OO

vok ) k=1

For any k € N, the functions defined by

1_ . _
uVok(X) = X2 aJUO(Jlfokxl a)
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is the eigenfunction of Tp corresponding to the eigenvalue X, . Moreover, for fixed

O<ax< % and k sufficiently large, we have

p,l,ok—l—i-(l—a)Q[(g (uo—é>+7rk>2—<u§—i> +o</1<). (3.17)

Theorem 3.17 (Spectrum of the “Neumann-Canonical” Operator). Assume a > 0 and

let T, be the operator defined above.

i) ForO< a <1, definev=2%2L and let uyx =1+ (1 — )%2,. Then
2—2a vk

o(Ta) = {0} U {m =1 }OO

Muk ) =1

For any k € IN, the functions defined by
1 . J—
U (X) 1= x27%J, (uxt™%)

is the eigenfunction of T4 corresponding to the eigenvalue \,x. Moreover, for fixed

0 < a <1 and k sufficiently large, we have

m 1 2 , 1 1
(ii) Fora =1, the operator T1 has no eigenvalues, and the spectrum is exactly c(T1) =
4
[0.2].

(iiif) Fora > 1, the operator Ty has no eigenvalues, and the spectrum is exactly 0(Ty) =

[0, 1].

Muk:1+(1_a)2

Recall that the discrete spectrum of an operator T is defined as

oq(T)={A€o(T): T — Xl is a Fredholm operator},

and the essential spectrum is defined as

0e(T) = a(T)\oa(T).
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We have the following corollary about the essential spectrum.

Corollary 3.18 (Essential Spectrum of the “Neumann-Canonical” Operator). Assume that

a > 0 and let T, be the operator defined above.
(i) For0 < o<1, 0e(Ty) = {0}.
(i) Fora =1, 0o(T1) = [0, 2].
(iif) Fora > 1, 0.(Ty) = [0, 1].

Remark 3.20. This corollary follows immediately from the fact (see e.g. [34, Theorem
IX.1.6]) that, for any self-adjoint operator T on a Hilbert space, o4(T) consists of the
isolated eigenvalues with finite multiplicity. In fact, for Corollary 3.18 to hold, it suffices
to prove that o4(T) C EV(T), where EV/(T) is the set of all the eigenvalues. We present

in Section 3.4.1.2 a simple proof of this inclusion.

As the reader can see in Theorem 3.17, when a < 1 the spectrum of the operator
To is a discrete set and when o = 1 the spectrum of T; becomes a closed interval, so
a natural question is whether o(T,) converges to o(T1) as & — 1~ in some sense. The

answer is positive as the reader can check in the following
Theorem 3.19. Let a < 1. For the spectrum o(T,), we have
(i) 0(Ta) Co(Ty) forall 3 <a<1.

(ii) Forevery A € a(T1), there exists a sequence o,y — 17 and a sequence of eigenvalues

Am € 0(Tq,,) such that Ay, — X as m — oc.

Remark 3.21. Notice that in particular 0(Ty) — o(T1) in the Hausdorff metric sense,
that is

dy(o(Ty),0(T1)) — 0, asa — 17,

where dy(X,Y) = max {supyex infyey [x — y|, sup ey infxex [x — y|} is the Hausdorff

metric (see e.g. [48, Chapter 7]).
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Remark 3.22. When a < 1, the spectrum of T, has been investigated by C. Stuart [?].
In fact, he considered the more general differential operator Nu = —(A(x)u')" under the

conditions u(1) = 0 and Iim+ A(x)u'(x) = 0, with

x—0

A _ (3.19)

O ) .
A€ C°([0,1]); A(x) >0,Vx € (0,1] and Xll[g+ 2

Notice that if A(x) = x*, we have the equality T, = (N + /)1, where the inverse is
taken in the space L2(0,1). When o < 1, C. Stuart proves that (/) consists of isolated
eigenvalues; this is deduced from a compactness argument. When o = 1, C. Stuart
proves that maxoe (N +/)71) = . On the other hand, C. Stuart has constructed an
elegant example of function A satisfying (3.19) with a = 1 such that (N + /)~ admits
an eigenvalue in the interval (%, 1]. Moreover, G. Vuillaume (in his thesis [62] under C.
Stuart) used a variant of this example to get an arbitrary number of eigenvalues in the

interval (%, 1]. However, we still have
Open Problem 3.1. If A satisfies (3.19) for a = 1, is it true that oe((N+/)~1) = [0, %]?

Similarly, when a > 1, one can still consider the operator Nu = —(A(x)u’)" under
the conditions u(1) = 0 and Xin&A(x)u’(x) = 0, where A satisfies (3.19), and the
operator (N + /)%, where the inverse is taken in the space L2(0, 1), is still well-defined.
By the same argument as in the case A(x) = x°® (Theorem 3.17 (iii)) we know that

o ((N+1)71) C [0, 1]. However, we still have
Open Problem 3.2. Assume that A satisfies (3.19) for a > 1.
(i) Is it true that o((N +1)~1) = [0,1]?
(i) Is it true that maxoe((N -+ /)~1) = 1, or more precisely oe((N + /)~1) = [0,1]?

The rest of this chapter is organized as the following. We begin by proving the
uniqueness results in Section 3.2. We then prove the existence and regularity results
in Section 3.3. The analysis of the spectrum of the operators Tp and T is performed in
Section 3.4. Finally we present in Section 3.A some properties about weighted Sobolev

spaces used throughout this work.
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3.2 Proofs of all the uniqueness results

In this section we will provide the proofs of the uniqueness results stated in the Intro-

duction.

Proof of Theorem 3.2. Since u € C°(0, 1] with Iina+ u(x) = 0, we have that u € C°[0, 1].
X—>
1

Notice that, for any 0 < x < 1, we can write x**u/(x) = /(1) — / u(s)ds, which implies

X
that x°*u’ € C[0, 1]. Then we can multiply the equation (3.5) by u and integrate by parts

over [g, 1], and with the help of the boundary condition we obtain
1 1
/Xzo‘u’(x)zdx - / u(x)?dx = x**u' (x)u(x)|t — 0, ase — 0%,
£ £

Therefore, u = 0. O

Proof of Theorem 3.5. We first claim that u € C°[0, 1]. Since u € C(0, 1] and because
Iirg+x2°‘u’(x) = 0, there exists C > 0 such that —Cx2* < /(x) < Cx2%, which
X—

implies that —Cx72% < u(x) < Cx}72, hence u € L*>(0, 1) because 0 < a < . Write
X

1
u(x) = ey / u(s)ds and deduce that v/ € L°(0, 1), thus u € W°°(0, 1). In particular

0
u e Co0,1].

Then we can multiply the equation (3.8) by v and integrate by parts over [g, 1], and

with the help of the boundary condition we obtain
1 1
/Xzo‘u’(x)zdx - / u(x)?dx = x**u'(x)u(x)|t — 0, ase — 0%,
£ £

Therefore, u = 0. O

Proof of (i) of Theorem 3.8 and (i) of Theorem 3.12. As in the proof of Theorem 3.5,
it is enough to show that u € C9[0, 1]. As before, the boundary condition implies that

u(x) ~ x1=2% which gives u € La(0,1). To prove that u € C°[0, 1], we first write
X

1 .
X2 (x) = X/u(s)ds. Let po = é > 1. Since u € LP(0,1), one can apply
0
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Hardy's inequality and obtain HX2"‘*1U’HLPO < C||lul|ro - Since u(1) = 0, this implies that

u € X3¥717(0,1). By Theorem 3.34, we have two alternatives

or

wIN

e ue[90,1) for all g < oo when a <
e uc [P(0,1) where p; := ﬁ > po when % <a<l.

If the first case happens and u € L9(0, 1) for all g < oo, then we apply Hardy's inequality
and obtain u € X3719(0,1) for all g < oo, which embeds into C°[0,1] for g large
enough. If the second alternative occurs and we apply Hardy's inequality once more, we
conclude that u € X3* 1P1(0,1). Therefore, either u € L9(0,1) for all g < oo when
a < % or u € LP2(0,1) where p, = 50‘%4 when % < a < 1. By repeating this argument

finitely many times we can conclude that v € C9[0, 1]. O

Proof of (ii) of Theorem 3.8. Let o = % and suppose that u € H2 (0, 1] satisfies

—(x**'(x)) +u(x) =0 on (0,1],

u(l) =0,

. u(x)
x|l>n8+ 1—1In(x)

Notice that u € C(0, 1] together with lim (1 —Inx)~tu(x) = 0 and the integrability of

x—0+
Inx, gives u € L1(0,1). Define w(x) = u(x)(1 —Inx)~1. It is enough to show that

w = 0. Notice that w solves

(x(1 = Inx)w(x))" = (1 = Inx)w(x) + w'(x) on (0,1),
w(1) =0, (3.20)
w(0) = 0.
We integrate equation (3.20) to obtain

1 1

x(1=Inx)w'(x) = w'(1) — /(1 —Ins)w(s)dx = /(1) — / u(s)ds.

X X

Since u € L1(0, 1), the above computation shows that x(1 — Inx)w/(x) € C[0, 1]. Now
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we multiply (3.20) by w and we integrate by parts over [g, 1] to obtain

1 1
/X(l—ln X)W'(X)zdx—i-/(l—ln X)w?(x)dx = x(1—Inx)w’(x)w(x)|} —%Wz(x)fgL — 0,

£ £

as € — 0T, proving that w = 0. O

At this point we would like to mention that the proof of (iii) of Theorem 3.8 and (iii)

of Theorem 3.12 will be postponed to Proposition 3.23 of Section 3.3.2.

Proof of (iv) of Theorem 3.8 and (ii) of Theorem 3.12. Let & < a < 1 and suppose that

u € H?, (0, 1] satisfies

loc

—(x**U'(x)) + u(x) =0 on (0,1],
u(l) =0,

lim x?2~1y(x) = 0.
x—0

Notice that u € C(0,1] together with lim_ x?*~1y(x) = 0 and the integrability of x*~22
x—0
for a < 1, gives u € L1(0,1). Define w(x) = x?*~u(x). We will show that w = 0.

Notice that w satisfies

—(xw' (X)) + 2a — W' (x) + x}7*w(x) =0 on (0,1],

W(l) =0, (3.21)
w(0) = 0.
Integrate (3.21) to obtain
1 1
W' (x) = w'(1) —/sl—2aw(s)ds= 4 (1) —/u(s)ds,

from which we conclude xw’(x) € C[0, 1]. Finally, multiply (3.21) by w and integrate by
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parts over [g, 1] to obtain

1 1

/xw’(x)zdx + /xlzo‘w(x)2dx = xw' (x)w(x)|} — <a — i) w2(e).

1) £

Letting € — 07 and we conclude that w = 0. O

Proof of Theorem 3.15. Assume that (i) holds. Suppose that u € H% (0, 1] satisfies

—(x**/(x)) +u(x)=0 on (0,1],

u(l) =0,
im x*%* U (x)=0.
x—0*t
Let v(x) = x5 u(x). Then v € H2 (0, 1] and it satisfies

—(xvV'(x)) + V5V (x) =0 on (0,1],

v(1) =0, (3.22)

im- <xv'(x) 1 +2\/gv(x)> —0,

x—0

from which we obtain that xv/ — 1+T\/§V € C[0,1] and xv/ — v/Bv € H}(0,1). Therefore
v € C[0, 1]. Multiply (3.22) by v and integrate over [, 1] to obtain

1
/xv’(x)2dx + %v2(5) = (xv’(x) 1 +2\/§v(x)> v(x)|l =0, ase— 0.

€

Therefore v is constant and thus v(x) = v(1) = 0.

Assume that (i) holds. Suppose that u € HZ (0, 1] satisfies

—(x>*/(x)) +u(x)=0 on (0,1],

u(l) =0,

: N
lim x 2 5u(x) =0.
x—0t
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v
Let w(x) = x 2

u(x). Then w € H2 (0,1] and it satisfies

—(xw'(x)) + V5w (x) =0 on (0,1],
w(l) =0, (3.23)

w(0) = 0.

Therefore xw’ 4+ /5w € H(0,1), w € C[0, 1], and xw’ € C[0, 1]. Multiply (3.23) by w

and integrate over [g, 1] to obtain

1

/XWI(X)de = xw' ()w(x)|s —

€

\/g 2
- W
2

(x)|} =0, ase—0".

Therefore w is constant, so w(x) = w(1) = 0.

Assume that (iii) holds. Suppose that u € H? (0, 1] satisfies

loc

—(x>*/(x)) +u(x)=0 on (0,1],
u(l) =0,

) 3a x1l—a
lim x2 eT= u'(x) = 0.
x—0t

xl—a
Define g(x) = e =« u(x). Then g € H?,_(0,1] and it satisfies

loc

—(x*d (X)) + (x*9(x)) + x*g'(x) =0 on (0,1],
g(1) =0,

. 3a o & o
X'L“3+ (X 2 g'(x) — x2 g(x)) =0.

Multiply the above by g and integrate over [, 1] to obtain

1
/ % (x)2dx = x2*g/ () g()|} — x*g%(x)]L
€ (3.24)

= (x%g'() - x¥g(0) xEg(lL.
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We now study the function h(x) := x2 g(x). We have

1

) = [ (s)ds
- _/1 (555729(s) +5%g(s)) ds
_ ;‘js?—lg'(s)ds - (x%“g’(x) - X%Q(X))
-2 (3‘; _ 1) /1 s¥2g(s)ds — Sx* 1) — (xF g0 ~ x¥g(x)).

Hence we can write

1
h(x) = [1 + %xa—l]_l 2 <3O‘ . 1> /535—2g(s)ds - (X%“g/(x) - x%g(x))

We claim that there exists a sequence €, — 0 so that

1
lim /s?_zg(s)ds < 0.

n—oo
En

Otherwise, assume that Iirg+ fel s%a_zg(s)ds = £o00. Then
E—

l-a
lim xZeT= u(x) = lim h(x) = +o0.
x—07F x—07F

This forces Iing+ u(x) = +oo, so L'Hépi tal's rule applies to v and one obtains that
X—

30 x17@

. a xi-e . xzetla(x)
lim x2etrau(x) = Im —f——F—2-=0,
x—0+ x—0t —Fx* 1 —1

which is a contradiction. Therefore Iim+ h(ep) exists for some sequence €, — 0. Finally,
en—0
1
use that sequence €, — 07 in (3.24) to obtain that /X2"‘g’(x)2dx = 0, which gives g is

0
constant, that is g(x) = g(1) = 0.
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Assume that (iv) holds. Suppose that u € HZ (0, 1] satisfies

loc

—(x**'(x)) +u(x) =0 on (0,1],
u(l) =0,
Xin(; x%exll% u(x) =0.

xl—a
Let p(x) = e - u(x), then w satisfies

—(x%p' (X)) + (x*p(x)) +x*p'(x) =0 on (0,1],
p(1) =0, (3.25)

lim x2 p(x =0.
Jim p(x)

We claim that Iing+ x37ap’(x) exists, thus implying that x%ap’(x) belongs to C[0, 1]. Define
X—

q(x) = x%ap’(x), then using (3.25) we obtain that, for 0 < x < 1,
oy — 2y y
G (x) = —5x277p(x) + axz7"p(x) +2x2p'(x).

A direct computation shows that, for 0 < x < 1,

1 1

3 [0 o a
[a@as=5 (5 ~1) [ x5 20e)ds + §xrtxtotx) 6ol

X X

Since x3 p(x) € C[0, 1], we obtain that x> ~2p(x) € L1(0, 1), which implies that

1
3a
XFp(0 = a0x) = - [ d(s)ds
X
is continuous and that the Iirr(;+ q(x) exists. We now multiply (3.25) by p(x) and integrate
X—r

by parts to obtain
1

/x2ap'(X)2 - X%p’(X)X%P(X”(lJ =0.
0

Thus proving that p(x) is constant, i.e. p(x) = p(1) = 0.
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Finally assume that (v) holds. Define k(x) = x?*u/(x). Notice that since u €
1

L1(0,1) N HZ (0, 1], from the equation we obtain that k(x) = u/'(1) — /u(s)ds, so
X

k(x) € CO[0,1]. We claim that k(0) = 0. Otherwise, near the origin v'(x) ~ x~2%* and

u(x) ~ xt72% which contradicts u € L1(0,1). Therefore, lim x?*u/(x) = 0. We are

x—0*t
now in the case where (i) or (iii) applies, so we can conclude that u = 0. m

3.3 Proofs of all the existence and the regularity results

Our proof of the existence results will mostly use functional analysis tools. We take
the weighted Sobolev space X* defined in (3.9) and its subspaces X§, and X§ defined by
(3.11) and (3.10). As we can see from Section 3.A, X< equipped with the inner product

given by
1

(U, V)g = / (% (x)V'(x) + u(x)v(x)) dx,

0

is a Hilbert space. X§, and X§ are well defined closed subspaces. We define two notions
of weak solutions as follows: given 0 < o < % and f € L2(0, 1) we say u is a weak solution

of the first type of (3.1) if u € X§, satisfies

1 1 1

/xzo‘u’(x)v’(x)dx+/u(x)v(x)dx :/f(x)v(x)dx, for all v e X&; (3.26)
0 0 0
and given a > 0 and f € L?(0, 1) we say that u is a weak solution of the second type of
(3.1) if ue X§ satisfies

1 1 1
/x2au’(x)v’(x)dx+/u(x)v(x)dx —/f(x)v(x)dx, for all v e X§. (3.27)

0 0 0
The existence of both solutions are guaranteed by Riesz Theorem. Actually, (3.26) is
equivalent to (3.12), while (3.27) is equivalent to (3.13) or (3.14) (see e.g. [10, Theorem
5.6]). As we will see later, the weak solution of the first type is exactly the solution up
mentioned in the Introduction, whereas the weak solution of the second type corresponds

to either uy when 0 < a < % or uc when o > %
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3.3.1 The Dirichlet problem

Proof of Theorem 3.1. We will actually prove that the solution of (3.26) is the solution
we are looking for in Theorem 3.1. Notice that by taking v € C§°(0, 1) in (3.26) we obtain
that w(x) := x22u/(x) € H1(0, 1) with (x?®u/(x)) = u(x) — f(x) and ||W'[|;2 < 2||f]],2.
Also since u € X§, we have that u(0) = u(1) = 0.

Now we write

X
_ '(s)ds — s2a l—2a s xu'(x)
) = [ (s)ds v(s)) + 7
0 0
where we have used that lim su/(s) = I|m 522/ (s)-st72@ =0 for all a < % It implies
s—0t
that
2a-1 X' (x) | x>t f 2a,/ 1-2a
- = d
XU = 1—2a+2a—1/( u(s))' s 72 ds,
0
and

X

(X2a—1U(X))’ _ X2a—2/ (S2aul(s))/sl—2ad5_

0

From here, since o < %, we obtain

‘(X2o¢ lLI(X 1/ 2o /
X
0
so Hardy's inequality gives
_ !/
H(x2a L) <2H 20,/ HL2§4||f||L2.

Therefore, Han*l

UHHl < C||f]| 2, where C is a constant depending only on . Combin-
ing this result and the fact that x°*u/ € H1(0, 1), we conclude that x>*u € H?(0, 1).
Also notice that u € C%'=2%[0, 1] is a direct consequence of x?*~1y € C[0,1] N

C1(0, 1]. The proof is finished. O

Proof of Remark 3.1. Take f € C§°(0,1). We know that u(x) = A¢1(x) + Bea(x) +

F(x) where ¢1(x) and ¢o(x) are two linearly independent solutions of the equation
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—(x**d'(x)) + u(x) = 0 and
FO) = d1(x) / F(s)da(s)ds — da(x) / (s)pu(s)ds.
0 0

1 —a . .
Moreover, one can see that ¢;(x) = x27%f; (’{1—&) where f;(z)'s are two linearly inde-

pendent solutions of the Bessel equation
1

2
2¢"(z2) +z¢/(z) — | 22 + (i 42) #(z) = 0.

By the properties of the Bessel function (see e.g. [63, Chapter Ill]), we know that near

the origin,
Pr1(x) = axt 2% L a3 L x>0 . for0<a< 5
and
B2(x) = by + box® 2% 4 hax* 4 4 pyx®0 L for0 < a < 1.
Also,
1
$1(0) =0, ¢2(0) #0, ¢1(1) #0, for0<a < 5
lim |¢1(x)] lim ¢o(x) = by, fora> L
_= OO’ = , -,
x—0t ! x—0t 2 ! -2
and
Xlng+ X2 (x) #0, Xln&r x22@h(x) =0, ¢2(1) #0, for 0 < a < 1.

Notice that F(x) = 0 near the origin. Therefore, when imposing the boundary conditions
u(0) = u(1) = 0, we obtain u(x) = Ap1(x) + F(x) with A= —(;(—(11)). Take f such that

1
F(1) = / F(5)[da(s)b1(1) — u(s)da(L)]ds 0.
0

Then u(x) ~ ¢1(x) near the origin and we get the desired power series expansion. m
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Proof of Remark 3.3. From the proof of Theorem 3.1, we conclude that w € C°[0, 1]

with [|w|| o < 2]|f]|;2. From here we have
|0 (O] = [w)x2%] < [[wll o x72%,
Thus, for 1 <p < %

16| o < IWlloo X2 Lo0.1y < Ce P IIF I

O

Proof of Remark 3.5. If we take f(x) := —(x?*u/(x))'+u(x), where u(x) = x172%(x—1),
we will see that u ¢ C%P[0,1], V8 > 1 — 2a. When u(x) = x42%(x — 1), we will see

that x22~tu ¢ H?(0,1), x°*u’ ¢ H?(0,1), and x**u ¢ H3(0,1). O

Proof of Remark 3.6. From [27] we know that the function g exists and x°*g’(x) €

L*>°(0, 1). Therefore, integration by parts gives

1 1
[ f0900dx = [ =00 (Y 90x) + u(x)g(x)dx = lim P (x).
0 0

And the L'Hopital’s rule immediately implies that

1

/ f(x)g(x)dx.

0

1
1—-2a

lim x>*7tu(x) = lim X2 (x) =

x—0+ x—=0t 1 — 2

Before we prove Theorem 3.3, we need the following lemma.

Lemma 3.20. Let0 < a < % and ko € N. Assume u € W,ﬁojl'p(o, 1) forsome p > 1. If

Iirg+ u(x) = 0 and Iirg+ Xk*2o‘% (s**u'(s)) =0 forall1 < k < ko, then for0 < x < 1
X—> X—>

X

dk
(x**Lu(x)) = x2* k1 /Sk_zadsk (s**u/(s)) ds, forall1 <k <k

dk

dxk
0
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Moreover

dk 2 1
dek (o

H 2a /

I
where C is a constant depending only on p, a and k.

Proof. When kg = 1 we can write

X /

_ /
(X2o¢—lu(x))’: X2a—l/s2aul(s) si2 ds
1—-2a

x /

2a—1 200,/
S /(szo‘u'(s)),sl_zo‘ds+x w(x)

1 -2«
/ 2a / ! l-2a o
0

The rest of the proof is a straightforward induction argument. We omit the details. The

norm bound is obtained by Fubini's Theorem when p =1 and by Hardy's inequality when

p>1. O

Proof of Theorem 3.3. Notice that Iirg+ x2=22 (s22/(s))'=0 since both u and f are con-
X—

tinuous. With the aid of Lemma 3.20 for kg = 2 we can write

( 20— 1U(X)) 20— 3/522a (SQaul)” ds — X2a3/522a (U(S) _ f(S)),dS.
0 0
The result is obtained by using the estimate in Lemma 3.20. ]

Proof of Remark 3.8. We use the same notation as in the proof of Remark 3.1. We know
that u(x) = Ap1(x) + Bpo(x) + F(x) where ¢1(x) and ¢o(x) are two linearly independent

solutions of the equation —(x**u/(x))" + u(x) = 0 and

Fix)=1, if f=1,

or

F(x) = ¢1(x) | F(s)pa(s)ds — da(x) [ F(s)pr(s)ds, if f € C(0,1).

O\x
o\
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In either case we have F € C[0, 1]. We also know that

N =

lim [¢1()| = 00, lim ¢o(x) = by, for o>

Therefore, if one wants a continuous function at the origin, one must have A =0. Then

u(x) = Boa(x) + F(x). We see now that the conditions u(1) = 0 and Iina+ u(x) =0 are
X—>

incompatible. O

3.3.2 The Neumann problem and the “Canonical”’ problem

Proof of Theorems 3.4, 3.7, 3.11. For 0 < a <1, let u € X§ solving

1 1 1
/x2°‘u’(x)v’(x)dx+/u(x)v(x)dx :/f(x)v(x)dx, for all v e X§.
0 0 0
First notice that
lull 2 + [[x*e'|| 2 < (IF1l,2

Also, if we take v € C5°(0, 1), then x2*u’ € HY(0, 1) with (x**u/(x)) = u(x) — f(x).
We now proceed to prove that w(x) := x?*u/(x) vanishes at x = 0. Take v € C?[0, 1]

with v(1) = 0 as a test function and integrate by parts to obtain

0

1
/ (= (X)) + u(x) — F(x)) v(x)dx = Xin& X2 (x)v(x).
0

The claim is obtained by taking any such v with v(0) = 1.
The above shows that w(x) = x**u/(x) € H(0,1) with w(0) = 0. Then, notice
that for any function w € H*(0, 1) with w(0) = 0 one can write

1
X X 2

lw(x)| = /W/(X)dX < x /W’(X)2dx

0 0

N

thus

lim x2*~24/(x) = 0.
x—07t
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Also, Hardy's inequality implies that % € L2(0, 1) with H%HLQ <2||w'||;2. Now recall
that w/(x) = (x4 (x)) = u(x) — F(x), 50 [w/ll> < [[ull,2 + [IFll2 < 2[|f],2. Hence
we have the estimate ||x?*~1u/||,, < 4[]l

In order to prove Hx2o‘u”HL2 < C||f|l;2, one only need to apply the above estimates
and notice that x?*u”(x) = (x*®u/(x)) — 2ax?>*~ 1/ (x).

By Theorem 3.34, property (i) of Theorems 3.4, 3.7, 3.11 is a direct consequence of

the fact that u € Xgafl.

