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Abstract

We establish point-wise asymptotic estimates at infinity for solutions to the doubly weighted quasi-linear
equation
—div(wy |Vul’ ? Vu) = wy [u| *u in Q,
= DLI%M(Q)

where w; and wsy are compatible weights and ¢ > p > 1 is a critical exponent g > p > 1 in the sense of
Sobolev.

Keywords: weighted quasilinear equation, local boundedness, Harnack inequality, decay at infinity.
2020 MSC: 35B45, 35B65, 35J62

1. Introduction

In this article we study qualitative and quantitative properties of weak solutions to the following
equation

—div (w1 [VulP~? Vu) =wyul??u inQ

(1)
u € DVPU(Q),

for weights wy,ws and ¢ > p > 1 critical for the weighted Sobolev embedding from D!?*1() into
L22(Q)). In particular we are interested in the point-wise asymptotic behavior of a solution u to .

The main motivation behind studying this problem comes from the results in [2] where the existence
to extremals to a Sobolev inequality with monomial weights was analyzed (see also [3, 4]). It is known
that extremals to a weighted Sobolev inequality can be viewed as positive solutions to for appropriate
weights w1, w2, and our goal is to obtain as much information as possible regarding said extremals and,
in general, of solutions to (I).

The functions wy, ws will be weight functions, meaning locally Lebesgue integrable non-negative
function over Q C R¥ satisfying at least the following two conditions: if we abuse the notation and we
also write w as the measure induced by w, that is w(B) = | pwdz, we require that w is a doubling
measure in 2, meaning that there exists a doubling constant v > 0 such that

w(2B) < yw(B) (2)

holds for every (open) ball such that 2B C 2, where pB denotes the ball with the same center as B
but with its radius multiplied by p > 0. The smallest possible v > 0 for which holds for every ball
will be denoted by 7, > 0 from now on. Additionally we will suppose that

0<w< oo A — almost everywhere (3)
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where A denotes the N-dimensional Lebesgue measure. Observe that these two conditions ensure that
the measure w and the Lebesgue measure \ are absolutely continuous with respect to each other.

In addition to and we will suppose that the weight w; satisfies the following local (1, p)
Poincaré inequality: if we write f, fwdz = ﬁ [ fwdx then
(P1) Local weighted (1, p)-Poincaré inequality: There exists p > 1 such that if u € C1(Q) then for all

balls B C € of radius I(B) one has

1
][ u — up | w1 dz < C1I(B) <][ IVul” w, dx) ’ (4)
B pB

UB,w :][ uw dx
B

where

is the weighted average of u over B.

As it can be seen in [5, Chapter 20], when a weight function w satisfies , and then w; is
p-admissible, that is, it also satisfies the following properties

(P11) Uniqueness of the gradient: If (uy,)neny € CH(Q) satisfy
/ |tup|” wydz — 0 and / [V, — v’ wydz — 0
Q n—0oo Q n—oo

for some v : 2 — R¥, then v = 0.

(P1i1) Local Poincaré-Sobolev inequality: There exist constants C3 > 0 and x; > 1 such that for all balls
B C Q one has

(][ = a0, [P w0y dx) < a(B) <][ Vul” wy dz) ’ (5)
B B

for bounded u € C1(B).

(P1v) Local Sobolev inequality: There exist constants Co > 0 and x; > 1 (same as above) such that for
all balls B C 2 one has

(7{3 [P dx)ﬁp < Cyl(B) (7{9 IVl ws dx); (6)

Remark 1.1. The value of x1 is a dimensional constant associated to the weight w1, namely, it can be
seen that if w is a doubling weight then

for u € C}(B).

w(Bry) _ . (R »
w(TE.{(J;)) <C (7‘) , for all0 < r < R < oo with B.(z) C Br(y) C Q. (7)

for Dy, =10gy Y, and if we denote Dy := logy Ve, then we can take x1 = D?ip m and (@

Regarding the weight ws, in addition to satisfy and (in particular wo also satisfies @ for
Dy :=log, Yu, ), we require that the following compatibility condition with the weight w; is met: there

exists ¢ > p such that
r wQ(BT)>‘? <w1(BT) >P
— <C . 8
R <w2(BR) ~ \wi(Bg) ®)




holds for all balls B, C B C Q. From [7] (see also [8 Theorem 7]) we know that if 1 < p < ¢ < oo,
wy is p-admissible, wy is doubling and is satisfied, then the pair of weights (w1, ws) satisfy the
(g, p)-local Poincaré-Sobolev inequality

(][ U — up | ! we dx) ’ <CR <f [Vul? w; dx) ’ , Yue CYBg), (9)
Br Br

and the (g, p)-local Sobolev inequality

<][ |u|? wo d$> ’ <CR (][ |Vu|? wy dx> ’ , Yu€ ClBg). (10)
Br Br

Remark 1.2. As it will be useful later we write D = % and xo = DL_p = %. Notice that this D comes

from and in general it has nothing to do with Dy = logy Yu,, the dimensional constant associated to
the doubling weight we mentioned before.
In order to establish the main results of this work we recall some definitions regarding weighted
spaces. For an admissible weight w we consider the weighted Lebesgue space
LP*(Q) = {u: Q — R measurable : / lu|” wdz < oo}
Q

equipped with the norm
full, = [ fof wa.
Q

The p-admissibility of w; is useful to have a proper definition for weighted Sobolev spaces: for an
open set Q C RY we define the weighted Sobolev space HP:%1((Q)

ou
8$i

H'P¥1(Q) = the completion of {u € C*(Q) : u, € L (Q) for all ¢ }

equipped with the norm
P

ou
o0x;

