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Abstract

In this work we study the asymptotic behavior of the L°° norm of the least energy solution u,, of the following
semi-linear Neumman problem
Au=u, u>0 in Q,

ou

— =P on 012,

ov
where  is a smooth bounded domain in R?. Our main result shows that the L> norm of u, remains
bounded, and bounded away from zero as p goes to infinity, more precisely, we prove that

li o =+e.
Fuv [[ull, (99) Ve
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1. Introduction

For Q C R? a bounded domain with smooth boundary 952, we study the least energy solutions to the
equation
Au=wu, u>0 1in €,

9 (1)

4w on 09,

v
where v is the outward pointing unit normal vector field on the boundary 0f2, and p > 1 is a real parameter.
We studied this equation in [5], where we showed that for a given integer m, and p > 1 large enough, there
exist at least two solutions U, to equation

Au=wu in ),
d (2)
Z_wP on 09,
v
developing m peaks along 0. More precisely, we prove the existence of m points £1,&s,...,&, € 0 such

that for any € > 0
||Up||Q\u;”:'IBE(£i) A
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and that for each i =1,2,...,m

sup Up(z) — Ve.
QNB. (&) pmroo

The results in [5, Theorem 1.1] were inspired by the analysis performed in [7], where the authors obtained
very similar results for the Dirichlet problem

—Aw=w? in Q C R?,
(3)

w=0 on JN.

In light of the formal similarity between Egs. and , and the results of Ren and Wei [15[|16], and

Adimurthi and Grossi [1] about the least energy solutions to Eq. lead us to conjecture in [5] that the

least energy solution u, of Eq. should be bounded, and bounded away from 0, as p tends to infinity, that
is, there should exist constants 0 < ¢; < ¢o < 0o such that for all p > 1

a1 < HupHLco(aQ) < ca, (4)

moreover, we conjectured that in fact one should have the following limiting behavior
||Up||Loo(aQ) pjo Ve. (5)

Recently, Takahashi [20] has proven , in fact he has shown the complete analog of the results of Ren
and Wei [15/16] about Eq. , in particular, he has shown that u, looks like a sharp “spike” near a point
Too € O, that is (|20, Theorem 1])

1 < liminf o < o < Ve, 6
= ggg.} ”upHL o) = 1£S£p“upHL (o) = Ve (6)
and (|20, Theorem 2])
p
/N (7)

in the sense of measures over 0{2. Moreover, the point x, is characterized as a critical point of the Robin
function R(z) = H(z,x), where H(x,y) = G(x,y) + 7 !In|x — y| is the regular part of the Green function
given by
AG(z,y) = G(z,y) z€Q,
oG
o

However, in [20] it remains as an open problem proving that ||u,|| L) — Ve and the purpose of this
work is to address this issue.

In order to make our statement precise, we firstly clarify what we mean by least energy solution: consider
the problem of finding v, € H'(2) such that

(z,y) =0y(x) x €0

||Up||H1(Q) =S5y, and ||UpHLp+1(aQ) =1, (8)

S2 = inf{ / IVo]® + |v]* : v e HY(Q), / [Pt =1 } (9)
Q o0

is the best constant of the Sobolev trace embedding H*(2) < LPT1(9Q). Since such embedding is compact
for all 1 < p < oo, the existence of a minimizer v, € H'(Q) satisfying is guaranteed. Moreover, thanks
to Lagrange multiplier theorem we know that there exists ;1 € R such that v, is a weak solution to

where

Av=w in Q,
0 _
A [P v on 9Q.

ov
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Since we can replace v, by |v,| we can assume that v, > 0 in , and thanks to elliptic regularity (2; |3
8, Theorem 6.30; |9, Theorem 2.8; (12 p. 39]) and the maximum principle (|8 Theorem 3.5]) one can show
that in fact v, belongs to C*°(Q) and that v, > 0 in . Finally, if we “stretch” the multiplier, that is, we
define u, by

wy = 57", (10)
we see that u,, is a solution to Eq. 7 which we call a least energy solution. Our main result is the following:

Theorem 1. Let u, be a least energy solution of Eq. . Then given any sequence of p, — oo one has
nlggo ||uanLoo(aQ) =e.

To prove Theorem [I| we use a blow up technique as in [1] which relies in characterizing the limiting
behavior of the linearization of pIn v, around a maximum point of u,. To simplify the statement of Theorem
below, we initially describe the blow-up function in the case 0 is flat on a neighborhood of x.,, however
the result remains true in the general non-flat case (see Theorem [3|in Section 4] for the details).

Suppose €2 is flat near o, (defined at (7)) and consider

zp(t) := m (up (et + xp) — up(xp)), (11)

where z,, € 90 is a point where u,(z,) = ||up||Lw(8Q), and

1
E = Ep - p—1 ) (12)
p||up||L0°(8Q)

then we have the following

Theorem 2. There exists 0 < 8 < 1 such that, for any sequence p, — oo one can find a subsequence
(denoted the same) so that z,, — 2zso in C’llo’f(]Ri). Here
n—oo

4

=l
2oo(t) YRt 1 2)2

(13)

The rest of this paper is devoted to the proof of Theorems [I] and [2] and we organize it as follows: in
Section[2] we establish the notation used throughout this work, and we recall some known results; in Section 3]
we prove Theorems [ and [2]in the case € is flat near o, where the main idea behind the proof is presented;
we provide the general version of Theorems [I] and [2] and the key steps in the proof of the general non-flat
case in Section @ Finally, we conclude in Section [ with the proof of some technical results used to prove
our theorems.