Finally we establish the property (ii) of Theorem 3.11. For o = %, first notice that

/ u?(x) < lx u()u'(x)  w*(x) u?(x) .
e o )

x(1—Inx) =~ — x(I1—=Inx) x2(1—1Inx) x2(1—1Inx)2
0

1

:_z/wdx+lmdx/l 209

1—1Inx x(T=Inx) ] x(1—=1Inx)? o
0 0 0
thus
1 ) 1
/u(><)2dx <2 /lu(x)xéu’(x)dx : (3.28)
J x(1—=Inx) " x2(1—Inx)

Now Halder's inequality gives (1 — Inx)~1x~2u(x) € L2(0, 1). Therefore
(1 =Inx) 7 2(x) = (1 = Inx)2x 12 (x) 4+ 2(1 — Inx) "X~ 2u(x)x2 /' (x) € L1(0, 1),

1
so Iim+ (1 —Inx)"2 u(x) exists. If the limit is non-zero, then near the origin one has
x—0

(1—Inx)"Ix"2u(x) ~ (1=Inx)2x"2 ¢ L2(0, 1), which is a contradiction. For 3 < a <1,

notice that

1 1 1

X232 (x) = — / (£**302(1)) dt = —(4a—3) / $e—4 12 (1) 2 / $9=3 /(P u()dt.

X X X

Since we know x?*~1¢/ € [?(0,1), Theorem 3.33 implies that x°*~2y € L?(0, 1), hence

lim x22
x—0t

Lﬁ(o, 1), which is a contradiction. O

_%u(x) exists. If the limit is non-zero, then near the origin u(x) ~ x3 2 ¢
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Proof of Remark 3.10 for all 0 < a < 1. First notice that
2oy (x) = /(u(s) — £(s))ds.
VX
0

Therefore, ‘X2O‘_%u’(x)‘ <2||f|l2. ie. K(x) <2.

On the other hand, for fixed 0 < x < 3, define

1 .
x72 fo<t<x
f(t) =

0 if x<t<l1.

Then ||f||;2 = 1. Consider first the case when % < a < 1. From Theorem 3.11 we

obtain that u € Xgo‘_l, which embeds into L0 for pg = ﬁ > 2. Thus one obtains

X
1 11
that \/;/u(s)ds < x2 P, Then
0

Ko(x) > \}XO/X(”(S) _f(s))ds| > 1 x> 1 (;)5_’%_

11
Therefore Ky (x) > o for 6o :=1— (3)2 7. Notice that when 0 < o < 2, then u € LP

for all p > 1, so the above argument remains valid. The proof is now finished. L]

Proof of Remark 3.11 for all o < % To prove (3.7), first notice that, from [27], the func-

tion h exists and xzh € L°°(0,1). Therefore, integration by parts gives

1 1
/ f(x)h(x)dx = /(—(xzau’(x))'h(x) + u(x)h(x))dx = Xln& u(x).
0 0

In order to prove the further regularity results we need the following

Lemma 3.21. Let a > 0 be a real number and kg > 0 be an integer. Assume u €

W/ 2P0, 1) for some p > 1, and Iina+ xkdd—k (x**u/(x)) =0 for all 0 < k < k. Then
X—

loc xk



for0< x<1
dk
dxk (x** 71 (x) = / dsk+1 s*u'(s)) ds, forall0 < k < ko.
0
Moreover
dk 2 1,/ dk+1 2 ,
_ a— <C a
dek () o dek+1 (x**) .

where C is a constant depending only on p, o and k.

Proof. If kg = 0 then the statement is obvious. When kg = 1, the condition

( 2a /(X))

gives

(x 2a-1 /(X)) = (i/(sh ’(s))
0

93

The rest of the proof is a straightforward induction argument. We omit the details.

The norm bound is obtained by Fubini's Theorem when p = 1 and by Hardy’s inequality

when p > 1.

]

Proof of Theorem 3.6. Assume that f € lei(o, 1). First notice that for 1 < p < 5

we have v/ € LP since x>’ € H(0,1). Also notice that x(x**u/(x)) = x(u—f) = 0

since both v and f are continuous. We use Lemma 3.21 for kg = 1 to conclude

(21 <c|exd) || =Cllw= )l < Clfllps.

Vi V'll.s

20 //

where C is a constant only depending on p and . Recall that x = u—2ax u

200—1,,/ _

fe
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W1P(0,1). It implies
‘U”(X)‘ _ ‘X2au//‘ X—2a < C ||f||W1~P X—2cx’

where C is a constant only depending on p and a. The above inequality gives that
ueW?p(0,1)forall 1 <p< i with the corresponding estimate.

Assume now f € W23 (0,1). We first notice that x> (x> ()" = P (u—f) =
X2y (x)x?72% — x2f'(x) — 0 as x — 0% since f € C*[0,1]. This allows us to apply

Lemma 3.21 and obtain

— " 1 ’ n 1 ’
(x** 1 (x))" = ] /52 (s?u'(s)) " ds = ] /52 (u(s) — f(s))" ds.
0 0
Lemma 3.21 also gives the desired estimate. ]

Proof of Remark 3.12, 3.15, 3.18. It is enough to prove the following claim: there exists

f € C§°(0, 1) such that the solution u can be expanded near the origin as
LI(X) = b1 + b2X2_2a + b3X4_4a + b4X6_6a + - (3.29)

where by 75 0, by 75 0.
We use the same notation as the proof of Remark 3.1. Take f € C§°(0,1). We know
that u(x) = Ap1(x) + Bpa(x) + F(x) where ¢1(x) and ¢o(x) are two linear independent

solutions of the equation —(x**u/(x))’ + u(x) = 0 and

FO) = d1(x) / F(s)da(s)ds — da(x) / (s)pa(s)ds.
0 0
Moreover,

Iing+ X2 (x) # 0, Iirg+ x2%@h(x) =0, ¢o(1) #0, for 0 < a < 1.
X—> X—>
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Notice that F(x) = 0 near the origin. Therefore, the boundary conditions

lim x**u'(x) = u(1) =0
Jim x40 (x) = u(1)

imply that we have u(x) = Bga(x) + F(x) with B = —%. Take f such that

1

F(1) = / F(5)[da(5)b1(1) — u(s)da(L)]ds 0.

0

Then u(x) ~ ¢2(x) near the origin and we get the desired power series expansion. m

Proof of Theorem 3.9. When k = 0 we have already established that u € X°® = H(0, 1).
Also, we have that xu” € L?, so (xu)" = (u+ xu") =2 + xu”, that is xu € H*(0, 1).
When k = 1, notice that x (xt/(x)) = x(u—f) — 0 since both f and v are in

H'(0,1). we use Lemma 3.21 to write

0 (x) = X12/s (s/(s))" ds = = /s(u(s) _ (s)) ds.

x2
0 0

We conclude that v € L2(0,1) using Lemma 3.21. The rest of the proof is a straight-

forward induction argument using Lemma 3.21. We omit the details. L]

Lemma 3.22. Suppose 0 < o« < 1 and let f € L>°(0,1). If u is the solution of (3.27),

then u € C°[0,1] and x?*~*u/ € L>°(0,1) with
lull e + ||¥2* 7| o S CNFll Lo s

where C is a constant depending only on o.

Proof. To prove x**~ 1/ € L*(0,1), it is enough to show that u € L*°(0,1) with
|ull; < C||f|l = . Indeed, if this is the case, by (3.27) we obtain that x**u’ € W*°(0, 1)

with Iirg+ x??1/(x) = 0. By Hardy's inequality, we obtain that
X—

5327 [ oo < CallFll e -
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Now we proceed to prove that u € C9[0, 1]. First notice that ifa < % then u € C°[0, 1]
by Theorem 3.7. So we only need to study what happens when % <a<l.

Suppose % < a < 1. Since u € X?*1 we can use Theorem 3.34 to say that
ue LP(0,1) for pop = ﬁZ_:%, so g :=f—ueLP0,1). From (3.27) we obtain that
(x>u/(x))" = g(x), therefore x>*u' € W (0,1). Since pg > 1 and Xir& X2/ (x) =0,
we are allowed to use Hardy's inequality and obtain that x>*~14/ € LP(0,1). Using
Theorem 3.34 once more gives that either u € C°[0,1] if a < %, in which case we are
done, or u € LP1(0,1) for p; := 8;—_7 if % < a < 1. If we are in the latter case, we

repeat the argument. This process stops in finite time since o < 1, thus proving that

u e Co0,1]. O

Proof of Theorems 3.10 and 3.13. We begin by recalling from Lemma 3.22 that if f €
L>(0,1) then x>*~1u/ € L%°(0,1), so |[u/(x)] < ||x** 1/ (x)|| -~ x*72*. This readily
implies u € WP(0,1). Now just as in the proof of Theorem 3.6 we can use Lemma 3.21
and write

X

(100 = o [ () ds = o [ stu(s) ~ F(5))ds.
0

0

Notice that |xu/(x)| < ||x>*71u/||, . x*72*. From here we obtain
O G < ([ o2 ([ 7]] )

The conclusion then follows by integration. L]

Proof of Remark 3.16. First notice that, from the proof of (ii) of Theorem 3.11, when

MW

a =

’(1 - Inx)_% u(x)’ < C’

1
Al ()| , < Iz

and when % <a<l,

et < Ca X092 < Calfla
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That is, Ka(x) < Cs. On the other hand, we can write

1 t
1
u(x) = /tm/(u(s) — f(s))dsdt
X 0
1 e I
t
= T X2a1/f(t)dt+/t2a1dt
0 X
1 1 1 X 1 ( )
u
+ T on /(u(t)—f(t))dt—X2al/u(t)dt—/t2a 1dt
0 0 X
When a = %, for fixed 0 < x < % take
0 if0<t<x,

f(t) =
t*%(—lnx)*% ifx <t<l.

Then ||f||;2 = 1. Since u € LP(0, 1) for all p < oo, we can say that, there exists My > 0

independent of x such that

1
/(u(t)—f(t))dt—xzi_l/u(t)dt—/thlc(xt_)ldt < M,
0

Then

N I (-Ihx):2 Mo
Ka(X)Zza_l ((1—|nX)é (1—|ﬂx)§)-

When 2 < a < 1, for fixed 0 < x < 3, take

1 .
x"2 ifo<t<x,
f(t) =

0 if x <t<1.

Then ||f]|,2 = 1. Since u € LP°(0,1) for pg = 7225 > 2, we can say that, there exists

My > 0 and y4 > 0 such that

1

1 X
a3 1 a2 u(t) .
2 O/(Ll(t) _ f(t))dt — ﬁo/u(t)dt—% /tm_ldt < Mo

X
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Then
Ka(x) >

_ Ya
2a—1(1 Mg x7) .

Now, for % < a < 1, take g4 > 0 such that !N(a(x) > % forall0 < x < gq. Ifeqg < x < %
we take f(t) = —2(3 —2a)t+3(4 —2a)t? + t372% — t4722 hence u(t) = t372* — 422,

Notice that 0 < ||f||;2 < 10, so we obtain

s s 3
~ X2 —x2 _ g2 —¢l
Kao(x) > > >0
a(X) 2 10 ~— 10
33
forall eq < x < % The result follows when we take §, ;= min {i Fa e } O

Proof of Theorem 3.14. Let u be the solution of (3.27). By definition of u, we have
that v € L2(0,1) and x*u/ € L2(0,1). As in the proof of Theorem 3.4, we have that u

satisfies (3.1), w(x) = x2*u/(x) € H*(0, 1), w(0) = 0 and for any function v in Xg,

li 200 x)=0.
im 21/ () (x)

Take v(x) = x*u'(x) — u'(1). Since a > 1, we have
x*(x*' (x)) = w/(x) — ax*"Ix*/(x) € L2(0,1),
which means that v € X§. Thus we obtain

lim x3*4/?(x) = 0.
x—0t

To prove that lim xZu(x) = 0, we first claim that lim xZ u(x) exists. To do this,
x—0+ x—0F
1
we write x*u?(x) = — /(so‘uz(s))’ds. Notice that

X

(x*UP(x)) = ax® 1P (x) + 2x*u (x)u(x) € L1(0, 1).
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Therefore .
lim x*u?(x) = —/(so‘u2(s))’d5.
x—0t
0
Now, we can conclude that lim xZu(x) = 0. Otherwise, u(x) ~ x~2 ¢ L2(0, 1). O

x—0t

Before we finish this section, we present a proposition which will be used when dealing
with the spectral analysis of the operator T,. Also, this proposition gives the postponed

proof of (iii) of Theorem 3.8 and (iii) of Theorem 3.12.

Proposition 3.23. Given £ <a <1 and f € L2(0,1), suppose that u € H2 (0, 1] solves

— (X% (%)) + u(x) = f(x) on (0, 1),
u(1) =0, (3.30)

ue Lm1(0,1).
Then u is the weak solution obtained from (3.27).

Proof. We claim that x*u' € [2(0,1). To do this, define w(x) = x?>*u/(x). Then
w € HY(0,1). If w(0) # 0, then without loss of generality one can assume that there

exists 6 > 0 such that 0 < M; < w(x) < M, for all x € [0, §]. Therefore,

é 0 é
/\//1 M2
X X

X

It implies that
Mi(Ind —Inx) < u(d) — u(x) < Ma(Ind —Inx), Vx € (0, 9],

when o = %, and

My 1 1 Mo 1 1
— < — < _
200 -1 (x2°‘—1 62a—1> < u(@) —ulx) < 2a— 1 <X2a—1 52a—1> . Vx € (0,9],

: L . : 1
when a > % In either situation, we reach a contradiction with v € L22-1(0, 1). Therefore,
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w(0) = 0, so Hardy's inequality gives

1 1
2 w?(x) w?(x)
el = [P < [P <o
0

0

Since w € H(0, 1) satisfies w(0) = 0, we conclude that, in the same way as in the proof
of Theorem 3.7, that Iim+ x*%W(X) = 0. Now, integrate (3.30) against any test function
x—0

v € X§ on the interval [g, 1] and obtain

1

1 1
/x2°‘u’(x)v’(x)dx+€2°‘u’(s)v(s)+/u(x)v(x)dx=/f(x)v(x)dx.

€ €

Since 3 < a <1, we write
€220/ ()v(e) = [g2a—%w(g)} [g%v(e)} |

The estimate (3.47) tells us that

X3 v(x)‘ < Cq ||V|ly» SO We can send € — 0T and obtain

(3.27) as desired. m

3.4 Analysis of the spectrum

3.4.1 The Operator 7,

In this section we study the spectrum of the operator T,. We divide this section into
three parts. In subsection 3.4.1.1 we study the eigenvalue problem of T, for all @ > 0. In
subsection 3.4.1.2 we explore the rest of the spectrum of T, for the non-compact case

a > 1. Finally, in subsection 3.4.1.3, we give the proof of Theorem 3.19.

3.4.1.1 The Eigenvalue problem for all o > 0

In this subsection, we focus on finding the eigenvalues and eigenfunctions of T,. That

is, we seek (u, \) € L?(0,1) x R such that u # 0 and Tou = Au. By definition of T, in
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Section 3.1.6, we have A # 0 and the pair (u, \) satisfies

> =

1 1 1
/xzo‘u’(x)v’(x)dx—i—/u(x)v(x)dx = /u(x)v(x)dx, Vv e X§. (3.31)
0 0 0

From here we see right away that if A > 1 or A < 0, then Lax-Milgram Theorem applies
and equation (3.31) has only the trivial solution. Also, a direct computation shows that
u = 0 is the only solution when A = 1. This implies that all the eigenvalues belong to the
interval (0,1). So we will analyze (3.31) only for 0 < X < 1.

As the existence and uniqueness results show, it amounts to study the following ODE
for u = % > 1,

— (X% (x)) + u(x) = pu(x) on (0,1), (3.32)

under certain boundary behaviors. To solve (3.32), we will use Bessel's equation
V() +yf'(y) + (v = v?)f(y) =0 on (0,00). (3.33)

Indeed, we have the following

Lemma 3.24. For oo # 1 and any B > 0, let f, be any solution of (3.33) with parameter

V2 = (32:5)2 and define u(x) = x%*"‘fu(ﬁxlfo‘), Then u solves
—(x*U (x)) = B*(a — 1)%u(x).
Proof. Notice that by definition

0 (x) = (5 a)x A (BX) + B(1 - a)xb (B,

and thus x?*u/(x) = (3 — 0)x 2L, (Bx1%) + B(1 — a)x2 £1(Bx1%). A direct compu-

tation shows that

N

1\? 3 1
(x**u'(x)) = — <a — > X2 £,(Bx1T%) + Ba — 1)2x 2 £1(Bx1 %)

+ B2 (o — 1)2x3 (B9,
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Using (3.33) evaluated at y = Bx'~% gives
(U2 —,62X2(1_a))fu(BXl_a) _ 52X2(1_a) fU//(ﬁXl_a) _|_5X1—a ful(ﬁxl_a). (3'34)

Multiply (3.34) by (e — 1)2x®~3 and obtain

(v = 1)%07F — (= 1)) f(Bx1 %) = B2(a — 12X f(Bx1 %)

+ Bla — 1)2x "2 £(Bx1).

Thus we obtain, by our choice of v,

2
(x** (x)) = — (a - ;) Xa_%f,,(ﬁxl_o‘) + (V¥ (a — 1)2x°‘_%
— B2(a = 1)) (Bx1 )

— (_ <a _ ;)2 N 1/2(06 . 1)2> Xa—%fu(ﬁxl—oc)

— B (@ — 1)%2 ", (Bx19)
= (o — 1)°x3 £, (Bx %)

= —B%(a —1)%u(x).

The proof is now completed. L]

We will need a few known facts about Bessel functions, which we summarize in the

following Lemmas (for the proofs see e.g. [63, Chapter Ill]).

Lemma 3.25. For non-integer v, the general solution to equation (3.33) can be written

as

fu(x) = C1dy(x) + Cod_u(x). (3.35)

The function J,(x) is called the Bessel function of the first kind of order v. This function

has the following power series expansion

X\V e (=)™ X\ 2m+v
JU(X):I'(1/1—1—1)<2) +mz::1mll'(mi—u+1)<2>2 +'
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A similar expression can be obtained for J],(x) by differentiating J,(x).

Lemma 3.26. For non-negative integer v, the general solution to equation (3.33) can be
written as

fu(X) = Clju(x) + CZYU(X)- (336)

The function J,(x) is the same as the one from Lemma 3.25, and the function Y, (x) is
called the Bessel function of second kind which satisfies the following asymptotics: for

0<x <<,

n
where «y := lim <Z i- In(n)> is Euler’s constant.

n—oo \ 121
Remark 3.23. We have been using the notation f(x) ~ g(x). This notation means that

there exists constants c¢i, ¢o > 0 such that

c g < IF(X) < e lg(x)]-

Remark 3.24. Suppose that & # 1, and let 8 = VE—L  Then Lemma 3.24, 3.25 and 3.26

loe—1]"

guarantee that the general solution of (3.32) is given by

» Clx%*aJ,,(ﬁxlfo‘) + ng%*“J_u(ﬁxlfo‘) if v is not an integer,
u(x) =

Cix2~%J,(Bx1%) 4+ Cox27Y,(Bx1~®)  if v is an non-negative integer.
(3.37)

Now the problem has been reduced to select the eigenfunctions from the above family.

We first study the eigenvalue problem for the compact case 0 < a < 1.

Proof of (i) of Theorem 3.17. \We first consider the case when 0 < a < % In this case

1

notice that v = Cf:g is negative and non-integer. From theorems 3.4 and 3.5, and

equations (3.31), (3.32) and (3.37), we have that the eigenfunction is of the form

u(x) = Cx2~% J,(Bx"%) 4+ Cox2 =¥, (Bx' %)
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with B = Y=L Jim x2/(x) = 0 and u(1) = 0. Then Lemma 3.25 gives that

lo—1]"

x—0t
—v(l_
X%y (x) ~ Cg%. so the boundary condition Xlrgu x2%'(x) = 0 forces Cy to

vanish. Therefore u(x) = Clx%_o‘J,,(ﬁxl_a). Now, the condition u(1) = 0 forces 3 to

satisfy J,(B) = 0, that is 8 must be a positive root of the the Bessel function J,, for

1
a3

V= T

Therefore, we conclude that if we let j, x be the k-th positive root of J,(x), then
Uyk(x) = X%_"‘J,,(j,,kxl_a), k=1,2...

are the eigenfunctions and the corresponding eigenvalues are given by

1

Aok = 5
TR (- a)2,

k=1,2,....

Next, we investigate the case when % < a < 1. In this case, v = gfg; is non-

negative and could be integer or non-integer. Using Lemma 3.25 and 3.26, we obtain the

asymptotics of the general solution near the origin,

GiBY Cr2Y 1-2a : 1 : .
ot T prra—n X if @ > 5, and v is not an integer,
~ C18Y 2T (v)C — . 1 . .
u(x) r(uﬁ)zv — [3(”72 2 xl1—2a if & > 5, and v is an integer,

N[

r(gflgzv + 2% [InBVx) +9] ifa=

Now Proposition 3.23 says that it is enough to impose u € Lﬁ(O, 1) which forces
Cr, = 0 and u(x) = Clx%*aJu(Bxlfa). Moreover, the condition u(1) = 0 forces 3

to satisfy J,(B) = 0, that is B must be a positive root of the Bessel function J,, for

_ 2a-—1
V=35>

As before we conclude that

uyk(x) = x%*O‘Ju(j,,kxlfo‘), k=1,2,...
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are the eigenfunctions and the corresponding eigenvalues are given by

1

Ak = >,
vk 1+ (1—a)2,

k=12,....

Finally, the asymptotic behavior of j,, as k — oo is well understood (see e.g. [63,

Chapter XV]). We have

T 1 402 — 1 1
Juk 7r—|—2<// 2) 8(k7r+72r(u—é))+o<k3> (3.38)

Using (3.38), we obtain that

pe =14 (1 ay [(g( ) em) = (21 <o (1)

]

Next we consider the case a = 1. In this case, the equation (3.37) is not the general
solution for (3.32). However, as the reader can easily verify, the general solution for (3.32)

when a = 1 is given by

1 5 1 5
C1X_§+\/Z:+C2X_§_\/Zj fOI’,LL< %y
u(x) =< Cix~2 4+ Cox"2 Inx for u=2, (3.39)
Clx_écos< p,—ilnx)—k@x‘ésin( u—ilnx) for/,l,>%.

With equation (3.39) in our hands, we can prove the following:
Proposition 3.27. /f a = 1, then T, has no eigenvalues.

Proof. For the general solution given by (3.39), we impose u(1) = 0, and obtain that any
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non-trivial solution has the form:

CX%JFV%*“ <1—x2\/‘5‘“> for u < %,
u(x) =< Cx~7lInx for p = %,
Cx3 sin( u—ilnx) foru>%

for some C # 0. From here we see right away that if u > % then u ¢ L2(0,1). And when

p < 2, we obtain that

1 1
2
/u2(X)dx = CQ/X_HzV im (1 — X2V ‘5‘_“> dx.

0 0

5_ .
Let y = x°V 2 # 5o this integral becomes

/ / 1\? C? %1
2 _ 2 _
/u(x)dx-C/(l—y) dy > 4/y2dy—+oo.
0 0 0

This says that when a = 1, there are no eigenvalues and eigenfunctions. L]

Finally we investigate the case a > 1. To investigate the eigenvalue problem in this

case, we need the following fact about the Bessel's equation.

Lemma 3.28. Assume that f,(t) is a non-trivial solution of Bessel's equation
21 (t) + th(t) + (82 — vA)f(t) = 0. (3.40)

Then [° tf2(t)dt = oo, Vs > 0,Vv > 0.

Proof. We first define the function g, (t) = f,(bt), for some b # 1. Then g,(t) satisfies
the ODE

t?g,(t) + tg,(t) + (b*t* — v*)g,(t) = 0. (3.41)
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From equation (3.40) and (3.41), we have
(£ (£)9u(t) — (1) gy (1)) + t(F(t)gu(t) — £ (£)g, (1)) + (1 = b*) (1) gu(t) = O,
or

t(f) (£)gu(t) — () gy (1)) + (F(2)gu(t) — £ (£)g, (1)) + t(1 — b*)f(t)gu(t) = O,

I [0 — f)g, ()] + 11— P)i(D)gu(t) = .

Integrating the above equation we obtain

N(#)(N)gu(N) — f,(N)g,(N))
b2 -1

_s((s)gu(s) — fu(s)g,(s))
b2 —1
Nfl,/(N)f,,(bN) — beu(N)fu/(bN)
b2 —1
st (s)f,(bs) — bsf,(s)f,(bs)
B b2 — 1

N
/ t6,(£)g, (£)dt =

£A-B.

We then pass the limit as b — 1. Notice that

im A fim N(VE(BN) — bNE,(N)f(bN)

b—1 b—1 bz —1
i N2FI(N)FL(bN) — Nf,(N)FL(bN) — bN2£,(N)f/ (bN)
b—1 2b
_ NPE(N)(N) — NE,(N)FJ(N) — N2£,(N)f)'(N)
B 2
= % (N?F2(N) + N*£2(N) — v*F7(N))

and

£1(s)f,(bs) — bsf,(s)f,
im B = fim S 7 (s)f,(bs) — bsf,(s)f,(bs)
b—1 b—1 b2 —1
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(s*F2(s) + s°F2(s) — V2 F7(s)) -

N

Therefore

N
/tff(t)dt = % (N2F2(N) + N2F2(N) — 2 £2(N)) —% (sF2(s) + s°£2(s) — V2 F2(s)) -

)

Sending N — oo, we deduce from the asymptotic behavior of the Bessel's function that
(o]

/tf,,z(t)dt:oo. O

S

Proposition 3.29. /fa > 1, then T, has no eigenvalues.

Proof. We argue by contradiction. Suppose A = i is an eigenvalue and u € L2(O, 1) is

the corresponding eigenfunction, then u > 1 and the pair (u, \) satisfies (3.32). Lemma

3.24 says that u(x) = X%_O‘fu(ﬁxl_o‘) where 8 = ¥£=L and £,(t) is a non-trivial solution

a—1

of
t2 (1) + tl(t) + (t2 — v2)f,(t) = 0.
Applying the change of variable Bx!~* = t and Lemma 3.28 gives

1 1

/uz(x)dx = /xlzo‘ff(ﬁxlo‘)dx

0
1-2a

0
1 % eyl
:5(a—1)/<é> V(Ddt
B
_ L i 2 _
_52(0‘41)6/% (t)dt = o,

which is a contradiction. O

3.4.1.2 The rest of the spectrum for the case o > 1

We have found the eigenvalues of T, for all & > 0. Next we study the rest of the
spectrum for the non-compact case a@ > 1. It amounts to study the surjectivity of the

operator T, — Al in L2(0, 1), that is, given f € L2(0, 1), we want determine whether there
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exists h € L2(0, 1) such that (T—X)h = f. Since || Ta|| < 1, T4 is a positive operator, and
T4 is not surjective, we can assume that 0 < A < 1. By letting u = Ah+ f, the existence

of the function h € L2(0, 1) is equivalent to the existence of the function v € L?(0,1)

_f

By the definition of T, in Section 3.1.6, the above equation can be written as

satisfying

0/1 <x2au'(X)v’(X) + (1 - )1\) u(x)v(x)> dx = 1O/1f(x)v(x)dx, We XS (3.42)

>

Since we proved that there are no eigenvalues when o > 1, a real number X is in the
spectrum of the operator T, if and only if there exists a function f € LQ(O, 1) such that
(3.42) is not solvable. To study the solvability of (3.42) we introduce the following bilinear

form,
1

1
aq(u,v) = /Xzau’(x)v’(x)dx+ <1 — i\) /u(x)v(x)dx, (3.43)
0

0

and we first study the coercivity of ai(u, v).

