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Abstract. We consider functions u ∈ Wm,1
0 (Ω), where Ω ⊂ RN is a smooth bounded domain, and

m ≥ 2 is an integer. For all j ≥ 0, 1 ≤ k ≤ m − 1, such that 1 ≤ j + k ≤ m, we prove that
∂ju(x)

d(x)m−j−k
∈Wk,1

0 (Ω) with ∥∥∥∥∂k ( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(Ω)

≤ C ‖u‖Wm,1(Ω) ,

where d is a smooth positive function which coincides with dist(x, ∂Ω) near ∂Ω, and ∂l denotes any

partial differential operator of order l.

1. Introduction

In [4], the following one dimensional Hardy type inequality was proven (see Theorem 1.2 in [4]):

Suppose that u ∈W 2,1(0, 1) satisfies u(0) = u′(0) = 0, then u(x)
x ∈W 1,1(0, 1) with u(x)

x

∣∣∣
0

= 0 and∥∥∥∥∥
(
u(x)

x

)′∥∥∥∥∥
L1(0,1)

≤ ‖u′′‖L1(0,1) . (1)

As explained [4], this inequality is somehow unexpected because one can construct a function

u ∈W 2,1(0, 1) such that u(0) = u′(0) = 0 and that neither u′(x)
x nor u(x)

x2 belong to L1(0, 1); however, as

(1) shows, for such function u, the difference u′(x)
x − u(x)

x2 =
(
u(x)
x

)′
is in fact an L1 function, reflecting a

“magical” cancelation of the non-integrable terms.
With estimate (1) already proven, it was natural to raise the following question: Assume Ω is a

smooth bounded domain in RN with N ≥ 2 and let u be in W 2,1
0 (Ω). For x ∈ Ω, denote by δ(x) = d(x, ∂Ω)

the distance from x to the boundary of Ω, and let d : Ω → (0,+∞) be a smooth function such that

d(x) = δ(x) near ∂Ω. Is it true that u
d ∈ W

1,1
0 (Ω)? If so, can one obtain the corresponding Hardy-type

estimate ∫
Ω

∣∣∣∣∇(u(x)

d(x)

)∣∣∣∣ dx ≤ C ∥∥∇2u
∥∥
L1(Ω)

,

for some constant C?
The purpose of this work is to give a positive answer to the above question. In fact, this is a special

case of the following:

Theorem 1. Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Given x ∈ Ω, we denote
by δ(x) the distance from x to the boundary ∂Ω. Let d : Ω → (0,+∞) be a smooth function such that
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d(x) = δ(x) near ∂Ω. Suppose m ≥ 2 and let j, k be non-negative integers such that 1 ≤ k ≤ m− 1 and

1 ≤ j + k ≤ m. Then for every u ∈Wm,1
0 (Ω), we have ∂ju(x)

d(x)m−j−k
∈W k,1

0 (Ω) with∥∥∥∥∂k ( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(Ω)

≤ C ‖u‖Wm,1(Ω) , (2)

where ∂l denotes any partial differential operator of order l and C > 0 is a constant depending only on
Ω and m.

The rest of this paper is organized into three sections: In Section 2 we introduce the notation
used throughout this work and give some preliminary results. In order to present the main ideas used to
prove Theorem 1, we begin in Section 3 with the proof of Theorem 1 for the special case m = 2, then in
Section 4 we provide the proof of Theorem 1 for the general case m ≥ 2.

2. Notation and preliminaries

Throughout this work, we denote by RN+ :=
{

(y1, . . . , yN−1, yN ) ∈ RN : yN > 0
}

the upper half-

space, and BNr (x0) :=
{
x ∈ RN : |x− x0| < r

}
, also, when x0 = 0, we write BNr := BNr (0).

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Given x ∈ Ω, we denote by δ(x)
the distance from x to the boundary ∂Ω, that is

δ(x) := dist(x, ∂Ω) = inf {|x− y| : y ∈ ∂Ω} .
For ε > 0, the tubular neighborhood of ∂Ω in Ω is the set

Ωε := {x ∈ Ω : δ(x) < ε} .
The following is a well known result (see e.g. Lemma 14.16 in [5]) and it shows that δ is smooth in some
neighborhood of ∂Ω.

