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Abstract

In this article we study the existence and non-existence of extremals for the following family of Hardy-Sobolev
inequalities (∫

(R+)k×RN−k

∣∣xBu∣∣q) 1
q

≤ C

(∫
(R+)k×RN−k

∣∣xA∇u∣∣p) 1
p

,

which holds for suitable values of A, B ∈ RN , q > p > 1. Here the quantity xA (respectively xB) denotes
the monomial weight defined as

xA = |x1|a1 · . . . · |xk|ak (respectively xB = |x1|b1 · . . . · |xk|bk ).

Keywords: Sobolev inequality, Hardy inequality, Caffarelli-Kohn-Nirenberg inequality, Maz’ya inequality,
monomial weights, concentration-compactness, extremals.
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1. Introduction

For given integers N ≥ 3, 1 ≤ k ≤ N , and a real value p ≥ 1, we showed in [12] the validity of the
following family of Hardy-Sobolev inequalities for functions u ∈ C∞c ((R+)k × RN−k)(∫

(R+)k×RN−k

∣∣xBu∣∣q dx

) 1
q

≤ C

(∫
(R+)k×RN−k

∣∣xA∇u∣∣p dx

) 1
p

, (1)

where A,B ∈ RN are vectors of the form A = (a1, . . . , ak, 0), B = (b1, . . . , bk, 0) ∈ (R+)k × RN−k. If we
define a := a1 + . . .+ ak and b := b1 + . . .+ bk then the exponent q is given by

q := qA,B =
Np

N − p(1 + b− a)
, (2)

and the quantity xA (resp. xB) is the monomial weight defined as

xA = xa11 · . . . · x
ak
k , (resp. xB = xb11 · . . . · x

bk
k ).

For (1) to be valid one requires that the vectors A and B satisfy the following conditions

ai > 0 for all i = 1, . . . , k,

0 ≤ ai − bi ≤ 1 for all i = 1, . . . , k,

1

q
ai +

(
1− 1

p

)
bi > 0 for all i = 1, . . . , k,

1− N

p
< a− b ≤ 1.

(3)
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Having proved inequality (1) it is natural to look for the best possible constant C, and whether extremals
for such constant exist or not. In order to properly set up the problem, we consider from now on

Ω := (R+)k × RN−k

and the space D1,p,A(Ω) as the completion of C∞c (Ω) under the norm

‖u‖1,p,A :=

(∫
Ω

∣∣xA∇u∣∣p dx

) 1
p

,

and let us define

Sp,A,B(Ω) = inf

{
Ip,A(u) : u ∈ D1,p,A(Ω),

∫
Ω

∣∣xBu∣∣q dx = 1

}
, (4)

where

Ip,A(u) =

∫
Ω

∣∣xA∇u∣∣p dx.

With the above definitions, the question at hand is to try to evaluate Sp,A,B(Ω) and to determine whether
we can find u ∈ D1,p,A(Ω) such that Sp,A,B(Ω) = Ip,A(u) satisfying

∫
Ω

∣∣xBu∣∣q dx = 1 or not.
The study of inequalities with monomial weights like (1) is, to our knowledge, quite recent and as a

consequence there are not so many results that one can cite. For instance one has the result of Cabré and
Ros-Oton [8] where (1) was initially obtained for any A ∈ RN with ai ≥ 0 and a particular B satisfying
(3), more precisely when Bq = Ap. The proof of Cabré and Ros-Oton gives, along with the inequality,
the best possible constant and a complete characterization of the extremals. In some heuristic fashion, the
choice of Bq = Ap allows them to treat their case of (1) as the classical Sobolev inequality, but in dimension
D = N +a where one knows the best constant and the extremals (D is not necessarily an integer, and hence
the difficulty of the problem in general). This device of “going to a higher dimension” no longer works for
general B satisfying (3) and therefore a different approach must be taken.

If we take a slightly different road, we have the great avenue which are the Caffarelli-Kohn-Nirenberg [9]
family of inequalities (∫

RN

∣∣∣|x|b u∣∣∣q dx

) 1
q

≤ C
(∫

RN
||x|a∇u|p dx

) 1
p

, (5)

which served as motivation to obtain (1). There is a vast variety of works analyzing different aspects of
(5), and in particular the subject of best constants and extremals has been widely studied in the past.
For instance, let us begin by mentioning the case a = b = 0, which corresponds to the classical Sobolev-
Gagliardo-Nirenberg inequality. After the works of Aubin [1] and Talenti [24] we completely understand
the best constant and we also have a complete characterization of the extremals. The case a = 0 and
b = 1 corresponds to a version of Hardy’s inequality, for which we have a complete understanding of the
best constant, and we know that extremals do not exist. What happens in between, that is for general
0 ≤ a − b ≤ 1, is quite interesting as several different situations may occur. To focus the discussion, let us
consider only the case p = 2 and a handful of known results.

• If a = 0 and 0 < b < 1, Lieb [19] obtained a full characterization of the extremals (and a fortiori the
best constant is also obtained).

• If −Np < a ≤ 0 and 0 ≤ a − b < 1, Chou and Chu [14] also obtained a full characterization of the
extremals, and when a− b = 1 they showed that no extremal exist.

• If 0 < a < 1 and b = 0, Caldiroli and Musina [11] proved the existence of extremals, without
characterizing them.

• If a > 0 and 0 < a− b < 1, Catrina and Wang [13] showed that extremals do exist. Moreover, despite
the radial symmetry of the Euler-Lagrange equation associated to (5), which might lead us to think
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that extremals could be radially symmetric, the authors show that there is a subset of parameters where
extremals are not radially symmetric, producing a symmetry breaking phenomenon. This observation
tells us that finding a characterization of such extremals could be a rather difficult task.

Additionally they show that if a = b (here q becomes the Sobolev exponent q = Np
N−p ) or if a = b+ 1

(here q becomes the Hardy exponent q = p) then there are no extremals, but they do find the best
constant in each case.

As the above list of results shows, even in the “linear” case of (5) (p = 2) one encounters that the choice
of the parameters a, b affects the question of existence of extremals. When p 6= 2, more difficulties arise, we
refer the interested reader to [10, 18] and the references therein.

If we take another road and look at another related family of inequalities, we may find ourselves in the
road of the so called Hardy-Sobolev-Maz’ya inequalities [23, Corollary 2.2 on p. 139](∫

Rk

∫
RN−k

∣∣∣|y|b u∣∣∣q dy dz

) 1
q

≤ C
(∫

Rk

∫
RN−k

||y|a∇u|p dy dz

) 1
p

, (6)

for k = 1, . . . , N . This road has fewer “highlights” than the Caffarelli-Kohn-Nirenberg avenue, yet there are
some interesting known things which may help us understand what difficulties we could encounter in our
study of (1).

• Badiale and Tarantello [2] showed the existence of extremals when 1 ≤ k ≤ N , a = 0 and when b
makes q different from p (so that in some sense the inequality is not a version of Hardy’s inequality)

• Mancini, Fabri and Sandeep [21] classified all positive solutions in D1,2 of

−∆u =
u

N
N−2

|y|
for (y, z) ∈ Rk × RN−k

for k ≥ 2, N ≥ 3. This in turn gives a classification of the extremals for (6) when a = 0 and a particular
b < 0. Apparently, their technique only works for this particular b < 0 and cannot be extended to the
full range of possible b’s.

• Gazzini and Musina [15] studied the existence of extremals for (6) in more generality. Among other

things they show that if max
{
p, p(N−k)

N+p(1+a)

}
< q < Np

N−p then extremals exist. The assumption over q

is, in some sense, to avoid being in cases that are somehow equivalent to Hardy’s inequality q = p and
also the case a = b where one has to deal with the Sobolev exponent q = Np

N−p .

They also address the case q = Np
N−p showing that extremals may or may not exist depending on a and

k. For example, when p = 2 the authors show that in the case k = 1 and N ≥ 4, the best constant is
achieved if and only if 0 < a < 1, and that if N = 3, then the best constant is not achieved if a ≥ 1

2 .
Here we see that the dimension might also play a role in the existence/non-existence problem.

The above results lead us to think that perhaps a good case to start this research might occur when
ai > 0 so that (1) resembles (5) and (6) in the case a > 0, and we leave the remaining cases for future work.

Taking as inspiration the above discussion, one might think that there could be three scenarios:

• p < q < Np
N−p : Here we expect everything to go reasonably well, in the sense that extremals will

probably exist for any A, B in the parameter region.

• q = Np
N−p : When the critical exponent for (1) coincides with the Sobolev exponent, it seems that the

question of existence of extremals relies on the parameter A, as extremals may or may not exist.

• q = p: This occurs when a = b + 1 which resembles Hardy’s inequality, thus we might expect that
extremals never exist.
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With the above in consideration, the following are the main results of this work.

Theorem 1. Suppose p > 1, A,B ∈ RN satisfy (3) and q is given by (2). If

(i) either p < q < Np
N−p , or

(ii) q = Np
N−p and Sp,A,A(Ω) < Sp,0,0(Ω).

then Sp,A,B(Ω) is attained in D1,p,A(Ω).