Lemma 3.30. /f X > ¢, then a1(u, v) is coercive in X§.

Proof. We use Theorem 3.33 and obtain

1

a(u, u) = /(xu’(x))zdx - <i — 1> /1u2(x)dx

Thus if A > g, this bilinear form is coercive. Il

Now we can prove the next
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Proposition 3.31. For o = 1, the spectrum of the operator Ty is exactly o(T1) = [O, %]

Proof. The coercivity of ai(u, v) gives immediately that o(T1) C [0, 2]. To prove the

reverse inclusion, we first claim that (731 — A)u = —X is not solvable when 0 < X\ < %.

Otherwise, by equation (3.42), there would exist u = % and v € L2(0,1) such that

—(Pu'(x)) + (L - pu(x)=1 on (0,1),

(3.44)
u(l) =0.
Equation (3.44) can be solved explicitly as
X3 [C—(C—i—ﬁ)lnx}—i—ﬁ for =3,
u(x) =
1.
Cux"2sin (AM—F u—ilnx) +p forp>3,
here €, = a7 gjn A € and C could b | number. So we h
where C, = — 2~ sin A, = ——5— and C could be any real number. So we have
S G
that
2
(x) 1 fBOO<C—(C+ﬁ)y> dy forp=2,
u(x) — —— =
1 _
Fllez.n Cy f?oo sin? (A, +y) dy for > 2.

Notice that the right hand side above is +oo independently of C, thus proving that v ¢
L2(0,1). Therefore (T1 — A)h = —X is not solvable in L2(0,1) for 0 < XA < ¢. Also

0 € 0(T1), because Ty is not surjective. This gives [0, %] C o(T7) as claimed. O
Proposition 3.32. For a > 1, the spectrum of the operator Ty, is exactly o0(Ty) = [0, 1].

Proof. As we already know, o(Ty) C [0, 1]. So let us prove the converse. We first claim
that the equation (T, — A)u = —X\ is not solvable for 0 < X\ < 1. As before, this amounts

to solve

—(U () + (1 - pu(x) =1,

where 4 = +. Lemma 3.24 implies that u(x) = X237, (Bx1%) + 1 where 8 = ¥E—L and

a—1
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f,(t) is a non-trivial solution of
2 (t) + thl(t) + (£ — v*)f,(t) = 0.

By Lemma 3.28 we conclude that ||ul|, = co0. So (Tq — A)h = —X is not solvable when
Ae(0,1).
When X =1, take f(x) = —Ax72, where € > 0 is to be determined, and try to solve

(T — Iu = f, which is equivalent to solve
_(XQCXU/(X))/ — XE*%’
u(l) =0.
The general solution of this ODE is given by

1
- 3+e)E+e—2a)

1
- (2+e)(3 +¢e—2a)

U(X) %+E—20{ + CX—2a+1 .
We choose 0 < € < 2a—2 so that 3 +&—2a < —3. Therefore, ||u||, = oo independently
of C, thus (Tq — I)u = f is not solvable. Hence (0,1] C 0(Ty). Also 0 € o(Ty); thus

the result is proven. O

Proof of Corollary 3.18. To prove (i), it is enough to notice that when 0 < a < 1 the
operator T, is compact and R(Ty) is not closed.

To prove (ii) and (iii), by the definition of essential spectrum and the fact that T4 has
no eigenvalue when o > 1, it is enough to show that o4(Ty) C EV(Ty), where EV/(Ty)
is the set of the eigenvalues. Actually, for A € g4(T4), we claim that dim N(To —A/) # 0.

Suppose the contrary, then dim N(To — A/) = 0, and one obtains that
R(To — AL = N(TZ = XI) = N(To — M) = {0}.

Since T, — Al is Fredholm, it means that R(T, — A/) is closed and therefore R(To —A/l) =

L2(0,1). That leads to the bijectivity of T, — X/, which contradicts with X\ € 04(T). [
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3.4.1.3 The proof of Theorem 3.19

Proof. To prove (i), it is equivalent to prove that p,x > % forallk=1,2,... and v > %

Indeed, since v > % we have the following inequality (see [36]) for all k =1,2, ...

. >U+k7r 1>u+7r—1
Juk > 27 2

SO

1 m—3

1
>4 > >
U e R

. 1
(1_a)./uk = 5

Thus ok = 14 (1 —a)?2, > 3.

To prove (ii), from [36] we obtain that for fixed x > 0, we have

lim % i), (3.45)

v—oo

where i(x) := sec6 and 6 is the unique solution in (0,%) of tan6 — 6 = 7x. Using this
fact, and the definition of v, we can write

: 1\? (k)
Muk=1+(1—a)213k:1+(a—2> <U> :

14

Define vx = f (or equivalently, ay =1 — ﬁ) then (3.45) implies that

2
pm = i = 1+ (am = 3 ) 200 (14 0(1),

where o(1) is a quantity that goes to 0 as m — oo. So for fixed x > 0 we find that

(notice that m — oo implies v, — oo, which necessarily implies that a,, — 17)

1 1
Am = — —

i T 1RG0 M

It is clear from the definition of i(x), that i(x) is injective and that i((0, +00)) = (1, +00),
which gives that A(x) is injective and A((0, +00)) = (0, 2). So we only need to take care

of the endpoints, that is 0 and %. Firstly, consider j,1, the first root of J,(x). It is known
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that (see e.g. [63, Chapter XV])
1= 1/+O(u%) as v — 0o.

Consider wm = pim1 = 1+ (otm — %)2 (14 0(1)), where a;, = 1 — m and o(1) goes

to 0 as m — oo. This implies that
4 _
Am — T as o, — 1.

To conclude the proof of (ii), recall that T, is compact for all a < 1s0 0 € 0(T,). [

Proof of Remark 3.21. Notice that part (i) in Theorem 3.19 gives

sup inf |x—y|=0,
x€o(Ta) Y€ (T1)

for all % < a < 1. Therefore, it is enough to prove

lim sup inf |x—y|=0.
a—1" xeo(Ty) Y€ (Ta)

Indeed, the compactness of o(T1) implies that, for any € > 0, there exists {x;}7_; € o(T1)
such that

sup inf |x—y| < max d(x;,0(Ty)) + €
XEO’(Tl)yGU(Ta) =1,..., n 2

Then part (ii) in Theorem 3.19 gives the existence of a < 1 such that d(x;,0(Ta)) < 5

U

forallag <a<landalli=1,..., n.

3.4.2 The operator Tp

Proof of Theorem 3.16. In order to find all the eigenvalues and eigenfunctions, we need

the non-trivial solutions of

— (X% (x)) + u(x) = pu(x) on (0,1),

u(0) =u(1) = 0.
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Let vy = é:%g which is positive and never an integer. Equation (3.37) gives us its general

solution

u(x) = Clx%_o‘J,,O (Bx1™*) + CQX%_QJ_UO (Bx1™),

V=1

= Ja—1]°

where 3 The asymptotic of J,, when 0 < x << 1 yields

1) Lo
r(l/o + 1)2”0 k”or(l — Uo)

so imposing u(0) = 0 forces Co, = 0. i.e. u(x) = Clx%_o‘Juo(ﬁxlfo‘). Then u(1l) =0

forces 3 to satisfy J,,(B8) = 0, that is 8 must be a positive root of the Bessel function

1_
Jyg, for vo = 2—.

Therefore, we conclude that
1 . p—
Uyok(X) = XE*O‘JUO(J,,kal *), k=1,2,...

are the eigenfunctions and the corresponding eigenvalues are given by

1
Avok = .
KT (1 - a)2)2

l/ok

L k=1,2,....

The behavior of p,« is then obtained from the asymptotic of j,,x just as we did in

the study of the operators T,. We omit the details. O

3.A Weighted Sobolev spaces

For a > 0 and 1 < p < oo define

X%P(0,1) = {u € WLP(0,1) & ue LP(0, 1), x*u € LP(0, 1)}.

C

Notice that the functions in X*P(0, 1) are continuous away from 0. It makes sense to

define the following subspace

X%P(0,1) = {u € X*P(0,1) : u(1) = 0}.
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When p = 2, we simplify the notation and write X* := X*2(0, 1) and X& := X%‘2(O, 1).

The space X*P(0,1) is equipped with the norm

lulla,p = lull oo,y + 11X || ooy

or sometimes, if 1 < p < oo, with the equivalent norm
1

(||U||lZp(o,1) + HXCX“,HIZP(OJ)) i

The space X< is equipped with the scalar product

1
(U, V) = / (2 (x)V'(x) + u(x)v(x)) dx,
0
and with the associated norm

1
lulla = (lulZa01) + X0 [F20.)

One can easily check that, for « > 0 and 1 < p < oo, the space X*P(0, 1) is a Banach
space and X%’D(O, 1) is a closed subspace. When 1 < p < oo the space is reflexive.
Moreover, the space X¢ is a Hilbert space.

Weighted Sobolev spaces have been studied in more generality (see e.g. [50]). How-
ever, since our situation is more specific, we briefly discuss some properties which are

relevant for our study.

Theorem 3.33. For1l < p < oo, let B be any real number such that 8 + % > 0. Assume

that ue WLP(0,1] and u(1) = 0. Then

loc

IXPull s < Cop [XPF2 ] (3.46)

where Cp5 = ﬁ for1 < p<ooand Coog = % In particular, for 1 < p < oo and

0<a<l, |uly,:=Ix*|, defines an equivalent norm for X3”(0, 1).
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Proof. We first assume 1 < p < oo and write

1 1

/xpﬁ ()P dx = — /x (xP [u()[P) dx — PP+ u(e) P
1

< —/X(XPB |u(x)|p)/dx
1

1
= —/J,B/X”[3 lu(x)|P dx — p/x”ﬁJr1 lu(x)[P~2 u(x)u' (x)dx.

£
Applying Holder's inequality, we obtain

1 1
(1+pB) /XPB lu(x)|P dx < p/x”5 lu(x)|P xP+1 |/ (x)] dx < p HXBLIH,Z;1 HxﬁHU’HLp .
€

£

Then equation (3.46) is derived for 1 < p < oo and Cpp = 5. When p = o0, it is
understood that % =0and B > 0, so we pass the limit for p — oo in equation (3.46) and

obtain

1
PEull i < 5 I e
O

Theorem 3.34. For 0 < a < 1, 1 < p < oo, the space X*P(0,1) is continuously

embedded into
(i) CO15 0,1 if0<a<1-Landp#1,
(i)) L90,1) forall g < oo ifa=1-3,

(iii) L#=57(0,1) if 1 — L <a <1 andp+# co.

y
Proof. For all 0 < x <y < 1, we write |u(y) — u(x)| < / ‘sau’(s)] s %ds. By applying
X



7

Holder's inequality we obtain

X« if p=1,
ap ap -1
’yl_ﬁ—xl_ﬁ 7 if1<p<ooanda7é1—%,
lu(y) — u(x)| < Cap Hsaule [Iny — Inx|p7;1 fl<p<ooanda=1- %,
|yt = xt7o| if p=ooand a #1,
[Iny —Inx| if p=ocand o =1.
(3.47)

Then assertions (i) and (ii) of Theorem 3.34 follow directly from equation (3.47).
Next, we prove the assertion (iii) with v € X3"(0,1). Thatis, for 1 < p < oo,

1-— % <a<landuce W,i’f(o, 1] with u(1) = 0, we claim

po N ,
ol ey < pa—p+1 <a> 27 x| (3.48)

If o = 1, estimate (3.48) is a special case of (3.46). We now prove (3.48) for p =1 and

0 < a < 1. Notice that, from equation (3.46),

I ull e < [l u)'] s
< ol ]

< 2|

Therefore,
1 1
1 1 1_5 ’ . 1
[u(x)|edx === [ x|u(x)|e " u(x)u'(x)dx — lim x|u(x)|=
a x—0+F
0 0
< o e G|
T a L Lo
1l 1@ 1
< Lot e
That is

1

o
Jull, 2 < (a) 21 ||x*u ], - (3.49)
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1

Finally we assume 1 < p < oo and 1 — ; <a< 1, we proceed as in the proof of

the Sobolev-Gagliardo-Nirenberg inequality. That is, applying the inequality (3.49) to

u(x) = |v(x)|?, for some vy > 1 to be chosen, it gives

/1|v(x)|ng a S’Y<;>a21_a/l|v(x)|7_1}v’(x)|x°‘dx.
0 0

Using Holder inequality yields

1
o _1
p

1
[ ax) <a(3) 2 v, /Wv )
0

Let 2 = p(gjll). That is v = ﬁ > 1 and the above inequality gives the desired

result.

Finally, the assertion (iii) in the general case follows immediately from (3.48), because

lullp < llu— u(D)llp + u(L)], while u — u(1) € X3P(0, 1) and
()] < 27+ 1) ulla,p.

O

We would like to point out that, by the assertion (i) in Theorem 3.34, we can define,

for1<p§ooand0<a<1—%
X55P(0,1) = {u e X*P(0,1) : u(0) =u(l) =0}.

Remark 3.25. Notice that the inequalities (3.46) and (3.48) are particular cases of the
inequalities proved by Caffarelli, Kohn and Nirenberg. For further reading on this topic we

refer to their paper [18].

Theorem 3.35. Let 1 < p < oco. Then X*P(0,1) is compactly embedded into LP(0, 1)

for all a < 1. On the other hand, the embedding is not compact when o > 1.

Proof. We first prove that, for 1 < p < oo and 0 < a < 1, the space X3”(0,1) is
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compactly embedded into LP(0,1). Let F be the unit ball in X3”(0,1). It suffices to
prove that F is totally bounded in LP(0,1). Notice that, by equation (3.47), Ve > O,

there exists a positive integer m, such that
||u\|Lp(O%) <eg YuelF.
Define ¢(x) € C>*(R) with 0 < ¢ < 1 such that

0 ifx<1,
(x) =
1 ifx>2,

and take ¢m(x) = ¢(mx). Now ¢, F is bounded in W1P(0,1), and therefore is totally
bounded in LP(0,1). Hence we may cover ¢, F by a finite number of balls of radius € in
LP(0, 1), say

¢mF C | JB(gir€), g€ LP(0,1).

i

We claim that | B(g;, 3¢) covers F. Indeed, given u € F there exists some / such that

]

[omu = Gill Lo0,1) < €.

Therefore,

lu = GillLro,1) < N1@mt = Gill o 0,1y + 1t = dmull 10,1

< 3e.

Hence we conclude that F is totally bounded in LP(0,1).
To prove the compact embedding for X*P(0,1) with 1 < p < oo and 0 < a < 1,

notice that for any sequence {v,} C X%P(0,1) with |lv, < 1. One can define

lla.p
Un(x) = vp(x) — va(1) € X5P(0,1). Then

lunllgp = |[x* |l 0 = [[X*V0]| o < 1.
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What we just proved shows that there exists u € LP(0, 1) such that, up to a sub-sequence,
Up — u in LP. Notice in addition that |v,(1)[ < (2P* + 1) |lv|l, , < 2P* + 1, thus there
exists M € R such that, after maybe extracting a further sub-sequence, v,(1) — M.
Then it is clear that v,(x) = u(x) + M in LP.

We now prove the embedding is not compact when 1 < p < oo and o > 1. To do so,

define the sequence of functions

) ’
Vn(X) = <nX(l _ |nx)l+}7> ,

=) (1) w22

and

1
Clearly [[vall o1y = 1 and 1= (3)? < llunllieory < 2. Also [Ixufll o1y < 2. It

means that {un(x)}5°, is a bounded sequence in X3%(0,1) for & > 1. However, it has
no convergent sub-sequence in LP(0,1) since u, — 0 a.e. and ||u,,|\Lp(O'1) is uniformly
bounded below.

If p=o00cand 0 < a < 1, take u € X*°(0, 1) and equation (3.47) implies that
u(x) = u(y)] < Ca|[|x*U|] o Ix = y[1 7.

Therefore, the embedding is compact by the Arzela-Ascoli theorem. To prove that the

embedding is not compact for p = oo and o > 1, define the sequence of functions

Inx
——— ifl<x<r,

¢n(x) = Inn
1 ifo<x<i

We can see that ¢, is a bounded sequence in X*°°(0, 1) for o > 1. However it has no

convergent sub-sequence in L*°(0, 1) since ¢, — 0 a.e but ||pnl/, = 1. O

We conclude this section with the following density result, which is not used in through-

out this work but is of independent interest.
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Theorem 3.36. Assume 1 < p < 0.

() Ifp#£landd<a<1-— %, we have that C*°([0, 1]) is dense in X*P(0,1) and
that Cg°(0, 1) is dense in Xg5P(0, 1).

(i) Ifa>0and o >1— %, we have that C3°(0, 1] is dense in X*(0, 1).

Proof. Forany 1 < p < oo, & > 0 and u € X*P(0, 1), we first claim that there exists a

sequence {€, > 0} with lim €, = 0 such that:
n—oo
e cither |u(e,)| < C uniformly in n, or
o |u(en)| < Ju(x)| forall nand 0 < x < gp.

Indeed, if |u(x)| is unbounded along every sequence converging to 0, we would have

Iing+ |u(x)| = +o0, in which case we can define €, > 0 to be such that
X—

lu(en)l = min fu(x)],
0<x<+

thus completing the argument. In the rest of this proof, for any u € X*P(0, 1), sequence
{en} is chosen to have the above property.

We first prove (i). Assume l < p<occand0<a<1-— %. To prove that C*°(]0, 1])
is dense in X®P(0, 1), it suffices to show that W!P(0,1) is dense in X*P(0,1). Take
ue X*P(0,1). Define

u(en) If0<x<ep,
Un(X) =

ulx) ifep<x<1.
Then one can easily check that u, € W'P(0,1) and that u, — u in X*P(0,1) by the
dominated convergence theorem. To prove that C3°(0, 1) is dense in Xg3”(0, 1), it suffices
to show that W,"?(0, 1) is dense in X$5P(0, 1), to do so, we adapt a technique by H. Brezis
(see the proof of Theorem 8.12 in [10, p. 218]): Take G € C*(RR) such that |G(t)| < |¢|

and

0 if [t <1,
G(t) =

t if |t] > 2.
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For u € Xg"(0, 1), define u, = %G(nu). Then one can easily check that u, € Co(0,1) N
X*P(0,1) C Wol'p(O, 1) and that up, — v in X*P(0,1) by the dominated convergence
theorem.

To prove the assertion (ii), we notice that it is enough to prove that C3°(0, 1) is dense
in X3”(0,1). Indeed, for any u € X*P(0, 1), define ¢(x) € C§°(0, 1] such that |[p(x)] < 1

with

o(x) =

Define v(x) = u(x) — ¢(x)u(1), then v € XFP(0,1). If we can approximate v by
Vo € C3°(0, 1), then up(x) = vp(x) + ¢(x)u(1) belongs to C3°(0, 1] and it approximates
uin X3P(0,1). Soleta>1— 1 and 1 < p < oo, to prove that C5°(0, 1) is dense in
X%P(0,1), it suffices to show that W,?(0,1) is dense in X%”(0,1). To do so, for fixed

ue XHP(0,1), define
U(En)X
€n

fo<x<eg,,

un(x) =
u(x) if e, <x<1.
Then u, € Wol’p(O, 1) and on the interval (0,e,) we have either |u,(x)| < |u(x)| and
lul(x)| < “‘(X—X)‘ or |un(x)] < C and |u}(x)| < & where C is independent of n. In both
cases, since ¢ > 1 — % and x®~1u(x) € LP by Theorem 3.33, one can conclude that
Up — uin X*P(0,1) by the dominated convergence theorem.

Fora=1-— % and 1 < p < oo, again, it suffices to prove that Wol'p(O, 1) is dense in

X%5P(0,1). For fixed u e X37(0,1), define

u(en)(1 —1Iney)

if 0 <x<eg,
1—-Inx

Un(x) =
u(x) ife, <x<1.

One can easily check that u, € C[0,1] N X*P(0,1) and u,(0) = up(1) = 0. On the

interval (0, gp), we have either |uy(x)| < |u(x)] and |u),(x)| < X(|1”£X|rzlx), or |u,| < C and
lul(x)] < W where C is independent of n. Notice that by using the same trick used in

1-1
estimate (3.28), one can show that xﬁ(l —Inx)"tu e LP(0,1) forany u € X, * p(O, 1)
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with 1 < p < oo. Therefore, one can conclude that v, — v in X*P(0, 1).

The above shows that that {u € C[0, 1] N X*P(0,1) : u(0) = u(l) =0} is dense in
X%P(0,1). Finally, notice that by using the same argument used to prove (i), we obtain
that Wol’p(O, 1)isdensein {u e C[0,1] N X*P(0,1) : u(0) = u(1) = 0}, thus concluding

the proof. O
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Chapter 4

A singular Sturm-Liouville equation under non-homogeneous

boundary conditions’

(joint work with H. Wang)

4.1 Introduction
In [26] (see Chapter 3) we studied the following Sturm-Liouville equation

—(x**U'(x)) + u(x) = f(x) on (0,1),
(4.1)
u(l) =0,

where a is a positive real number and f € L2(0,1) is given. In that paper, we proved
existence, along with regularity and spectral properties for (4.1) by prescribing certain
(weighted) homogeneous Dirichlet and Neumann boundary conditions at the origin. In
order to conclude that the boundary conditions we used in [26] are the only appropriate
boundary conditions, we investigate the existence of solutions for equation (4.1) under

the corresponding (weighted) non-homogeneous boundary conditions at the origin.
Without loss of generality, we always assume that f = 0 throughout this chapter.

Consider the following (weighted) non-homogeneous Neumann problem,

—(x*U (X)) +u(x)=0 on (0,1),
u(1) =0, (4.2)

lim Yo (x)u'(x) = 1,

x—07t

This chapter has already been published in Differential Integral Equations 25 (2012), no. 1-2, 85-92.



where

and the following (weighted) non-homogeneous Dirichlet problem,

where

We have the following existence results for Eqns. (4.2) and (4.4):

,

X2 fOo<a<l,
3+v5 .

X 5 if =1,
30 xl—@ .

x2el-a fa>1,

—(x**U'(x)) +u(x)=0 on (0,1),

u(l) =0,

Iing+ ba(X)u(x) =1,

Pa(x) =

1 ifo<a<3,
-1 _1
(1—1Inx) ifa=35,
x2a-1 if% <a<l,
NG .
X1+25 ifoa=1,
a xi—2 .
X2ela if oo >1.
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(4.3)

(4.4)

(4.5)

Theorem 4.1. Given a > 0, there exists a solution u € C*°(0, 1] to the Neumann problem

(4.2).

Theorem 4.2. Given a > 0, there exists a solution u € C*°(0, 1] to the Dirichlet problem

(4.4).

Remark 4.1. The solutions given by theorems 4.1 and 4.2 are unique. This has already

been proven in [26].

Remark 4.2. As one will see in the proof, when a > % the solution of (4.4) is a constant

multiple of the solution of (4.2) and the constant only depends on a. Therefore, when o >

%, the boundary regularity of the solutions to both problems is automatically determined

by the weight function ¢, given by (4.5).
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X1—2a -1
1—-2a
for equation (4.2) and il = u+(x®—1) for equation (4.4)), both problems can be rewritten

Remark 4.3. When 0 < a < % by introducing a new unknown (e.g. i = u —

into the corresponding homogeneous problems with a right-hand side f € L2(0, 1), and
therefore the existence, uniqueness and regularity results from [26] readily apply. However,
in this case, we still provide a proof of independent interest for the Neumann problem via

the Fredholm Alternative.

4.2 Proof of the Theorems

Proof of Theorem 4.1 when 0 < a < 1.
let0<a<landl <p< é We introduce the following functional framework.
Recall the following functional space defined in [26],

X3P(0,1) = {u € WiP(0,1) : we LP(0,1),x € L7(0,1), u(1) = 0},

loc

equipped with the (equivalent) norm |ul, , = [[x*U||, ([26, Theorem A.1]). Define
E=X%3%(0,1) and F = X%'P'(o, 1) and notice that since 1 < p < oo, both E and F are
reflexive Banach spaces.

For u€ E and v € F, we define B: E—— F* by

1

B(u)v = /X2aU,(X)V/(X)dX.

0

We claim that B is an isomorphism. Clearly B is a linear bounded map with ||B(u)| g <

||ul| £, so we only need to prove its invertibility.
To prove the surjectivity of B, consider the adjoint operator B* : F —— E* given
by B*(v)u = B(u)v. It suffices to show that (see e.g. [10, Theorem 2.20]) ||v|z <

1B*(v)]
1
‘/ s~*g(s)ds. Notice that x*uj(x) = g and u(1) = 0, thus [lugllz = [|x*u

X

g+ Indeed, let g be any function in LP(0, 1) with [[g[|, = 1, and consider ug(x) :=

I,
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llgll, = 1. Therefore uy € E and by definition we have

1B%v|

g = B (v)ug

= B(ug)v

XUl (x)V' (x)dx

O O—_

x4V (x)g(x)dx.

Since the above inequality holds for all g € LP(0, 1) with ||g||, = 1, taking supremum over

all such g vyields ||v||z = [|x*V'||,, < ||B*v||g- as claimed.
F P E

To prove the injectivity of B, notice that B(u) = 0 is equivalent to
1
/XQO‘ v (x)V(x)dx =0
0

for all v € F. Taking v € C§°(0,1) C F implies that x>*u/(x) = C for some constant
C. Furthermore, by taking v € C*°[0, 1] with v(0) = 1 and v(1) = 0 gives that C = 0.
Hence v is constant and it must be zero.