2

N
el s = el oy + 2
i=1

As we mentioned before the goal of this work is to point-wise estimates at infinity for solutions to
. To do so we first study the local regularity of weak solutions the following quasi-linear problem

p,w1

{div.A(z,u,Vu) = B(z,u,Vu), inQCRY a1

ue H:P"N(Q),

where A: QxR xRY = RY and B: QxR xRY — R are functions verifying the Serrin-like conditions

Az, u,2) -z > wi(x) (cfl |2P — dy |ul” — 9) ; (H1)
A, u,2)| < wi(@) (alz~ + bl +e), (H2)
|B(x,u, 2)| < wa(x) (c|z|p_1 + do |u|p_1 + f) , (H3)

for a constant a > 0 and measurable functions b, ¢, dy, da, e, f,g: 2 — RT U {0} satisfying

1—1
bae € L%’wl (32)7 ¢ <u}2> € L%7U)2(BQ)7
w1

Dy _D_
di,g € Lv==""(By), da, f € Lv—=""2(By).



for some 0 < e < 1.

With the above into consideration, throughout the rest of this article the functions wy, wo will be a
non-negative locally integrable weight functions satisfying , , wy will satisfy the local weighted
(1, p)-Poincaré inequality and the pair (wy,ws) will verify the compatibility condition (8]). We will
also suppose that 1 < p <min{ Dy, D }.

The first result of this work shows that weak solutions to are locally bounded.

Theorem 1.1. Suppose that there exists 0 < € < 1 such that (H|) is satisfied, then there exists a
constant C' > 0 depending on the norms of a,b,c,dy,ds such that for any weak solution to i Bg
we have

lull oo 5,y < C ([ulp,B, +F),

where )

p—1 p—e p—1

()™ )

and for s > 1 and B C Q we write

fula,5 = (]{B |u|5w1)i n (]i |u|swz>)i (13)

Remark 1.3. We have chosen to exhibit the local regularity results only for the case By C By C ) as
the general case Br C Bog C ) can be easily obtained by a suitable scaling argument (see [1] where the
computations are done in detail).

Next we consider the case € = 0 and we show that weak solutions are in L*"i(By) for every s > p.

Theorem 1.2. Suppose that (H.)) is satisfied for e = 0, then there exists a constant C > 0 depending
on the norms of a,b,c,dy,ds such that for any weak solution to in By satisfies

[u]s,5, < Cs ([ulp, B, + k)
for every s >p and k as in .
Finally, we show that the Harnack inequality holds for non-negative weak solutions to .
Theorem 1.3 (Harnack inequality). Under the same hypotheses of Theorem with the additional

assumption that u is a non-negative weak solution of divA = B in Bs then

maxu < C (minu + k>
B1 B4

where C and k are as in Theorem [11l

Remark 1.4. It is worth emphasizing that, while the results in Theorems[1.1] to may be anticipated
in light of the foundational works of Serrin [9] and Kenig—Fabes—Serapioni [6], to the best of our
knowledge, they have not been explicitly established in the literature with the same level of generality.

With the aid of the above theorems we are able to study and to obtain a general result regarding
the behavior at infinity of solutions. To do that we will suppose that in addition to the above conditions,
both weights wq, wy verify global Sobolev inequalities, that is, there exists a constant C' > 0 such that

</Q Ju|? w, dx)qll <C (/Q V| wy dx); (14)
</Qu|qw2 dx>é < C’(/Q|Vu|w1 dx)’l’ (15)

for g1 = x1p and



for g as in (), and all u € C1(Q). Under these assumptions, and if we define D71 () as the closure
of C2°(£2) under the (semi) norm ||Vul|, , then D'Pw1(Q) embeds continuously into both Ld1:%1((2)
and L?"2(Q)) and we are able to prove

Theorem 1.4 (Decay). Suppose u € DVP1(Q) is a weak solution to (I)). Then there exists Ry > 1,
C >0 and A > 0 such that o
u(z)] <

" lalEE

for all |x| > Ry in Q.

Remark 1.5. [t is important to mention that this decay behavior is not optimal, but it can be used as
a starting point to obtain better results. This can be done with the aid of a comparison principle a the
construction of a suitable barrier function depending on the weights wy, wy. We refer the reader to [1,
Section 4] where power type weights and monomial weights are considered in the case wy = wa.

