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Abstract

We consider functions u ∈W 2,1
0 (Ω), where Ω ⊂ RN is a smooth bounded domain. We prove that u(x)

d(x)
∈W 1,1

0 (Ω)
with ∥∥∥∥∇(

u(x)

d(x)

)∥∥∥∥
L1(Ω)

≤ C ‖u‖W2,1(Ω) ,

where d is a smooth positive function which coincides with dist(x, ∂Ω) near ∂Ω and C is a constant depending
only on Ω.

Résumé

Une inégalité de type Hardy pour les fonctions de W 2,1
0 (Ω). Nous considèrons des fonctions u ∈W 2,1

0 (Ω),

où Ω ⊂ RN est un domaine régulier borné. Nous prouvons que u(x)
d(x)
∈W 1,1

0 (Ω) avec∥∥∥∥∇(
u(x)

d(x)

)∥∥∥∥
L1(Ω)

≤ C ‖u‖W2,1(Ω) ,

où d est une fonction régulière positive qui cöıncide avec dist(x, ∂Ω) près de ∂Ω et C est une constante ne dépendant
que de Ω.

1. Introduction

In [4], the following one dimensional Hardy type inequality was proven (see Theorem 1.2 in [4]): Suppose

that u ∈W 2,1(0, 1) satisfies u(0) = u′(0) = 0, then u(x)
x ∈W 1,1(0, 1) with u(x)

x

∣∣∣
0

= 0 and
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∥∥∥∥∥
(
u(x)

x

)′∥∥∥∥∥
L1(0,1)

≤ ‖u′′‖L1(0,1) . (1)

As explained [4], this inequality is somehow unexpected because one can construct a function u ∈
W 2,1(0, 1) such that u(0) = u′(0) = 0 and that neither u′(x)

x nor u(x)
x2 belong to L1(0, 1); however, as (1)

shows, for such function u, the difference u′(x)
x − u(x)

x2 =
(
u(x)
x

)′
is in fact an L1 function, reflecting a

“magical” cancelation of the non-integrable terms.
The purpose of this work is to present the complete analog of the estimate (1) in dimension N ≥ 2.

We have the following:
Theorem 1.1 Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Given x ∈ Ω, we denote
by δ(x) the distance from x to the boundary ∂Ω. Let d : Ω → (0,+∞) be a smooth function such that

d(x) = δ(x) near ∂Ω. Then for every u ∈W 2,1
0 (Ω), we have u(x)

d(x) ∈W
1,1
0 (Ω) with∥∥∥∥∇(u(x)

d(x)

)∥∥∥∥
L1(Ω)

≤ C ‖u‖W 2,1(Ω) , (2)

where C > 0 is a constant depending only on Ω.
In Section 2 we present the notation and in Section 3 we sketch the proof of Theorem 1.1.

2. Notation and preliminaries

Throughout this work, we denote ỹ = (y1, . . . , yN−1), RN+ := {yN > 0}, andBNr :=
{
y ∈ RN : |y| < r

}
;

Ω ⊂ RN is always a bounded domain with smooth boundary ∂Ω; we denote by δ(x) := dist(x, ∂Ω). Using
Lemma 14.16 in [6], one can construct a smooth change of coordinates Φ : BN−1

r × (−ε0, ε0)→ RN , where

Φ(ỹ, t) := Φ̃(ỹ) + yN · ν∂Ω(Φ̃(ỹ)), (3)

and Φ̃ : BN−1
r → V(x̃0) is a smooth coordinate chart at x̃0 ∈ ∂Ω. If we denote

N (x̃0) := Φ
(
BN−1
r × (−ε0, ε0)

)
, (4)

then the map Φ|BN−1
r ×(0,ε0) is a diffeomorphism and

N+(x̃0) := {x ∈ Ωε0 : yx ∈ V(x̃0)} = Φ
(
BN−1
r × (0, ε0)

)
. (5)

This type of coordinates are sometimes called flow coordinates (see e.g. [3] and [7]). From now on, C > 0
will denote a constant only depending on Ω.

3. The proof of the Theorem

The key ingredient in the proof is the following lemma
Lemma 3.1 Suppose u ∈ C∞0 (RN+ ). Then for all i = 1, . . . , N we have∥∥∥∥∂i(u(y)

yN

)∥∥∥∥
L1(RN

+
)

≤ C ‖u‖W 2,1(RN
+

) .
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Proof. We first notice that when i = N , the result is essentially contained in the proof of Theorem 1.2 of
[4] when j = 0, k = 1 and m = 2. We refer the reader to [4] for the details. When 1 ≤ i ≤ N − 1, define
v(x) = u(Ψ(x)) where Ψ(x1, . . . , xi, . . . , xN ) = (x1, . . . , xi + xN , . . . , xN ). We have

1

xN

∂u

∂yi
(Ψ(x)) =

∂

∂xN

(
v(x)

xN

)
− ∂

∂yN

(
u(y)

yN

)∣∣∣∣
y=Ψ(x)

,

hence the estimate is reduced to the estimate for i = N .
�

Next we use Lemma 3.1 together with the straightening of the boundary given by Φ in Section 2 to
obtain
Lemma 3.2 Let x̃0 ∈ ∂Ω and N+(x̃0) be given by (5). Suppose u ∈ C∞0 (N+(x̃0)). Then for all i =
1, . . . , N we have ∥∥∥∥∂i(u(x)

δ(x)

)∥∥∥∥
L1(N+(x̃0))

≤ C ‖u‖W 2,1(N+(x̃0)) .

Proof. Let v(ỹ, yN ); = u(Φ(ỹ, yN )). Using that Φ is a smooth diffeomorphism gives∫
N+(x̃0)

∣∣∣∣∂i(u(x)

δ(x)

)∣∣∣∣ dx ≤ C N∑
j=1

∫
BN−1

r

∫ ε0

0

∣∣∣∣∂j (v(ỹ, yN )

yN

)∣∣∣∣ dyNdỹ. (6)

Since v ∈ C∞0 (BN−1
r × (0, ε0)) ⊂ C∞0 (RN+ ), we can apply Lemma 3.1 and obtain∫

BN−1
r

∫ ε0

0

∣∣∣∣∂j (v(ỹ, yN )

yN

)∣∣∣∣ dyNdỹ ≤ C ‖v‖W 2,1(BN−1
r ×(0,ε0)) .

Notice that by the chain rule and the fact that Φ is a smooth diffeomorphism, we get

‖v‖W 2,1(BN−1
r ×(0,ε0)) ≤ C ‖u‖W 2,1(N+(x̃0)) .

�

Proof of Theorem 1.1. Applying Lemma 3.2 and a partition of unity (see e.g. Lemma 9.3 in [2] and
Theorem 3.15 in [1]), one can obtain that∥∥∥∥∂i( u(x)

δ(x)m−1

)∥∥∥∥
L1(Ω)

≤ C ‖u‖Wm,1(Ω) .

for u ∈ C∞0 (Ω) and and i = 1, . . . , N . Then one can complete the proof of Theorem 1.1 using a standard
density argument.

�

Remark 1 In fact, we have a full generalization of Theorem 1.1 for functions in Wm,1
0 (Ω) for all the

integers m ≥ 2, which is presented in [5].
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