Next, we define K : E—— F* by

1
K(u)v:/u(x)v(x)dx.
0

Clearly this is a bounded linear map, with ||K(u)||z« < C |Ju||g. Also since the embedding
E — LP(0, 1) is compact when o < 1 ([26, Theorem A.3]), we obtain that K is a compact
operator.

Finally, consider the operator A : E —— F* defined by A := B+K. Then, the Fredholm
Alternative theorem (see e.g. [10, Theorem 6.6]) applies to the map A : E — E defined
by A:=BloA=1Id+ B~ oK and we obtain

R(A) = R(A) = N(A*)*+ = N(A")*.
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We claim that N(A*) = {0}. Indeed, A*v = 0 is equivalent to

1 1
/xzo‘u’(x)v’(x)dx + / u(x)v(x)dx =0,
0 0

for all u € E. By taking u € Cg°(0, 1) we obtain that (x>*v/(x))" = v(x). Taking u in
C®[0, 1] with u(1) = 0 and u(0) = 1 implies that lim,_,o+ x°*v/(x) = 0. Since v € F we
have that v(1) = 0. That is, v satisfies equation (4.1) with the homogeneous Neumann
boundary condition as studied in [26]. Hence the uniqueness result applies and we obtain
v = 0. This proves that N(A*) = {0}, which implies R(A) = F*. Therefore the equation
Au = ¢ is uniquely solvable in E for all ¢ € F*.

Using the above framework, take ¢(v) = —v(0), Vv € F. Since 1 < p < é we
can apply [26, Theorem A.2], and obtain that the space F is continuously embedded into
C[0,1], so g € F*. Then a direct computation shows that the solution u € E of Au= ¢

is in fact in C°°(0, 1] and it satisfies (4.2). O

Proof of Theorem 4.1 when o« = 1.

2 _=lvh 2

. ~14/6
One can directly check that u(x) = — =X 7 R 27 solves

— (X% (x)) +u(x)=0 on(0,1),
u(l) =0,

. V5
lim x 2 u'(x) = 1.
x—07F

Proof of Theorem 4.1 when o > 1.

Define?

1
o x1—a
I(x) = xt2« /(1 - t2)2<a*1>eta—l dt
~1

and

3a-2 a 3o —2
A = — — 1 200—2 22(0‘_1) r .
(@=1) <2a - 2)

2A variant of this function can be found in [63, p. 79].



We claim that
—(x*1"(x)) +1(x)=0 on (0,1],
o lea
im x7eTa l'(x) = A
x—0t
Indeed,

1 1
a x1l-a P xl—a
I'(x) = (1 — 20)x 2 /(1 — ?)Te e aT dt — x1 3 / t(1 - )T el dt,
-1

-1

and
(x*1"(x))
1 1
a x1-e T T
=—(2-3a)x™ ¢ / t(1— tQ)metaTdt + x172a / f2(1 - tz)z(a_l)etafldt
-1 -1

1
o / x1l—a
= —(a- 1)x°‘/ ((1 — t2)m+1> e’ dt
-1
1

a xl-a
+X12°‘/t2(1 _ tQ)metaTdt
-1

ploa x1—a

1
—(@-1x® [a- - HmTets
-1

dt
a—1

1
a x1—a
+X12a/t2(1 _ ﬂ)metaﬁdt
~1

= /(x).

Applying the dominated convergence theorem gives, as x — 0T,

-
X37a 6%//(X)

89
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0
=(1-20)x*Ya— 1)% / (=2r — (a— 1)r2x°"1)2(aa—1> e"dr

_oxl—a
a—1

0
— (o —1)x*71 oz—lggg / —2r — a—1)2o‘1)(aledr

,2)(1 a
0
3a—2
—(a—1)22 / (=2r — (o — 1)r2x°‘_1)2<aafl> e'dr
_oxl—a
a-1

—(a—l)za : /( 2r)2<a De'dr

x—07t

= A.

From [26], we know that there exists a unique solution w € C*°(0, 1] for the homo-

geneous equation

—(x%*W'(x)) + w(x) = /(Al) on (0,1),
w(l) =0,
lim x3 eX11 = W '(x) = 0.

x—07F

Therefore, by linearity, u(x) = w(x) + W € C*(0,1] solves (4.2) fora > 1. [

Proof of Theorem 4.2 when 0 < a < %

From [26] we know that there is a unique function w € C*°(0, 1] solving

— (W (%)) + w(x) = —2(2a + 1)x** + (x> = 1) on (0,1),
w(l) =0,

w(0) = 0.
Then by linearity, u(x) = w(x) — (x> — 1) solves

—(x>*wW'(x))" + w(x) =0 a.e. on (0, 1),
w(1) =0,

w(0) = 1.



Proof of Theorem 4.2 when % <a<l.
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We know from Theorem 4.1 that there exists w € C°°(0, 1] solving the Neumann

problem
—(x**W(x)) +w(x) =0 on (0,1),
w(l) =0,
lim x2*w/(x) = 1.
x—0t
Define

(1 —-20)w(x) when % <a<l,
u(x) =
—w(x) when o = 3.

We claim u solves
—(x**U'(x)) +u(x) =0 on (0,1),
u(l) =0,
lim x2*"tu(x) = 1.
x—0*t

Indeed, from (4.6) we know that there exists 0 < g9 < 1 so that

3
SW/(X)SW, VO<X<EO.

1
2X2a
Since % < a < 1, by integrating the above inequality, we obtain that

Im |u(x)|= Im |w(x)| = .
lim GOl = lim [w(x)

Therefore L'Hdpital's rule applies, and we obtain that

200,/
: _ . x*d(x) 1
lim x221 = lim ————= =1, when = < a <1,
xLO*X U(X) xl>OJr 1—-2x W 2
and
_ u(x) . reon 1
xll{& I—Inx —Xlng+xu () = 1. when & = 2

(4.6)
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Proof of Theorem 4.2 when o« = 1.

. ~14V5
One can directly check that u(x) =x"2 —x 2 solves

— (X% (x)) +u(x)=0 on(0,1),
u(l) =0,

. N
lim x 2 5u(x) =1.
x—0t

Proof of Theorem 4.2 when o > 1.

We know from Theorem 4.1 that there exists w € C*°(0, 1] solving the Neumann

problem
—(x*W(x)) +w(x)=0 on (0,1),
w(l) =0,
30 xi—«
lim x2 eTo w'(x) =1.
x—0+
Define u(x) = —w(x). We claim that w solves

—(x**U'(x)) +u(x) =0 on (0,1),

u(1) =0,

. a xlze
lim x2et u(x)=1.
x—0t

o x1@
Indeed, from the boundary condition Iim+ x5 eTw w'(x) =1 we know that
x—0

Im |u(x)| = lim |w(x)| = oo,
i JuGol = lim_[w()|

therefore L'Ho6pital's rule applies, and we obtain that

30 x17@
. a xi-e . xzetla(x)
lim x2erau(x) = Im —f——F—2> =1
x—0F x—0t —5x* 71 —1
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Chapter 5

Bifurcation analysis of a singular non-linear Sturm-Liouville

equation!

5.1 Introduction

We are interested in the problem of existence of a function v satisfying the non-linear

singular Sturm-Liouville equation

—(x**u) = u+uP in(0,1),
u>0 in (0,1), (5.1)

u(l) =0,

where a > 0, p > 1 and X € R are parameters. By a solution to equation (5.1) we mean
a function u belonging to C2(0, 1] which solves equation (5.1). This will become relevant
when proving non-existence results, as no a priori assumption about the behavior of u
near the origin is being made.

As the reader will see later, it is convenient to divide the exposition into five cases:
(A) O<a<%forp>1,

1 3-2
(B) 3 <a<lforl<p< 5=,

(©)

<a<l1forp=

N|—

D) I <a<1forp>322 and
()2 p

(E) a>1forany p>1.

'This chapter is based on two unpublished articles written by the author: [?] and [?]
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The exponent
3-2a 1 2

« =1 ' o1 (52)

plays an important role, as it is critical in the sense that the weighted Sobolev space

(introduced in [26])
X¢ = X32(0,1) = {u € HL(0,1) : u, x* € L?(0,1), u(l)=0}

is embedded into L9(0,1) if and only if ¢ < 24 (this follows from the Caffarelli-Kohn-
Nirenberg (CKN) inequality [18]; see also [26, Appendix] for the treatment of this particular
case).

In cases (A), (B) and (C) our approach to prove existence results for equation (5.1)

will be to minimize the energy functional

1 1

Ixa(u) = / ]xo‘u’(x)‘2 dx — )\/|u(x)|2 dx (5.3)

0 0

over the manifold
M= Map = X§ 0 {u€ L771(0,1) : [lufl,, =1}

The solutions obtained by this method turn out to be bounded solutions and they bifurcate

to the left of the first eigenvalue of the linear problem

—(x*¢)' =Xp in (0,1),
©(1) =0, (5.4)

lim x?%¢’(x) = 0.

x—07t

We refer the reader to [26, Theorem 1.17] for a complete analysis of the spectrum of

the linear operator Ly = —(X2O‘(p’)’, but in particular, the first eigenvalue of equation
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(5.4), hereafter denoted by A1, can be characterized by

e o eGP dx  Jy xe (x)] dx

)\1 =
eeXE [y le()Pdx [ lei(x) dx

(5.5)

Further details about A; and ¢; will be given later in Section 5.2.
The above is in sharp contrast with the case a > 1, as the operator L4 has only
essential spectrum (no eigenvalues) and bifurcation becomes a delicate issue, in fact, we

prove that no positive solutions exist in this case.

5.1.1 Thecase 0 < a < 3.

In this case the embedding X$ < LPT1(0,1) is compact for all p > 1, hence a
standard variational method allows us to prove the existence of a minimizer for /5 o in M

and as a consequence the following

Theorem 5.1 (Existence and uniqueness for the Neumann problem). Suppose 0 < a < %
and p > 1, then for every A\ < A1 there exists a unique solution u to equation (5.1)

satisfying the following properties:
(i) ue C[0,1], with u(0) > 0,
(i) x>~ € C[0,1], in particular u € C*[0, 1] and v'(0) = 0,
(i) x**u" € C[0, 1].

As we mentioned earlier, bifurcation only occurs to the left of A;, and this is the

content of the following

Theorem 5.2 (Non-existence for the Neumann problem). Suppose 0 < a < % p>1and

that X > X\1. Then equation (5.1) has no solution satisfying Iim+ x?21/(x) < 0.
x—0

Observe that the above non-existence theorem requires the additional assumption

lim x%*u/(x) <O0.
x—0t
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The reason behind this extra assumption comes from the fact that equation (5.1) has

(continuous) solutions satisfying Iim+ x?21/(x) > 0 if A > X\;. This phenomenon occurs
x—0

because, when 0 < a < % one can minimize the energy functional /, » over My, the

sub-manifold of M defined by
Mo = Mapo= X5 N {u € LPTL(0,1): ull py1 = 1} ,

where X§y = {u € X§ : u(0) =0} is a well defined (closed) subspace of X& for each
O<ac< % (see [26, Appendix| for further details about this space). This allows us to

prove a second existence theorem: For 0 < a < % let A1 be the first eigenvalue of

—(x**¢') = xp in (0,1),
©(1) =0, (5.6)

Iim+ p(x) =0,

x—0

which can be characterized by

2
Mo= inf Jo X0 0P dx [t [xl ()| dx

| (5.7)
PEXS, fol lo(x)]? dx fol lo1.0(x)]? dx

We have the following

Theorem 5.3 (Existence and uniqueness for the Dirichlet problem). Suppose 0 < a < %
and p > 1, then for every A\ < X1 there exists a unique solution u to equation (5.1)

satisfying the following properties:
(i) ue C[0,1], with u(0) =0,
(i) x**~1u e C[0,1], and
(i) x**u" € C1[0,1].

Remark 5.1. Observe that property (iii) in Theorem 5.3 above only says that x°*u’ €
C'[0,1]. This does not mean that each term in (x>*u/(x))" = x?®*u"(x) + 2ax?*~1u/(x)

is continuous. This can be seen even for the linear equation (5.6), as for the eigenfunction
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2a—1 1

1,0 one has that x @y o(x) ~ x7 1 and x**¢f o(x) ~ x~1 near the origin, but due to

some cancellation of the non-integrable term, one can obtain that X2a(,0,1'0 € Clo, 1].

Remark 5.2. It turns out that Ay g > Aj forall 0 < a < % This implies that when A < A\
we have at least two distinct (continuous) solutions to equation (5.1): one satisfying
u(0) > 0 - the solution given by Theorem 5.1 - and another solution satisfying u(0) = 0
- the solution given by Theorem 5.3 (see Figure 5.2 below). However, we strongly believe
that these solutions can be embedded into a continuum of bounded solutions. This will

be the subject of a forthcoming work.

As a counterpart we have the following non-existence result, which does not require

any assumptions on the behavior of the solution near the origin.

Theorem 5.4, Suppose 0 < a < % p > 1 and that X > A1 . Then equation (5.1) has

no positive solution.

5.1.2 Thecase : <o <1

As explained earlier, in this range of a’s the embedding X§ < LP*1(0, 1) is compact if

3—2a
200—1"

and only if? p < 3;3"1‘ so it is convenient to divide the results into three cases p <

_ 3—2a 3—2a
P = 3a-1 and p > 2a—1"

o 3—2
5.1.2.1 The sub-critical case 1 < p < 5555

The embedding X§ < LPT1(0,1) is compact, so we can use a standard variational

method to prove

Theorem 5.5 (Existence and uniqueness for the sub-critical “Canonical” problem). Sup-

pose % <a<landl<p< 3;3"1‘ then for all A < A1 there exists a unique solution u

to equation (5.1) satisfying the following properties:
(i) ue C[0,1], with u(0) > 0,

(i) x**~1u' € C[0,1], in particular lim x**u'(x) =0, and
x—0t

2When a = % we are using the notation 3;3"1‘ = +o00.
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(i) x**u" € C[0, 1].
Bifurcation also occurs to the left of A1 in this case, and this is proved in the following

Theorem 5.6. Suppose % <a<1, p>1andthat X\ > \1. Then equation (5.1) has no

solution.

Remark 5.3. Unlike Theorem 5.2, no a priori behavior of u near the origin is required
in the above result. The reason behind this is that when o > % one can show that all

C?(0, 1]-solutions of equation (5.1) satisfy Iim+ x?®1/(x) < 0 (see Corollary 5.18).
x—0

5.1.2.2 The critical case p = g;i"l‘

In order to prove existence in this case, we still look for minimizers of [y o over the
manifold M. The difficulty in doing so comes from the fact that X& < L22(0,1) is
not compact and as a consequence the standard variational approach does not work. To
overcome this issue, we will follow the approach taken by Brezis and Nirenberg in [13] and

we will show that it is enough to prove that for suitable A\’'s

infly o <inflgg. 5.8
I/Q/l A TA 0, ( )

To do so, notice that
Sa = |jr\1/1l‘ lo,cx (5.9)

corresponds to the best constant in the CKN inequality Sq ||u||fza(0,1) < ||x°‘u’\|f2(oyl).
The key ingredient in proving (5.8) is to evaluate [y o at functions of the form wu.(x) =
¢(x)Ue(x), where ¢ is a suitable chosen cut-off function and Ug(x) = (e +x2_2°‘)%
corresponds to the basic extremal profile for

Sa U221 (0,00) < XU [[72(0,009 -

More details about S, and its extremal functions will be given in section 5.2 below.

Theorem 5.7 (Existence and uniqueness for the critical “Canonical” problem). Suppose

% <a<1andthat p= S;E"l‘ Then there exists N}, € [0, A1), such that if X\ € (A, A1),
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then equation (5.1) has a unique solution satisfying:
(i) ue C[0,1], with u(0) > 0,
(i) x**~1u' € C[0,1], in particular lim x**u'(x) =0, and
x—0*t
(i) x**u" € C[0, 1].

Remark 5.4. The number A}, can be defined by
N, ifl<a<d,
0 f3<acx<l,

where A}, > 0 is a continuous function of o for all % <a< % The number A}, can be

explicitly computed by

¢ » fol ‘xl_aw’(x)‘z dx fol ‘xl_o‘lp(’x(x)‘z dx
= In = .
ST yexi [ X2 P dx [ [xE22ehe (x))? dx

(5.10)

We will show that A\, — 0 thus making A} a continuous function of a, and that
a—3"

A%, — A1) —2, 0 (see Figure 5.1). Further properties of A}, and 1, will be given later in

a—;

section 5.2.

\ - =X
\o
\‘
\0
N
1,02
367 N,
\-
\0
\4
~

T T 1

1 2 3

2 3 7

Figure 5.1: X1y and A}, when % <a< %

On the other hand, we have the following non existence result



100

Theorem 5.8. Suppose % <a<l p= 3;301‘ and that X < N}. Then equation (5.1)

has no solution.

5.1.2.3 The super-critical case p > 322,

When p > S’E‘}

we can no longer use the previous approach to prove existence of
positive solutions. The reason is that the space X§ is not even embedded into LPT1(0, 1).
Instead we have available the global bifurcation result of Rabinowitz [54, Theorem 1.3]
which tells us that there exists a branch of bounded positive solutions (X, u) emanating
from (A1,0) and going to infinity in R x CJ[0, 1], but no further information is obtained
from this abstract result of Rabinowitz.

One thing that can be easily seen is that the branch emanating from A; must be

bounded below in its A-component, and this is the content of the following

Theorem 5.9. Suppose % < a <1 andthat p > 2;3"1‘ Suppose A < 5\&,,3, where

1 1
Rap = A | 2 PHL
o,p -— N1 1 y
p+1

then equation (5.1) has no solution.

N|—=

Remark 5.5. If one defines Ao, = inf {\ > 0: Eq. (5.1) has a solution}, then Theorem
5.9 shows that Ay < Aq,p, however, numerical computations indicate two things: that
the inequality is strict, i.e., Xa,p < Xa,p (see Figure 5.5 below), and that for every Xa,p <

A < A1 at least one solution to (5.1) exists. This lead us to raise

Open Problem 5.1. Is it true that for f\a,p one has that for each Xa,p < X < Ap there
exists a solution uy to (5.1)? More precisely, we believe that for A = f\a,p a unique solution
exists, and that there exists € > 0 small enough such that for g, < A < Ag.p+€, exactly

two solutions exist.

5.1.3 Thecase o >1

Before presenting the main result for this case, it is important to emphasize the distinc-

tion between o < 1 and o > 1. As seen in [26], the main difference that can be observed
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between these two cases is that the spectrum of the linear operator £, under the homo-
geneous boundary conditions given in equation (5.4) consists only of isolated eigenvalues
when a < 1, but, because of the lack of compactness of the operator T, (= (Ea)*l, the
spectrum becomes a continuum when o > 1, in fact, the spectrum has no eigenvalues in
this situation.

As we have established, the solutions obtained when 0 < a < 1 are solutions that
bifurcate from the first eigenvalue of the operator £,. This phenomenon is in concordance
with results about global bifurcation from isolated points in the spectrum (see for instance
[31, 54]). However, when o > 1, the spectrum of L, is purely essential and has no isolated
points: 0(L1) = 0e(L1) = [% 00) and 0(Lq) = 0e(La) = [0,00) when o > 1; and the
results mentioned above do not apply.

Besides the lack of compactness and the lack of isolated eigenvalues of the operator
Ly, one has that for every p > 1 we are dealing with what can be considered a super-
critical equation. All these conditions seem to be very restrictive and as a result we obtain

that there are no positive solutions, as the following theorem shows.

Theorem 5.10 (Non-existence when o« > 1). Leta > 1, p > 1 and X be real constants,

then equation (5.1) has no solution.

Remark 5.6. In fact one can show a much stronger result, as our proof of Theorem 5.10

allows us to show that the equation

—dY = xu+|ulP e in (0,1),
u(l) =0,
u has finitely many zeros,
has no solution forany a > 1, A€ R and p > 1.

It is worth mentioning that Theorem 5.10 is in sharp contrast with the work done by
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Berestycki and Esteban in [?]. In that article, the authors study the model equation

—x2U"(x) =Au+uP  in(0,1),
u>0 in (0,1),

u(0) = u(1) =0,

which can be regarded as a simplified version of the Wheeler-DeWitt equation. In [?],
the authors prove, among other things, that the above equation has uncountably many
solutions when 0 < A < %. Their result put alongside Theorem 5.10 shows that the first
order term —2xu/(x) plays a crucial role in the existence question.

Even though we did not use general tools from bifurcation theory, it is important to
remark that bifurcation from the essential spectrum is a topic that has been studied greatly
in the past. One of the founders of the research in this area is C. Stuart who started
studying such phenomenon in the '70s. The interested reader might want to check the
nice papers written by Stuart himself [57, 58] and the references therein. We also refer
to the series of papers published by Stuart and Vuillaume [59, 60, 61] where bifurcation

from the essential spectrum of a non-linear Sturm-Liouville equation is studied.

5.1.4 Connection with an elliptic equation in the ball

The results from Theorems 5.5 and 5.7 suggest that equation (5.1) is closely related

to the elliptic equation

—Av=2XAv+VvP inB(0,R) c RV,
v>0 in B(0, R), (5.11)

v=0 on 0B(0, R),

where A € R, p > 1, R > 0 and B(0, R) denotes the ball centered at the origin with
radius R. In their celebrated work [13], Brezis and Nirenberg proved, among other things,
that for the critical exponent p = % the dimension plays an important role in the

existence/non-existence question. They showed that when N > 4 a solution to equation
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(5.11) is guaranteed to exist if and only if® 0 < A < A;(—A); but when N = 3, they
proved that existence only occurs if A* < XA < A;(—A), where \* = %Al(—A) > 0.

The phenomenon described above is exactly the same as the one occurring for equation

(5.1) when p = g;fol‘ as if % < a < 1, existence only occurs when 0 < A < A1, and
if% <a< %, solutions only exist when A} < A < A1, with A}, > 0. An explanation
for this connection can be seen by means of a change of variables. Recall that by the
result of Gidas, Ni and Nirenberg [38], all solutions to (5.11) are radially symmetric, hence

v(r) = v(|x]|) satisfies the ODE

N—1
—v" - vV =xv+vP in(0,R),
v>0 in (0, R), (5.12)
v(R) = 0.

Now, for 0 < a < 1, let u be a solution to equation (5.1) and consider r = (1—a)~1x*~2,

Define w(r) = u(x), then a direct computation shows that w is a solution to

Nog — 1
—w" — ar w = Aw +wP in (0, Ry),
w >0 in (0, Ra), (5.13)
w(Ry) =0,

where Ny = (1 —a)~ ! and Ry = (1 —a)~!. Hence, when Ny is an integer (that is when
o= % % %, ...) the ODE satisfied by w is exactly equation (5.12).

The literature about equation (5.12) is extensive. For instance, regarding the existence
of solutions to (5.11) in the sub-critical case (p > 1 when N = 1,2 and p < % when
N > 3), we can mention the works of Berestycki [9], Castro and Lazer [22], de Figueiredo,
Lions and Nussbaum [33], Esteban [37] and Lions [43] among others. Most of these
results are quite general as they apply to general bounded domains and a large class of

non-linearities with sub-critical growth. However, it is apparent to us that the case of

non-integer dimension for equation (5.12) has not been covered in the literature, and the

3The number A;(—A) denotes the first eigenvalue of —A in B(0, R) under Dirichlet boundary condition.
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results from Theorems 5.1, 5.3 and 5.5 seem to close that gap in this case. In particular,
when 1 < N < 2 we have the existence of at least two bounded solutions satisfying
equation (5.12), one of them satisfies v(0) > 0 and v/(r) ~ r for r ~ 0 and the other
satisfies v(0) = 0 and v/(r) ~ r'=N for r ~ 0: notice that since 1 < N < 2, this second

solution has a singular derivative at 0 (see Figures 5.2 and 5.3).

lusll o [lunll o

2 0 A1 2 0 A1,0

(a) Neumann: a = % and p = 4. (b) Dirichlet: a = 7 and p = 4.

N

L
T

2 0 5\1 >\‘1.0
(c) Diagrams 5.2a and 5.2b together.

Figure 5.2: Bifurcation diagrams when 0 < o < 3 and p < g;iq

For the critical case, N > 3 and p = % the behavior of the branch of solutions
emanating from A1(—A) has been fully understood in the case of the ball. We have
already mentioned the result of Brezis and Nirenberg [13], and the interested reader
might want to check the works of Atkinson and Peletier [3, 4], Bandle and Benguria [5],

Bandle and Peletier [6], Benguria, Frank and Loss [8], Brezis and Peletier [14, 15], Cao
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llunlloo llunllo

~ 1.6242. ..

2 0 2 0 A
(a) a =3 and p = 6. (b) =2 and p=3.

Figure 5.3: Bifurcation diagrams when % <a<landp< 3;301‘

and Li [20], Capozzi, Fortunato and Palmieri [21], Cerami, Fortunato and Struwe [29]
and Cerami, Solimini and Struwe [30], Mancini and Sandeep [44] for further reference
on related problems. However, to our knowledge, the fact that the bifurcation picture
when N = 3 is different from the case N > 4 has not been fully generalized to cover the
case of non integer dimension N in equation (5.11). In [53], Pucci and Serrin suggest
that the non-existence part of their result should hold for any dimension, but an improved
version of the identity shown in [52] was required to support their claim; nonetheless, if
one formally extends the identity from [52] to cover non-integer dimensions, the result
that one obtains is not sharp. Theorem 5.7 provides a sharp answer to both the existence
and non-existence questions in any dimension N > 2. In fact, our result implies that the
sharp lower bound for which solutions to equation (5.11) exist is given by a continuous
function \* = X*(N) which is identically 0 for all N > 4, positive when 2 < N < 4 and
IA*(N) — A1 (=A)| — 0 as N — 27 (see Figures 5.1 and 5.4).

For the super-critical case, N > 3 and p > % Rabinowitz [55], Brezis and Nirenberg
[13] and Pucci and Serrin [52] proved that there exists a constant Ay, > O such that
equation (5.12) has no solution when A < 5\,\,,,3. Their proofs are general enough to work
on any bounded domain 2, but the case of a ball was not considered separately and as
a consequence non-integer dimensions were not studied. To our knowledge this gap has

not been closed, and Theorem 5.9 provides a proof of that, in fact, ;\N,p > 0 is defined
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10 4 35 |

(a) a =2 and p=5. (b)a=2and p=2%.