The rest of this article is dedicated to the proofs of the above results. In Section [2] we study
and obtain the proofs of Theorems [I.1] to [I.3] whereas in Section [3] we turn to the proof of Theorem [I.4]

2. Local estimates

Throughout the different proofs in this section we will use the dimensional constants of the weights
D, := D, as well as the local Sobolev exponents ¢; := 1:]))1 1_pp and D = % for ¢ given by . With
these notations we also have

Xlzﬂz D and X2=g=7D
p Di-p p D-p
Following [9] we define F' : [k,00) — R as
F(x) = Fopi(2) % ifk<z<l,
€Tr) = xTr) =
kit 17 axr — (= 1)) ifx>1,

which is in C!([k, o0)) with [F'(x)] < al®~!. We consider Z = |z| 4+ k and G : R — R defined as
G(2) = Gaypa(w) = sign(x) (F@) |F'(@)"" = a1k

where f =14 p(a — 1). Observe that G is a piecewise smooth function which is linear if |z| > —k
and that both F' and G satisfy

and

B |F(z)["if 2| <1k,

o

|F' (z) if x| >1—k.

Finally, observe that if € C2°(Q) and if u € H-""*(Q) then ¢ = n?G(u) is a valid test function in

loc

G'(z) =

/ Az, u, Vu)Vo + B(z,u, Vu)p =0
Q

thanks to the results in [5, Chapter 1] regarding weighted Sobolev spaces for p-admissible weights.
We can now prove the local boundedness of weak solutions.



Proof of Theorem[I.1 By using (HI)-(H3) we can write
z,u,2)| <wy(a|z|P7" +baP~ L),
A p—1 buP 1
Az, u,z) - 2 > wy (]2]" — di@?) | (16)
z,u,2)| <ws (e|zlP” + dowP ™),
B p—1 doii? 1

where
b=0b+ k' Pe,
di =dy + k7 Pg,
dy=dy+k'"Pf,

and @ = |u| + k for k > 0 defined asE|

1 o1
Dy pDi_ll D el Dy el
b= () ™ (117 ) (£, 107 w)
Bo B> B2
Observe that (H.|) implies that
_, D1 - b1 _ ,_D_
][ b7 wy < C, ][ |di| 7wy < C, ][ |da| 777 w2 < C, (17)
Bo By B2

for some constant C' > 0 depending on the respective local norms of b, d;,ds, €, f, g.
For a local weak solution u and arbitrary n € C2°(Bsz) we use ¢ = nPG(u) and with the aid of
one can obtain the estimate

AV +Bp =nPG (u)A- Vu+pp* 'G(u)A - Vi + 1°G(u)B
> PG s ([Vul” — &) — it (VG| wr (a [Tul?™ + )
= G(w)| wy (e|Vul” ™ + dy ")
so that if v = F(@) one reaches
A-Vo+ B> [nVulP wy — pa |oVn| [nVolP™ wy — pa? b [uvn| [nu]P T wy
— Ba? " dy vl wy — enu nVulP T wy — aP Ny [pulP we (18)

We integrate over By and divide by w;(Bz) to obtain

f [NVl wy < pa][ [vVn] \77Vv|p_1 wq —l—pap_l][ b|vVn| |v77|p_1 wy
Bo Bs B
p—1

_ 1 -1 @ 7
+ BaP? ][ dy [on]” wy + 7/ cun [nVolP™ " ws + 7/ da [on[” ws,
B, wi(Bs) Jp, w(Bz) Jp,

but since ws(Bz2) = Cwy(Bs) for C = C(zg, w1, ws2) = :ﬁggzg we can write

f [NVl wy < pa][ oVl Vo~ wy +pa? ™t BV fonP T w
Bo Bs B

+ Bap_lj[ dy [vnP wy + C][ con |nVU\p_1 Wy + Cap_lj[ do [vn|P we, (19)
Bs Bs B

If e = f = g = 0 we can take any k > 0 and at the very end we can pass to the limit k& — 0.



and each term on the right hand side can be estimated using @, 7 and as follows:

1 11
]{B [vVn| |77Vv|p_1 w; < (7{3 loVn|? wl) (Ji [nVol|? w1> , (20)

if Dy the dimensional constant associated to the weight w; then

_ b\ : 5v]
][ bV lonP  wy < (7[ bplw1> (][ loVn[? wl) (][ lom|X** wl)
By Bso B B
: -
<o(f wwra)” (£ veora) "
By By

][ dy [onf? wy = f dy [onf [P~ w
B
(][ e ) (][ vnl”w1> (][ on[P w ) (22)
BQ BQ
5 -5
( Ivnlpw1> (][ IV(vn)lpm) ,
B2

1—1
— p
whereas for D = % and ¢ = ¢ (ﬂ) we have

(21)

and

\ /\

w1

p—1 _ _ 1%5 e ¥ 1—¢ 7135 p—1 17%
con Vol W2 = cwy” un|”wg |vn| wy NVl wy
B2 BZ

l—¢

(f, )
Ba
e
(][ |vn|pw2> (][ Ivnlqwz> (f |an|”w1)
Bo Bs Bo
; e -3
sc(][ Ivnlpw2> (f |v<vn>|pw1) (f |an|”w1) 7
By B, By

][ dy [y wy = ][ da [og|® |on[P ™ ws
B
p—e

(][ ) (7{92|m|1’w2>;<]i2|m|qw2>q (24)
<c(f lvnlpwzf (f, IV(vn)Ipm)l;.