Lemma 2.1. Let Ω and δ : Ω→ (0,∞) be as above. Then there exists ε0 > 0 only depending on Ω, such
that δ|Ωε0 : Ωε0 → (0,∞) is smooth. Moreover, for every x ∈ Ωε0 there exists a unique yx ∈ ∂Ω so that

x = yx + δ(x)ν∂Ω(yx),

where ν∂Ω denotes the unit inward normal vector field associated to ∂Ω.

Since ∂Ω is smooth, for fixed x̃0 ∈ ∂Ω, there exists a neighborhood V(x̃0) ⊂ ∂Ω, a radius r > 0
and a map

Φ̃ : BN−1
r → V(x̃0) (3)

which defines a smooth diffeomorphism. Define

N+(x̃0) := {x ∈ Ωε0 : yx ∈ V(x̃0)} , (4)

where ε0 and yx are as in Lemma 2.1. We denote by Φ : BN−1
r × (−ε0, ε0)→ RN the map defined as

Φ(ỹ, t) := Φ̃(ỹ) + yN · ν∂Ω(Φ̃(ỹ)), (5)

where ỹ = (y1, . . . , yN−1), and we write

N (x̃0) := Φ
(
BN−1
r × (−ε0, ε0)

)
. (6)

About the map Φ we have the following:

Lemma 2.2. The map Φ|BN−1
r ×(0,ε0) is a diffeomorphism and

N+(x̃0) = Φ
(
BN−1
r × (0, ε0)

)
.

Proof. This is a direct corollary of the definition of Φ through Φ̃, and Lemma 2.1. �
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Remark 2.1. The map Φ|BN−1
r ×(0,ε0) gives a local coordinate chart which straightens the boundary near

x̃0. This type of coordinates are sometimes called flow coordinates (see e.g. [3] and [6]).

From now on, C > 0 will always denote a constant only depending on Ω and possibly the integer
m ≥ 2. The following is a direct, but very useful, corollary.

Corollary 2.1. Let f ∈ L1(N+(x̃0)) and Φ be given by (5). Then

1

C

∫
BN−1
r

∫ ε0

0

|f(Φ(ỹ, yN ))| dyNdỹ ≤
∫
N+(x̃0)

|f(x)| dx ≤ C
∫
BN−1
r

∫ ε0

0

|f(Φ(ỹ, yN ))| dyNdỹ

Proof. Since Φ|BN−1
r ×(0,ε0) is a diffeomorphism, we know that for all (ỹ, yN ) ∈ BN−1

r × (0, ε0) we have

1

C
≤ |detDΦ(ỹ, yN )| ≤ C.

The result then follows from the change of variables formula. �

The following lemma provides us with a partition of unity in RN , constructed from the neighbor-
hoods N (x̃0). Consider the open cover of ∂Ω given by {V(x̃) : x̃ ∈ ∂Ω}, where V(x̃) ⊂ ∂Ω is defined in
(3). By the compactness of ∂Ω, there exists {x̃1, . . . , x̃M} ⊂ ∂Ω, so that ∂Ω = ∪Ml=1V(x̃l). Notice that by
the definition of N (x̃0) in (6) we also have that ∪Ml=1N (x̃l) is an open cover of ∂Ω in RN . The following
is a classical result (see e.g. Lemma 9.3 in [2] and Theorem 3.15 in [1]).

Lemma 2.3 (partition of unity). There exist functions ρ0, ρ1, . . . , ρM ∈ C∞(RN ) such that

(i) 0 ≤ ρl ≤ 1 for all l = 0, 1, . . . ,M and
∑M
l=0 ρi(x) = 1 for all x ∈ RN ,

(ii) suppρl ⊂ N (x̃l), for all l = 1, . . . ,M ,
(iii) ρ0|Ω ∈ C∞0 (Ω).