20
—1-

Figure 5.4: Bifurcation diagrams when % <a<landp= g;

for all N > 2 and all p supercritical. However, as mentioned earlier, we strongly believe
that his lower bound is not sharp (recall Open Problem 5.1; see Figure 5.5 below).

On the other hand in terms of the existence question, a complete understanding of
the branch of solutions emanating from A1(—A) has not been fully developed in the super-
critical case. Among the interesting results that can be found in the literature, it is worth
mentioning the work of Budd and Norbury [16], who, for N = 3 and p > 5, describe
the behavior of the branch for large values of ||v||., and show that the branch oscillates
about a unique value A* > 0, which is also the asymptotic value of the branch. They
also characterize A* as the unique A for which a singular H} solution to equation (5.12)
exists ([16, Lemma 4.1]). Later, Merle and Peletier [46] showed that such A* > 0 can
be found for every (not necessarily integer) dimension N > 2, and Zhong and Zhao [?]
fully generalized the result of Budd and Norbury for any dimension 2 < N < 6 and only
partially in the case N > 6. Other interesting results about the super-critical case can be
found in the works of Budd and Peletier [17] and of Merle, Peletier and Serrin [47].

In terms of uniqueness, the results in [16] and [?] imply that for N > 2 and p > %
uniqueness in not necessarily true (see Figure 5.5). On the other hand, if N = 2 and
p>lorif N>3and1<p< % uniqueness of bounded solutions to equation (5.11)
was shown in the collective works of Adimurthi and Yadava [2], Kwong and Li [42], Ni and

Nussbaum [49], Srikanth [56], Yadava [64] and Zhang [65]. However, the case 2 < N < 3
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1

A1 0.655 0.961
(a) a =2 and p = 6.
10

llunlloo
10 4

A1 0.788 0.842
(b) =2 and p=6.
10

=
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a.p A1 0.5736471 0.5736473

(c)a= 5 and p=6.

3—2a

Figure 5.5: Bifurcation diagrams when % <a<landp> 5=
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was not considered in those proofs. Also, since Theorems 5.1, 5.3, 5.5 and 5.7 give
existence to solutions to (5.12) for each N > 1 and p sub-critical and critical, a proof of
uniqueness in all these cases must be provided.

We would like to emphasize that our proofs do not rely in the change of variables
introduced before, instead we work directly with equation (5.1). This approach allows
us to study the cases 0 < a < 1 (or N > 1 if one thinks of equation (5.12)) all at
once, and most importantly, it allows us to go beyond the o« = 1 barrier (notice that
the change of variables does not work for o = 1). When a > 1 one could still use the
change of variables, but the nature of equation (5.13) would change, as the coefficient
Ny — 1 becomes negative and the domain becomes the unbounded interval (—oo, Ry). By
avoiding the use of the change of variables we were able to prove that equation (5.1) has
no solutions when a > 1, regardless of X and p > 1 with no major effort (Theorem 5.10).
Also, by treating equation (5.1) directly, we shed some light into what might happen for
more general degenerate elliptic operators in higher dimensions.

The rest of this chapter is divided as follows: in section 5.2 we introduce some prelim-
inary results needed to prove the existence/non-existence part of our theorems. Section
5.3 deals with the proof of Theorems 5.1, 5.2, 5.5 and 5.6. Next in section 5.4 we prove
Theorems 5.7 and 5.8. In section 5.5 we handle the super critical case and prove Theorem
5.9. Next in section 5.6 we prove the non-existence result for a« > 1, and in section 5.7
we prove Theorems 5.3 and 5.4. Later in section 5.8 we begin to explore the uniqueness

question to then prove the uniqueness part of our theorems in sections 5.9 and 5.10.

5.2 Preliminaries

5.2.1 Eigenvalues and Eigenfunctions

We begin this section by giving some properties of A1 and ¢ defined at (5.5). Notice

that w1 = (\1)~! corresponds to the first eigenvalue of the operator Ty : L2(0,1) —
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L2(0, 1) defined by Tof = u, where u is the unique solution of

1 1
/xzau’(x)v’(x)dx —/f(x)v(x)dx, for all v e X§.
0 0
The operator Ty := To + | was studied in [26], where it was shown that T4 is compact
if and only if @ < 1, and in that case the eigenvalues and eigenfunctions of T, are
completely determined (see [26, Theorem 1.17]). From that result it is easily deduced
that when 0 < < 1,

A= (1— )%, (5.14)

where jj,1 is the first positive zero of J, : (0, +00) — R, the Bessel function of the first
kind of order v (see [63] for a complete treatment of Bessel functions and its properties),

and v is defined in terms of o by

(5.15)

The corresponding eigenspace is generated by ¢1(x) := x%_o‘J,,(j,,lxl_o‘), and about this

function we have
Lemma 5.11. For 0 < a < 1, and A\ and @ as above we have that @ satisfies
—(x**¢') =X in (0,1),

p(1) =0, (5.16)
o0 =0
together with the following properties:
(i) p1 € C%2722[0, 1],
(i) x>*~tp} € C[0,1],

(iii) x**¢! € C[0, 1], and

(iv) 1 >01in[0,1).
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Proof. The fact that ¢1(x) = x%*aJu(julxlfa) solves equation (5.16) follows from [26,

Theorem 1.17]. We have the following series expansion of J,(y) near the origin

e (71)m 2m-+v
Joly) = n;) mlr(m+v+1) <g> ' (5.17)

which can be found for instance in [63, p. 40], from here we deduce that

0= 35 e E (12} i
m:Om!F(m—i—1+1/) 2

The regularity properties are readily deduced from this series expansion. Finally, the
positivity of 1 can be obtained from the explicit formula and the fact that X\; is given by

(5.14). We omit the details. m

On the other hand, when 0 < a < % one can also define A1 and @10 as in (5.7).
In this case p1 9 = (Alvo)_l corresponds to the first eigenvalue of the operator 7~—o¢,0 :

L2(0,1) — L2(0, 1) defined by T4 of = u, where u is the unique solution of

1 1
/Xz"‘u’(x)v’(x)dx :/f(x)v(x)dx, for all v e X&.
0 0
The operator Ty 0 = 7~—a,0 + | was also studied in [26], and it was shown that T4 is
compact for all 0 < a < % and that the eigenvalues and eigenfunctions of T, o are fully

determined (see [26, Theorem 1.16]). From that result we obtain that for 0 < a < %
Ao=(1—a)j,. (5.18)
where as before j,,; denotes the first positive zero of J,,, the Bessel function of the first

kind of order vy, and g is defined in terms of a by

1—2a
= . 5.19
o 5~ oax ( )

Notice that —% <v <0< < % where v is the value used to define A1. From

this observation one can see that A1 < A\;p forall 0 < a < % Now the corresponding
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eigenspace is generated by 1 o(x) = x%*O‘JUO(jUlelfo‘), and about this function we

have

Lemma 5.12. For0 < a < % and \1,0 and 1, as above. Then 1 o satisfies
—(x**¢) = X100 in (0,1),
(1) =0, (5.20)
g o9 =0
together with the following properties:
(i) 10 € CO172%0,1],
(i) x**1p10 € CHO, 1],
(iii) x**¢} o € C'0, 1], and
(iv) ¢1,0>01in(0,1).

Proof. The fact that ¢ 9(x) = x%*"‘JU0 Uve1x1™%) solves equation (5.20) follows from

[26, Theorem 1.16]. Using the series expansion for J,,(y) given in (5.17) we deduce that

. (71)m J' L 2m+vyg ( )
p1,0(x) = x mz:omlr(m+1+l/o) ( 2 > g |

The regularity properties and the positivity of ¢19 can be obtained from the explicit

formula and the definition of A1 o. We omit the details. OJ
As announced in the introduction, we need to study A}, and v defined by (5.10). We

have the following

Lemma 5.13. Let % <a< % and define X}, as in (5.10), then the infimum is achieved

by a function ¢4 € Xé_o‘ which satisfies the following equation

_(X272a,¢/)/ — >\ZX274a'l/J I'n (O, 1)’
¥(1) =0, (5.21)

I' 2—2a,,/ — O
)
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Moreover, N5, = j2,,(1 —a)?, and Ya(x) = x*~2 J_,(j_,1x1~%), where j_,1 denotes the
first positive zero of J_,, and v is defined by (5.15). About 1, we have the following

properties
(1) Yo € CO272]0, 1],
(i) x*y, € C[0, 1], and
(iii) Yo > 0in [0, 1).

Proof. First notice that the embedding X~ into {9 € L},.(0,1) : [|x}72*%|| , < oo}
is compact (this follows from [26, Theorem A.2], because X3~ ® —» CO'O‘*%[O, 1] cc
C°[0, 1]). With that in mind, it is easy to see that the infimum defining A% is achieved
by a function ¥, which must satisfy equation (5.21). Now, a direct computation shows

that if £ solves Bessel's equation

y2f”+yf’+(y2—u2)f:O,

. _ _1 V2
with parameter v = %32;, then x®~2f (1_(;‘)(1 °‘> solves

_(X2—2CX¢/)/ — >\:<XX2—4OL,LI}'

Since % <a< % we have that 0 < v < 1, hence the general solution to Bessel's equation
is given by

f(y) = Ad(y) + BJ_u(y),

where J,(y) is defined in (5.17). The above implies that 94 is given by

A VA
Ya(x) = x*72 | A, | Yo%) 4 BU, [ S exie
l-a l-«
for some constants A, B. The series expansion (5.17) tells us that in order to meet the
boundary condition x?~2%)/ (x) —0>+ 0 one has to set A= 0. The condition 94(1) =0
X—>

implies that

>‘:; - (1 - a)z.jgul’
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where j_,1 is the first positive zero of J_,. Without loss of generality, we fix the solution
to be the one with B = 1. The regularity properties are obtained from the series expansion

(deduced from (5.17))

w (X) — i (_1)m J'ful meux2m(1_a)
o —mlf(m+1-v) \ 2 ’

we omit the details. The positivity is readily obtained from the definition of A} and 1q.
About A}, notice that j,; depends continuously on v (in fact the dependence is analytic
as one can see in [35] or in [63, p. 507]), then A% depends continuously on «; also, from

[51] we deduce that
AL =2(1—a)(3—4a)+0((3-4a)?),

therefore A, — 0 as a — %_. Also, since j_,1 < jy1 for all 0 < v < 1 we deduce that
Ay < A1. Finally, notice that when o — %Jr one has v — 0T, hence it is easily seen that

A1 — A% —, 0. This proves the conclusion of Remark 5.4 O

1
a—;

5.2.2 Best Constants and extremals
Another topic that needs to be addressed before proving our results concerns the best
constant and extremals for (5.9), or in general for inequalities of the form

Cllullza(o,a) < HXO‘”,HB(o,a)'

where a > 0. Let X§(0,a) be the set of functions u € H% (0, a] such that u, x*u' €
L2(0,a) and u(a) = 0 (when % < a < 1, one could also define this space as the closure

of Cg°(0, a) under the norm |[x*¢/||,, this follows from [26, Theorem A.4]). Define

aij ol 2
d
Sa(a)i= inf o PEUCITAX
EEOD (3 uor dx) =
0

Concerning S4(a) we have the following
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Lemma 5.14. Let% <a <1, a>0and Sy(a) as above. Then Sy(a) = Sa(1) for all
a > 0, the infimum in the definition of Sy(a) is not achieved unless a = +oo, in which

case the basic extremal profile is given by

1-2a

U(x) = C (1+x72%)22=
or after scaling, for every € > 0 by
2o

Ue(x) = Ce (& 4 x2720) 72 (5.22)

where C and C, are normalization constants. Moreover, we have that

. P 2-2a
Sy = (20— 1 do V(LA yPR) T dy [ 1 r (2_12a)]
a 1

- 7 = (Ra—-1) .
(fooo (1 +y2—2a)*m dy>2 ! 2 -2« F(L)

where I denotes the Gamma function.

Proof. To see that S(a) = S(1), notice that the quotient ||x°‘u’||§/||u||§a is invariant
under the scaling uy(x) = w(ax). To prove that the infimum is not achieved when
0 < a < 40, notice that it is enough to prove it for a = 1, and in that case the proof
will be done later when proving Theorem 5.8 (also check [19, Section 4] where a different
approach is taken).

To prove that the infimum is achieved when a = +o0, we use a result from [28,
Section 7.1], where the authors study best constants and extremals for the Caffarelli-

Kohn-Nirenberg inequalities

p

/’X‘bu(x)’pdx < C(a, b)/’x‘au’(x)‘zdx,
R

R

for a < —%, a +% <b<a+1landp= 2@7723)71. Using their result it is easily deduced

that the extremals are of the form (5.22). Finally, (5.23) is just a direct evaluation of

||x"‘U’||§ / ||U||§a using the definition of the Gamma function. We omit the details. [
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5.2.3 A Pohozaev type identity

The purpose of this section is to establish a family of Pohozaev type identities satisfied

by all solutions of

—dY =xu+|ulP e in (0, 1),
(5.24)
u(l)=0.

To do this, for each B € R, let us define the “energy” functional

2a+1+[j’ / s
Exp(u)(x) = U7+

- 5 (2a —1 —B) x**P/ (x)u(x) — g (2o — 1 —B) x?2 1By (x)?  (5.25)

A
B4 Ju(x)|P 1 42X u(x)?

and prove the following

Lemma 5.15. Leta >0, p>1and B, X € R. Let u be a solution of equation (5.24),

then, for every x € (0,1) one has

%Ul(l)z = Em(“)(x)JFA(l—aJrﬁ)/lsﬁu2+((ﬁ+ 1) (25;;310 - a) /155 [P+

1

+ 'g (B2 — (2a — 1)?) /52a2+ﬁu2.

X

Proof. Multiply equation (5.24) by sPu(s) and integrate over (x, 1) to obtain

1 1

1
>\/sﬁu2+/sﬁ|u|erl :/ 20/ (Pu) + x* P (x)u(x)
X

X X
1

1
/ 2a+[3+1 "y /52a+ﬁul2 2a+B /(X)U(X)

X
1
:_g(2a+5_1)/ 20— 2+ﬁ 2+/ 2a+ﬁul2 2a+ﬁ /(X)LI(X)
X

_ §X2a—1+ﬁu(x)2,
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hence

1

1 1 L
/S2a+[3u/2 _ >\/U2 + / |U|p+1 + 2(205 +8— 1)/52a—2+ﬁu2 2a+[3 /(X)U(X)
X X X

X

+ §X2""1+ﬁu(x)2. (5.26)

Now multiplying equation (5.24) by s*11/(s) and integrating over (x, 1) gives

1 1 1

>\/5[3+1uu/+/sﬁ+1u|p1 uu/:/ 2a /(5[3—1-1 /) 2a+1+ﬁ /(S)
X X X
11 = 1Is.

After integrating by parts, we obtain that

1

1
A +1 A
lh = —5(6 +1) /55u2 _b+l /sﬁ lulPTt — EX‘BHU(X)2 -
X

1
= B+l |u(x)|p+ .

p+1 p+1

X

and that

1

I, = (6"‘1)/ 2a+6 /2 /S2a+ﬁ+1uluu

X

1
2 1 1
_ (B+1)/52a+ﬁU12 o 06—1—2 +ﬁ /S2a+ﬁul2 2 2a+1+B /(5)2

1 1
— 2(5+1_2a)/52a+ﬁul2 /(1)2+ 2X2a+1+5 /(X)z

Combining the results of /; and /5 yields

1

1 1
1 A 1 A
S+ 1-2a) [P = Fpr) [0 - gL/SB 0P = 2P ()2
X X

X

1
_ mXﬁ-i—l |U(X)|p+1 (1)2 2a+1+ﬁ /(X)2 (5.27)

The result is then obtained from (5.26) and (5.27). O
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Remark 5.7. For simplicity we have stated and proved the result if the equation is satisfied
in the interval (0, 1), however, the result remains valid if we replace the interval (0, 1) by

any interval of the form (0, a), a > 0, that is: Suppose u solves

—0PdY =au+|ulPr e in (0, a),

u(a) =0,

then forall 0 < x < a

%u’(a)2 = Exﬁ(u)(x)+>\(1—a—|—[3)/sﬁuz—l— <(ﬁ +1) (25;:_31)> - oc) /sﬁ lu|PH?
+ g (8% — (2a — 1)?) /520‘_2+ﬁu2.

X

5.2.4 Some regularity results
We continue with some regularity results for u € C2(0, 1] solving
—(x**u) = Au+uP in(0,1),

u>0 in (0,1), (5.28)

u(l)=0.

Lemma 5.16. Let o > % and suppose u € C?(0,1], u(x) >0 forall 0 < x < 1. Then

there exists a sequence 0 < x, < % such that

x2%1 (x,) <

S|

Proof. By contradiction, assume there exists r > 0 such that x°*u/(x) > r for all 0 <

x < r, then after integrating, we obtain that for all x < r

u(r) > u(x) + (x1*2°‘ _ r172a) > C,x12,

(2a—1)
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when o > % and that
u(r) > u(x)+rinr—rinx > —Crlnx,

when a = % for some constant C, > 0. By letting x — 0T, we obtain that that

u(r) = +oo, contradicting the fact that u € C2(0, 1]. O

Lemma 5.17. Let o > % p > 1 and X € R. Suppose u solves equation (5.28), then
ueLP0,1).

Proof. Integrate equation (5.28) over [x,, 1], where x,, is taken from lemma 5.16 to obtain

1 1

1

)\/u+/up = /(1) + x2%U' (xy) < _Ul(1)+ﬁ'
Xn Xn

If X > 0, by taking the limit as n — oo we obtain

1 1
A/u—i—/upg—u’(l),
0 0

hence u € LP(0,1). If A < 0, notice that for all 0 < x < 1 we have [} u < <f; up) :

T

therefore .
1 b 1 1 1
1
A(ﬂ/up +/up§>\/u+/up§—u’(1)+n,
n Xn Xn Xn
thus
1 p—
1 b 1 e
/u” A+ /u” < —u'(1),
0 0
and since p > 1, we deduce from here that fol uP must be bounded. ]

Corollary 5.18. Let a, p, X and u be as in lemma 5.17. Then L = Iim+ X221/ (x) exists
x—0

and L <0.
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Proof. Notice that by integrating equation (5.28) one obtains

1 1

X2 (x) = u’(l)—l—)\/u(s)ds—l—/u(s)pds,

X X

but since u € LP(0, 1), the right hand side converges, so L = Iim+ X221/ (x) exists. Finally,
X

—0

using x, from lemma 5.16 one gets L < 0. ]

Corollary 5.19. Let a > % ANER, p> % and suppose u solves equation (5.28).

200—

Then L = lim x?>*u'(x) = 0.

x—0F
Proof. Suppose there exists § > 0 such that x>*u/(x) < —§ for all x < §. Integrating
this inequality yields

u(x) > 2

> o - (X1—2cx _ 61—20:) > C6X1—2ozv

thus u(x)? > Cex(172%)P  but since p > 515 we obtain that (1 — 2a)p < —1, a
contradiction with the fact that v € LP(0,1). Hence there is a sequence such that

x2%u' (xp) > —%, so L > 0; but we already knew that L < 0. O

Corollary 5.20. Let o, p and X as in lemma 5.17. Suppose u solves equation (5.28).

Then x**~1u = O(logx) ifa = % and x**71u = O(1) ifa > 3.

Proof. Since x>*u/(x) = O(1), the result follows from integration. We omit the details.

O

The next lemma shows that positive solutions are monotone near the origin when p is

large enough.

Lemma 5.21. Let o > L, X € R, p > 2, — 1 and u be a solution to equation (5.28).

Then there exists 0 < X < 1 such that u'(x) # 0 for all 0 < x < X.

Proof. If u = 0 there is nothing to prove, so we assume that u # 0. We start by proving

that there exists 0 < xp < 1 such that for all x < xg, either v/(x) # 0 or u”(x) < 0. The
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proof of this is by contradiction, so we assume that there exists a sequence x, — 0 such

that v/(x,) = 0 and that v”(x,) > 0. From the equation we then obtain that
u(xp) + u(xy)P = —x2%u" (x,) — 2ax2* 1/ (x,) < 0.

Thus, if A > 0 we obtain that u(x;) = ¢/(x1) = 0, this and the existence and uniqueness
theorem for ODEs imply that v = 0, a contradiction. On the other hand if A < 0, the
above inequality implies that u(x,) < (—A)fﬁ for all n > 1. The Pohozaev identity from

lemma 5.15 with 8 = 0 and € = X, gives that

1 1
%u'(1)2 — Eyo(u)(x) = (1 — @) / 2+ G ot pi1> /up+l,

Xn Xn

but, since A < 0 and p > 24 — 1 we obtain that the right hand side is non-positive, hence
1
§Ul(1)2 < Exo(u)(xn).

But

1
SR SR ()

+ <a - ;) X2 () ()

Exolu)(xn) = xou()? +

=o(1)

as x, goes to 0, since v/(x,) = 0 and u(x,) = O(1), thus proving that ¢/(1) = 0 (and as
a consequence, u = 0), also a contradiction. So we have the existence of such xp.

The above proves that all critical points less than xg are local maxima, so the only
possibility is that there is at most one of them (if there were two local maxima, there must

be a local minima in between). This shows that v/(x) # 0 for all x near the origin. ]

Lemma 5.22. Let o > % p>24—1and X € R. Suppose u solves equation (5.28).
Assume in addition that there exists € > 0 such that x ¢uP € L1(0,1). Then for any

7<min{2a—1—1—;5,1—1—;5} one has
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(i) xYuP e L1(0,1),
(i) x**=2=Yu € L1(0,1) and lim x?>*177y(x) =0,
x—0t

(iii) x>~y € 11(0,1) and lim x?*~7u/(x) = 0.
x—0t

Proof. We begin the proof with a claim: there exists a sequence 0 < §, < % such that

1

52071y (5,) < =
n

Indeed, if we assume the contrary, then there would exist r > 0 such that x>* 1 =7Yy(x) > r

for all x < r, that implies that

x"Eu(x)P > rpX(1+772a)pf€’

but since v < 2o — 1 — 1—;5 then x(1+v=2a)p—€ > y—1 +thjs contradicts the assumption

XTEuP e |1

Now, for d, as above, define

X7 if x> 0,,
Mn(x) =
5,7 ifx<4,.

Notice that m, € H(0,1) for all n. Let x > 0 and multiply equation (5.1) by m, and

integrate by parts over [x, 1] to obtain

1 1 1

/ 1 (8)(s)Pds = — 1/ (1) + X2 (x)mn(x) + / 2,/ (s)r,(s)ds — A / () u(s)ds.

(5.29)
First, from corollary 5.19 we know that lim x?*u/(x)n,(x) = 6,7 lim x**u/(x) = 0,
x—0t x—0t

also
1 1

/nn(S)U(s)dS < /s’*u(s)ds,

X 0
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but
1 1
/s_'yu(x)dx = /sf’u(s)57+;ds
0 0
1 p—1
1 B 1 o
< /seu(s)p /5<7+Z>("51>ds
0 0

and since y <1 — I—;E
€
1+ (—'y+) (p) >0,
p) \p—1
so the second integral is finite, and as a consequence, x Yu € L'(0, 1). Therefore

1 1 1
lim /nn(s)u(s)pdsg—u’(1)+|>\]/s_7u(s)d5+ i /s2au’(s)n;(s)d5.
x—07t x—07t
0

X X

Let us study that last term of the right hand side. Suppose x < d,

1

1
/s2°‘u’(s)ng(s)d5 = —'y/sza_l_”u’(s)ds
X

n

1
=vQRa—1-17) /5206—2—’)’“(5)6!5 + 36217 y(5,)

dn
1
<y(2a—-1-17) /szaQ"’u(s)ds + %
0
Notice that,
1 p—1
1 1 s /1 5
/szaz'yu(s)ds < /sgu(s)pds /5(20‘_2_7+;) (51)
0 0 0

but since v < 2a — 1 — %, we obtain that 1 + <2a —2—9+ %) (%) > 0, so the

second integral is finite and one concludes that

1 1
1

/s2°‘u’(s)nf7(s)ds <C /S_Eu(s)pds +0 <n> .

X 0
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Putting the above estimates together yield

1
P

/lnn(s)u(s)pds <-u(1)+C /ls_gu(s)pds +0 <r17> .
0 0

so by letting n — oo, we conclude that

1 1 5
/s_'yu(s)pds <-uJ(1)+C /s_su(s)pds

0 0

This proves (i).

Now we prove (iii). Using (5.29) one obtains

1 1 1

/s2au’(s)n;(s)d5 =d(1) + /nn(s)u(s)pds + A/nn(s)u(s)ds — 6, 7x%%0 (%),

X X X
but, for fixed n, the right hand side converges as x — 0 to

1 1

u'(1) +/nn(s)u(s)pd5—|—A/nn(s)u(s)ds,

0 0

which converges as n — oo to /(1) + fol s Yu(s)Pds + >\f01 s~ Yu(s)ds, this shows that

the left hand side also converges, thus

1 1
—fy/szal'yu’(s)ds: lim lim /szau’(s)n;(s)ds
0

n—o0 x—0+t
X

1 1

= u'(1)+/s7u(s)pd5+>\/57u(s)d5,

0 0

where we have used lemma 5.21 to say that du(s) := s?*"1=74/(s)ds defines a signed

measure, and hence monotone convergence applies. To prove that lim x2a*7u’(x) =0,
x—07t
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multiply equation (5.1) by s~ and integrate by parts over [x, 1] to obtain

1 1 1
X2V (x) = o' (1) + /s'yu(s)pds + )x/s'yu(s)ds —|—’y/52°‘1'yu’(s)ds,
X X X
but we proved that the right hand side converges, and it converges to 0.
To prove (ii), notice that we already proved x>*=2~7u(x) € L1(0,1) and that by (iii)
the right hand side of

1 1
) = [ SN (s)ds - (2a 1) [ Tu(s)ds
X

X

converges; also, since lim 02% 1™u(§,) = 0, then lim x2¢~1=7y(x) = 0. O
n—o00 x—07F

We conclude this section by improving lemma 5.17 and Corollaries 5.20, 5.18. Recall
that those results deal with the fact that u € LP and the behavior of x2®¢/ and x?*~1y

near the origin. We claim that when p > 2, — 1, we have

Lemma 5.23. Let a > % p > max{2, — 1,1} and A € R. Let u be a solution of

equation (5.1), then u € X§(0,1) N LP*1(0,1), and
1
) lim xpe -0,
() I xu(x)
i atd yi(x) = 0.
(i) Jim_x 2u'(x)

Proof of Lemma 5.23. Lemma 5.17 gives that u € LP(0, 1), so we can apply lemma 5.22

for eg = 0 and obtain that for v < v = min {Qa —-1- %, 1— %} (i), (ii) and (iii) in

lemma 5.22 hold. By choosing €1 < 2a — 1 — % but arbitrarily close to it, we can repeat

the argument one more time, and obtain that (i), (ii) and (iii) in lemma 5.22 hold for all

rem-mmf(mei-8) (063 (1))

Continuing in this fashion we obtain that (i), (ii) and (iii) in lemma 5.22 hold for all «y

such that

n n

1 1 1 1
p=mind (22-1-=)Y" = (1-2)Y =
yemmmn (o ) S (1) 3

Jj=0 Jj=0
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for any n € IN. Hence, if we define

o o 1 p
Yoo = n||_)moofyn = mln{<2a— 1—p> p—l'l}'

then (i), (ii) and (iii) from lemma 5.22 hold for all ¥ < Yso.