Remark 1. Observe that if we denote Sp(U) as the best constant for Sobolev inequality in U ⊆ RN , that
is

Sp(U) = inf

{∫
U

|∇u|p dx : u ∈ D1,p(U),

∫
U

|u|
Np
N−p dx = 1

}
,

then in fact Sp(U) = Sp(RN ) = Sp, and as a consequence of this we also have

Sp,0,0(Ω) = Sp.

This theorem guarantees that extremals always exists if we are away from the two borderline cases
previously mentioned. In addition, we include the condition Sp,A,A(Ω) < Sp that needs to be fulfilled in
order to have the existence of extremals if q coincides with the Sobolev exponent (which only occurs if A = B,
hence the notation Sp,A,A(Ω)). As the discussion preceding the theorem, the existence of extremals in the

case q = Np
N−p is not always guaranteed, and hence the condition Sp,A,A < Sp may or may not be satisfied

depending on how the parameters of the problem are: the value of p, the vector A, and the dimension N .
We have the following result concerning this situation

Theorem 2. Suppose p = 2 and let A ∈ RN .

(i) If
∑k
i=1 ai(1− ai) > 0 and N ≥ 4, then S2,A,A(Ω) < S2 (and extremals do exist).

(ii) If A is such that ai ≥ 1 for all i ∈ {1, . . . , k} then

S2,A,A(Ω) = S2.

and extremals do no exist.

Remark 2. A few remarks are in order.

• Theorem 2 does not cover the situation for general 1 < p < N . This is a limitation of the technique
used to estimate S2,A,A(Ω) which relies on the Hilbert spaces structure of D1,2,A(Ω).

• Notice that the condition
∑k
i=1 ai(1 − ai) > 0 is impossible if ai ≥ 1 for all i, and that is trivially

satisfied if 0 < ai < 1 for all i. However, there could be mixtures of the two cases, namely some of the
ai’s could be greater than or equal to 1 provided there is at least one 0 < ai0 < 1 “compensating” the
negative part of the sum

0 <

k∑
i=1

ai(1− ai) =
∑

0<ai<1

ai(1− ai)︸ ︷︷ ︸
>0

+
∑
ai≥1

ai(1− ai)︸ ︷︷ ︸
≤0

.

If we compare this to one of the results from [15] regarding (6), where existence of extremals occurs if
and only if 0 < a < 1, we see that the dependence on a vector of parameters A ∈ RN rather than a
single parameter a ∈ R introduces and additional level of difficulty, as these “mixtures” may occur.

• If N = 3, k = 1 and a1 ≥ 1
2 then there are no extremals. This follows from a result in [22, Section 6]

(see also [15, Proposition A.10]). We do not have an answer for the cases k = 2 or k = 3.
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• We proved that S2,A,A(Ω) = S2 and the nonexistence of extremals only if all the ai’s are greater than
1. However it seems that the correct condition to rule out the existence of extremals is (at least if
N ≥ 4)

k∑
i=1

ai(1− ai) ≤ 0,

however we were not able to establish the result in this generality. In this general set-up the afore-
mentioned “mixtures” create a difficulty we were unable to solve.

Finally, in the case q = p, that is when we are in a scenario that resembles Hardy’s inequality, we have
the following: if {ei}Ni=1 denotes the canonical basis of RN then

Theorem 3. If A,B satisfy (3) with a = b+ 1 then

Sp,A,B(Ω) ≥
N∏
i=1

∣∣∣∣1− ai − 1

p

∣∣∣∣(ai−bi)p , (7)

provided ai 6= 1− 1
p for the i’s where bi 6= ai.

In particular, if ai0 6= 1− 1
p and B = A− ei0 for some i0 ∈ {1, . . . , k} then

Sp,A,A−ei0 (Ω) =

∣∣∣∣1− ai0 − 1

p

∣∣∣∣p ,
and it is not achieved.

Remark 3. As the reader can see, we do not have a precise value of the best constant, nor an answer to
the existence of extremals for general A,B satisfying (3) with a− b = 1. Having a better understanding of
this situation remains as an open problem, even in the “linear” case p = 2.

The rest of this paper is devoted to the proof of the above theorems. To do so, in Section 2 we introduce
some of the notation used throughout this work as well as some preliminary results, in Section 3 we address
the proof of Theorem 1, then we say a few more words on what happens when q = Np

N−p and we prove
Theorem 2 in Section 4. Finally the proof of Theorem 3 is given in Section 5

2. Notation and preliminaries

As it is rather standard, we will denote by B(x,R) the (open) Euclidean ball in RN centered at x ∈ RN
with radius R > 0, and when the center is x = 0 we denote BR = B(0, R). Also, for 0 ≤ r < R ≤ ∞ use
the notation (r,R)m to denote an open cube in Rm. For x ∈ Rm, the quantity |x| will denote the Euclidean
norm of x (usually m = k, m = N − k or m = N). If E ⊆ RN is measurable, then |E| will denote its
(Lebesgue) measure.

For p ≥ 1, A ∈ RN , and U ⊆ RN open we will consider the spaces

Lp,A(U) =

{
u ∈ L1

loc(U) :

∫
Ω

∣∣xAu∣∣p <∞}
equipped with the norm

‖u‖p,A,U =

(∫
U

∣∣xAu∣∣p) 1
p

.

We also define the semi-norm
‖u‖1,p,A,U = ‖∇u‖p,A,U ,
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and for A ∈ RN we define the space

D1,p,A(U) = C∞c (U)
‖·‖1,p,A,U .

Observe that if A = 0 then Lp,0(U) = Lp(U) is the classical Lebesgue space equipped with its usual norm
‖·‖p = ‖·‖p,0, similarly D1,p,0(U) = D1,p(U).

As we mentioned in the introduction, we are interested in the study of

Sp,A,B(Ω) = inf

{
Ip,A(u; Ω) : u ∈ D1,p,A(Ω),

∫
Ω

∣∣xBu∣∣q dx = 1

}
,

where

Ip,A(u; Ω) =

∫
Ω

∣∣xA∇u∣∣p dx,

and
Ω := (R+)k × RN−k.

Usually for x ∈ Ω we will use the notation x = (y, z) for y ∈ (R+)k and z ∈ RN−j . Finally, whenever the
context allows it we will write Sp,A,B instead of Sp,A,B(Ω) and Ip,A(u) instead of Ip,A(u; Ω).

Lemma 1 (Scaling invariance of Sp,A,B(Ω)). Suppose R > 0 then

Sp,A,B(Ω) = Sp,A,B(Ω ∩BR).

Proof. On the one hand, observe that if U ⊆ V are arbitrary subsets of Ω, by extending the functions by
zero outside U we can think C∞c (U) as a subset of C∞c (V ), therefore

Sp,A,B(V ) ≤ Sp,A,B(U),

in particular this applies to V = Ω and U = Ω ∩BR, so Sp,A,B(Ω) ≤ Sp,A,B(Ω ∩BR).
To prove the reverse inequality, observe that for any u ∈ C∞c (Ω ∩BR) the function

ur(x) = r1−Np −au(r−1x)

belongs to C∞c (Ω ∩BrR) and satisfies∫
Ω∩BR

∣∣xA∇u∣∣p dx(∫
Ω∩BR |x

Bu|q dx
) p
q

=

∫
Ω∩BrR

∣∣xA∇ur∣∣p dx(∫
Ω∩BrR |x

Bur|q dx
) p
q

,

therefore
Sp,A,B(Ω ∩BR) = Sp,A,B(Ω ∩BrR)), ∀ r > 0.

Finally, for any ε > 0 one can find u ∈ C∞c (Ω) such that
∫

Ω

∣∣xBu∣∣q dx = 1 and

Ip,A(u; Ω) ≤ Sp,A,B(Ω) + ε,

but since u has compact support, we can suppose that suppu ⊆ V := Ω ∩ BrR for some r > 0, and we
observe that the integrals involving u are over V , therefore we have

Sp,A,B(Ω ∩BR) = Sp,A,B(Ω ∩BrR) ≤ Ip,A(u;V ) = Ip,A(u; Ω) ≤ Sp,A,B(Ω) + ε,

which gives the desired reversed inequality.

Lemma 2 (Translation invariance of Sp,A,B(Ω)). Suppose ξ ∈ RN−k then

Sp,A,B(Ω) = Sp,A,B(Ω + ξ),

where we use the identification ξ = (0, ξ) ∈ Rk × RN−k.
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The proof of this lemma is obvious because Ω + ξ = Ω and Ip,A are invariant under translations in the
coordinates with no factor from xA (respectively xB).