IN

(23)

and



Therefore , , , , and give

1 1—1
][ InVol” wy < pa (][ loVn|? w1> <][ InVo|? w1>
B, B, B,
:
+ CpaP~t [(][ [vVn|? w1> + (/ [vVn|? w1> (][ InVol? wl) ]
B, B, B,
5 1-3 1-3
ot (£ ponpron) [(][ i) (f o)
B, B, B,
+C (][ lom|? w2> '
B>
X [(][ |77Vv|pw1> (/ |vVn|pw1> + <][ |77Vv|pw1>
B, B, B,
» 1-3 1-3
+ CaP ! (][ |vn|pw2> [(][ |vV77|pw1> + (][ |an|pw1) 1 .
B, B, B,

(f5, In7ol )
(JEB2 |UVTl|p wl)

If one considers

=

z =

T =

and )

(f32 [nol” wl) T+ <f32 nl” wz) ’

1

(fB2 [oVn|P wl) !

then, because a > 1, becomes
PO (P T 14+ + CEPT 2P 4+ (14 B)aP I (14 2P79))

for some constant C' > 0 depending on a,b, ¢, d, e, f, g, w1, ws and p. With the aid of [9, Lemma 2] we
obtain
b
2 < Cas(14()

which gives

(f 2 nvwwlf < Cat ((ﬁ 2 Ivanpun); (4 2 mv?wl); (4 2 Inva2>;> o)

Now, by @ and , that is the local Sobolev inequalities for the pair (w1, w;) and the pair (wq, ws)
respectively we obtain

(f Inv Xipwi> o < Ca*® ((7[ |vV17|pw1> ’ + <][ |77va1> ’ + (][ |nv|pw2) p) , (27
Ba Ba Bo B

where we recall that x; = D?ip and x2

—-a__D
—p D-p’

To continue we consider a sequence of cut-off functions as follows: we take n, € C°(Bp, ) such that
N, = 1 in By, and |Vn,| < C2"™ where h, =1+ 27". If one recalls that both weights are doubling

n+1



so that w;(Bp,,) < Yw,wi(Bh, ,) we deduce from that (after passing to the limit [ — oco)

. 1 1
xX1p xX2pr P
][ AT |+ ][ AP, | < Conat f 1wy
B, B Bn,,
%
+<][ |a|‘”’w2> . (28)
Bp,

which is valid for all & > 1. Recall the definition of [u]s, g given by , that is,

[ul 5 = (fB |a|5w1>l 4 <]i |ﬁ|sw2>i

and observe that if y = min{ x1, x2 } then

1 1
porTe XTxiP
Bh, Bh

n+1
for ¢ = 1,2. Therefore, if we select a;, = x™ > 1 in (28)) we are led to

hpt1

n+1

n —n

anx [a}sn;Bhn

_ X*VL 'I’LX7
[u]57z+1;Bhn+1 <C 2

where s, = px". And because x > 1 then >~ kx~* and Y oreo x~* are convergent series so we can
iterate the above inequality to obtain

[ﬁ]sanhn < C[ﬂ}Pszv

for some constant C' independent of n. After passing to the limit n — co we obtain

<][ u|pw1> ’ + (][ |upw2> ’ + k
BQ B2

and the result follows. [ |

lull oo 5,y < C

)

Proof of Theorem[I.4 Thanks to the interpolation inequality in L™, it is enough to find a sequence

S$n — +oo for which one has
n—oo

[a]Sn,Bl <Gy, [Q]P,Bz’

where @ = |u| + k. As in the proof of Theorem by using the test function ¢ = n?G(u) we reach to
the inequality

][ InVol” wy Sap][ V| [nVolP ™ w; +P0<”71][ bVl [onP ™ wy + Bt dy Jon]? w,y
Bg B2 B2 B2

+][ cm]|77Vv|p_1 wy + P da [on|” wa,
32 BQ

but because € = 0 we cannot repeat —. Instead we firstly estimate the term involving b as
follows

F 5wy vn|’”w1<(f bw) 1 (f wm”wl)p (][ vnl’“”w1>
Bo Bo Ba By
: t -
<C <][ lvVn|? w1> l(f |vV77pw1) + (][ anpwl) ] )
B2 B> Bo



- 1-1
For the terms involving ¢ and d we consider ¢ = ¢ (L}”—f) " and for each M > 0 we define the set

Cy = {2 < M} and proceed as follows

_ 1 _
Bo w2 (B2) BoNCay

% l -1 1-%
+ / cwd [onw§ nVol" wi P
Bzﬁcﬁ/l

1 1—1
SM(][ |U77|pw2> (f Ianlpw1>
Bz B2

1

D 1 1—1
B fyay, ) (fJote) (o)
+ | ——— c|” w on|* w Vol" w
<w2(32) /Bgmcgd| 2) (132| e By Vel e
1 1_%
§M<][ |vn|pw2> <][ |an|pw1)
B, By
v 1-3
+C<][ IvVnpwl) (][ Ianlpw1>
B, Ba

1

1 b
+C 7/ 2| w, <][ |T]V11|pw1>.
w2(B2) Jp,nce, B

Similarly

_ 1 _ _
][ dy |’ wy = ——— / i d |vn|” wq +/ ) dy |on|? wy
B, wi(B2) | /p,ngdi<my Bon{di>M}