2
200—1"

First we deal with the case % <a<landp+1>2,4= we obtain that

2'700—(205—1):l)il((Qa—l)(P+1)—2)>O,

so, we can find v < 5 such that 2y — (2o« — 1) = 0. Using this <y in (ii) gives that
lim x"u(x) = lim x?*~1=7y(x) = 0. In particular, since u € C?(0, 1], this shows that
x—0+F x—0F

xYu € C°[0, 1], and we can write

1 1 1
/ u(s)P*1ds / s Tu(s)Ps u(s)ds < ||s7ul]. / s u(s)Pds < +oo,
0 0 0
so u € LPTL(0,1).
To prove that u € X§, fix N > 1 and define up(x) = max{u(x), N}. Multiply equation

(5.28) by uy and integrate by parts to obtain

1 1
/ Xzo‘u'(x)de:A/U(X)UN(X)+/u(x)pu,\,(x)dx,
u<N 0 0
where we have used corollary 5.19 to say that Xina+ X221 (x)un(x) = 0 and that upy(1) =
0. Since u € LPT1(0,1), the right hand side converges to X [} u? + [} uP*! < +o0 as
N — +o0, this shows that u € X§.

Now, notice that by our initial choice of 7y, we have that x°‘+%u’(x) = x> (x) = 0
as x — 0. Similarly x*~2u(x) = x2*7"1y(x) = 0 as x — 0. To prove that

xﬁu(x) — 0, multiply equation (5.1) by xu'(x) and integrate by parts over [x, 1] to
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obtain

1 1

xu(x)P* = %u’(1)2 + (a - 1) / $20,/(s)2ds — Sx20+1(x)2 — 2 / u(s)2ds

2 2 2

X X
1

A
u(s)Plds — EXU(X)2,

+1

1
p+1

X

notice that every term in the right hand side converges when x — 0T, then so must

xu(x)PTL. Also, the limit lim, xu(x)PTt = 0, because otherwise, u(x)PT1 ~ x~1 near

x—0
the origin, contradicting the fact that u € LPT1(0, 1).
We now consider the case @ > 1 and p > 1. Notice that as in the previous case,
it is enough to prove u € LPT1(0,1), and to do so, it is again enough to prove that

x~"uP € [1(0,1) and that x"u € C[0, 1] for some «y. Observe that by lemma 5.22, for

vy <1, xYuP € L1(0,1); by Holder inequality
y—1 — 3 Y(1++£)-1 1
X7 u(x) = x" Pu(x)x /" e L7(0,1)

for all pTll < % < 7 < 1. Now notice that

1 1
/X’YLII(X)dX = —’y/x’y_lu(x) —%u(e).
€ €
On one hand, by monotone convergence, we have that fgl XV (x)dx — fol xVu'(x)dx
as € — 0T, and on the other hand, for v > pTll there exists a sequence g, — 0T
such that €}u(e,) — 0 (otherwise we would contradict the fact that x~YuP € L1(0, 1)).
Therefore, along €, we have that —y fel XY u(x) — eTu(e) — — fol xY"Lu(x)dx, so by

the uniqueness of the limit

1 1

/x’yu’(x)dx: —’y/x’y_lu(x)dx,

0 0

and as a consequence, x"u(x) — 0 as x — 0%, in particular xYu € CJ0, 1] for all such

«v. Now proceeding as in the previous case, we conclude that u € LPT1(0,1), u € X&,
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xu(x)P+1 = x2+3 4/ (x) = o(1) as x — 0F, we omit the details. O

Remark 5.8. Although the case p = 2, — 1 is not considered in lemma 5.23, we can
repeat the idea of the proof above and obtain a slightly weaker result: if u solves equation

(5.1) for p =24 — 1, then for all § > 0 we have
(i) x0uPtt e L1(0,1),
(i) ue Xg+%, and
(iil) x1FOu(x)PTt = x2+3+3 1/ (x) = o(1) as x — 0.

Notice that the above properties imply that u € L2(0,1). This allows us to write for

p =24 — 1 that
dExo(u)(x) _

0 A1 —a)u(x)? € L1(0,1),

1

from where it follows that Ex o(v)(x) € C[0, 1] and that x"‘_%u(x) = x*T24/(x) = O(1)

as x — 0t.

Remark 5.9. With obvious modifications, all the results in this section remain valid for

solutions of

—(x**u"Y = Au+uP in (0,a),
u>0 in (0, a),
u(a) =0,

where a > 0.

5.3 The sub-critical case

5.3.1 Proof of Theorems 5.1 and 5.5

Let

Sna = Inf ha(v) (5.30)

First, notice that since
- fol |><°‘v’(x)|2 dx

A< < 1
Jy Iv(x) P dx

, forall v e X§,
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we have that 0 < Sy o < co. With this in mind, we claim that Sy o is achieved by some
v € Xg\{0}. Indeed, let v, € X§ be a minimizing sequence such that fol Iva(X)|PTt dx =

1, that is
1

1

. 2

Sha = nl|_)moo/‘x°‘v,’7(x)‘ dx—>\/|v,,(x)|2dx.
0 0

The above implies there is a constant C > 0, such that

1
/ ‘x"‘v,ﬂ(x)‘2 dx < C.
0
Indeed, for A > 0 and all n large we can write
1 1
/ }xav,g(x)‘z dx < (Saa+1)+ )\/ v (x)|? dx
0 0
1
A a, 2
< (Sna+ 1)+ 57 [ X[ dx,
1
0

therefore .

/ V)2 dx < (Sna + 1) (1 - §1>_1 |

0

And for A < 0 we immediately obtain that
1
/ ‘)<°‘v,’7(x)‘2 dx < Sxa+ 1.
0

Hence, the sequence v, is uniformly bounded in X§. Now, since the embedding X§ —
LPT1(0,1) is compact (the proof of [26, Theorem A.3] can be copied line by line to obtain
this compactness, or one could use [50, Theorem 7.13]), we can assume, after extracting

a sub-sequence, that there exists v € X§ such that
e v, — v strongly in LPT1,
e v, — v strongly in L?, and

e v, — v weakly in X§,
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thus implying that

/}x Zdx — A /l| (x)? dx<I|m|nf/‘x Zdx — A /|vn(x| dx = Sxa-
0

Hence Sy o is achieved by v # 0, which one can assume to be non-negative as one

can replace v by |v|. Now it is easy to see that v is a solution of

—(x**V) = Av+uvP in (0,1),
v(1) =0,

lim x2*v/(x) = 0,
x—0t ( )

1
where © = g > 0 is a suitable Lagrange multiplier. If one lets u(x) = ur-Tv(x) then u

is a non trivial non-negative solution of

—(x**u) =Xu+uP in(0,1),
u(l) =0,

lim x?*u/(x) = 0.
x—0t

To prove the regularity properties, notice that from the equation and the fact that
2q . . .
u € Xg < L%, we have (x**u/)" € L%, and since I|m+x2°‘u’(x) = 0, we can write,
x—0

using Hardy's Inequality,
X
2a—1,/ _ 1 20,/ ! 2a
X =~ (s**U/(s)) dseLw,
0

thatis, u € Xsa_l'%a(o, 1). With the aid of [26, Theorem A.2] and a bootstrap argument,
we obtain the regularity properties claimed. We omit the details.

To prove that u > 0in (0,1), let Z:={x€[0,1): u(s) >0, Vs > x}. Since u# 0
we have that xp :=sup Z < 1. If xg = 0 we are done, otherwise 0 < xg < 1 and t/(xg) =0
(it is an interior minimum), but by the definition of xg, u(s) > 0 for all s € (xp, 1). Since

the equation is elliptic in (xg, 1), Hopf's lemma applies and we obtain v/(xg) > 0, a
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contradiction.

5.3.2 Proof of Theorems 5.2 and 5.6

Suppose we have a solution and multiply equation (5.1) by (1 and integrate by parts

over [g, 1] to obtain

1 1
(A=X1) / u(x)p1(x)dx + / u(x)Pp1(x)dx = 2%/ (€)1 (€) — 2% () u(e).
€ €
If o < % then we are assuming that e®u/(e) < o(1) and as a consequence we obtain
that eu(e) = o(1) as e — 0T,
If o > % we do not have the assumption near the origin but we have Corollaries 5.18
and 5.20, which allows us to write 2%1/(¢) < o(1) and eu(e) = o(1).

Therefore in all cases we can write, with the aid of lemma 5.11

1 1
(A= A1) / u(x) 1 (x)dx + / U(x)Po1(x)dx < o(1), for all € > 0

€

but since A > A1, 1 > 0 and u > 0, we reach a contradiction when we send € to 0.

]

5.4 The critical case: p=2, — 1

We begin this section with the key ingredient in proving Theorem 5.7. As announced
in the introduction, we will follow the approach taken by Brezis and Nirenberg in [13] and
we will prove that Sy , defined at (5.30) is achieved by some function v € M. In order

to do so, we will prove that it is enough to show that
S)\,a < Sav

where S, is defined in (5.9).
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Lemma 5.24. Suppose A > 0. If Sy o < Sa, then Sy o Is achieved.

Proof. Let v, € X§ be a minimizing sequence for Sy o, i.€.,
a. 12 2
Ix*vi[[5 = Mvall3 = Sxa + 0(1), IVallpr = 1.

As we did in the proof Theorem 5.5, we deduce that v, is uniformly bounded in X§, so

without loss of generality, one can assume that there exists v € X§ such that

vy — v in X§,
vy — v in L2,

vy — v a.e. in (0, 1).

Also we have that [|v|[,.; < 1. Following [13], let w, = v, — v. It is not difficult to see

that w, — 0 in X§, and certainly we have w, — 0 a.e. in (0, 1). Now, notice that
1 1
— f o,/ 2d < o,/ 2d ,
Sa vlen/vt/ ‘x v (x)‘ x < ‘x vn(x)| X
0 0

hence, Sx.q > Sa — A ||v||§, and since Sy o < So and X > 0 one deduces that

Sa - S)\,O{

2
vi|5 >
Vi3 > ==

> 0.

Using that w, — 0 one obtains
Ix*vall3 = [|x*V/|| + [|x*wh |2 + o(1),

which implies

2 2
Sna = |[XV|[5 + [[xwh|[5 = AIVIE + o(2). (5.31)
Also, Theorem 1 from Brezis and Lieb [11] gives

1 +1 +1
lv+ wallpi = IVIGET + llwallpTs + o(1),
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so 1< ||v||[2,Jrl + ||W,7||L2,Jr1 + 0o(1) and as a consequence
2 1 a2
1< ||v||p+1+5—a||x wy |5+ o(1). (5.32)

To conclude the proof, we identify two cases:

o If Sy o < 0: from (5.31) we deduce

VG = XV < [lx=V I3+ [ willg = X vii
- S>\’a + 0(1)

< Sxa llullpy +o(1).

o If Sy o > 0: multiply (5.32) by Sy o to obtain

S)x,a

5 HXO‘W,’,Hé + o(1),

Sxna < SaallVIZe; +

hence

S
V13 = MIVIZ < SxaIVIZs + (g - 1) [x*wil5 +o(1)
(63

2
< Sxna IVIlpa + o(1).

Either way, one obtains
2 2 2
V|5 = AIvIZ < Sxa IVIps s
thus completing the proof. O]

5.4.1 Proof of Theorem 5.7

1-2a
To prove this theorem we will evaluate /5 o at ug(x) = ¢(x) (€ + x>2*) 22>, where
¢ is to be chosen, and prove that /x o(ve) < So When € is small enough, which, with the

aid of lemma 5.24, allows us to conclude that Sy  is achieved by some function v € X§.
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The case 2 < a <1

Let ¢ : [0,1] — [0, 1] be a smooth function such that ¢(x) = 1 for x € [0, %] and
1-2a
¢(x) =0 for x € [% 1], and consider vg(x) = ¢(x) (€ + x2>72*) 272 |n order to evaluate

Ixo(Ve) one has to estimate ||X°‘vé||§, ||v5||§ and va||12,+1. Firstly, notice that

1

/ |><°‘v5’(><)‘2 dx = (2a — 1)?

0

22 (s +X2—2a)% <1>2(x)dx

O\_.w\m

+ [ X2 (e + x2720) TR | ¢/ ()| dix

Wl
wIN

+(1-2a) [ x(e+ X2_2Q)% d(x)d'(x)dx

Wl
wIin

=+ Ir+ 3.

To estimate /1, I, I3, notice that for 3 > 0,7 > 0,0 < a <1 and € > 0 we have

WIN

/x[3 (e +x>72) Vdx < [ xF2(07 gy = O(1). (5.33)

1
3

Wl
wIN

To estimate /1, let B =2 —2a, 7= ﬁ and use (5.33) to obtain
=2
X772 (g + Xx272) 72 92 (x)dx

I = (2o — 1)?

= (200 — 1)

2
/3
0
1
j
0

2
3
_—2 _—=2
X272 (e + xzfzo‘) 2720 ofx + O /x22°‘ (e + xzfzo‘) 2-2a ¢ x
3

1
3
—2
= (2a — 1)? /X2—2a (e + x*72%) 222 dx + O(1).
0
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1
Using the change of variables x = €2=2a y in the above integral gives

o0
_oa —2
I = (20 — 1)25% /y2_2°‘ (1+y?2*) 722 dy + O(1).
0

For I and /3, since ||¢]l., . ||l < oo, one can apply (5.33) once again to obtain

I+ 13 =0(1).
Hence
—2a =2
/ XV () dx = (2a — 1)%55 /y22°‘ (14y>22) 7% gy + O(1).  (5.34)
0 0

On the other hand we compute

1 2
3

1
1=2a 1-2a
/|v,;(x)|2 dx = / (g4 x*72%) = dx + / (e 4+ x272%) T $?(x)dx
0

0

wi=

=_h+ b.

To estimate U, notice that

2 2

1-2a
/(8 +x2*2°‘) e gdx < /X24°‘dx =0(1).

1
3

W=

To estimate J; we need to divide into two cases: % <a<landa= % If % <a<l

. 1 .
we use the change of variables x = €222 y and obtain

1
—2a

J1=/(z€—&-x2 20‘)1 « dx—52 % / 1+y2*2a)%dy
0

1
3

w\»—A

S
—8220</1+y2 2a 1"dy+O()
0
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If o = % the change of variables x = €2y gives

3 3€7° le2
-2 -2 -1
le/(e+x§> dx = / (1+y%) dy:2[|n<1+x§)+(1+x§> ]
0 0 0
=2|lne| + O(1).
Therefore
1 .
2[lnel +0O(1) ifa=2,
[iwtarax=4" (5.35)
5 g [(1+y?22) e dy +O(1) if3<a<l.

Finally, we need to estimate Hv5||123+1.

1 2

1
__2 __2
/ Ve ()| 7T dx = / (6 +x2722) 77 gy 4 / (6 + x272%) 777 |g(x)| =T dx
0 0

1
3

= My + M>.

For M>, notice that

2
2
(e + x2_2°‘) 272 gx < /X_de = 0(1),

1
3

Wl
wIiny

and for M1, the change of variables x = aﬁy gives

1
3 o0

__2 2
/ (e+x¥20) TR gx =g 7 / (1+y?72*) 722 dy + O(1).
0 0
Thereafter
2
/|v5(x)|2a T dx =g =% / (1+y?72*) 722 dy + O(1). (5.36)

0
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Now, putting together estimates (5.34), (5.35) and (5.36) gives

2 2
Ix*vellz = Mlvellz

Ina(ve) =
HV8||,23+1
(2a — 1)2K; — eXKo + O (g%> if o> 2,
(2a —1)?K1 —€|lnel AK> + O (e) ifa =2,
where
1 o
e y272a (1 _|_y272a) T-a ¢y B 1 fO |yaU/(y)|2 dy B 1
Ki= = Sa
(2o — 1)2

e e Rt R A DT e

and

fooo (1 +y272a)% dX

Ky = > Se—1 < 400,
[J5° (14 y2-20) 755 aix]

- 2

K2 = 3 e—1 < 400,
[J5° (1 y2-2a)7= x|

Finally, since a > % (ax = % resp.), for every A > 0 there exists € > 0 sufficiently small

such that —eAKs + O (8%) <0 (—€|lng| AK2 + O(e) < 0 resp.), hence
Sxa < halve) < Sa,

as claimed.

The case 1 <a < 3

In this case, we choose ¢ = 1), the minimizer of A} given by lemma 5.13. As before
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1-2a
we need to evaluate /o (Ve), where ve(x) = (g 4+ x>72%) 222 94 (x). Notice that
1 1
=2
/ |><°‘v£’(x)‘2 dx = (2a — 1)? /X22°‘ (£ 4+ x*72%) 222 42 (x)dx

0 0

1
2a 2-2a\ T a7 (]2
+ [ X (e +x772%) T YL ()| dx

0

(1 - 2a) / x (& 4 X372%) 7 9y (), (x) dx

=l+1h+I/.

We begin by estimating /3: We integrate by parts and use the fact that xéwa — 0 as

x — 01 (see lemma 5.13), to obtain

Iz =(1-2a) /X (e + X272Q)% Yo (X)PL(x)dx
’ 1
=e(2a — 1)/ (g 4+ x272%) "= 2 (x)dx
1
— (200 — 1)? /X22°‘ (e + X2*2°‘)2:W P2 (x)dx
0

:g(2a—1)/(€+x220‘)_11“ P2 (x)dx — 1.

To conclude the estimate of /3 we need to rewrite fol (E + x2_2°‘)_1—a P2 (x)dx. Observe

that
1 1
-1 -1
/£~|—x2 2a) e ng(x)dx:wg(O)/ (8 +x>72%) % dx
0

1
+ [ (e +x2722) T (92 (x) — ¥2(0)) dx,
/!
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and then we notice that by lemma 5.13 we know that |92(x) — %2(0)| = O (x*72%), so

we can write

1 1

L
/ (g4 x*72%) = (wa(x) ¥3(0)) dx C/ (g4 x272%)  To 2720 gx
0 0

T
— g2 2a 2a / (1 +y2—2a)—ﬁy2—2ady
0

— g2 /(1 +y?7?) T2 2% dy + O(1).

The above means that

/3—€¢a(0)(2a—1)/ (e +x*72%) " = dx—/1+O<e2 2a)

N (5.37)
1 —4a
= ez2a1)2(0)(20 — 1) / (14 y22) 1‘“dyf/1+0<e%>.
0

Now we estimate /5:

1
— /x2°‘ (e + X2_2Q)% ‘z//a(x)lz dx
0

1

1
= /x2_2°‘ ‘zp;(x)lz dx + / [(8 +x272%) o 2da \x%;(x)\z dx

0 0
1

_ /x2—2a 9| dx + Lo,

0

To estimate /4, we notice that by lemma 5.13, we have that x*¢/, € C%1=%[0, 1], hence

it is enough to estimate

l

-~

1
1-2a
4 ::/ |:(8+X2 2o Tra 2
0
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2a—1

Define f(t) := (te + x>72*) ==, and notice that

20-1
|€ +X2—2a’ o _ x4=2 — (1) — £(0)| < sup \f'(t)\ -
te[0,1]

3a—2
1-a

A direct computation shows that f/(t) = 22=te (te + x272%) == . Now, using the mono-

tonicity of f/(t), it is easy to see that for all t € [0, 1] we have

bo—4 ifi<a<

wIN

()] < Ceqq fa=2 (5.38)

(e + x2722) = if % <a<

Hlw

From (5.38) we deduce that

[(e _|_X2—2a) e 24| gy

(E +X2—2a)% _ X4a—2

2a—1 dX
X4a—2 (8 + X2—2a)ﬁ

fl X272 (g + x?72%) = ifl<a<?2
0 5 3

-1
< Ce folx_% (g—i—x%) dx if @ =2
Jixete (g4 x222) 7 if2 o< 3

1-2

a 1-2a
g2 [(Py22 (14 y?2) T +0(1) fi<a<
=Cene [y (1+05)
1-2a

Gis Jo vy (1 +y2’2a)_1 +0(1) if2i<acx

-0 (gii‘ég) _

WIN

1
dx+0(1) if a =

WIN

MW

So we can conclude that

1
Iy = /x22"‘ W, ()| dx + O (53*) . (5.39)

0
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Putting together (5.37) and (5.39) we deduce that

Now, we estimate ||v5||§: Since 1, € L™, we use the same estimate obtained for Iy, to

write

1 1
/ V2 (x)dx = / (e + x2_2o‘)% P2 (x)dx
0

1

1-2a
X242 (x)dx +/ [(6 + X2_2°‘) o x274% ) h2 (x)dx

0

O\H O\H o

3—4a
X242 (x)dx + O (eﬁ) .
Finally, we estimate ||v5||,2)+1: the same idea used to estimate /3 gives

1 1
1
/ Ve ()IP T dx / (6 4 x272%) 7% [y (X)L dx
0 0

1

= Y (0)|’”+1/(5+><2 2y =

1
+ [ (e [19a (0P~ a(0)P] ax
0

1

— e [ (e+x222) 77 dx+ 0 (55

0
00

O / (L+y272%) "7 dy - (1+0(e))
0



Using the definition of A}, and ¢ and the above estimates give

2 2
Ix*vellz = Mlvellz

2
Ivell,

/X,a(Ve) =

= (200 — 1)K3 + €22 (A5, — \) Ku + O(e)

where o
o) L 1 r2 (%) 2—2a
K3 — /(1 +y2—2o¢) T—a dy — [ 2—2a ,
0 222 T (15)
and
o0 1—2a 1
Ka = [%(0)[ / (1 +y2_2°‘)_ﬁ dy . / ’X1_2O‘11)a(x)‘2 dx < +o0
0 0

Using lemma 5.23, one obtains that K3 = 522

there exists € > 0 such that e2-z (AN, =X Ka+0(e) <0
Sxaa < halve) < Sa,

thus concluding the proof.
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e 1 3 - *
527 Now, since 5 < a < 7, for given A > A3

[l

The next results show that the solution obtained in Theorem 5.7 is in fact continuous

up to the origin.

Lemma 5.25. Let% < a < 1anda(x) € L9%(0,1), where g, = 525, and suppose

202
u € L2(0,1) solves

—(x%*'(x)) = a(x)u(x) in (0,1),

u(1) =0, (5.40)

|' 2a,,/ — O,
Jim_x u' (x)u(x)

then u € L*(0,1) forall t > 2.

Corollary 5.26. Let u be the solution given by Theorem 5.7, then u € C°[0, 1]. Moreover
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x22=1y/ and x>*u" are also continuous up to the origin.

Proof of Lemma 5.25. For a given positive integer n, define

,

0 if u(x) <0,
Un(x) == Qu(x) if0<ulx)<n,
n if u(x) > n.

For fixed B > 0, let ¢(x) = uﬂx)u%ﬁ(x). Multiply equation (5.40) by ¢ and integrate by

parts to obtain
/ X2 (x)? P (x)dx + 23 / X2 (x)?(ut (x))Pdx = / a(x)(ut(x))?uPPdx.
u>0 0<u<n u>0

On the other hand, we can write

1
/X2a ‘(u*(x)uﬁ’(x))"2 dx = / X2 (x)? P (x) dx
0

u>0

+ (8% +2B) / X2 (x)?(ut (x))?Pdx,

0<u<n

hence, with the aid of [26, Theorem A.2] one obtains for M > 1

2a

1 1
/ OB | < Cap / 30 (0 ()22 (x) dx
0 0
— Cop / 20 (U (x)) 262 (x)dx
al<M

4 / 20 (U (x))2628 () dx

|a|>M



143

1
< CapM [ (u ()26 (x)dx
0

do 1 5

tCap| [ tatar | [ [ et codoof

a|l>M 0

Now, fixing M = Mg sufficiently large so that Co 3 (f|a\>/v1 !a(x),qa) @ % gives

2

1 % 1
/‘L/Jr(x)ug(x)‘z1 < 2MCa,5/u+(x)2u,%5(x)dx.
0 0

By passing to the limit n — oo in the above inequality (notice that the constants do not

depend on n), we obtain

2a

1 1
/ (=040 | < amca s / (i (x))> 2 dx.
0 0

Similarly, one can prove the same inequality for u—, thus obtaining

2a

1 1

/ P00 | <oMCag / U8 dx.

0 0

The above inequality shows that if u € L2125 then u € L2148 Since u € L2, we can
start with 8o = 0 and obtain u € L2=. So by letting Bo = 0 and Bi+1 = (1 +6;) — 1,
we obtain that

ue L2048 forall i > 0.

Notice that 8; = (% — 1) Z}:o (%")J and since 2, > 2 when a < 1, we obtain that

Bi — oo, hence u € Lt for all t > 1, as claimed. O

Proof of Corollary 5.26. Notice first that by construction the solution given by Theorem

5.7 satisfies equation (5.40), so lemma 5.25 applies, so u € L%(0,1) for any t > 1. Now,
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we also now that Iim+ x2%/(x) = 0, so we can write
x—0

X

X2/ (x) = i/g(s)ds,
0
where g(s) = —Au(s) — u(s)P. Since u € Lt for all t, we obtain that g € Lt for all
t, hence by Hardy's inequality, we obtain that x>*~1u/(x) € Lt for all t. This means
that u € Xgo‘_l't, so [26, Theorem A.2] applies and we deduce that if t is sufficiently
large, u € C°[0,1] (in fact one gets u € C%7[0, 1] for all v < 2 — 2a). So g above is
also continuous, which in turn implies that Xln& % fg 9(s)ds exists, so x°*~1u/(x) must
also be continuous. Finally the equation implies that x>*u”(x) = —Au(x) — u(x)P —

2ax?*~1/(x) € CO0, 1]. O

5.4.2 An equation in the half-line

In this section we will study the equation
— (x2wWY = |wlP"twin (0, 00), (5.41)

where p =24 — 1 and % < a < 1. The motivation behind studying this equation comes

from the fact that if u solves
— (x%uY = Au+|ulPtuin (0,1), (5.42)
then, us(x) := 6"‘_%u(6x) solves
—(x2uf) = 6% 2%us 4 |us|P " ug in (0,671).