To prove the existence of extremals we will use the concentration-compactness principle. To do so, it is
important to observe that from what we did in Lemmas 1 and 2 we obtain that the functional

Ip,A(u) =

∫
Ω

∣∣xA∇u∣∣p
restricted to the manifold

∫
Ω

∣∣xBu∣∣q = 1 is invariant under the group of dilations given by the following
scaling: for λ > 0 we define

uλ(x) = λ
N
p +a−1u(λx) = λ

N
q +bu(λx)⇒ Ip,A(u) = Ip,A(uλ)

and additionally the functional is also translation invariant in RN−k when k < N : If ξ ∈ RN−k and if
x = (y, z) ∈ Ω

uξ(x) = u(y, z + ξ)⇒ Ip,A(u) = Ip,A(uξ).

We collect these two invariances and define

uλ,ξ(x) := λ
N
p +a−1u(λy, λz + ξ) (8)

whenever x = (y, z) ∈ Rk × RN−k.
An important feature of the space D1,p,A(Ω) is the following:

Lemma 3. The embedding D1,p,A(Ω) ↪→ Lr,A(K) is compact for bounded measurable sets K ⊆ Ω, whenever
1 ≤ r < Np

N−p .

Proof. Observe that it is enough to prove the result for r = 1, as if we know that the embedding D1,p,A(Ω) ↪→
L1,A(K) is compact, for 1 < r < Np

N−p one can use the interpolation inequality to obtain∥∥xAu∥∥
Lr(K)

≤
∥∥xAu∥∥θ

L
Np
N−p (K)

∥∥xAu∥∥1−θ
L1(K)

≤ C
∥∥xA∇u∥∥θ

Lp(Ω)

∥∥xAu∥∥1−θ
L1(K)

so if (un) ⊆ D1,p,A(Ω) is a sequence such that
∥∥xA∇un∥∥Lp(Ω)

is bounded, then for any sub-sequence (denoted

the same) such that (xAun) is Cauchy in L1(K), then (xAun) is also Cauchy in Lr(K).
Let B be the unit ball in D1,p,A(Ω), we will show that that B is totally bounded in L1,A(K). Let ε > 0

and define

Km =

{
x ∈ K : ∃ i ∈ {1, . . . , N} such that 0 ≤ xi <

2

m

}
.

Observe that either Km is empty or |Km| = o(1) as m → ∞ (since |K| < ∞). Using Hölder’s inequality
together with (1) yield ∥∥xAu∥∥

L1(Km)
≤
∥∥xAu∥∥

L
Np
N−p (Ω)

|Km|1+ 1
N−

1
p

≤ C
∥∥xA∇u∥∥

Lp(Ω)
|Km|1−

N−p
Np

≤ C |Km|1−
N−p
Np ,

which holds for all u ∈ B, therefore we can find m > 0 large such that∥∥xAu∥∥
L1(Km)

≤ ε

3
, ∀ u ∈ B.

Now consider φ ∈ C∞(R) with 0 ≤ φ ≤ 1, |φ′| ≤ L such that

φ(t) =

{
0 if t ≤ 1,

1 if t ≥ 2,
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and define Φm(x) =
∏N
i=1 φ(mxi), which satisfies 0 ≤ Φm ≤ 1 and |∇Φm| ≤ Lm. Clearly the set

ΦmB = {Φmu : u ∈ B}

is bounded in W 1,p(K). Indeed, if x ∈ supp Φmu then maxA ≥ 1, therefore∫
K

|∇ (Φmu)|p ≤ ma

∫
K

∣∣xA∇ (Φmu)
∣∣p

≤ Cpma

(∫
K

∣∣xA∇u∣∣p + Lpmp

∫
K

∣∣xAu∣∣p)
≤ Cpma

(∫
Ω

∣∣xA∇u∣∣p + Lpmp

(∫
K

∣∣xAu∣∣ NpN−p

)1− p
N

|K|
p
N

)

≤ CK,m
∫

Ω

∣∣xA∇u∣∣p .
Similarly

∫
K
|Φmu|p ≤ CK,m

∫
Ω

∣∣xA∇u∣∣p and we can use Rellich theorem to conclude that ΦmB is totally
bounded in L1(K). We claim that since ai ≥ 0 for all i, then ΦmB is also totally bounded in L1,A(K).
Indeed, observe that we have ∫

K

∣∣xAv∣∣ ≤ (max
x∈K

xA
)∫

K

|v| ≤ CK,A
∫
K

|v| ,

thus if we have an δ-cover of ΦmB in L1(K), then we have a δCK,A-cover of ΦmB in L1,A(K).
Hence we may cover φmB by a finite number of balls of radius ε

3 > 0 in L1,A(K), that is, there exist
{g1, . . . , gM} ⊆ L1,A(K) such that for any u ∈ B there is i ∈ {1, . . . ,M} such that∥∥xA(Φmu− gi)

∥∥
L1(K)

≤ ε

3
,

from here we can write∥∥xA(u− gi)
∥∥
L1(K)

≤
∥∥xA(Φmu− gi)

∥∥
L1(K)

+
∥∥xA(u− Φmu)

∥∥
L1(K)

≤ ε

3
+ 2

∥∥xAu∥∥
L1(Km)

≤ ε,

that is we have the desired ε-cover of B in L1,A(K).

Remark 4. As a consequence of the above lemma we obtain that for a bounded sequence in D1,p,A(Ω),
and after passing to a sub-sequence (denoted the same), we can suppose that

xAun−→xAu in Lrloc(Ω).

We will use this in two particular cases: r = p < Np
N−p and r = q < Np

N−p for q as in (2), for A 6= B satisfying

(3).

Finally, we conclude this section with a calculus result

Lemma 4. Let s, t ∈ RN and p ≥ 1. There exists a constant C ≥ 0 only depending on p such that

||s+ t|p − |s|p − |t|p| ≤ C
(
|s|p−1 |t|+ |s| |t|p−1

)
.

We left proof to the reader (see for instance [2, Calculus lemma] or [5, Exercise 4.17]), but we remark
that when p = 2 in fact one has C = 1 and we have equality in the following sense∣∣∣|s+ t|2 − |s|2 − |t|2

∣∣∣ = 2 |s · t| ≤ 2 |s| |t| ,

thanks to the Pythagorean property of the Euclidean norm in RN .
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3. Existence of extremals if p < q ≤ Np
N−p

The main purpose of this section is to prove the existence of u ∈ D1,p,A(Ω) achieving the infimum in
the definition of Sp,A,B at (4). In order to prove existence of minimizers we follow [3, 4, 20] and state the
following lemma which illustrates the lack of compactness of the embedding D1,p,A(Ω) ↪→ Lq,B(Ω).

Lemma 5 (Concentration-compactness). Let A,B ∈ RN satisfy (3), such that in addition p < q ≤ Np
N−p .

Let (un) ⊆ D1,p,A(Ω) be a sequence such that there exists u ∈ D1,p,A(Ω) and two bounded Borel measures
µ, ν satisfying

un ⇀ u in D1,p,A(Ω),∣∣xA∇(un − u)
∣∣p ⇀ µ weakly in the sense of measures,∣∣xB(un − u)
∣∣q ⇀ ν weakly in the sense of measures,

un → u a.e..

If we define

µ∞ = lim
R→∞

lim sup
n→∞

∫
[R,∞)N

∣∣xA∇un∣∣p ,
ν∞ = lim

R→∞
lim sup
n→∞

∫
[R,∞)N

∣∣xBun∣∣q ,
then

(i) Sp,A,B ‖ν‖
p
q ≤ ‖µ‖,

(ii) Sp,A,Bν
p
q
∞ ≤ µ∞,

(iii) lim sup
n→∞

∥∥xA∇un∥∥pp =
∥∥xA∇u∥∥p

p
+ ‖µ‖+ µ∞,

(iv) lim sup
n→∞

∥∥xBun∥∥qq =
∥∥xBu∥∥q

q
+ ‖ν‖+ ν∞, and

(v) if u = 0 and Sp,A,B ‖ν‖
p
q = ‖µ‖ then both µ and ν are concentrated at (no more than) one point

x0 ∈ Ω.

Before proving this lemma, we state a result from measure theory that is probably well known by now,
but for the sake of completeness we will include a proof in the Appendix A

Lemma 6. Let Ω ⊆ RN be an open set, and let ν and µ be non-negative bounded Borel measures on Ω
satisfying (∫

Ω

|ϕ|q dν

) 1
q

≤ C0

(∫
Ω

|ϕ|p dµ

) 1
p

∀ϕ ∈ C∞c (RN ) (9)

for some 1 < p < q < ∞ and C0 > 0. Then there exists J ⊆ N, {xj}j∈J ⊆ Ω, and {νj}j∈J ⊆ (0,∞) such
that

ν =
∑
j∈J

νjδxj ,

µ ≥ C−p0

∑
j∈J

ν
p
q

j δxj ,

where δx denotes the Dirac measure in RN centered at x.

9



If in addition one has ν(Ω)
1
q ≥ C0µ(Ω)

1
p , then J has at most one element. If J = {j0}, then

ν = ν0δx0
= Cp0ν

− pq
0 µ

for some ν0 > 0.