1 b, BT =
<M f o+ / atwn) (£ o)
Bs w1 (Ba) Bon{d,>M } By

< M][ |'U77|p wy + C (][ |UV77|1’ w1>
Bso B
1 D L »
+ 7/ d." w; (][ [nVu| wl),
w1(B2) Jpynfdysmy ! Bs

and

1 _ _
7/ _ d2 |U77|pw2+/ . da [on]” wa
wa(B2) Jp,npda<nry Ban{da>M}

1 D b 7
<M lon|? wa + 7/ dg wo (][ lom|? w2>
B w2(B2) Jpynido>M B

<M lon|? wa + C <][ [oVn|? w1>
BQ B2

1 o \?
+ 7/ d? w (][ anpw).
(wz(BQ) Ban{da>M} 2) Bg‘ P

10



— D —
Because ¢ € LPw2 d, € L7 and dy € L% then for any 0 > 0 we can find M > 0 such that

p

1 / D b 1 _Dy Pu
B |e| w2> + 7/ d,? wy
(w2(32) BanCut wi(B2) Jpyngdysnry

1 / D 5
+ | —== dy wo <9,
ws(Ba) Bon{d>>M} 2

therefore for any o« > 1 we can find ¢ > 0 sufficiently small and a constant C,, > 0 such that

’ ’ -}
(][ lovn|” w1> + <][ jon|” wz) ] (7[ Invol’ w1>
By By B:
+ Co (7[ [oVn? w1> +Cy <][ lom|? wl) + Co (7[ lom|? w2> :
Bs By B

The above inequality allows us to we use [9, Lemma 2] once again and obtain an inequality analogous

to , namely
1 1 1
(][ lvVn|? wl) + <][ [nv|? wl) + <][ Inv|? w2> ] (29)
Bs B B

O

][ InVolP wy < C,
By

<][ [nVol? wl) ’ <Cq
Ba

the main difference being that the constant C\, is no longer explicit. Nonetheless we can continue the
argument from the proof of Theorem [I.I] by choosing appropriate cut-off functions 71 to reach

[a]8n+173hn+1 <Cy [a]sn,Bhna

where s, = px™, hn, =14 27" and [u]s g is defined in . Observe that while we do not obtain a
uniform estimate for C,, we can still iterate the above to conclude that

[ﬂ]sn,Bl < CH[E]P,BQ

and the result is proved. |

Proof of Theorem[I.3 Theorem [I.1] says that u is bounded on any compact subset of B hence for
any € R and any 6§ > 0 the function ¢ = nPa” is a valid test function provided @ = u + k + ¢ and
n € C°(Bs). Here k is defined exactly as in Theorem

For 8 =1— p and v = log 4 we obtain

(1) / nVol w1 < pa / V) InVolP ™ wn + p /
Bg BS

B3

bpP~! IVn|w1+/ enlnVol" ™ w,
B3

+(1?7*1)/ Jmpler/ donPws, (30)
Bg BB

1
for any n € C°(Bs). To continue denote by z = (st InVol? wl) " and with the aid of Holder’s
inequality becomes
2P < C2P 4 Oy,
1

1—
— P
where for ¢ = ¢ ( %) we have

_ _Dba P » 1 _p i
cl—p_l(/BBNm w) +p_1</33|c77| w)’ (31)

_ - 1 -
Cy = L/ b~ V| wy +/ dinPwy + —— [ danPws, (32)
p—1Jg B p—1/g,

11



which thanks to Young’s inequality imply
2P < C(CY 4 Cy),

for some constant C'. To continue we estimate Cy and Cs using appropriate 1. For any 0 < h < 2 such
that By, C By (not necessarily concentric) we have that B an C B3 and we consider n € C°(B an ) such
that n=11in By, 0<n <1 and |Vn| < Ch~ L

We use such 7 in — and we get the following estimates using Holder inequality and the
properties of n

C
| vaPun < (B,

_ _ _ Dy oy
/ bt V| wr < gwl(BM) - (/ |b|p711 wl) -
Bs h 2 Bs

(1-e) D
/ len|? wa < C'LUQ(B%)17 5 (/ E = w2> ’
Bs Bs

- 1_p=c i le
soer<cumgr 5 ([ 1) ™,
Bs

Bs z

- p—c - k=
dgnpwg < sz(BSTh)l_ D (/ ’dg’p_s w)
Bs

Bs
Therefore one obtains
hp][ Vol wr < — /|V|p
v W S ——— nVvVou|~ wy
By w1 (Bn) Jp,
Ch?
cY+C
wl(Bh)( 1 2)
U)l(B@) wl(B@)l_% wl(B%)l_pD_f
<C LRGN 2 + P 2
w1 (Bp) w1 (Bp) w1 (Bp)
wa(Bap )T wa(Ban )1~ 5°
+h? . + hP 2 ,
w1 (Bp) w1 (Bp)

- P - P - D
where C depends on st |b|7’*1 Wy, fBg |E\% Wa, st |d1|p*5 wi, and st |d2|1’*5 w. We claim that the
right hand side of the above inequality is bounded independently of 0 < h < 2, indeed because w; is

doubling we have
w1 (B% )

wl(Bh)
and also because Ban C Bz we deduce from (7)) that ChPrw,(B3) < wl(B%), hence

<C,

1—p=t
wi(Bap) P Yy HP1

pp1

IN

wi(Bh) wi(By) o7

12



also

hP 2 < — < Ch®
w1 (By) wl(B%)"D1
From we deduce
wa (B )~ YT wy(Bay) i (170)
hP 2 — hp 2
w1 (Bp) w1 (Bp)
1 p
B
= hP i %)f wa(Bay )15
wi(Bp)? ?
1 p
By,)4 »
<’Y1f12hp <w2( h)1> U}Q(B?))E( 75)
wi(Bp)?
1 P
3 Ba)d i
< Y, B C(3> walBa) ) By (8
h) wi(Bs)v
<C
and similarly
_ p
wo (B 3n 1-55= wo (B an é R
hp& — hP 2(7%)1 wQ(B%)g(ka) <C.
wl(Bh) wl(Bh)E 2

Hence for any € > 0 each term on the right hand side is bounded independently of 0 < h < 2.