In order to simplify the notation, we will denote by ∂l any partial differential operator of order l
where l is a positive integer1. Also, ∂i will denote the partial derivative with respect to the i-th variable,
and ∂2

ij = ∂i ◦ ∂j .
Remark 2.2. We conclude this section by showing that, to prove Theorem 1, it is enough to prove
estimate (2) for smooth functions with compact support. Suppose u ∈ Wm,1

0 (Ω), then there exists a
sequence {un} ⊂ C∞0 (Ω), so that ‖u− un‖Wm,1(Ω) → 0 as n→∞. In particular, after maybe extracting

a subsequence, one can assume that

∂lun → ∂lu a.e. in Ω, for all 0 ≤ l ≤ m.
Since d is smooth, the above implies that for a.e x ∈ Ω and all j ≥ 0, 1 ≤ k ≤ m− 1 and 1 ≤ j + k ≤ m:

∂k
(

∂ju(x)

d(x)m−j−k

)
=

∂j+ku(x)

d(x)m−j−k
+ ∂ju(x)∂k

(
1

d(x)m−j−k

)
= lim
n→∞

∂j+kun(x)

d(x)m−j−k
+ ∂jun(x)∂k

(
1

d(x)m−j−k

)
= lim
n→∞

∂k
(

∂jun(x)

d(x)m−j−k

)
.

Therefore, Fatou’s Lemma applies and we obtain∥∥∥∥∂k ( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(Ω)

≤ lim inf
n→∞

∥∥∥∥∂k ( ∂jun(x)

d(x)m−j−k

)∥∥∥∥
L1(Ω)

.

1In general, one would say: “For a given multi-index α = (α1, . . . , αN ), we denote by ∂α the partial differential operator
of order l = |α| = α1 + . . .+αN”. Since we only care about the order of the operator, it makes sense to abuse the notation

and identify α with its order |α| = l.
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Once (2) has been proven for un ∈ C∞0 (Ω), we get∥∥∥∥∂k ( ∂jun(x)

d(x)m−j−k

)∥∥∥∥
L1(Ω)

≤ C ‖un‖Wm,1(Ω) ,

and thus we can conclude that∥∥∥∥∂k ( ∂ju(x)

d(x)m−j−k

)∥∥∥∥
L1(Ω)

≤ C lim inf
n→∞

‖un‖Wm,1(Ω) = C ‖u‖Wm,1(Ω) .

Finally estimate (2) together with the fact that ∂jun(x)
d(x)m−j−k

∈ C∞0 (Ω) and C∞0 (Ω)
Wk,1(Ω)

= W k,1
0 (Ω) gives

that ∂ju(x)
d(x)m−j−k

∈W k,1
0 (Ω).

3. The case m = 2

We begin this section by proving estimate (2) in Theorem 1 for Ω = RN+ , m = 2, j = 0 and k = 1.

Lemma 3.1. Suppose that u ∈ C∞0 (RN+ ). Then for all i = 1, . . . , N∥∥∥∥∂i(u(y)

yN

)∥∥∥∥
L1(RN+ )

≤ 2 ‖u‖W 2,1(RN+ ) .

Proof. Consider first the case i = N . This is similar to (1), but for the sake of completeness, we will
provide the proof. Notice that we can write

∂

∂yN

(
u(ỹ, yN )

yN

)
=

1

y2
N

∫ yN

0

∂2

∂y2
N

u(ỹ, t)tdt,

hence by integrating the above we obtain∫
RN−1

∫ ∞
0

∣∣∣∣ ∂

∂yN

(
u(ỹ, yN )

yN

)∣∣∣∣ dyNdỹ ≤ ∫
RN−1

∫ ∞
0

1

y2
N

∫ yN

0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣ tdtdyNdỹ
=

∫
RN−1

∫ ∞
0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣ t∫ ∞
t

1

y2
N

dyNdtdỹ

=

∫
RN−1

∫ ∞
0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣ t∫ ∞
t

1

y2
N

dyNdtdỹ

=

∫
RN−1

∫ ∞
0

∣∣∣∣ ∂2

∂y2
N

u(ỹ, t)

∣∣∣∣ dtdỹ,
hence ∫

RN+

∣∣∣∣ ∂

∂yN

(
u(y)

yN

)∣∣∣∣ dy ≤ ∫
RN+

∣∣∣∣∂2u(y)