Proof of Lemma 5. If we denote vn = un − u, then for each ϕ ∈ C∞c (RN ) we can apply the Hardy-Sobolev
inequality (1) to vnϕ ∈ D1,p,A(Ω) to obtain

S
q
p

p,A,B

∫
Ω

∣∣xBvnϕ∣∣q ≤ (∫
Ω

∣∣xA∇(vnϕ)
∣∣p) q

p

. (10)

and using Lemma 4, we have∫
Ω

∣∣xA∇(vnϕ)
∣∣p =

∫
Ω

∣∣xAvn∇ϕ+ xAϕ∇vn
∣∣p

≤
∫

Ω

∣∣xAϕ∇vn∣∣p +

∫
Ω

∣∣xAvn∇ϕ∣∣p
+ C

(∫
Ω

∣∣xAvn∇ϕ∣∣p−1 ∣∣xAϕ∇vn∣∣
+

∫
Ω

∣∣xAvn∇ϕ∣∣ ∣∣xAϕ∇vn∣∣p−1
)

≤
∫

Ω

∣∣xAϕ∇vn∣∣p +

∫
Ω

∣∣xAvn∇ϕ∣∣p
+ C

(∫
Ω

∣∣xAvn∇ϕ∣∣p)1− 1
p
(∫

Ω

∣∣xAϕ∇vn∣∣p) 1
p

+ C

(∫
Ω

∣∣xAvn∇ϕ∣∣p) 1
p
(∫

Ω

∣∣xAϕ∇vn∣∣p)1− 1
p

=

∫
Ω

|ϕ|p dµ+ on(1),

(11)

where on(1) is a quantity that goes to zero as n goes to infinity. In the above estimate we have used∣∣xA∇vn∣∣p ⇀ µ and xAvn−→ 0 in Lploc(Ω) since Ω ∩ suppϕ is compact (see Remark 4).
After sending n→∞ in the above estimate we obtain

S
q
p

p,A,B

∫
Ω

|ϕ|q dν ≤
(∫

Ω

|ϕ|p dµ

) q
p

, ∀ϕ ∈ C∞c (RN ). (12)

thus we are in the scenario of Lemma 6, so we keep that in mind as we continue. In particular we know that
if u ≡ 0 then there exists J ⊆ N and points in xj ∈ Ω such that

ν =
∑
j∈J

νjδxj ,

µ ≥ Sp,A,B
∑
j∈J

ν
p
q

j δxj .

Firstly we see that (i) follows directly from (12) by an approximation scheme. To prove (ii) we consider
a smooth function ψR : R→ [0, 1] such that

ψR(x) =

{
0 if x ≤ R,
1 if x ≥ R+ 1,

10



and let ϕR(x) =
∏N
i=1 ψR(xi) so that ϕR ≡ 1 on [R + 1,∞)N and ϕR ≡ 0 on the complement of (R,∞)N .

We claim that

µ∞ = lim
R→∞

lim sup
n→∞

∫
Ω

∣∣xAϕR∇vn∣∣p ,
ν∞ = lim

R→∞
lim sup
n→∞

∫
Ω

∣∣xBϕRvn∣∣q .
Indeed, notice that by hypothesis vn ⇀ 0 in D1,p,A(Ω) hence∣∣xA∇un∣∣p ⇀ ∣∣xA∇u∣∣p + µ weakly as measures,

and thanks to the Brezis-Lieb lemma [6] we have∣∣xBun∣∣q ⇀ ∣∣xBu∣∣q + ν weakly as measures,

therefore

lim sup
n→∞

∫
[R,∞)N

∣∣xA∇vn∣∣p = lim sup
n→∞

∫
[R,∞)N

∣∣xA∇un∣∣p − ∫
[R,∞)N

∣∣xA∇u∣∣p ,
lim sup
n→∞

∫
[R,∞)N

∣∣xBvn∣∣q = lim sup
n→∞

∫
[R,∞)N

∣∣xBvn∣∣q − ∫
[R,∞)N

∣∣xBv∣∣q ,
and consequently

lim
R→∞

lim sup
n→∞

∫
[R,∞)N

∣∣xA∇vn∣∣p = lim
R→∞

(
lim sup
n→∞

∫
[R,∞)N

∣∣xA∇un∣∣p − ∫
[R,∞)N

∣∣xA∇u∣∣p) = µ∞,

lim
R→∞

lim sup
n→∞

∫
[R,∞)N

∣∣xBvn∣∣q = lim
R→∞

(
lim sup
n→∞

∫
[R,∞)N

∣∣xBvn∣∣q − ∫
[R,∞)N

∣∣xBv∣∣q) = ν∞.

On the one hand we notice that for any R > 0 we have∫
[R+1,∞)N

f ≤
∫

Ω

fϕR ≤
∫

[R,∞)N
f

for any f ∈ L1(Ω), thus we conclude that

µ∞ = lim
R→∞

lim sup
n→∞

∫
Ω

∣∣xA∇vnϕR∣∣p ,
ν∞ = lim

R→∞
lim sup
n→∞

∫
Ω

∣∣xBvnϕR∣∣q ,
and our claim is proved. On the other hand, if we use ϕR in (10), and with the help of Lemma 4 we obtain

Sp,A,B

(∫
Ω

∣∣xBvnϕR∣∣q) p
q

≤
∫

Ω

∣∣xAϕR∇vn + xAvn∇ϕR
∣∣p

≤
∫

Ω

∣∣xAϕR∇vn∣∣p + on(1),

(13)

hence (ii) follows by taking the limits in (13).
To check (iii) we observe that

lim sup
n→∞

∫
Ω

∣∣xA∇un∣∣p = lim sup
n→∞

(∫
Ω

ϕR
∣∣xA∇un∣∣+

∫
Ω

(1− ϕR)
∣∣xA∇un∣∣p)

= lim sup
n→∞

∫
Ω

ϕR
∣∣xA∇un∣∣+

∫
Ω

(1− ϕR) dµ+

∫
Ω

(1− ϕR)
∣∣xA∇u∣∣p ,

11



thus if R→∞ we obtain that

lim sup
n→∞

∫
Ω

∣∣xA∇un∣∣p = µ∞ + ‖µ‖+
∥∥xA∇u∥∥p

p
,

by Lebesgue’s dominated convergence theorem. Similarly we obtain (iv), that is

lim sup
n→∞

∫
Ω

∣∣xBun∣∣q = ν∞ + ‖ν‖+
∥∥xBu∥∥q

q
.

Finally the fact in (v) saying that both ν and µ concentrate at a single point x0 ∈ Ω is a direct corollary
of Lemma 6.

To prove the existence of extremals, consider (un) ⊆ D1,p,A(Ω) a minimizing sequence, that is

Ip,A(un) =

∫
Ω

∣∣xA∇un∣∣p −→
n→∞

Sp,A,B ,

∫
Ω

∣∣xBun∣∣q = 1, (14)

and we will show that we can extract from un a limit. To do so, we recall that thanks to the invariance
collected in (8), we see that if (un)n∈N is a minimizing sequence, then

ũn(x) = λ
N
p +a−1
n un(λny, λnz + ξn) (15)

is also a minimizing sequence, for any choice of λn > 0 and ξn ∈ RN−k. If k = N we will understand that

ũn(x) = λ
N
p +a−1
n un(λnx) = λ

N
p +a−1
n un(λny, λnz).

Before the proof of Theorem 1 we need the following definition: For λ > 0 and ξ ∈ RN−k, the set Ωλ(ξ)
is defined as

Ωλ(ξ) = {(y, z) ∈ Ω : ∃ i such that 0 < yi < λ, |z − ξ| < λ} , (16)

and the following result holds:

Lemma 7. For each f ∈ L1(Ω) satisfying
∫

Ω
|f | = L > 0, the function

Q(λ) = sup
ξ∈RN−k

∫
Ωλ(ξ)

|f |

satisfies

(i) Q(λ)−→
λ→0

0.

(ii) Q(λ) −→
λ→∞

L.

(iii) Q : [0,∞)→ R is continuous.

(iv) If Q(λ) > 0 then the supremum is achieved by some ξ ∈ RN−k.

This lemma is standard in the context of concentration functions, but we provide a proof in Appendix
A for the convenience of the reader.

We are now in shape to prove Theorem 1:

Proof of Theorem 1. We consider

Qn(λ) = sup
ξ∈RN−k

∫
Ωλ(ξ)

∣∣xBun∣∣q ,
12



the Levy concentration function for the sequence of measures ρn =
∣∣xBun∣∣q. We observe that by Lemma 7

(i to iii), for each fixed n we can find λn ∈ R+ such that

Qn(λn) =
1

2
,

and by Lemma 7 (iv), we can find ξn ⊆ RN+k such that

Qn(λn) =

∫
Ωλn (ξn)

∣∣xBun∣∣q =
1

2
.