Finally, the local Poincaré-Sobolev inequalities and @ tell us that

1
i

][ v —vp,|w; < (][ lv—vp,|" wz)

B B
1
P
< Ch (][ |Vol? wl)
By,

<C,

for any ball By, C By and both i = 1,2. We conclude that

][ v —vp, |w; < C
By,

(33)

where C' > 0 is a constant not depending on h, in other words, v € BMO(Bs, w; dz). If we denote
by [Vl paro(Bs,ws) @ the least possible C'> 0 in then the John-Nirenberg lemma for doubling

measures [5, Appendix II] tells us that there exist constants pg ;, C' > 0 such that

][ ep(),i|'U*UB‘wi <C
B

for all balls B C Bs. In particular this gives

(][ epowvwi) . (][ e_pO)ivwi> S 027
BQ BZ

and because v = log 4 we have obtained

—1
][ uPoiw, < C (][ u_p‘“‘wi) .
Bs B

13



Denote by pg = min { po.1,po,2 } and observe that

-1
][ ﬂpowi S C <][ ﬁp"wi> .
BQ B2

holds for both ¢ = 1,2 because py < po; and Holder inequality. Therefore if we denote by ¥(p, h) =
1 1
(th ﬂpwl) "t (th ﬂpwg) " then the above implies

The rest of the proof consists in using ¢ = nP@? for f # 1 — p, 0 as test function and v = a® for «
given by p8 = p+ a — 1. This gives

|af” (A~ Vg + Bp) > wi (B nVol” — B lal’ di nv]”)
—wi (apla] [Vno] Vol + plal” Blnel” ™ Vo))

= wz (Jal el [pVol” ™ + lal” da v ")
which after integrating over B3 becomes
0= (BInVel’ - Blaf di pl?) wn
Bs

. (aplal (Vo] lg7oP ™ + plal? Blop ™ Vol wn
B3

—cf (elallmel lp7o™ +laf d lgop ™) ws
Bs

where C' = :iggzg Depending on 8 we have

e If 3 > 0 then we have

B3

5 Vel wn < aplal £ (Fnel Vol wr+ plaf £ Blgo ™ [Vaelwn
B3 B3
+ B |a|p][ dy [nvlP wy + C \a|][ c|nol |17Vv|p71 Woy
B3 BS

+C\a|pf da [nulP " wy
B3

and if we proceed as in the proof of Theorem [I.I] to estimate each integral on the right hand side we

obtain
(f an) 7 < Cat1eph)t [(][ Inv”wl) +<f Invlpwz) +<f |an|pw1>
Bs Bs Bs Bs

If n € C2°(By) is such that n = 1 in By, for 1 < W < h <2 with |[Vn| < C(h — h')~! then

X”’w-) e C ( wi(Bs) )X" af(1+ 471

w;(Bpr)
(BN f o (2B ]

—_



but since 1 < A’ < h < 2 we have

S5 < Ey S7h e gy <t
hence for x = min{ x1, x2 } we have
Wity < 2T D g ) (3
e Similarly, for 1 — p < 8 < 0 one has
w0 1) < L2 gy, (30)
e If 3 < 1— p then one obtains
Wit < L g ). (37)

If we observe that ¥(s,r) — 2max@ and ¥U(s,r) — 2mina then we can repeat the iterative
$§—»00 B, ——00 B

S

argument from the proof of [9, Theorem 5| to deduce that arnd imply

max 4 < C'¥(p;,2)
B,
for some pj, < pg chosen appropriately, whereas will give
mina > C~1W¥(—po,2).
B,
Finally we can use to obtain a constant C' > 0 depending on the structural parameters such that

maxt < Cminu
B, B,

and because i = u + k + § we conclude by letting § — 0. |

3. Behavior at infinity
In this section we obtain a decay estimate for weak solutions to the equation

{—div(w1 IVulP > Vu) = ws [ulf *u  in Q (38)

u € Dbt Q)
where the set  C RY (bounded or not) is such that there exists a constant C' > 0 for which the global

weighted Sobolev inequalities and hold. With the aid of the results regarding the equation
divA = B we are able to prove that that weak solutions to are locally bounded.