So, equation (5.41) is the limiting equation as 6 — O (in a sense that will be made clear
later) for us, and for § small enough ug should be close to a solution w of equation (5.41).
If we are able to classify the solutions of equation (5.41), then we could understand how

uis.
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Equation (5.41) is the equation satisfied by the critical points of

Joo x*w' (x)|? dx

Ja(w) = =
(J5= w0l dx) ™

1-2a
in particular Ug(x) = C¢ (€+X2*20‘)2*2", the extremal family for the Caffarelli-Kohn-

Nirenberg inequality introduced in lemma 5.14 are solutions to equation (5.41). As we
will see, these are the only solutions that are bounded at the origin, and this is the content

of the following
Lemma 5.27. Let w € C?(0,0) be a solution of equation (5.41), then there are four
possibilities

(i) w = U for some e >0,

.. 1 . . .
(i) w = Cx2~%, where C is a normalization constant,

(i) w = X%*O‘f(— Inx), where f : [0,00) — (0, ) is a periodic smooth function, which
is bounded away from zero, or

(iv) w = x%*"‘g(—lnx), where g : [0,00) — (—o00,00) is a sign changing periodic

smooth function.

Proof. To prove this lemma, notice that if w solves equation (5.41), then v(y) =

e(%_o‘)yw(eﬂ’) solves

2
v/ = (a - ) v—[vlP v inR. (5.43)

The solutions of equation (5.43) can be easily classified by means of the energy functional

2
EW) = pv 0?5 (a5 ) v+

ﬁ |V(Y)’p+1v

which is constant for every solution, as one can see by multiplying equation (5.43) by v'.

By looking at the phase plane, one obtains that for

o, 1\? b2 |pPtt
A.—mm{z.a —<a—2> §+p+1'a'b€R <0,
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then

If E(v) > 0, then v must be a sign changing periodic function,

if E(v) =0, then v is a homoclinic orbit for the unstable point (0, 0),

if A< E(v) <0, then v is a periodic function that is bounded away from zero, and

2a—1

if E(v) = A, then v = + [22-1]#5

The homoclinic orbit is given (up to translation) by

Vi) = (2a4— 1) T [Cosh <(p ~ 1)2201 - 1)y>} =

and a direct computation shows that U(x) = X%_O‘V(— Inx). This finishes the proof. [J

Remark 5.10. As seen in the proof, the energy functional E(v) := v -1 (o — %)2 vZ+

ﬁ |v|PT! classifies the solutions of equation (5.43). Since it will be used later, let us

introduce the corresponding energy functional for w solution of equation (5.41) by

1 1 1
Eo(w)(x) := E(V)(y) = 5x°* W/ (x)? + ——= [w(x)]P" + (@ — 5 ) W/ (x)w(x),
2 p+1 2
(5.44)
where v(y) = e(%_o‘)yw(e_y) and y = —Inx. Notice that Eo(w) = Ego(w), where
Exp(u) is defined in (5.25). Now we can say that if Eo(w) > 0, then w is unbounded,
with infinitely many sign changes near the origin. If Eq(w) = 0, then w is a bounded
function which is positive (or negative) near the origin, and if Eo(w) < 0, then w is an

unbounded function positive (or negative) near the origin.

Now, let us establish that if u solves equation (5.42), then us(x) = 50‘_%u(6x) con-

verges to a solution of equation (5.41), and this is the content of the following

Lemma 5.28. Suppose u € C?(0,1) solves equation (5.42). Suppose also that there

exists a constant C > 0 such that

lu(x)| < Cx2~* and |/ (x)| < Cx—27, (5.45)
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then there exists w € C2(0, o0) solution of equation (5.41) and a sequence &, — 0, such
that for all x > 0

Jim us, (x) = w(x)[ + |u5, () = w' ()| =0.

Moreover, if

Ex(0)(x) = Exo(u)(x) = 5710/ ()7 + Sxu(x)? + o x )P

p+1
1
+ <a — 2> X2 (x)u(x),
one has that E := Iirg+ Ex(u)(x) exists and w is characterized by Eq(w) = E.
X—>
Remark 5.11. This type of lemma has already been proven by Benguria, Dolbeault and

Esteban in [7], where they classify, among other things, the solutions of

—Au=Xu+|ulP"tu  in B0, 1),

u="0 on 0B(0,1),

where p = % is the critical Sobolev exponent.

Proof. Notice that by our assumption on the growth of v and ' and the definition of ug
we have that

‘xo‘*%ué(x)‘ < C and )XaJr%Ué(X)’ <C

uniformly on §. Also from the equation, one has that
3
’xo‘+§u(’5’(x)‘ <C.

By means of Arzela-Ascoli theorem, one can find a function w € C1(0, 0o0) and a sequence
d — 07 such that us — w and uf — w’ uniformly in compacts subsets of (0, o). Also,
it is clear that w must solve equation (5.41), and as a consequence w € C2(0, 00).

What is left to prove is that E = IimO Ex(u)(x) exists, is finite and that E = Ep(w).
X—
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To see this, notice that by lemma 5.15 we have

dEx(u)(x)

I =1 - a)u(x)?,

where we have used 8 = 0 and p =2, — 1. The above shows that Ex(u)(x) is monotone
or constant (depending only on A), so the limit exists in the extended sense. To see that

|E| < oo, notice that by the growth condition u € L2(0, 1), hence

1 1
|E| = [Ex(u)(1) = X1 — @) / u(x)?dx| < %u’(l)2 + M (1 — ) / u(x)?dx < oo.
0 0

Finally, notice that for x > 0 and & — 0% as before, Ex(us)(x) — Eo(w)(x) and that

Ex(us)(x) = Ex(u)(6x) — E, so Ego(w) = E as claimed. m

The way we will use the above results is in the form of the following direct corollary

of lemmas 5.27 and 5.28

Corollary 5.29. Let u € C?(0,1) be as in lemma 5.28, and let E = Xin3+ Ex(u)(x). Then
(i) If E >0, then u is unbounded and has infinitely many sign changes near the origin.
(if) If E =0, then u is bounded and has a finite number of zeros in (0, 1).

(iif) If E < 0, then u is unbounded and has a finite number of zeros in (0, 1).

5.4.3 Proof of Theorem 5.8

We want to prove that if A < A% then no solution exists. To do this, recall the
definition of A},
if3<a<?2,
0 if2<a<l

So we will first prove that no solution exists for all A < 0 and all % < a <1, and then we
will prove that no solution exists when 0 < A < A7 and % <a< %

Thecase%<a<1and>\§0:
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In this case, we will use lemma 5.15 with 8 = 0 and corollary 5.29 to show that if
u is a solution equation (5.1), then Ex(u) > 0, hence u would have infinitely many sing

changes near the origin, reaching a contradiction. From lemma 5.15 we obtain

1

1

X

But since A <0 and p =2, — 1, we obtain that

Ex(u)(x) > =u/(1)? >0,

for every non-trivial solution. Now, by Remark 5.8 we have that
x*"2u(x) = x*2 0/ (x) = O(1)

near the origin, so one can apply corollary 5.29 to conclude.
Thecase%<a<%and0<>\§)\;:

In order to prove this theorem, we need a better Pohozaev type identity that the one
given by lemma 5.15. However, we will still use corollary 5.29, and show that Ex(u)(x) >
a > 0 for all x ~ 0 (as we pointed out earlier, from Remark 5.8 one has that every solution
u of equation (5.1) satisfies (5.45)).

Suppose that we have a function 9 : (0, 1) — R satisfying
P(x) € C%(0,1] N C[0,1] and x¥'(x) € C°[0, 1]. (5.46)

Multiply equation (5.1) by u(x)¥(x) and integrate over [g, 1] to obtain

1 1 1

A / U()PW(x)dx + / U()PHp(x) dx = / 220 (x) (u()B(x)Y dx

€ € €
1

= X2 (x)u(x) 9 (x)

€
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1

1
= /X2aU/(X)2’l/J(X)dX+/X2aU(X)Ul(X)'l/),(X)dX
1

X2 (x)u(x)(x)

€
1

1
:/x2°‘u’(x)21/1(x)dx ;/(xmd/(x))/u(x)zdx

1 1

X2 () u(x)(x)| -

oY (u(?|

€ €

Since u(1) = 0, we obtain

1

1 1
/X2°‘1/J(X)u’(x)2dx = /u(x)2 [)\’III(X) + % (X2°‘zp’(x)),] dx+/u(x)p+11/)(x)dx

€

_ 22 () u(e)w(e) + %620‘1//(5)u(6)2. (5.47)
Suppose now that ¢ : (0,1) — R satisfies
¢ € CH0,1) and x1¢(x) € C[0, 1]. (5.48)

Multiply equation (5.1) by /(x)¢(x) and integrate over [, 1] to obtain

LHS=RHS,
where
T 1T
LHS = 2/( (92) 90 + = [ (u607) (:)dx
and

1

RHS. = [0 (4 ()9()' dx = 22 (4(x)

£

1

€

For the right hand side one has

1 1 1
/ 20/ (x) (o (X)¢(X)) dx :/ 20/ (x)2¢/ (x)dx + ; /Xzaqb(x) (u’(x)2),dx



151

— /1 ' (x)? [xZaqﬁ’(x) — % (Xzaqﬁ(x))/} dx
: 1

+ Lea s (x20(x)

£
so we have

1

R.H.S. = / v (x)? {xzaqb’(x) - % (x2°‘¢(x)),] dx — %u’(l)QQS(l) + %szau’(€)2¢>(5).

€

(5.49)
Whereas for the left hand side
N 1 A '
LHS. =~ / WP~ g [P dx+ S ulx)2900)
€ ) £
u(x)P(x)
+1 e (5.50)
h 1 A
/ WP (X)dx = [ ul)PI () dx — Su(e)de)
+1
e )

Putting together (5.49) and (5.50) give

1

1
/u’(X)2 [Xm(b/(x) - % (X2°‘q§(x))/] dx = %u’(1)2¢(1) - % / u(x)¢’ (x)dx
1

b u(x)PT (x)dx — e 1p(e) < 201 /()2 + Xau(s)2

1
—¢eu(e)Pt?
p+1 () )

p+1

€

(5.51)

Finally, suppose there exist 1 and ¢ satisfying (5.46) and (5.48) respectively, which also

satisfy the following system of ODEs

{ XG(x) — 5 (X))~ Y() =0,
(5.52)

M) + 5 (% () + 38/() =0,
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then from (5.47) and (5.51) we deduce

1

/ u(x)P [zp(x) + pil(b'(x)] dx = %u'(1)2¢(1) + €220/ (&) u(e)w(e)

€

— %s2a¢’(a)u(s)2 — e tp(e) <;62a+1u’(s)2 + %EU(6)2 + Py 15u(€)p+1> . (5.53)

In order to continue, we need to prove the existence of the functions 4 and ¢ and

understand their behavior near 0, and this is content of the following

Lemma 5.30. Let 3 <a < 3 and 0 < X < \},. Define

d(x) == xJ, (ﬁxl_o‘> J_y ( VA xl_o‘> : (5.54)

l1-a 11—«
where v and J,, are defined by (5.15) and (5.17) respectively. Let
1, a
Y(x) 1= 58 (x) = o). (5.55)
X
Then 1, ¢ satisfy (5.46),(5.48) and (5.52), moreover we have that for p > 2, — 1

1
P(x) + md)’(x) <Oforall0<x<1, (5.56)

¢(1) > 0. (5.57)
Also, there exist constants A > 0 and B € IR, such that for x ~ 0

P(x) = Ax + O(x372%)

PY(x) = (; - a) A+ Bx?>72% 4 O(x* ),

We postpone the proof of this lemma for the end if this section. The proof of Theorem
5.8 continues in the following way: using ¥, ¢ from lemma 5.30 in (5.53) gives
1

1
0> /u(x)’”“:L [d)(x) + md)/(x) dx = %u’(1)2q’)(1) — AEx(u)(e) + R(e),
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where

R(e) = AEx(u)(e) — e 1¢(e) ( 201 /()2 + zsu(zs)2 su(e)pH)

e*u/ (e)u(e)P(e) — 2"‘1# (e)u(e)?.

p+1

If we can prove that R(e) = o(1) for every u solution of equation (5.1), then the above
inequality would imply

Ex(u)(e) > 57 '(1) ¢(1) — o(1),

so E = Eirgh Ex(u)(e) > 551/ (1)%¢(1) > 0 for every solution, then by corollary 5.29 u
would have infinitely many sign changes. Hence equation (5.1) has no solution.

So everything reduces to prove that R(g) = o(1), which follows directly from Re-
mark 5.8 and the expansions of ¢ and 9 from lemma 5.30. We omit the details.

O

Proof of Lemma 5.30. A tedious but straightforward computation shows that ¢ and ¥,
defined by (5.54) and (5.55) respectively, indeed solve the system (5.52). From (5.54)

and a formula from [63, p. 147] we obtain that

_N (=1)™(2m)IAm o
o= mzo R T T 1= = (5.58)

which readily gives (5.46) and (5.48). To prove (5.56), notice that we can write

W00+ 551800 = (5 -t 51 ) L)

-a) (5417 )y L) + 0]

ﬂ l1-a Gjpce 1

where y = 5—a+ p+1 < O0forall p >24—1, it is enough to prove that

Ju(y)J—,(y) >0 for y € (0,j_,1) (which is obviously true since j_,1 < jy1), and that

S W), () + J,(y)J-u(y) <0 for y € (0,j—01).
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To do this, notice that using recurrence formulas from [63, p. 45] give

J W)+ L) = (y) = = (V) h=u(¥) + J—o (¥) J10(¥)) .

but J_,(y) > 0 (because y < 1), J1-v(y) > 0 (because y < )1 <Jji1—1)1), Jv(y) >0
(because y < j_p1 <Jp1) and Jiy,(y) > 0 (because y < j_p1 < Jj144)1). thus every term

inside the parentheses is positive. Observe that

VN VA . V1 .
1 S—=jn <=1,
-« l—« l—«

so J, (%) >0and J_, (%) > 0, which implies ¢(1) > 0, with equality if and only
if A=A},
Finally, the expansions near the origin of ¢ and 1 follow directly from (5.58), we just

need to verify that A > 0, which is true since

1
A rarora-w

5.5 The super-critical case: p > 2, — 1
Proof of Theorem 5.9. Suppose u solves equation (5.1), with the aid of lemmas 5.15 with
B = 0 and 5.23 we obtain

1

1
A1 — o) / u(x)2dx + (; Cat pi1> /u(x)Pde _ %u’(1)2 >0,
0 0

1 1 :
but 5 —a + 71 < 0, so the above gives

1 1
/u(x)p+ldx < ai(ll__a)/u(xfdx.
0 0

1
2 p+1



155

Now, notice that

1 1
Al/u(x)zdx</ 2/ (x)2dx
0 0
1 1
= A/u(x)z—i—/u(x)p“dx
0 0
A1 /
< A+ (1 a)l ]/u(x)zdx
@371

thus for every solution of equation (5.1) one has

1 1
a_7_7
X>A1<121p+1>-
2 ptl

11
The above shows that if A < X\; <121+) then there is no solution. O

5.6 Thecase a > 1

Proof of Theorem 5.10. We again use lemmas 5.15 with 8 = 0 and 5.23 to obtain for

p>1

1 1
1 1
— — - p+1 — = 2
A(1 a/u dx+< a+p+1>/u(x) dx 2u(l)
0 0

Notice that if @ = 1, then the above yields

1
1
- p+1
(2 p+1)/ux) dx >0
0

which is impossible for p > 1, hence no solution exists if @ = 1 and A € R. On the other

hand, if @ > 1 and A > 0 we obtain

1 1
1
_ 2 Z_ - p+1
0>X(1 a)/u(x) dx+<2 a+p+1>/u dx >0,
0 0
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also impossible. Finally, if o > 1 and A < 0, the above gives

1
A(1 -
/u(x)p+ldx < % u(x)?dx.
2 R B S

Now, multiply equation (5.1) by u, integrate by parts with the aid of Remark 5.8 to obtain

1 1 1 1
X2 (x)dx =X | u(x)?dx+ [ u(x)PTldx < A (1 + (1—a)> u(x)?dx,
/ o] )]

2 p+1 0

but, since A <0, p> 1 and a > 1 we obtain

(1-0a) Alp—1)
A1+ = < 0.
(- 20%) 2 b h) e

Therefore
1 , 1
0< /XzaU/(X)2dX <A (1 + a(l_a)l> /u(x)zdx <0,
0

impossible. O

5.7 Thecase0<a<i

Proof of Theorem 5.3. The proof of the existence of a minimizer vy of
Sxa0 = Vier}f/lo Ixa(v).

is a line by line copy of the proof of Theorems 5.1 and 5.5, where the only change is
that instead of minimizing /o over M = X& N {|lull,,; = 1}, we do it over Mg =
1

X8 N {llull,+1 = 1}. Then if one defines u(x) = S{ 2 [vo(x)|, we obtain a solution of

—(PdY = u+ P in(0,1),
u>0 in (0,1),

u(l) =u(0) =0.
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The regularity properties follow immediately from the fact that X§& — C[0, 1] for all
a < % which implies that v € C[0,1] and as a consequence x?*u’ € C[0,1] and

x?2~1y € C[0, 1]. The details are left to the reader. O

Proof of Theorem 5.4. To prove this theorem we assume we have a solution and we
multiply equation (5.1) by ¢1 o, the first eigenfunction of equation (5.6) and we integrate

by parts over [g, 1] to obtain

1 1
(A= A1) / U(x) 01 0(x)dx + / U)o (x)dx = 224 (€)p1.o() — €20, o(e)u(e).

€

To reach a contradiction, we need to understand what happens to the boundary terms.

Since A > A1 > 0, we obtain from equation (5.1) that
—(x*U(x)) = u+ uPTt > 0.

If we integrate twice we get

u(x) < —u'(1) (1_X1_2a> :

1 -2«

which implies, since a < % that 0 < u(x) < C = C(U/(1)) for all 0 < x < 1, thus

—XC — CPF1 < (x224/) < 0, and we conclude that [x?*¢/| is bounded. Therefore, since
©01.0(€) = o(1), we can write €2%u/(¢)p1 o(€) = o(1) as e — 0F.
On the other hand, it can be seen from the definition of ¢ o that x2a<p’1'0(x) > 0 for

all x ~ 0, so we have e2*¢/, 4(g)u(e) > 0. Therefore

1 1
(A —X10) / u(x)p1,0(x)dx + / u(x)Pp1.0(x)dx < o(1), foralle >0

€

but since A > A1, 1,0 > 0 and v > 0, we reach a contradiction when we send ¢ to O.

O
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5.8 Towards the uniqueness

The following is an important proposition which will allow us to simplify the proof of the

uniqueness part of our theorems. In what follows, whenever we say “p > 1 is sub-critical”

we will mean that: p>1if0<a§%or1<p§§;3"1‘ if%<a<1.

Proposition 5.31. et 0 < o < 1, X € R and p > 1 be sub-critical. Suppose equation
(5.1) has two distinct solutions u1, up € C[0, 1] N C?(0, 1], such that u5(1) < uj(1) < 0.
Then there exists a third solution uz € C[0,1] N C?(0, 1] such that uf(1) < uh(1) and uy

and us intersect at most once in (0, 1), i.e.
#{x € (0,1): u1(x) =us(x)} <1.

To prove this proposition we need the following

Lemma 5.32. [et A € R, p > 1, B < 0, Suppose V € C}[0,0) is such that both
VIl 0.00) @ V'l 11(0.00) are finite. Let w be the unique solution of the initial value

problem

W’ +aw + wlPtw = V()w + Bw'  in (0, 0),
w(0) = 0, (5.59)
w'(0) = 1.

Then w € W?°(0, 00) with

Iwllyzoe < COLP IV e IV/],1)-

Remark 5.12. Notice that the constant which bounds ||w||, ., does not depend on the

constant B < 0.
Proof of Lemma 5.32. Let

1
p+1

/ 2
Ewo) = 2+ s wip
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By multiplying equation (5.59) by w’ we can easily see that
d 1 2\/ AV
4y EW ) =5V (w(»)?) +Bw'(y)*.

Now, let A = {y > 0: maxsep,j w(s)? = w(y)?}. Notice that since w/(0) = 1, we have
that (0,€) C A for small enough € > 0, so A is not empty. For y € A we integrate the

above identity over (0, y) to obtain

E(w,y) — E(w,0)

0/( ) (w(s)?)' +BW/(5)2) ds

y

/ V(s)w(s)ds + 2V (y)w(y)’, (5.60)
0

o (e R 0

I/\
I\J\»—t

IN

from where we deduce that

w(y)? 1 [

2 2 w(y)IP*t < E(w,0) = =

A= <HV/HL1(O,OO) + ||V||L°°(o,oo))] W(y)2+ﬁ

|PT1 are bounded for

Since the level sets of the function h(x,y) = 3y? + L Rx? + ﬁ |x
all R € R, we obtain that |w(y)| < C for all y € A, where C does not depend on y.

Therefore we deduce that
W) < C=COnp VI V'l 1)

for all y > 0, because if this were not true, we could find a sequence such that w(y,)? —
400 and, after maybe extracting a sub-sequence, that y, € A, which we have shown to
be impossible.

Now that we know that w is bounded, we obtain from estimate (5.60) and equation

(5.59) that w' and w” are also bounded. O
With lemma 5.32 in our pockets, we can now prove Proposition 5.31.

Proof of Proposition 5.31. To prove this proposition we will follow a proof by Kabeya and
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Tanaka in [41, Appendix A]. Without lost of generality, we will assume that

#{x€(0,1): in(x) =w(x)} >2,

because otherwise we can simply take uz = w,.

First of all notice that if u solves —(x2®u/) = Au+ |u|?~ ! uin (0, 1), then if one lets

_ 22«

c=-19

< 0 and defines w(y) = e“Yu(e™), then w solves

—w" + BwW + Aw = Xe @72V y 4 1wt win (0, 0o),

where A = ¢(1 —2a — ¢) and B = 2o — 1 + 2¢. Observe that B < 0 whenever p > 1

is sub-critical. Now, for m > 1, define w(y, m) as the unique solution of the initial value

problem
—w" + BwW + Aw = e P2y 4 wPtw in (0, o),
(5.61)
w(0) =0, w'(0) = m.
For i = 1,2, let m; = —u/(1). Then by the uniqueness of the initial value problem
one has that w;(y) = w(y, m;) = eYuj(e™) for i = 1,2. Define g;j(m) as the ;"

intersection between wy(y) and w(y, m), i.e. if one lets oo(m) = 0, then

041(m) = inf {y > o(m) - wa(y) = wly, m)}

We claim that

(i) For m > msy large enough there exists yg < oo such that w(y, m) solves

—w" + BwW + Aw = xe 72y L WP in (0, yo),
w >0 in (0, y0),
w(0) =0, w(yo) =0,
and # {y € (0,y0) : wi(y) = w(y, m)} = 1.

(i) There exists ms € (mo, m) such that oo(m) — oo as m 7~ ms.
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(i) If one lets ws(y) := w(y, m3), then ws solves

—w" + BwW + Aw = xe" 72y 4 wP i (0, 00),
w(0) =0,

w > 0,

and #{y € (0,00) : ws(y) =wmi(y)} < L.

Let us prove the claims:

2

Proof of (i). To prove this claim let Wy(y) = m?w(mPy, m), where a = —5=1 and
b= —%, then a direct computation shows that w,, solves

W+ AW + [Winl P~ Wi = Vi (Y)W + BmPW.in (0, o0),

Wim(0) = 0, W (0) = 1,

where Vip(y) = Am?P — X (e_(z_zo‘)’”by — 1). Observe that for all m > 1 one has
IVinll oo < |Al+2|A| and that ||V,;||L1(O'oo) = ||, hence, since B < 0, we can use lemma

5.32 to say that Wy, W), and W), are bounded independently of m > 1. By means

of Arzela-Ascoli theorem we are able to find a function Wy, € C![0, c0) such that W,

1

converges to Ws in Cj .

[0,00). Now, it is easy to see that Vi,(y) — 0 uniformly over
m—o0

compact sets in [0, c0), hence we must have that Wy, is the unique solution of
W 4 Ao + |Woo|P H oo = 0 in (0, 20),
Woo(0) = 0, W, (0) = 1.
Multiply the above equation by W/, and integrate over [0, y] to obtain

1. A 1. L1

§Wéo(Y)2 + §Woo(y)2 + Pt [Woo (V)P = 5
hence Wy, is periodic and one has that for Jp := inf {y > 0 : W (y) = 0} then Wy (y) > 0
for y € (0, o) and Wy (Jo) = 0.

Finally, since Wy, — Wy uniformly over compact sets, we have that for m large enough
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the claim holds.
Proof of (ii). Let m > my and denote wa(y) := w(y, m2). Notice that by the uniqueness
of the initial value problem at o;(m) one has that wj(o;(m)) # w'(cj(m), m). Hence,
thanks to the implicit value theorem, one obtains that o;(m) varies continuously when
one varies m.

Now let [mo, m*) be the maximal interval where both o7 and o, are finite. We claim
that if m € [my, m*) then w(x, m) > 0 in (0, 02(m)). Indeed, if w(y’, m") <0 for some

m' € (my, m*) and some y’ € (0, 02(m’)), we can define

mO:inf{me [mo,m*):  min  w(y,m) go}.
y€(0,02(m)]

Since for m = m, we have w(y, m) > 0 we obtain that mg € (mo, m’] and that

min w(y, mg) = 0.
y€(0,02(mo)] (. mo)

The above implies that there is some y € (0, c0) such that w(y, mg) = w/(y, mg) = 0,

so by the uniqueness of the initial value problem at y one obtains w(y, mg) = 0, which is
impossible since 0 < mp < mg.

Now, by claim (i), w(y, m) hits zero for some finite y, so we must have that m* < m,

%

so the only possibility is that g2(m) — oo as m ,* m*. The claim is proved with m3 = m*.