∂y2
N

∣∣∣∣ dy. (7)

When 1 ≤ i ≤ N − 1, we need to estimate
∫
RN+

1
yN

∣∣∣ ∂u∂yi (y)
∣∣∣ dy. To do so, consider the change of

variables y = Ψ(x), where

Ψ(x1, . . . , xi, . . . , xN ) = (x1, . . . , xi + xN , . . . , xN ). (8)

Notice that detDΨ(x) = 1, hence∫
RN+

1

yN

∣∣∣∣∂u(y)

∂yi

∣∣∣∣ dy =

∫
RN+

1

xN

∣∣∣∣ ∂u∂yi (Ψ(x))

∣∣∣∣ dx.
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Observe that if we let v(x) = u(Ψ(x)), we can write

1

xN

∂u

∂yi
(Ψ(x)) =

∂

∂xN

(
v(x)

xN

)
− ∂

∂yN

(
u(y)

yN

)∣∣∣∣
y=Ψ(x)

. (9)

Applying estimate (7) to u and v yields∫
RN+

1

xN

∣∣∣∣ ∂u∂yi (Ψ(x))

∣∣∣∣ dx ≤ ∫
RN+

∣∣∣∣ ∂

∂xN

(
v(x)

xN

)∣∣∣∣ dx+

∫
RN+

∣∣∣∣∣ ∂

∂yN

(
u(y)

yN

)∣∣∣∣
y=Ψ(x)

∣∣∣∣∣ dx
=

∫
RN+

∣∣∣∣ ∂

∂xN

(
v(x)

xN

)∣∣∣∣ dx+

∫
RN+

∣∣∣∣ ∂

∂yN

(
u(y)

yN

)∣∣∣∣ dy
≤
∫
RN+

∣∣∣∣∂2v(x)

∂x2
N

∣∣∣∣ dx+

∫
RN+

∣∣∣∣∂2u(y)

∂y2
N

∣∣∣∣ dy.
Finally, notice that

∂2v(x)

∂x2
N

=
∂2u(y)

∂y2
N

∣∣∣∣
y=Ψ(x)

+ 2
∂2u(y)

∂yi∂yN

∣∣∣∣
y=Ψ(x)

+
∂2u(y)

∂y2
i

∣∣∣∣
y=Ψ(x)

. (10)

Thus, after reversing the change of variables when needed, we obtain∫
RN+

1

yN

∣∣∣∣∂u(y)

∂yi

∣∣∣∣ dy =

∫
RN+

1

xN

∣∣∣∣ ∂u∂yi (Ψ(x))

∣∣∣∣ dx
≤ 2

∫
RN+

∣∣∣∣∂2u(y)

∂y2
N

∣∣∣∣ dy + 2

∫
RN+

∣∣∣∣ ∂2u(y)

∂yi∂yN

∣∣∣∣ dy +

∫
RN+

∣∣∣∣∂2u(y)

∂y2
i

∣∣∣∣ dy
≤ 2 ‖u‖W 2,1(RN+ ) .

�

Recall (see Section 2) that for every x̃0 ∈ ∂Ω, there exist the neighborhood N+(x̃0) ⊂ Ω given by
(4) and the diffeomorphism Φ : BN−1

r × (0, ε0) → N+(x̃0) given by (5). Moreover, we know that δ(x) is
smooth over N+(x̃0). Hence we have

Lemma 3.2. Let x̃0 ∈ ∂Ω and N+(x̃0) be given by (4), and suppose u ∈ C∞0 (N+(x̃0)). Then for all
i = 1, . . . , N ∥∥∥∥∂i(u(x)

δ(x)

)∥∥∥∥
L1(N+(x̃0))

≤ C ‖u‖W 2,1(N+(x̃0)) .