Lemma 3.1. Let u € DY (Q) be a weak solution of
—div(wy [Vu|P "2 V) = wa [u|! > u in Q.
Then for every R > 0 such that Byr(xo) C  then there exists Cr > 0 such that

”u”LOO(BR(zO)) < CR[U]P,B4R(2?0)'

15



Proof. Observe that equation can be written in the from divA = Bfora=1,b=c=d; =
e=f=g=0and dy = |u|"". We first use Theorem because from that result we know that if

do € L%’wz then for every s > 1 and R > 0 the weak solution u satisfies

1 1 1
Fooe) o (f we) <ced|(f e (£ ) |,
Bar(zo0) Bar(zo0) Bar(zo) Bar(zo)

A
and Cg, s depends on s and on (me(xu) |d2|% w2) " But because u € D'P%1(Q) and the weights
w1, we verify then the local Sobolev inequality holds and we have that u € L?2*2(Q2), hence
de Lrw (Bar(z0)) © ¢ = DD—_’;. In particular, this shows that u € L**2(Bygr(x¢)) for every s and

— D
as a consequence do = — |u|?"? € L7="""?(Byg(xg)) for every 0 < ¢ < p. Therefore we can now use

Theorem [I.1] to conclude that
[ell oo (Ba(zo)) < CrlUlp.Bir(ao)s

where Cr depends on R > 0 and the norm of u in DP%1((Q). |

Now we would like to estimate the decay of the L?"* norm of weak solutions as one leaves the set
Q.

Lemma 3.2. Suppose u € DYP%1(Q) is a weak solution of , then there exists Ry > 0 and 7 > 0
such that if R > Ry then

Ro\’
bl () Wl oy

Here By denotes an arbitrary ball of radius R.

Proof. Because u € DP¥(Q) then for n € W1 (R¥) the function ¢ = nPu is a valid test function in

/|Vu|p_2VuV<pw1:/ |2 upws.
) Q

On the one hand, using Young’s inequality we can find C, > 0 such that
/ V|’ % VuVow, :/ [nVu|” wy —I—p/ P~ VulP 72 Vu - uVnw,
Q Q Q

1
> 5/ [nVul” w —Cp/ [uVn[” w;.
Q Q

On the other hand, since ¢ > p we can write

Q Q

= [ 1l e
Q

-2 2
q q
< (/ |u|qw2) (/ |nqu2> .
supp n Q

16



Hence
[ vy e = [ 1n9us
Q Q
< 2”*1/ |77Vu|pw1+2p71/ [uVn? w;
Q Q

<ort (2/ (VP % VuVow +Cp/ [uVn|” wl) +2p_1/ [uVn|” wy
Q Q Q
1-2 r
o o[ o) ()
Q supp”n Q

and the global Sobolev inequality tells us that there exists a constant Cj, ,, w, > 0 such that

1—2
907w < € [ JuVal wn + o ( / |qu2) ( / IV(W)pwl)- (39)
Q Q supp n Q

We now choose 7. First of all, because [[uf, ,,, s finite for any given € > 0 we can find Rg = Ro(e) > 0
such that if R > Ry then
/ Ju|?wy < €.
Q\Br

With this in mind we choose Ry > 0 such that

1—-2
¢ 1
Cpawlxw2 / ‘ulq Wa < 55
OQ\Bg,

and we suppose that R > Ry from now on. We consider n € W1>°(R¥), such that 0 <7 <1, n(z) =0
for x € Bg, n(z) = 1 for x ¢ Bag, and |[Vn| < CR™'. If we use such 7 in we obtain a constant
C' > 0 independent of R such that

/ IV ()P w1 < C, / eVl wn
Q Q

which after using gives

1

( |l wl) B <c( / uvw’wl)’l’. (40)

17



By the choice of n we also have

/ [uVn|” wy < CR_p/ [ul” wy
Q QOBQR\BR
1
X1
< CR (w0 (21 Byg)) % / 4 w0y
QQBQR\BR
D 1— L 1
2R 1 X1 X1
< CR?|wi (2N Bg,) () / [ul™ wy
Ry QNB2r\Br
wl(QﬂBR ) 17711 Di(1—-L)— i
c(D ) RP(-3)p / ] wy
RO 1 QQBQR\BR

1
X1
comwe[
QﬁBzR\BR
A
—c(/ ul" wy (41)
QnBzR\BR

where we have used and the fact that q% = Dil — %. From and we obtain

/ Inu|™ wy < C |u|™ wy,
Q QNB2r\Br

for some constant C' > 0 depending on p, g1, Ry but independent of R. To continue, observe that since
n =1 on BS, we can write

/ | w0y < / ] w,
Q\BQR Q

<C [u|™ wy
QHBQR\BR

=C [u|™ wy — C |u|™ wy,
O\Br O\ Bar

thus, if § = CLH € (0,1) then we obtain

/ [u|™ wy < 0/ |u|™ w .
Q\BzR Q\BR

If we consider f(R) = fQ\BR |u|? wy, then (3) tells us that

f(2R) < 0f(R),

so if we take R = R,, = 2" Ry for n > 0 that means that f(2"Ry) < 0f(2" 'Ry) which after iterating
gives

J(2"Ro) < 0" f(Ro).
Because R > Ry then one can find n > 1 such that 2"~ 1Ry < R < 2"R, the above can be written as

F(R) < f(2"Ry) < 6" f(Ro) < 05" ) £(Ry).