Hence, thanks to (15) if we replace un by λ
N
p +a−1
n un(λny, λnz + ξn) we can suppose from now on that the

sequence un satisfies

sup
ξ∈RN−k

∫
Ω1(ξ)

∣∣xBun∣∣q =

∫
Ω1(0)

∣∣xBun∣∣q =
1

2
(17)

Now, the sequence un is bounded in D1,p,A(Ω), thus, after extracting a sub-sequence (denoted the same),
we can suppose the existence of u ∈ D1,p,A(Ω) such that

un ⇀ u weakly in D1,p,A(Ω)∣∣xA∇(un − u)
∣∣p ⇀ µ weakly in the sense of measures∣∣xB(un − u)
∣∣q ⇀ ν weakly in the sense of measures

un → u a.e..

With the help of Lemma 5 we obtain

Sp,A,B = lim
n→∞

∥∥xA∇un∥∥pp =
∥∥xA∇u∥∥p

p
+ µ(Ω) + µ∞

1 = lim
n→∞

∥∥xBun∥∥qq =
∥∥xBu∥∥q

q
+ ν(Ω) + ν∞

where

µ∞ = lim
R→∞

lim sup
n→∞

∫
[R,∞)N

∣∣xA∇un∣∣p ,
ν∞ = lim

R→∞
lim sup
n→∞

∫
[R,∞)N

∣∣xBun∣∣q .
Additionally, from Lemma 5 we know that Sp,A,Bν(Ω)

p
q ≤ µ(Ω) and Sp,A,Bν

p
q
∞ ≤ µ∞, therefore we can

write, with the aid of (1),

Sp,A,B = lim
n→∞

∥∥xA∇un∥∥pp =
∥∥xA∇u∥∥p

p
+ ‖µ‖+ µ∞

≥ Sp,A,B
[(∥∥xBu∥∥q

q

) p
q

+ ‖ν‖
p
q + ν

p
q
∞

]

thus (∥∥xBu∥∥q
q

) p
q

+ ‖ν‖
p
q + ν

p
q
∞ ≤ 1 =

∥∥xBu∥∥q
q

+ ‖ν‖+ ν∞.

But p < q, and the three quantities are in [0, 1], so the only possibility is that exactly one of them is 1 and
the other two are 0.

Observe that by (17) we have that ν∞ ≤ 1
2 , therefore it must be 0. So there remain two cases: either∥∥xBu∥∥

q
= 1 and ‖ν‖ = 0, which gives the desired minimizer as we deduce that

∥∥xA∇u∥∥
p

= Sp,A,B ; or u ≡ 0

and ‖ν‖ = 1. Therefore, in order to conclude we have to show that the latter case cannot happen.

If ‖ν‖ = 1, u ≡ 0 and ‖µ‖ ≤ Sp,A,B = Sp,A,B ‖ν‖
p
q , then (v) of Lemma 5 applies and both µ and ν are

concentrated at a single point x0 ∈ Ω.
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Claim. x0 has the form (y0, z0) ∈ ∂((R+)k) × RN−k, that is at least one of the coordinates of y0 must
vanish. If k = N we understand that x0 ∈ ∂((R+)N ).

Before proving the claim, let us conclude that this claim implies the impossibility of ‖ν‖ = 1 and u = 0.
If x0 = (y0, z0) ∈ ∂((R+)k)× RN−k, then x0 ∈ Ω1(ξ0) and by our construction of the minimizing sequence
together with the choice of (λn, ξn) we have

1

2
= sup
ξ∈RN−k

∫
Ω1(ξ)

∣∣xBun∣∣q ≥ ∫
Ω1(ξ0)

∣∣xBun∣∣q −→ ν(Ω1(ξ0)) = ‖ν‖ = 1,

a clear contradiction.
To prove the claim we consider two cases: q < Np

N−p , and q = Np
N−p with Sp,A,A < Sp. Firstly, if q < Np

N−p
we can argue as follows: since xAun−→xAu = 0 in Lq(K) for any bounded K ⊆ Ω (by Remark 4), we can
consider 0 < r < R <∞ to obtain∫

[r,R]k×BN−kR (0)

∣∣xBun∣∣q dz dy =

∫
[r,R]k×BN−kR (0)

∣∣xAun∣∣q x(B−A)q dz dy

≤

(
sup

[r,R]k×BN−kR (0)

x(B−A)q

)∫
[r,R]k×BN−kR (0)

∣∣xAun∣∣q dz dy

≤

(
k∏
i=1

r(bi−ai)q

)∫
[r,R]k×BN−kR (0)

∣∣xAun∣∣q dz dy

≤ r(b−a)q

∫
[r,R]k×BN−kR (0)

∣∣xAun∣∣q dz dy

−→
n→∞

0,

because bi − ai ≤ 0 for all i. This implies that if B ⊆ RN is any ball such that dist(A, B) > 0 where
A = ∂((R+)k)× RN−k, then

ν(B) = 0,

thus the only possibility is that x0 ∈ A.
Secondly, if q = Np

N−p with Sp,A,A < Sp, and if un ⇀ 0 in D1,p,A(Ω) is a minimizing sequence, then

Ekeland’s variational principle tells us that for any ϕ ∈ D1,p,A(Ω) we have∫
Ω

xAp |∇un|p−2∇un · ∇ϕ = Sp,A,A

∫
Ω

xAq |un|q−2
unϕ+ o(1), (18)

where o(1) is a quantity that goes to zero as n goes to infinity.
If we consider ψ ∈ C∞c (Ω) arbitrary, then ϕ = ψpun ∈ D1,p,A(Ω) is a valid test function in (18). On the

one hand we have∫
Ω

xAp |∇un|p−2∇un · ∇ϕ =

∫
Ω

∣∣xAψ∇un∣∣p + p

∫
Ω

xApunψ
p−1 |∇un|p−2∇un · ∇ψ

=

∫
Ω

∣∣xAψ∇un∣∣p + o(1), (19)

since ∣∣∣∣∫
Ω

xApunψ
p−1 |∇un|p−2∇un · ∇ψ

∣∣∣∣ ≤ (∫
Ω

∣∣xAψ∇un∣∣p)1− 1
p
(∫

Ω

∣∣xAun∇ψ∣∣p) 1
p

= o(1),

because un ⇀ 0 in D1,p,A(Ω) implies, after passing to a sub-sequence denoted the same, that xAun → 0
in Lploc(Ω), by the compactness of the embedding D1,p,A(Ω) ↪→ Lp,A(K) when K is bounded, in particular
since ψ has compact support inside Ω, so does its gradient, therefore∫

Ω

∣∣xAun∇ψ∣∣ = o(1).
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Additionally we know that xi is bounded below over suppψ for all i, in particular we can find a constant
C > 0 such that ∣∣∇(xA)

∣∣ =

∣∣∣∣∣xA
k∑
i=1

ai
xi
ei

∣∣∣∣∣ ≤ CxA ∀x ∈ suppψ,

obtaining as a consequence ∫
Ω

∣∣∇(xA)unψ
∣∣ ≤ C ∫

Ω

∣∣xAunψ∣∣ = o(1).

Therefore, Lemma 4 gives ∫
Ω

∣∣∇ (xAψun)∣∣p ≤ ∫
Ω

∣∣xAψ∇un∣∣p + o(1),

which together with (19) implies∫
Ω

∣∣∇ (xAψun)∣∣p ≤ ∫
Ω

xAp |∇un|p−2∇un · ∇ψ + o(1). (20)

On the other hand ∫
Ω

xAq |un|q−2
unϕ =

∫
Ω

xAq |un|q ψp

≤
(∫

Ω

∣∣xAun∣∣q)1− pq (∫
Ω

∣∣xAψun∣∣q) p
q

=

(∫
Ω

∣∣xAψun∣∣q) p
q

, (21)

since
∫

Ω

∣∣xAun∣∣q = 1.
In conclusion, by using (18), (20), (21) and Sobolev’s inequality we obtain

Sp

(∫
Ω

∣∣xAψun∣∣q) p
q

≤ Sp,A,A
(∫

Ω

∣∣xAψun∣∣q) p
q

+ o(1),

and since we are supposing Sp,A,A < Sp, the above estimate yields∫
Ω

∣∣xAψun∣∣q = o(1)

for ψ ∈ C∞c (Ω). If B ⊆ RN is any ball such that dist(A, B) > 0, where A is as before, then ν(B) = 0, as we
can take ψ ≡ 1 on B, ψ ∈ C∞c (Ω), and just as in the case q < Np

N−p we deduce that ν must be supported on
A.

4. The case q = Np
N−p

and the proof of Theorem 2

Here we recall why this case was expected to be different from the case p < q < Np
N−p , together with

some conditions which guarantee Sp,A,A < Sp (and as a consequence the existence of minimizers).

We first observe that the condition q = Np
N−p is equivalent to saying A = B, and the additional condition

required for the existence of minimizers takes the form Sp,A,A < Sp, the classical Sobolev best constant.
Firstly we will check that Sp,A,A ≤ Sp for any 1 < p < N and A ∈ RN .

Proposition 1. If 1 < p < N then
Sp,A,A ≤ Sp.
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Proof. Let ξ ∈ Ω be fixed and λ > 0. Now, for arbitrary u ∈ C∞c (RN ) we consider vλ ∈ C∞c (RN ) defined by

vλ(x) = λ
N
p −1u(λ(x− ξ)).