Proof. We first use Corollary 2.1 and obtain∫
N+(x̃0)

∣∣∣∣∂i(u(x)

δ(x)

)∣∣∣∣ dx ≤ C ∫
BN−1
r

∫ ε0

0

∣∣∣∣∣∂i
(
u(x)

δ(x)

)∣∣∣∣
x=Φ(ỹ,yN )

∣∣∣∣∣ dyNdỹ.
Let v(ỹ, yN ) = u(Φ(ỹ, yN )). We claim that∫

BN−1
r

∫ ε0

0

∣∣∣∣∣∂i
(
u(x)

δ(x)

)∣∣∣∣
x=Φ(ỹ,yN )

∣∣∣∣∣ dyNdỹ ≤ C
N∑
j=1

∫
BN−1
r

∫ ε0

0

∣∣∣∣∂j (v(ỹ, yN )

yN

)∣∣∣∣ dyNdỹ. (11)

We will prove (11) at the end, so that we can conclude the argument. Since v ∈ C∞0 (BN−1
r × (0, ε0)) ⊂

C∞0 (RN+ ), we can apply Lemma 3.1 and obtain∫
BN−1
r

∫ ε0

0

∣∣∣∣∂j (v(ỹ, yN )

yN

)∣∣∣∣ dyNdỹ ≤ C ‖v‖W 2,1(BN−1
r ×(0,ε0)) .
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Notice that by the chain rule and the fact that Φ is a diffeomorphism, we get that for all 1 ≤ i, j ≤ N

∣∣∂2
ijv(ỹ, yN )

∣∣ ≤ C ( N∑
p,q=1

∣∣∂2
pqu(x)|x=Φ(ỹ,yN )

∣∣+

N∑
p=1

∣∣∂pu(x)|x=Φ(ỹ,yN )

∣∣) ,
so we with the aid of Corollary 2.1, we can write

‖v‖W 2,1(BN−1
r ×(0,ε0)) ≤ C

∫
BN−1
r

∫ ε0

0

(∑
p,q

∣∣∂2
pqu|x=Φ(ỹ,yN )

∣∣+
∑
p

∣∣∂pu|x=Φ(ỹ,yN )

∣∣) dyNdỹ
≤ C

∫
N+(x̃0)

(∑
p,q

∣∣∂2
pqu(x)

∣∣+
∑
p

|∂pu(x)|

)
dx

≤ C ‖u‖W 2,1(N+(x̃0)) .

To conclude, we need to prove (11). To do so, notice that u(x) = v(Φ−1(x)), and δ(x) = c(Φ−1(x)),
where c(ỹ, yN ) = yN . Thus, by using the chain rule we obtain

∂i

(
u(x)

δ(x)

)∣∣∣∣
x=Φ(ỹ,yN )

=

N∑
j=1

∂j

(
v(y)

c(y)

)∣∣∣∣
y=(ỹ,yN )

· ∂i(Φ−1)j(Φ(ỹ, yN )),

and since Φ is a diffeomorphism, we obtain∣∣∣∣∣∂i
(
u(x)

δ(x)

)∣∣∣∣
x=Φ(ỹ,yN )

∣∣∣∣∣ ≤ C
N∑
j=1

∣∣∣∣∣∂j
(
v(y)

c(y)

)∣∣∣∣
y=(ỹ,yN )

∣∣∣∣∣ .
Estimate (11) then follows by integrating the above inequality. �

We end this section with the proof of the main result when m = 2.

Proof of Theorem 1 when m = 2. When j = 1 and k = 1 the estimate (2) is trivial. Taking into account
Remark 2.2, we only need to prove∥∥∥∥∂i(u(x)

d(x)

)∥∥∥∥
L1(Ω)

≤ C ‖u‖W 2,1(Ω) (12)

for u ∈ C∞0 (Ω) and i = 1, 2, . . . , N . To do so, we use the partition of unity given by Lemma 2.3 to write

u(x) =
∑M
l=0 ul(x) on Ω where ul(x) := ρl(x)u(x), l = 0, 1, . . . ,M . Now, without loss of generality, we

can assume that d(x) = δ(x) for all x ∈ Ωε0 , and that d(x) ≥ C > 0 for all x ∈ suppρ0 ∩ Ω. Notice that
in suppρ0 ∩ Ω, we have

u0

d
∈ C∞(suppρ0 ∩ Ω), with

∥∥∥u0

d

∥∥∥
W 1,1(suppρ0∩Ω)

≤ C ‖u0‖W 1,1(sup ρ0∩Ω) .