—log, 0
/ lu|?w; < (RO) / |u|? wy
Q\BR R Q\BRO

and the result is proved for 7 := f% log, 6 > 0. |

hence

18



Lemma 3.3. Suppose that u € DVP1(Q) is a weak solution of
—div(wy [Vu|P "2 V) = wa |u|! ™ u in Q. (42)

Then for each s > max{q1,q} there exists Ry > 0 (depending on s) such that if R > Ry then there
exists C = C(p,q1,q, w1, ws;s) > 0 for which

C

||U||Ls«wi(Q\BQR) < W ||“HLq1,w1(Q\BR) )

P
for both i = 1,2, where o5(1) is a quantity that goes to 0 as s — co.

Proof. Firstly notice that thanks to the L** interpolation inequality it is enough to exhibit a sequence
S, — +oo for which one has
n—oo

c

Lonwi (Q\Bag) = [ —a) lwll Lorwr (0 B -

[[ul

Observe that in the context of we can view asdivAd = Bwherea=1,b=c=d;=e=f =
g=0and dy = dy = |u|"P. The assumption u € DVP%1(Q) tells us that ¢ = n?G(u) is valid test
function and we can follow the notation of the proof Theorem in fact, since e = f = g = 0 we can
further suppose that k£ > 0 is arbitrary in the definition of both F' and G. Starting with we Now
integrate over {2 to obtain

/ [nVol”wy < p/ [o¥n] [nVo" ™ w; + (- 1)0‘1771/ da [on]” wa,
% Q Q

where v = F(u). From the above we obtain

[ vy w <. ( [iovalwn+ [ |u“|vn"w2),
Q Q Q

and with the help of we can write

D

1_2

q q
Lo wn < ([ ) ([ o)
Q supp n Q

1—2
< oo ([ wla) ([ 190w
supp n Q2
therefore we have

-t
Liwor e < co [ v o+ Cpns ([ uiten) ([ 9001w).
Q Q suppn Q

We now select 1. Because u € DV'P*1(Q) and that holds then we know that w € L¥*2(Q2),
therefore for any given v > 0 we can find Ry = Ro(v) > 0 such that

/ [u|?we < v, VR > Ry.
Q\BR

With this in mind we choose Ry = Ry(a) > 0 such that

1_2

q
q
Comomons | [ lulw) <
Q\Br

19
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and we suppose that R > Ry to obtain that if suppn C B% then

/ IV (o) wn < C / WVl w,
Q Q

and using (14)), and passing to the limits [ — +o00, k — 071 give

([ e wl)qll <o ([ |u°‘ww1)’l’, (43)
</ lu®| w2> <c, </ uaVn|pw1>;. (44)

We now select n: for n > 0 we consider R, = R(2 — 27 ") and a smooth function 7 such that
0<n<1,n(x)=0for |z| < Ry, n(z) =1 for |z| > Rn+1 and satisfies |Vn| < Cé ,

suppn € Q\ Bg,
supp Vn C QN Bg, \ Br

n+1"°

Therefore if for n > 1 we take a,, = (q—l) in . ) then we obtain

p™ n—1

B 2 Pl
41L+1 ‘11_*—1 Cn a7 a a1
ul 7wy <| 5 Ju 7T wy ,
Q\Br R Q\Br,

n+1
or equivalently, if s, = pZ};l and U, = ||u] Lonsw1 (Q\ B, )’
C,
Un+1 < Lunv
R

- 2 )"
for C,, = C,g ql) , which after iterating gives

and since

= p ‘ p q p " p
1
() = - <> = - 071(1)7
=1 \41 G1—P q¢1—P\q q —p

because q; > p we obtain that for any s > ¢;

C,
pr=mnal LZISICIERE

[[u| Lot (Q\Bag) =

because ul < ||u||L‘11"’“1(Q\BR)? Un 2 Hu| Lsn:w1(Bag)*
With the same choice of n and « in we have

Lo n T
/ |u qpﬁb w Q1q <C” o / ‘u|pv?—1_1 w ;
2 ey 1
Q\Br R N\Br,
U,

n+1



and just as before we deduce that

c.
L=w2 (Q\ Bar) < m ”u”Lrn,wl (Q\BRr)

[[ul

—
for s > q. |

Now we are in position to prove Theorem [I.4}

Proof of Theorem[I.j} Consider the value of Ry > 0 given in Lemma and suppose that z € Q\ Bag,.
Fix0<r< % so that Ba,(z) C Q and use Lemma to obtain

(f o) (f, )|

for any s > p. If we consider R = %, then by geometric considerations we deduce that By, (z) C Q\ Bag

hence
1 :
(/ |u|8wl> < / lul® w; | .
Bs, Q\B2R

Now we fix s large enough so that o,(1) < 7 in Lemma where 7 > 0 is taken from Lemma
by doing that we obtain

[u(@)| < lull po (B, (2)) < Crlulp,Ba, < Cr

C
l[wll ps.we (\Bagr) T |l L5w1(Q\Bag) < W Hu”que’wl(Q\BR)
< —f—lul
— = U]l a1 ,w1
- R<11p*p7% L (\Br)
< (%)
- b T = u q1,w 3
B Rtnp*p_% R Lo I(Q\BR(J)
therefore, by putting all together we obtain
CR} C
lu(@)| < m Hu”quvwl(Q\BRO) = |x\41%1“+’\7
for some constant C' > 0 independent of || > 2Ry, and the result is proved for R = 2Rj. [
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