Since the support of u is compact in RN and ξ ∈ Ω, we know that for sufficiently large λ the support of vλ
is contained in Ω, and we can think that vλ ∈ C∞c (Ω), hence∫

Ω

∣∣xA∇vλ(x)
∣∣p dx =

∫
λ(Ω−ξ)

∣∣∣∣(ξ +
z

λ

)A
∇u(z)

∣∣∣∣p dz

−→
λ→∞

ξpA
∫
RN
|∇u|p ,

thanks to Lebesgue’s dominated convergence. Similarly∫
Ω

∣∣xAvλ(x)
∣∣ NpN−p −→

λ→∞
ξ
Np
N−pA

∫
RN
|u|

Np
N−p ,

hence we conclude that

Sp,A,A(Ω) ≤
∫

Ω

∣∣xA∇vλ∣∣p(∫
Ω
|xAvλ|

Np
N−p

)N−p
N

−→
λ→∞

∫
RN |∇u|

p(∫
RN |u|

Np
N−p

)N−p
N

,

and because the above holds for every u ∈ C∞c (RN ) we conclude that

Sp,A,A ≤ Sp.

Thus we have two possibilities, either Sp,A,A(Ω) < Sp or Sp,A,A(Ω) = Sp, and as we mentioned in the
introduction, both cases may occur depending on how we choose A as we can see for the case p = 2:

Proposition 2 (Theorem 2 (i)). Suppose that
∑k
i=1 ai(1− ai) > 0. If N ≥ 4, then S2,A,A < S2.

Proof. For R > 1 to be chosen, take a ball B ⊂ (1, R)N and take an arbitrary v in C∞c (B) satisfying∫
B
|v|

2N
N−2 = 1, then u = x−Av ∈ C∞c (B) and a direct computation shows that

∫
B

∣∣xAu∣∣ 2N
N−2 = 1 and that

S2,A,A(Ω) ≤
∫
B

∣∣xA∇u∣∣2
=

∫
B

∣∣∣∣∣∇v −
k∑
i=1

ai
xi
vei

∣∣∣∣∣
2

=

∫
B

[
|∇v|2 +

k∑
i=1

a2
i

∣∣∣∣ vxi
∣∣∣∣2 − 2

k∑
i=1

ai
v∂xiv

xi

]

=

∫
B

|∇v|2 −
k∑
i=1

ai(1− ai)
∫
B

∣∣∣∣ vxi
∣∣∣∣2 . (22)

Since 1 ≤ xi ≤ R for every x ∈ B we have

1

R2

∫
B

|v|2 ≤
∫
B

∣∣∣∣ vxi
∣∣∣∣2 ≤ ∫

B

|v|2 ,

therefore, if 0 < ai < 1 one has

ai(1− ai)
∫
B

∣∣∣∣ vxi
∣∣∣∣2 ≥ ai(1− ai)

R2

∫
B

|v|2 ,
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whereas if ai ≥ 1 it holds

ai(1− ai)
∫
B

∣∣∣∣ vxi
∣∣∣∣2 ≥ ai(1− ai)∫

B

|v|2 .

Define λ := R−2
∑

0<ai<1 ai(1− ai)−
∑
ai≥1 ai(ai − 1), then from (22) and the above estimates we can

write

S2,A,A(Ω) ≤
∫
B

|∇v|2 − λ
∫
B

|v|2 ,

and as a consequence we obtain

S2,A,A(Ω) ≤ inf

{∫
B

|∇v|2 − λ
∫
B

|v|2 :

∫
B

|v|
2N
N−2 = 1

}
.

However, from [7, Lemma 1.1] we know that if λ > 0 and N ≥ 4 then

inf

{∫
B

|∇v|2 − λ
∫
B

|v|2 :

∫
B

|v|
2N
N−2 = 1

}
< inf

{∫
B

|∇v|2 :

∫
B

|v|
2N
N−2 = 1

}
= S2.

To conclude we consider the function

Λ(R) := R−2
∑

0<ai<1

ai(1− ai)−
∑
ai≥1

ai(ai − 1),

which is continuous and it verifies Λ(1) > 0 by our hypothesis over the ai’s, hence we can select R0 > 1 such
that λ := Λ(R0) > 0.

Proposition 3 (Theorem 2 (ii)). Let A ∈ RN satisfy ai ≥ 1 for all i ∈ {1, . . . , k}, then

S2,A,A = S2.

and S2,A,A is not achieved in D1,2,A(Ω).

Proof. We need to establish that S2 ≤ S2,A,A, to do so take ε > 0 and u ∈ C∞c (Ω) such that
∫

Ω

∣∣xAu∣∣ 2N
N−2 = 1

and
∫

Ω

∣∣xA∇u∣∣2 ≤ S2,A,A + ε. Consider v = xAu which belongs to C∞c (Ω) and, since ai ≥ 1 for all i, it
verifies

S2 = S2(Ω)

≤
∫

Ω

|∇v|2

≤
∫

Ω

|∇v|2 +

k∑
i=1

ai(ai − 1)

∫
Ω

∣∣∣∣ vxi
∣∣∣∣2

=

∫
Ω

∣∣xA∇u∣∣2
≤ S2,A,A + ε,

therefore S2 ≤ S2,A,A.
Additionally, if S2,A,A is attained by some u ∈ D1,2,A(Ω) then we could repeat the above calculation for

v = xAu to obtain

S2 ≤
∫

Ω

|∇v|2

≤
∫

Ω

|∇v|2 +

k∑
i=1

ai(ai − 1)

∫
Ω

∣∣∣∣ vxi
∣∣∣∣2

=

∫
Ω

∣∣xA∇u∣∣2
= S2,A,A,
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with equality throughout since S2(Ω) = S2,A,A. Also, since xA−eiu ∈ L2(Ω) we obtain that v ∈ D1,2(Ω),
thus the above equality tells us that v is in fact an extremal for S2(Ω), which would imply that v is an
extremal for S2(RN ). Therefore, after possibly a translation, v must be a member of the Aubin-Talenti

family, that is v(x) = (α+ β |x|2)−
N−2

2 . But since v is radially symmetric we have

S2(RN ) =

∫
RN |∇v|

2(∫
RN |v|

2N
N−2

)N−2
N

=
2k
∫

Ω
|∇v|2(

2k
∫

Ω
|v|

2N
N−2

)N−2
N

= 2
2k
N S2(Ω) > S2(Ω),

since k ≥ 1, which is a contradiction.

5. The case q = p.

In this case we are in a scenario that resembles Hardy’s inequality [17, Theorem 330]∫ ∞
0

∣∣sα−1v
∣∣p ≤ ∣∣∣∣ p

p(1− α)− 1

∣∣∣∣p ∫ ∞
0

|sαv′|p (23)

which is valid for any function v ∈ C∞(R) satisfying either v(0) = 0, p > 1 and α < 1− 1
p , or lims→∞ v(s) = 0,

p > 1 and α > 1− 1
p . It is important to mention that the constant

∣∣∣ p
1−p(1−α)

∣∣∣p is the best possible and that

the inequality is strict unless v ≡ 0, that is

inf
v∈V

∫∞
0
|sαv′|p∫∞

0
|sα−1v|p

=

∣∣∣∣1− α− 1

p

∣∣∣∣p ,
moreover, no extremal function exits (here V denotes the closure under ‖sav′‖Lp(0,∞) of either C∞(R) with

v(0) = 0 when α < 1− 1
p , or C∞0 (R) when α > 1− 1

p ).

As a direct consequence of (23) we obtain the following

Lemma 8. Suppose that A ∈ RN with ai ≥ 0 and ai0 6= 1− 1
p for some i0 ∈ {1, . . . , N}. If u ∈ D1,p,A(Ω) \

{0}, then ∫
Ω

∣∣xA−ei0u∣∣p < ∣∣∣∣ p

p(1− ai0)− 1

∣∣∣∣p ∫
Ω

∣∣xA∂xi0u∣∣p ≤ ∣∣∣∣ p

p(1− ai0)− 1

∣∣∣∣p ∫
Ω

∣∣xA∇u∣∣p .
A direct corollary of this lemma is that

Sp,A,A−ei0 ≥
∣∣∣∣1− ai0 − 1

p

∣∣∣∣p ,
but in fact we have the last part of Theorem 3, that is

Proposition 4. If ai 6= 1− 1
p then

Sp,A,A−ei =

∣∣∣∣1− ai − 1

p

∣∣∣∣p ,
and it is not achieved.