To take care of the boundary part, notice that ul ∈ C∞0 (N+(x̃l)) for l = 1, . . . ,M , so Lemma 3.2 applies
and we obtain ∥∥∥∥∂i(ul(x)

δ(x)

)∥∥∥∥
L1(N+(x̃l))

≤ C ‖ul‖W 2,1(N+(x̃l))
, for all l = 1, . . . ,M.
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To conclude, notice that ∂i

(
u(x)
d(x)

)
=
∑M
l=1 ∂i

(
ul(x)
δ(x)

)
+ ∂i

(
u0(x)
d(x)

)
on Ω and that |ρl(x)| , |∂iρl(x)| and∣∣∂2

ijρl(x)
∣∣ are uniformly bounded for all l = 0, 1, . . . ,M , therefore∥∥∥∥∂i(u(x)

d(x)

)∥∥∥∥
L1(Ω)

≤
M∑
l=1

∥∥∥∥∂i(ul(x)

δ(x)

)∥∥∥∥
L1(N+(x̃l))

+

∥∥∥∥∂i(u0(x)

d(x)

)∥∥∥∥
L1(suppρ0∩Ω)

≤ C

(
M∑
l=1

‖ul‖W 2,1(N+(x̃l))
+ ‖u0‖W 1,1(suppρ0∩Ω)

)

≤ C

(
M∑
l=1

‖u‖W 2,1(N+(x̃l))
+ ‖u‖W 1,1(suppρ0∩Ω)

)
≤ C ‖u‖W 2,1(Ω) ,

thus completing the proof. �

4. The general case m ≥ 2

To prove the general case, we need to generalize Lemma 3.1 in the following way

Lemma 4.1. Suppose u ∈ C∞0 (RN+ ). Then for all m ≥ 1 and i = 1, . . . , N we have∥∥∥∥∂i( u(y)

ym−1
N

)∥∥∥∥
L1(RN+ )

≤ C ‖u‖Wm,1(RN+ ) .

Proof. The case m = 1 is a trivial statement, whereas m = 2 is exactly what we proved in Lemma 3.1.
So from now on we suppose m ≥ 3. We first notice that when i = N , the result follows from the proof
of Theorem 1.2 of [4] when j = 0 and k = 1. We refer the reader to [4] for the details.

When 1 ≤ i ≤ N − 1, we can proceed as in the proof of Lemma 3.1. Define v(x) = u(Ψ(x)) where
Ψ is given by (8). Notice that when m ≥ 3, instead of equation (9) we have

1

xm−1
N

∂u

∂yi
(Ψ(x)) =

∂

∂xN

(
v(x)

xm−1
N

)
− ∂

∂yN

(
u(y)

ym−1
N

)∣∣∣∣
y=Ψ(x)

,

and instead of (10) we have

∂mv(x)

∂xmN
=

m∑
l=0

(
m

l

)
∂mu(y)

∂ym−li ∂ylN

∣∣∣∣∣
y=Ψ(x)

.

Hence the estimate is reduced to the already proven result for i = N . We omit the details. �

We also have the analog of Lemma 3.2.

Lemma 4.2. Let x̃0 ∈ ∂Ω and N+(x̃0) as in Lemma 3.2. Let u ∈ C∞0 (N+(x̃0)). Then for all m ≥ 1 and
i = 1, . . . , N we have ∥∥∥∥∂i( u(x)

δ(x)m−1

)∥∥∥∥
L1(N+(x̃0))

≤ C ‖u‖Wm,1(N+(x̃0)) .

Proof. The proof involves only minor modifications from the proof of Lemma 3.2, which we provide in
the next few lines. Corollary 2.1 gives∫

N+(x̃0)

∣∣∣∣∂i( u(x)

δ(x)m−1

)∣∣∣∣ dx ≤ C ∫
BN−1
r

∫ ε0

0

∣∣∣∣∣∂i
(

u(x)

δ(x)m−1

)∣∣∣∣
x=Φ(ỹ,yN )

∣∣∣∣∣ dyNdỹ.
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If v(ỹ, yN ) = u(Φ(ỹ, yN )), then∫
BN−1
r