Proof of (iii). Define ws(y) := w(y, m3). There are two cases to take into account:

o1(m) — oo, and o1(m) — o1 < o0.
m,/'m m,/'m

Notice that by the definition of o1(m) and the fact that m > my for all m € [m2, m3), we
have that wy(y) < w(y, m) if y € (0,01(m)) and wi(y) > w(y, m) if y > (o1(m), o0).
If o1(m) mﬁq* 01 < oo, we obtain by passing to the limit that wy(y) > ws(y) for all
y > o1, hence ws is dominated at infinity by wy, which decays exponentially (recall that
wi(y) = e“Yup(e™) for ¢ < 0 and that by assumption u; € C[0, 1]). Therefore ws must
also decay exponentially and therefore by dominated convergence we obtain that ws is in

fact the solution we are looking for (in this case there is a unique intersection between w;
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and ws).
On the other hand, if o1(m) 7> oo, we have that that for wy(y) < w(y, m) when
m,/m*
y € (0,01(m)), then W(y) := wi(y)w(y, m) — wa(y)w'(y.m) > 0 in y € (0,01(m)).

Indeed, notice that W satisfies
W'(y) + BW(y) = —wi(y)w(y, m) (wa(y)?"" = w(y, m)P~*) >0 in (0,01(m)),

hence eBYW is an increasing function, but W (0) = 0, so W(y) > 0 for all y € (0, o1(m)).

This implies that v (y) is monotonically decreasing in (0, 01(m)). So 0 < M
w(y, m) wi(y, m)
w(y, m m
lim . m) = L and we have that w(y, m) < —wi(y), therefore when we pass to
y=0 wi(y) i my

the limit we obtain that
m
wa(y) < —wiy(y), forall y > 0.
my
The conclusion is the same as before, as the above implies that ws decays exponentially

at infinity (in this case there is no intersection between w; and ws). U

Next, we recall the Pohozaev type identity established in lemma 5.15. For each 3 € R,

we have the “energy” functional

1 1 A
Exp(u)(x) = §x2"‘+1+ﬁu’(x)2 + mxﬁﬂ lu(x)|PT + Exﬁﬂ u(x)?

1
-5 (B4 1 —2a) x> By (x)u(x) + g (B4 1—2a)x**Py(x)2, (5.62)
and the identity satisfied by all solutions to (5.1)
1

Exp(u)(x) = %u’(1)2 Al-a +ﬁ)/sﬁu(s)2ds

X

- ((B +1) (; + pi1> - a> /lsﬁ u(s) P

1
(8% = (2 — 1)?) /52“2+5u(s)2ds. (5.63)

&~
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As it will be seen later it is convenient to choose 3 in the following way

1

Pl (5.64)

1
a—3=

1
T o

0=

N|—

Before explaining the reason why we select such 3, let us make an observation. Firstly, we
notice that for every 0 < a < 1, every XA € R, every p > 1, every solution u of equation

(5.1) satisfying u, x**~1u’ € C[0, 1], and for B as above, then 8 € (a — 1,2a — 1) and

0 if8>1-2q,

Jim Exp(u)(x) = § E=22L0(0)> iff=1-20,

+00 if3<1-2a,

\

Indeed, since 3 > —1, we obtain that terms of the form x!™Pu9(x) = o(1) for all g > 1

(this follows since u € CJ0, 1]). Also
X2 (x)u(x) = o(1),

and

2o¢+1+ﬁ /(X) ( )

So the only term we need to worry about is the last one in the definition of Ej g, that is

Exp(u)(x) = g (B+1—2a)x** 1P y(x)% + o(1). (5.65)

Now, since both u and x>~/ are continuous in [0, 1], we have that u € C%272%[0, 1],

hence

u(x)? = u(0)? + O(x>72%),

SO we can write

Exp(u)(x) = g (B+1—2a)x** 1P y(0)% + o(1), (5.66)
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from where it is easily deduced that if 8 > 1 — 2, the limit is 0; when 8 = 1 — 2, then
the limit is WU(O)% and when B < 1 — 2a, the limit is +oo0.
When 0 < a < % and u solves equation (5.1) and satisfies u(0) = 0, we still have that

the terms of the form x'P |u(x)|9 = o(1), so we have

Exp(u)(x) = x1—2a+B %x“"‘u’(x)2 + %(204 —1-B)x"* "1 (x)u(x)

—l-g(ﬁ +1 = 2a)x**2(x)?| + o(1).

But now x?*~1y and x>*u/ belong to C[0, 1] (this follows from the fact that u € CJ[0, 1]
and the regularity properties of the operator —(x?*u’)’ given by [26, Lemma 3.1]), thus

we obtain

Exp(u)(x) = xt72oH0 [1x4°‘u’(x)2‘0 + %(20& -1- 5)x4°‘_1u’(x)u(x)‘

2 0

+§(ﬁ +1- 2a)x4°‘_2u(x)2‘0] +o(1).

Notice that for all x > 0 small enough, one must have that v/(x) > 0, and since 8 <
2a— 1 < 0 we have that every term in parenthesis is positive, so for every such u we have
that

Xli_r)no Ex(u)(x) = +oo.

The main motivation behind the choice of B comes from identity (5.63), as for G
chosen as above, we obtain that the derivative of Ejg(u)(x) with respect to x is a

multiple to u(x)?, that is

L (Era(0)() = 669u()”.

where

G(x)=A(1—a+B8)x° + g (B2 — (2o — 1)?) x?* 2P, (5.67)

This is the key ingredient that will allow us to adapt a technique by Kwong and Li [42]

to prove our result. In [42], the authors proved the uniqueness of positive solutions of an
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equation of the form

U (x) + fF(u(x)) + g(x)u(x) =0 x e (ab),

u(a) = u(b) =0,

by defining an energy function that had the property that its derivative is a multiple of the
square of the function, that is the main reason behind our choice of 3.

As we will see in the proof, it is necessary to impose some hypotheses over the function
G in order to obtain the uniqueness: We suppose G € C(0, 1) is either identically 0 or

that that there exists ¢ € [0, 1] such that

G(x) > 0 for all x € (0, c), and G(x) < 0 for all x € (¢, 1). (5.68)

Let us find out when the function G defined in (5.67) satisfies this hypothesis. Since

we are only concerned about the case p > 1 sub-critical, we will only consider 8 < 0.

3—4a 3—2a

It is easy to see that when 1 —2a < 8 < 0 (or equivalently 5-=9 < p < 57=7), then

G(x) — 400 as x — 07, and that depending on X, either G > 0 in (0, 1) or G has exactly

one zero in (0, 1]. When B = 0 (that is when p = g;z"l‘) then G(x) =X (1 —a+p), so

sign (G) = sign (N).

When B < 1 — 2a (or equivalently, 1 < p < 342 which only occurs when a < 2),

there are two cases to take into account. When 8 = 1 — 2, then sign (G) = sign ().
And when o — 1 <8 < 1—2a, then G(x) — —o0 as x — 0, so the only way to obtain a
¢ satisfying (5.68) is that c =1 and G < 0 in (0, 1], which is satisfied when

B((2a —1)* - %)
4(1-—a+pB)

A<

B((2a—1)>—p)

T1=ath) is always a positive number which satisfies

It Is easy to see that Ay g =

Aap N\ 0 as p > 1 increases to the critical exponent (that is, p * oo when o < %

and p ~ 3;3"‘1 when % < a < 1). Because of this behavior is that we will only use this

approach for A < 0, which we summarize in the following two lemmas.

Lemma 5.33. Suppose0 < a < 1, A < 0 and that p > 1 is sub-critical. Let u be a solution
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of (5.1) satisfying in addition that x**~'u’ € C[0, 1], then there exist B8 = B(a, p) € R

and G € C(0, 1) such that for Ex g(u)(x) defined in (5.62) we have

I (Era()() = GG)u()”.

and G satisfies (5.68) for some c € [0, 1]. Moreover we have the following expansion of

Ekﬁ
Exp(u)(x) = g (B+1—2a)x** 1P y(0)% + o(1). (5.69)

Lemma 5.34. Suppose 0 < a < % A <0 andthat p> 1. Let u be a solution of equation
(5.1) such that u(0) = 0, then there exist 8 = B(a, p) € R and G € C(0,1) such that
for Ex g(u)(x) defined in (5.62) we have

I (Erp()() = GGOu(x)”.

and G satisfies (5.68) for some c € [0, 1]. Moreover we have the following expansion of
E>\,ﬁ
1 1
Exp(u)(x) = xt72oHP [2x4°‘u’(x)2‘0 + 5(20( —-1- [3)x4°‘_1u’(x)u(x)‘

+§(5 +1- 2a)x4°‘2u(x)2‘0] +o(1).

For A > 0, we will adapt a method by Adimurthi and Yadava [2] used in the study of

the uniqueness of radial solutions to the equation
—div(|Vu|™ 2 Vu) = Xu|™ % u+ uP.

The idea used in [2] resembles the technique of Kwong and Li as they both use a Pohozaev
type identity to prove that a single intersection between two positive solutions cannot

OocCcur.
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With the above in mind, we define the new energy functional

x|u(x)|”+1+5xu(x)2+ X% (x)u(x), (5.70)

Ex(u)(x) == =x**T1/ (x)? + b1 5 i1

then a direct computation shows that for every solution u of equation (5.1) we have the

following identity

dixlzzx(u)(x) = <p—1kl + % — oc) X2 (x)? + X (; - p> u(x)?, (5.71)
so in the derivative of this new energy functional instead of having only a term involving
u(x)?, there is a second term involving u/(x)?. Observe that for every 0 < a < 1,
A > 0, and every p > 1 sub-critical we have that both pTll + % —oa and A\ (% — pTll> are
non-negative constants which cannot be simultaneously O.

It is easy to see that, for u solving equation (5.1) with the additional assumption that
x?2=1y € C[0, 1], we can write

Ex(u)(x) = %Xzaﬂu’(x)2 + X2 (x)u(x) + o(1),

p+1
and since both v and x?*~1/ belong to C|0, 1] we deduce

1

E)\(U)(X) 4a 2 /(X)Z 3— 2a+m

X2/ (x)u(x)x + o(1) = o(1).

In summary, we have proved

Lemma 5.35. Suppose 0 < a < 1, A > 0 and that p > 1 is sub-critical. Let Ex(u)(x)
be defined as in (5.70), then for every u solution of equation (5.1) satisfying x**~1u' €
C[0, 1], there exists constants C1,Co > 0 not both simultaneously O such that for all

O<exl1
1 1

Ex(u)(l) — Ex(u)(e) =C /x2"‘u/(x)2 + Co / u(x)z, (5.72)

€ €

and that Ex(u)(e) = o(1) as € approaches 0.
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5.9 Proof of uniqueness in Theorems 5.1, 5.5 and 5.7

Proof. We will argue by contradiction and assume that u; and u» are two distinct solutions
of equation (5.1) satisfying x>*~1i/ € C[0, 1]. We begin the proof with an observation:

Suppose u; < up (respectively u; > wp) in (a, b) C (0, 1), then the function
w(x) = x** (uh (x)u2(x) — w1 (x)u5(x))

is increasing (respectively decreasing) in (a, b). Indeed, for x € (a, b) we have

w' = (x®%u}) us + x**ujub — (x*2ub) uy — XUy b

=—(Aur +ud) o+ (Au2 + ub) iy

= Uil (ug_l — up_1> 51

>0 (respectively < 0).

Having said that, notice that by Proposition 5.31 we can assume that u; and wu» intersect
at most once in (0,1). Let us rule out first the case of no intersection, that is we can
assume that vy and wp are ordered, say 11 < wup in (0, 1). Multiply the equation of u; by

up and integrate by parts over (0, 1) to obtain

1 1 1
/xzo‘u’l(x)ué(x)dx = )x/ul(x)UQ(X)dx+/ul(x)puz(x)dx,
0 0 0
where we have used that x2*u; (x)uz(x) — 0 as x — 0. The same identity holds when 1

and u» are interchanged. By subtracting the two identities we obtain

1
0= / ur(x)un(x) (uz(x)”_1 — ul(x)p_l) dx >0,
0
impossible.
Finally we only need to rule out the case of a unique intersection, so suppose that

there is 0 € (0,1) such that u3 < up in (0,0) and u; > wp in (0,1). For i = 1,2, define
ui(x)

ui(x)

ri(x) =
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We claim that r; and r» do not intersect in (0,1). Suppose the contrary, then there
exists p € (0, 1) such that rn(p) = r(p). If p > o, then for x € (p,1) we have u; >
up, so by (5.73) we obtain that w is decreasing in (p, 1), but by assumption w(p) =
0°%u(p)ua(p) (r1(p) — ri(p)) = 0. On the other hand since ui(1) = wx(1) = 0, we
obtain that w(1) = 0, impossible. Similarly, if p < o, we obtain that w is increasing;
by assumption w(p) = 0 and since x**u/(x)uj(x) — 0 for i,j = 1,2, we obtain that
w(0) = 0, also impossible. Hence r; never intersects ry, but since ri(o) > (o), we

us ave I (X) > I’z(X) or a” X € (Ox 1) ron he € we deduce that the u Ctio iS
s
U (x))/ Ul(X)

w(x))  ua(x)
Now we distinguish two cases: A <0 and X > 0.

increasing, indeed, notice that ( (n(x) —r(x)) > 0.

The case A < 0: From lemma 5.33 there exist 8 € R and a function G € C(0, 1) such

that for any solution u of equation (5.1) satisfying x>~ 1/ € C[0, 1] we have

7 (Brp ) = Gl (5.74)

and G satisfies (5.68) for some ¢ € [0, 1]. Define

nle) toccen,
uo(c)
/
1
y={al) e g (5.75)
us(1)
1 if G =0.

. u
By the monotonicity of u—l we deduce that
2

u1(x) < yua(x) for 0 < x < ¢ and u1(x) > yua(x) for c < x < 1.

Now, let 0 < € < 1 and integrate equation (5.74) over (g, 1) where u is replaced by vy,

to obtain

1
S = Exa(u)() = [ 6Gus(x)ax
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Do the same for us, and multiply the result by 2 to obtain

1
2
TR = PErp()e) =7 [ Glu(x)dx.

€

Subtracting the two identities above yields

(u1(1)? =7up(1)?)

N =

1
[ 600 (s = P ?) ax =
— (Exp(t)(e) = Y Exp(u)(e)) -

Notice that by the definition of -y and (5.68), the integrand on the left hand side is always
non-positive (it is zero if and only if G = 0). Also notice that since u1(x) > yuo(x) for
all ¢ < x < 1, we obtain that

- u(x) up(1)
Ts X'l}”ff un(x) ui(l)'

hence v} (1)? —y2ub(1)2 > 0. Also with the aid of (5.66) we have that

Exp(u)(€) ~ 7 Exp(t2)(e) = 5 (641 - 20) €278 (13(0)? ~ 12(0)%) + (1),

but since u1(x) < yua(x) for all 0 < x < ¢, we obtain that u1(0)? < ¥%u»(0)?, and since

for all p > 1 sub-critical, B(8 + 1 — 2a) > 0, we can deduce that

N

1
(141 = (1)) + 0(1) £ [ 603) (1 () = Pun(x)?) o,
£
which by letting € go to 0 gives

0<

N —

1
(W12 — Pub(1)?) < / 6(x) (11 (x)? — PPus(x)?) dx < 0,
0

since the last inequality is strict when G # 0 we obtain a contradiction. When G = 0, then

by definition v = 1, and we obtain that v} (1) = v4(1), so u1 = up, also a contradiction.
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The case A > 0: To handle this case we first notice that if u > 0 solves —(x?*u') =

Au+uP, and |im+ x?%1/(x) <0, then v/(x) < 0 for all x € (0, 1). Indeed, since A > 0 and
x—0

u > 0, from the equation we obtain that x>*/ is strictly decreasing, hence for 0 < x < 1

we have x?%u/(x) < lim x?*u/(x) < 0.
x—0F

. ur .. ,
Recall that we already established that — is increasing, so we have that uyjup > Uy Uy,
s

and since v, < 0 for A > 0 we obtain that

v (x) _ )

up(x)  wa(x)

forall 0 < x < 1.

/
1
Let 7 = lim ) _ @)
x—1- Ua(X) ub(1)
uh(x)? < 2ub(x)%. Now, for given 0 < € < 1, subtract 42 times identity (5.72) for u»

then the above implies that ui(x)? < #°u»(x)? and

from identity (5.72) for u1, and with the aid of lemma 5.35 we get, after sending € to 0,

1
> (W2 = Pub(1)?) = & [ (W (2~ Fup()?) ax
0

1
+ Cg/ (u1(x)? = Aua(x)?) dx.
0

By definition of 4, the left hand side is identically 0. For the right hand side notice that
both integrands are negative functions, and since Cy, Co > 0 with one of them strictly

positive, we conclude that the right hand side must be negative, impossible. ]

5.10 Proof of the uniqueness in Theorem 5.3

We divide the proof into two cases: A < 0and A >0

Proof when A < 0. The proof is by contradiction, that is we assume that we have two
distinct solutions w1, up of equation (5.1) satisfying u;(0) = 0, i = 1,2. Proposition
5.31 still applies, so we can assume that u; and w, intersect at most once in (0, 1).
The case of no intersection is immediately ruled out as before because we still have
x2%ul (x)up(x) = o(1) = x®*uh(x)u1(x) when x — 0T, so we only need to take care of

the case of a unique intersection. Suppose that there is ¢ € (0,1) such that u; < uy in
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(0,0) and u; > wp in (0,1). Also, a line by line copy of our previous argument allows us
LU .
to show that the function u—l iS increasing.
2
We continue as in the proof of the uniqueness of Theorems 5.1, 5.5 and 5.7, but

instead of using lemma 5.33, we will use lemma 5.34. So after defining v as in 5.75 and

using lemma 5.34 in the same way as we used lemma 5.33 before, gives

1

[ 660 () 2202 dx = 5 (640 = Pus(1))

€

— (Exp(u)(e) — ry2E>\,[3(U2)(€)) .

The main difference in the argument is the expansion of Exg(u)(e) for € > 0 small, in

this case from lemma 5.34 we obtain that

Erp(u1)(€) = ¥Erp(u)(e) = e' 72+ [2 (*ui(e)?| —ve*upe)?| )
+§(2a—1—ﬁ>( (e (6)], et M) )
42 (5+1 2a)< 4o=2 ()2 } Y2e4 2 (¢)? ‘ )] +o(1),

but uy(x) < yua(x) for all 0 < x < ¢ so by L'Héspital's rule we have that

20,/
o x*ui(x
im %)
x—0+ X2 Ub(X)

Also, since ub(x) > 0 for x > 0 small, we deduce that lim x?*u}(x) <~ lim x?*u5(x).
x—0t x—0+

From these observations we obtain that
€4au/(€) ’ < 2%y (5)2‘0,

e (@ (e)| < v ub(e)us(e)|

0 0

and that

540‘_2u(8)2)0 §7284a -2 (8)2‘0,
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which, since B8 < 2a — 1 < 0, imply that

Exp(u1)(€) = ¥ Exp(u2)(e) < o(1).
Therefore after sending € to 0, we obtain

1

N |

1
(U (1)2 =251 /G x) (11 (x)? = Y?ua(x)?) dx
0

and we reach the same contradiction obtained in proof of the uniqueness in Theorems

5.1, 5.5 and 5.7. O

For the case A > 0 our previous ideas do not work. Instead we will use a shooting
argument together with an idea of Yadava [64] where the uniqueness of positive solutions
to

—Au=u+uP

in an annulus is studied.

Recall that we are interested in the uniqueness of a solution to equation

—(x**u) =xu+uP  in(0,1),
u>0 in (0,1),

u(0) =u(1) =0,

where 0 < a < % p>1and A > 0. To simplify the exposition, we will use the following
1
change of variables: let v(y) = u(yT=2«), then a direct computation shows that v is a

solution to
—v" = h(y)f(v) in(0,1),

v>0 in (0,1), (5.76)

o 1 _2a o pfl . .
where h(y) = T zapy > and f(v) = Av+|v|’ " v. Following [64], we introduce some



notation and some properties of solutions to the equation
— V' = h()F(V).
Let F(v) = [, f(s)ds = 3v2 + ﬁ lv[P*! and define
Lo \2 1,
E(y) = syv' ()" +yh(y)F(v(y)) = v (n)v(y).

A direct computation shows that if v solves equation (5.77), then

E'(y) == h(y) (F(v(y)) + f(v(y))v(y)) + ¥y (y)F(v(y)).

Also, for A € R to be fixed, we let

ga(y) = yv'(y) + Av(y).

A straightforward computation gives

g =1+ AV —yh(y)f(v)

and

—ga=h)f'(v)g+ (A v),

where

I(A,v) = ((2+ A)h(y) + yH' (y)) f(v) — Ah(y)f'(v)v.

We also need to introduce the linearized equation

—w" = h(y)f'(v)w.

A useful identity obtained from equations (5.80) and (5.81) is that for any a < b,

b
//(A, viyw(y)dy = [yw'v' — Aw'v — (1 + A)V'w + yh(y)f (v)w] ‘:
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(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)
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We also need the following identity satisfied by all solutions of equation (5.77): Let

a <y, then

2 (yV’(y)

v(y) ) = [(V&) = yhF DIV = W )] |

+ yh(y) RF(v(y) = F VI ||
y

— / [h(s) (2F (v(s)) + f(v(s))v(s)) + 2sh (s)F(v(s))] ds. (5.83)

a

Now, let v(y, m) be the unique solution of the initial value problem

—v" = h(y)f(v),

v(0) =0, v/(0) =m,

(5.84)

and define r(m) as the first zero of v(y, m), i.e. r(m) = inf{y >0:v(y,m)=0}.
Notice that the uniqueness of the solution to equation (5.76) is guaranteed if we can
prove r(m) = 1 has at most one solution. To do this we will show that r(m) is monotone

for all m > 0, and this is the content of the following
Proposition 5.36. Given m > 0, then f(m) # 0.

Remark 5.13. The f(m) notation means derivative with respect to m.

The proof of this proposition requires the following

Lemma 5.37. For given m > 0, let v(y, m) be the unique solution of equation (5.77),
/

and let r(m) be as above. Then % <0 for all y < r(m).

Proof. We have that v(s) > 0 for all s < r(m). From identity (5.83) we have that for

a=0and0<y<r(m)

v (yvv> = [(v = yh)FW)v = yv?] | +yh(y) RF(v) = F(v)V] K

_/ [h(y) (2F(v) + f(v)v) + 2yh' (y)F(v)]
0
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y

= yh(y) 2F(v(y)) = F(v(¥))v(¥)] - / [h(y) (2F(v) + F(v)v) + 2y (y) F (V)]

0
_ p—1 = +1
=TT W

“Tmr / o7 [y (F5ave+ (i 1) 1)

0

<0,

forallp>1,0<a<3andX>0. O

Proof of Proposition 5.36. Suppose the contrary and let mg > 0 be such that r(mg) = 0.
By the definition of r(m) we have that v(r(m), m) = 0. Differentiate this equation with

respect to m to obtain
w(r(m)) +Vv/'(r(m), m)i(m) =0,

where w(y) := w(y, m) is the unique solution of

—w" = h(y)f'(v(y, m)w,

w(0) =0, w'(0) = 1.

Since F(mp) = 0 we have that w(r(mp)) = 0. Let yp be the largest zero of w that is less
that r(mp), i.e. yo =sup{y € (0,r(mp)) : w(y) = 0}. A constant multiple of w (which

we denote the same) must solve

—w" = h(y)f'(v(y, m)w,
w(0) =0, w(r(mgp)) =0,

w'(r(mo)) = v'(r(mg), mo) < 0.

Now for A := %, consider gx defined in (5.79). We claim that ga has exactly

one zero in (0, r(m)) for all m > 0. Indeed, notice that solving ga(y) = 0 is equivalent
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to solving
W) _
v(y)
_yVi(y) . . . L v/
but from lemma 5.37, the quantity yly) is monotonically decreasing, with lim »wo_ 1
v(y) y—0t Vv
. y' o . B g . .
and yﬁllrr(]:n)i = —o0, and since —A = ~p=D(-2a) < 0, we have a unique solution.

So let sp € (0, r(mgp)) be the unique solution of ga(s) = 0.
Claim yp < so: Notice that +, is increasing in (Yo, r(mg)), indeed, let z = w'v — v'w,
so it is enough to prove that z(y) > 0. Suppose that z(y) = 0 for some ¥ € (yp, r(mo)).

Since z(r(mg)) = 0 we obtain that

r(mo) r(mo) r(mg)
0=2z(r(mo)) — z(y) = / 7 = / w'v —v"'w = / h(y) (f(v) = f'(v)v) w.

Since w > 0 in (yp, r(mp)), h(y) > 0 and since f(v) > f'(v)v for all v > 0 we obtain a
contradiction. Hence z(y) does not change sign, but since z(yp) = w'(yo)v(yo) > 0 we
obtain that z(y) > 0 for all y € (o, r(mo)).

Now since w/(r(mo)) < 0, w > 0 in (yo, r(mo)) and the fact that % is increasing we

deduce that w < v in (o, r(mp)). From identity (5.82) we obtain that

r(mo)

(A, v)w = r(mo)w(r(mo))? = ga(vo)v/(yo).

Yo

but from the choice of A we have that, since h(y) > 0,

r(mo) 5 r(mo)
—2a
/ I(A, V)W:>\<1_2a> / h(y)vw
Yo Yo
55 r(mo)
<>\<1—2a> / h(y)v
Yo
2-2 o)
<>\(1—2a) /h(y)v,
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but from (5.78) we deduce that

r(mo)

M(3552) [ v < o (r(mo)y

0

hence

9a(yo)v'(v0) >0,

and since v/(yp) > 0, we deduce that ga(yo) > 0. But g,(0) = (1 4+ A)J(0,m) =
(1+A)m >0, so ga(y) > 0if and only if y < sp, hence yp < sp.
Now, let y1 = sup{y < yo : v(y) = 0}. By definition, v < 0 in (y1, ), but from

identity (5.82) we obtain

" = W () 9a(0).

Y1

/I(A, VIw = [W/ga — wg]

so
2 2a\ |
0 < w'(¥)ga(yo) = X /h(y)vw <0,
1-2a
n
hence we conclude that v(0) # 0, a contradiction. Therefore r(m) # 0. O

Proof of the uniqueness in Theorem 5.3 when X\ > 0.
From Proposition 5.36, we deduce that r(m) is either monotonically increasing or
monotonically decreasing, hence r(m) = 1 has at most one solution. This proves the

theorem.
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