Proof. It is enough to prove the result for i = 1. Consider

Ω̃ = (R+)k−1 × RN−k

Ã = (a2, . . . , aN ) ∈ RN−1
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and let ρ ∈ C∞c (Ω̃), σ : R+ → R+ to be chosen, and define u(x) = σ(x1)ρ(ζ), where x = (x1, ζ) ∈ R+ × Ω̃.
In order to ease the notation we make the following definitions

I1 =

∫
Ω̃

∣∣∣ζÃρ(ζ)
∣∣∣p , I2 =

∫
Ω̃

∣∣∣ζÃ∇ρ(ζ)
∣∣∣p ,

J1 =

∫ ∞
0

|xa11 σ′(x1)|p , J2 =

∫ ∞
0

|xa11 σ(x1)|p ,

J3 =

∫ ∞
0

∣∣xa1−1
1 σ(x1)

∣∣p ,
and we fix ρ 6≡ 0 so that I2

I1
= C > 0. With the help of the above notation, Tonelli’s theorem, and Lemma 4,

we have ∫
Ω

∣∣xA∇u∣∣p =

∫
Ω

∣∣∣xa11 σ′(x1)ζÃρ(ζ)e1 + xa11 σ(x1)ζÃ∇ρ(ζ)
∣∣∣p

≤ I1J1 + I2J2 + Cp

[
(I1J1)1− 1

p (I2J2)
1
p + (I1J1)

1
p (I2J2)1− 1

p

]
and ∫

Ω

∣∣xA−e1u∣∣p = I1J3,

therefore

Sp,A,A−e1 ≤
∫

Ω

∣∣xA∇u∣∣p∫
Ω
|xA−e1u|p

≤ J1

J3
+
I2
I1
· J2

J3
+ Cp

[(
J1

J3

) 1
p
(
I2
I1
· J2

J3

)1− 1
p

+

(
J1

J3

)1− 1
p
(
I2
I1
· J2

J3

) 1
p

]
,

and because I2
I1

= C > 0 we obtain

Sp,A,A−e1 ≤
J1

J3
+ Cp

[
J2

J3
+

(
J1

J3

) 1
p
(
J2

J3

)1− 1
p

+

(
J1

J3

)1− 1
p
(
J2

J3

) 1
p

]
.

We claim that if we chose σ = σε appropriately, then for small ε > 0 one has J1
J3

= constant and J2
J3

= O(εp).

Indeed, since a1 6= 1− 1
p we can select γ 6= 0 such that γ > 1− a1 − 1

p and we can define

σ(s) =


sγ if s ≤ ε,
εγ−1 (2ε− s) if ε < s < 2ε,

0 if s > 2ε,

which satisfies

σ′(s) =


γsγ−1 if s ≤ ε,
−εγ−1 if ε < s < 2ε,

0 if s > 2ε,

and a direct computations tell us that

J1 =

∫ ∞
0

|xa11 σ′(x1)|p =

(
|γ|p

(a1 + γ − 1)p+ 1
+

2a1p+1 − 1

a1p+ 1

)
ε(a1+γ−1)p+1,

J2 =

∫ ∞
0

|xa11 σ(x1)|p =

(
1

(a1 + γ)p+ 1
+

∫ 2

1

sa1p(2− s)p
)
ε(a1+γ)p+1,

J3 =

∫ ∞
0

∣∣xa1−1
1 σ(x1)

∣∣p =

(
1

(a1 + γ − 1)p+ 1
+

∫ 2

1

s(a1−1)p(2− s)p
)
ε(a1+γ−1)p+1,

19



therefore

J1

J3
=

∫∞
0
|xa11 σ′(x1)|p∫∞

0

∣∣xa1−1
1 σ(x1)

∣∣p =
|γ|p + ((a1 + γ − 1)p+ 1)

(
2a1p+1−1
a1p+1

)
1 + ((a1 + γ − 1)p+ 1)

∫ 2

1
s(a1−1)p(2− s)p

,

J2

J3
=

∫∞
0
|xa11 σ(x1)|p∫∞

0

∣∣xa1−1
1 σ(x1)

∣∣p =

(
1

(a1+γ)p+1 +
∫ 2

1
sa1p(2− s)p

)
(

1
(a1+γ−1)p+1 +

∫ 2

1
s(a1−1)p(2− s)p

) · εp,
thus if ε→ 0 we obtain

Sp,A,A−e1 ≤
|γ|p + ((a1 + γ − 1)p+ 1)

(
2a1p−1−1
a1p+1

)
1 + ((a1 + γ − 1)p+ 1)

∫ 2

1
s(a1−1)p(2− s)p

,

which holds for all γ > 1− a1 − 1
p , hence by decreasing γ to 1− a1 − 1

p we obtain

Sp,A,A−e1 ≤
∣∣∣∣1− a1 −

1

p

∣∣∣∣p .
But we already know that Sp,A,A−e1 ≥

∣∣∣1− a1 − 1
p

∣∣∣p hence we must have equality. Moreover if we have

Sp,A,A−e1 =
∣∣∣1− a1 − 1

p

∣∣∣p then (1) is not achieved. Indeed, if we argue by contradiction and we suppose we

can find u ∈ D1,p,A(Ω) \ {0} satisfying∣∣∣∣1− a1 −
1

p

∣∣∣∣p ∫
Ω

∣∣xA−e1u∣∣p =

∫
Ω

∣∣xA∇u∣∣p ≥ ∫
Ω

∣∣xA∂x1
u
∣∣p ,

then for ζ = (x2, . . . , xN ), Ã = (a2, . . . , aN ) and Ω̃ = (R+)k−1 × RN−k we could define v : R+ → R+ as

v(s) =

(∫
Ω̃

∣∣∣ζÃu(s, ζ)
∣∣∣p dζ

) 1
p

.

A direct computations tells us that ∫ ∞
0

∣∣sa1−1v(s)
∣∣p =

∫
Ω

∣∣xA−e1u∣∣p ,
and since

|v′(s)| ≤
(∫

Ω̃

∣∣∣ζÃu(s, ζ)
∣∣∣p dζ

) 1
p−1(∫

Ω̃

∣∣∣ζÃu(s, ζ)
∣∣∣p−1 ∣∣∣ζÃ∂x1

u(s, ζ)
∣∣∣ dζ

)
≤
(∫

Ω̃

∣∣∣ζÃ∂x1
u(s, ζ)

∣∣∣p dζ

) 1
p

we can use Lemma 8 to write∣∣∣∣1− a1 −
1

p

∣∣∣∣p ∫ ∞
0

∣∣sa1−1v(s)
∣∣p < ∫ ∞

0

|sa1v′(s)|p

≤
∫

Ω

∣∣xA∂x1u
∣∣p

≤
∫

Ω

∣∣xA∇u∣∣p
=

∣∣∣∣1− a1 −
1

p

∣∣∣∣p ∫
Ω

∣∣xA−e1u∣∣p
=

∣∣∣∣1− a1 −
1

p

∣∣∣∣p ∫ ∞
0

∣∣sa1−1v(s)
∣∣p ,
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which is impossible due to the non existence of extremals for the classical one dimensional Hardy inequality.

For the general case A,B satisfying (3) and in addition a − b = 1 (so that q = p) and that ai 6= 1 − 1
p

whenever ai 6= bi, then, if we understand that if 00 = 1 (to allow for ai = 1− 1
p if the respective bi = ai), we

obtain (7) from Theorem 3, that is

Sp,A,B ≥
N∏
i=1

∣∣∣∣1− ai − 1

p

∣∣∣∣(ai−bi)p ,
however, we do not know whether

∏N
i=1

∣∣∣1− ai − 1
p

∣∣∣(ai−bi)p is the best constant or not, nor if the best

constant is achieved or not.
Establishing (7) is quite simple just by using Hölder’s inequality appropriately. To ease the notation,

suppose that there is 1 < l ≤ k such that ai 6= bi for all i ∈ {1, . . . , l} and that ai = bi if i ∈ {l + 1, . . . , k},
then if we recall that

∑l
i=1(ai − bi) = 1

∫
(R+)l

∣∣∣xb11 · . . . · x
bl
l u
∣∣∣p =

∫
Ω

l∏
i=1

∣∣∣∣xa11 · . . . · x
al
l

xi
u

∣∣∣∣(ai−bi)p

≤
l∏
i=1

(∫
(R+)l

∣∣∣∣xa11 · . . . · x
al
l

xi
u

∣∣∣∣p
)(ai−bi)

≤
l∏
i=1

(∣∣∣∣ p

p(1− ai)− 1

∣∣∣∣p ∫
(R+)l

|xa11 · . . . · x
al
l ∂xiu|

p

)(ai−bi)

≤
l∏
i=1

(∣∣∣∣ p

p(1− ai)− 1

∣∣∣∣p)(ai−bi) ∫
(R+)l

|xa11 · . . . · x
al
l ∇u|

p

from where we deduce (7) after multiplying both sides of the resulting inequality by x
pal+1

l+1 · . . . · xpakk and
integrating over the remaining variables.

Remark 5. Even though Hölder’s inequality is an optimal inequality with best constant equal to 1, and
that we do have the best constant for the case B = A− ei in (1), we cannot conclude that the consecutive
usage of both inequalities yield an optimal inequality.

One thing that prevents us to yield such a conclusion is that the optimizing sequences we constructed in
the proof of Proposition 4 have, for small ε > 0, disjoint supports, and Hölder’s inequality is certainly not
optimal for such class of functions.