∫ ε0

0

∣∣∣∣∣∂i
(

u(x)

δ(x)m−1

)∣∣∣∣
x=Φ(ỹ,yN )

∣∣∣∣∣ dyNdỹ ≤ C
N∑
j=1

∫
BN−1
r

∫ ε0

0

∣∣∣∣∂j (v(ỹ, yN )

ym−1
N

)∣∣∣∣ dyNdỹ. (13)

Just as for (11), estimate (13) follows from the fact that Φ is a smooth diffeomorphism. Since v ∈
C∞0 (BN−1

r × (0, ε0)) ⊂ C∞0 (RN+ ), we can apply Lemma 4.1 and obtain∫
BN−1
r

∫ ε0

0

∣∣∣∣∂j (v(ỹ, yN )

ym−1
N

)∣∣∣∣ dyNdỹ ≤ C ‖v‖Wm,1(BN−1
r ×(0,ε0)) .

Notice that by the chain rule and the fact that Φ is a smooth diffeomorphism, we get

|∂mv(ỹ, yN )| ≤ C
∑
l≤m

∣∣∂lu(x)|x=Φ(ỹ,yN )

∣∣ ,
where the left hand side is a fixed m-th order partial derivative, and in the right hand side the summation
contains all partial differential operators of order l ≤ m. Again with the aid of Corollary 2.1, we can
write

‖v‖Wm,1(BN−1
r ×(0,ε0)) ≤ C

∑
l≤m

∫
BN−1
r

∫ ε0

0

(∣∣∂lu|x=Φ(ỹ,yN )

∣∣) dyNdỹ
≤ C

∑
l≤m

∫
N+(x̃0)

∣∣∂lu(x)
∣∣ dx

≤ C ‖u‖Wm,1(N+(x̃0)) .

�

And of course we have

Lemma 4.3. Suppose u ∈ C∞0 (Ω). Then for all m ≥ 1 and i = 1, . . . , N we have∥∥∥∥∂i( u(x)

δ(x)m−1

)∥∥∥∥
L1(Ω)

≤ C ‖u‖Wm,1(Ω) .

We omit the proof of the above lemma, because it is almost a line by line copy of the proof of the
estimate (12) in Section 3 using the partition of unity. We are now ready to prove Theorem 1.

Proof Theorem 1. For any fixed integer m ≥ 3, just as what we did for the case m = 2, it is enough to
prove the estimate (2) for u ∈ C∞0 (Ω). Notice that since∥∥∂ju∥∥

Wm−j,1(Ω)
≤ ‖u‖Wm,1(Ω) for all 0 ≤ j ≤ m,

it is enough to show ∥∥∥∥∂k ( u(x)

d(x)m−k

)∥∥∥∥
L1(Ω)

≤ C ‖u‖Wm,1(Ω) , (14)

for u ∈ C∞0 (Ω) and 1 ≤ k ≤ m − 1. We proceed by induction in k. The case k = 1 corresponds exactly
to Lemma 4.3. If one assumes the result for k, then we have to estimate for i = 1, . . . , N

∂i∂
k

(
u(x)

d(x)m−k−1

)
= ∂k

(
∂iu(x)

d(x)m−k−1

)
− (m− k − 1)∂k

(
u(x)∂id(x)

d(x)m−k

)
.

Using the induction hypothesis for m̃ = m− 1 yields∥∥∥∥∂k ( ∂iu(x)

d(x)(m−1)−k

)∥∥∥∥
L1(Ω)

≤ C ‖∂iu‖Wm−1,1(Ω) ≤ C ‖u‖Wm,1(Ω) ,
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on the other hand, by using the induction hypothesis and the fact that d is smooth in Ω, we obtain∥∥∥∥∂k (u(x)∂id(x)

d(x)m−k

)∥∥∥∥
L1(Ω)

≤ C ‖u∂id‖Wm,1(Ω) ≤ C ‖u‖Wm,1(Ω) .

Therefore ∥∥∥∥∂i∂k ( u(x)

d(x)m−k−1

)∥∥∥∥
L1(Ω)

≤ C ‖u‖Wm,1(Ω) ,

thus concluding the proof. �
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