Appendix A. Some measure theoretic results

We recall Lemma 6:

Lemma 6. Let Ω ⊆ RN be an open set, and let ν and µ be non-negative bounded Borel measures on Ω
satisfying (∫

Ω

|ϕ|q dν

) 1
q

≤ C0

(∫
Ω

|ϕ|p dµ

) 1
p

∀ϕ ∈ C∞c (RN ) (9)
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for some 1 < p < q < ∞ and C0 > 0. Then there exists J ⊆ N, {xj}j∈J ⊆ Ω, and {νj}j∈J ⊆ (0,∞) such
that

ν =
∑
j∈J

νjδxj ,

µ ≥ C−p0

∑
j∈J

ν
p
q

j δxj ,

where δx denotes the Dirac measure in RN centered at x.
If in addition one has ν(Ω)

1
q ≥ C0µ(Ω)

1
p , then J has at most one element. If J = {j0}, then

ν = ν0δx0
= Cp0ν

− pq
0 µ

for some ν0 > 0.

This lemma and its proof can be found, for instance, in [20, Lemma 1.2], but we include it here for the
reader’s convenience.

Proof. By a density argument, it is easily deduced that (9) implies

ν(A)
1
q ≤ C0µ(A)

1
p , ∀A Borel measurable in Ω.

Thus ν � µ and the Radon-Nykodym theorem (see for instance [16, Theorem B, p. 128]) tells us that
there exists f ∈ L1(µ) such that ν = fµ. Additionally, thanks to the Lebesgue decomposition theorem ([16,
Theorem C, p. 134]) one can write

µ = gν + σ

where g ∈ L1(ν) and σ ⊥ ν, that is, the support of ν and σ are disjoint in Ω.
Suppose firstly that σ = 0 and for each k ∈ N consider νk = gtχ{g≤k}ν, where t = q

q−p . Observe that

for ψ any Borel measurable function one can consider ϕ = g
1
q−pχ{g≤k}ψ in (9), using a density argument,

to obtain (∫
Ω

|ψ|q dνk

) 1
q

≤ C0

(∫
Ω

|ψ|p dνk

) 1
p

∀ψ Borel measurable,

hence we deduce that for given A ⊆ Ω Borel measurable

νk(A)
1
q ≤ C0νk(A)

1
p .

Therefore there are only two possibilities, either

νk(A) = 0

or there exists δ > 0 such that
νk(A) ≥ δ.

Since for every x ∈ Ω we have {x} = Ω∩
⋂
r>0

B(x, r), and recalling that the measures are finite, we conclude

that

νk({x}) = lim
r→0

νk

(
Ω ∩

⋂
r>0

B(x, r)

)
,

that is, either νk({x}) ≥ δ or there exists r(x) > 0 such that νk
(
Ω ∩B(x, r(x))

)
= 0. Since νk is finite,

there can only be a finite number of x ∈ Ω such that νk({x}) ≥ δ. Denote by {xj}j∈Jk such collection, and

observe that if K is a compact subset of Ω \ {xj}j∈Jk then

K ⊆
⋃

x∈Ω\{xj}j∈Jk

Ω ∩B(x, r(x))
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where by compactness one can suppose the union to be finite. Hence by sub-additivity we conclude that
νk(K) = 0, hence νk is supported exactly on {xj}j∈Jk and

νk =
∑
j∈Jk

νj,kδxj .

Finally, by taking the limit k →∞ we conclude that

ν =
∑
j∈J

νjδxj

for some set J ⊆ N. Additionally, from (9) we deduce that

ν
1
q

j = ν({xj})
1
q ≤ C0µ({xj})

1
p = C0µ

1
p

j .

If σ 6= 0, then we can consider µ̃ = gν and the previous argument tells us that

ν({xj})
1
q ≤ C0µ̃({xj})

1
p = C0µ({xj})

1
p .

as σ({xj}) = 0, thus we conclude that

µ = σ +
∑
j∈J

µjδxj

where µj ≥ C−p0 ν
p
q

j .

For the last part of the lemma, we see that if ν(Ω)
1
q ≥ C0µ(Ω)

1
p then in fact ν(Ω)

1
q = C0µ(Ω)

1
p , and

from (9) and Hölder’s inequality we obtain(∫
Ω

|ϕ|q dν

) 1
q

≤ C0

(∫
Ω

|ϕ|q dµ

) 1
q

µ(Ω)
p−q
pq ∀ϕ Borel measurable.

In particular, since ν = fµ we conclude that f ≤ γ := Cq0µ(Ω)
q−p
p . We claim that in fact f = γ µ-a.e. as if

it not the case, then one could write

γµ(Ω) = Cq0µ(Ω)
q
p

= ν(Ω)

=

∫
Ω

f dµ

=

∫
Ω∩{f<γ}

f dµ+

∫
Ω∩{f=γ}

f dµ

< γµ(Ω ∩ {f < γ}) + γµ(Ω ∩ {f = γ})
= γµ(Ω)

a contradiction. Therefore ν = γµ = Cq0µ(Ω)
q−p
p µ and (9) becomes

ν(Ω)
q−p
pq

(∫
Ω

|ϕ|q dν

) 1
q

≤
(∫

Ω

|ϕ|p dν

) 1
p

∀ϕ Borel measurable.

Now, for αj ≥ 0, we can consider ϕ so that ϕ(xj) = αj and obtain∑
j∈J

αqjνj

 1
q

·

∑
j∈J

νj


q−p
pq

≤

∑
j∈J

αpjνj

 1
p

,
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but Hölder’s inequality tells us that the reverse inequality also holds, that is∑
j∈J

αpjνj

 1
p

≤

∑
j∈J

αqjνj

 1
q

·

∑
j∈J

νj


q−p
pq

.

Since equality can only occur if αj = λνj or |J | ≤ 1, the fact that αj ≥ 0 are arbitrary tells us that the only
possibility is that |J | ≤ 1 and that

ν = ν0δx0

for some ν0 ≥ 0. The proof is now completed.

And finally, we recall Lemma 7:

Lemma 7. For each f ∈ L1(Ω) satisfying
∫

Ω
|f | = L > 0, the function

Q(λ) = sup
ξ∈RN−k

∫
Ωλ(ξ)

|f |

satisfies

(i) Q(λ)−→
λ→0

0.

(ii) Q(λ) −→
λ→∞

L.

(iii) Q : [0,∞)→ R is continuous.

(iv) If Q(λ) > 0 then the supremum is achieved by some ξ ∈ RN−k.

Proof. First we prove (i). Let ε > 0, since f ∈ L1 we have Q(λ) ≤
∫

Ω
|f | <∞ thus we can find ξ0 ∈ RN−k

such that

Q(λ) ≤ ε+

∫
Ωλ(ξ0)

|f | .

Additionally there exists R > 0 such that∫
Ωλ(ξ0)

|f | ≤ ε+

∫
Ωλ(ξ0)∩BR

|f | .

Finally, since |Ωλ(ξ0) ∩BR| −→
λ→0

0 we can find λ > 0 small enough such that∫
Ωλ(ξ0)∩BR

|f | ≤ ε,

and (i) is proved.
For (ii), just notice that if λ tends to ∞ then the function |f |χΩλ(ξ) tends to |f |χΩ a.e. and the result

follows from the Lebesgue’s dominated convergence theorem.
To see that Q is continuous, observe that Q is non decreasing, and since for each ξ the map λ→

∫
Ωλ(ξ)

|f |
is continuous, we deduce that Q is lower semi-continuous. To prove the continuity of Q we argue by
contradiction and we suppose that there exists ε > 0 such that

Q(λ)−Q(λ0) ≥ ε, ∀λ > λ0.

By the definition of Q(λ) we can find ξ0 ∈ RN−k such that

ε

2
≤
∫

Ωλ(ξ0)

|f | −
∫

Ωλ0 (ξ0)

|f | ,

24



and as before, we can find R > 0 such that

ε

4
≤
∫

Ωλ(ξ0)∩BR
|f | −

∫
Ωλ0 (ξ0)∩BR

|f | ,

and the contradiction follows from the dominated convergence theorem because

|(Ωλ(ξ0) ∩BR) \ (Ωλ0
(ξ0) ∩BR)| −→

λ→λ0

0.

Finally, we claim that ∫
Ωλ(ξ)

|f | −→
|ξ|→∞

0.

Indeed, let ε > 0 and take R > 0 such that∫
Ωλ(ξ)

|f | ≤ ε+

∫
Ωλ(ξ)∩BR

|f | ,

then it is easy to see that if |ξ| > R+ λ then Ωλ(ξ) ⊆ BcR, thus Ωλ(ξ) ∩BR = ∅ and we obtain∫
Ωλ(ξ)

|f | ≤ ε ∀ |ξ| > R+ |λ| .

Hence (iv) follows from the above claim and the continuity of the map ξ 7→
∫

Ωλ(ξ)
|f |.
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