2. Notation and some known results

We begin this section by establishing some notation. In what follows €2 will denote a bounded domain
in R? with smooth boundary 99 (at least C?) satisfying 0 € 99Q. The unit outer normal vector field to 9
at « will be denoted as v(x), and we will assume with no loss of generality that v(0) = (0, —1).

We denote the open ball of center x € R? and radius R > 0 by Br(), and when 2 = 0 we simply write
Bpg. By the upper half space H we will mean the set { (z1,22) : 22 > 0 }, and its boundary 0H is the set
{ (z1,22) : 73 = 0 }. The open half ball will be denoted by B}, := HN By and its relatively open boundary
parts will be called 'y g := BRNOH (the flat boundary) and I's g := 0BrNH (the curved boundary) so that
aBE = mu Iﬂ. Finally, unless otherwise specified, C' will denote various constants that may depend on
several structural parameters, but not on p > 1.



By our assumptions over 0f2, we know that there exists Ry > 0, o > 0, and a smooth diffeomorphism

V:Bf  — V(BL)CQN B,
v U(z) = (Y1(y), ¥2(y))

satisfying ¥(0) = 0 and D¥(0) = I that flattens the boundary in a neighborhood of 0 € 9. By taking a
possibly smaller Ry, we will also assume that

(14)

1/2 < |0i(y)| <2 forallye By, i=1,2, (15)
0:0;(y)| <1/4 forally € B, i,j=1,2 and j # i. (16)
Also, we will denote by
. + +
®:U(Bh) — B, a7
y — @) = (¢1(y), 2(y))
the inverse of W.
Having established the basic notation, let us recall an important result from [20].
Lemma 1 (|20, Lemma 4]).
lim pS (Q) = 2me,
pP—o0
and for any least energy solution u, of Eq. (1
lim p/ up'H = lim p/ |Vup|2—|—u12) = 2re.
p—00 50 p—00
Corollary 1. Let u, be a least energy solution of Eq. , then
—1
HU:DHZI),OO(BQ) > CpS;.
Proof. By putting together the trace inequality S [|u[|;2(p0) < llullf1(q) and Lemma [I} we can write
p=p / bt
a0
-1
<p ||Up||1£oo(aﬂ) /Q Uz%
< Sl p HUPHHl(Q) ||Up||Loc (09)
=57 p52 ””p”Loo Q)
< C o5 ey
2
and recall that u, = S}~ " v,,. [ ]
Corollary 2 (Lower bound in @) Let u,, be a least energy solution of Eq. , then
liprgggf ||Up||Loo(aQ) > 1
Proof. Observe that by Lemma [T] and Corollary [1] one has
1
. . . 2 p—1 __
hprggéf Hup||Loo(aQ) > plgglo (CpS)P—T =1.
|



3. Proof of the Theorems in the flat case

In order to simplify the exposition, we will focus in the special case that 2 is flat near z,, =0 € 9Q (we
can always perform a translation/rotation to achieve that . = 0), to then come back to the general case
in Section @

From the maximum principle, we know that for each p > 1, the maximum of u, must be attained at
some x, € 0€); moreover, by the compactness of 92, we can assume, after extracting a subsequence, that
x, converges to Zoo = 0. So in what follows we will assume that if given any sequence (we will purposely
write p — oo instead of p, — oo when dealing with sequences to ease the notation) p — oo, we pass to a
subsequence p — oo (denoted the same) such that x, — 0.

The flatness assumption means that there exists Ry > 0 so that QN B*’O = B+ In addition, we will
consider py > 1 sufficiently large so that x, € Bp, /4 for all p > po, and define z, as 1n . that is

zp(t) = —— (up(et +xp) —up(wyp)),

where € > 0 is defined at , namely
1 B 1
pup(zy)Pt psgvp(l”p)”*l '

This choice of ¢ implies that z, solves the equation

E =

—Az, + €%z, = —€p in Q,,
0< 1+ <1 in Q,,
p 3 (18)
0z 2, \ "
875 = (1 + pp> on 0%,

where Q, := ™! (2 — z,,). In particular, since z, € Bpr, /4, we can look at Eq. as being defined only in
the half-ball Bg, /5. C €y, that is

Az, + 522p = 752p in BEO/%’
O<1+p <1 1nBRO/267 (19)
0z 2z \?
81&2 = <1 + ;) on 1—‘1,130/25-

Our first claim is the following:
Claim. e = O(p~!).
Indeed, notice that from Corollarylwe can write p [Juy,/" L°° 09) = Cp?S2, therefore

1

P

€<

= 1Q

SIS

Our second result is the key in the proof of Theorem [2] as it tells us that z, is bounded independently of
p in suitable Holder spaces:

Lemma 2. For any r > 0 there exists py > po and 0 < o < 1 so that for all p > py
”Zp”cl,a(B;r) <C,

for some C > 0 that does not depend on p.



Proof. For any r > 0 choose p; > pg large enough so that 8er < Ry for all p > p1, and consider the problem
of finding w such that

—Aw + 2w = —%p in B},
ow 2o \?
—— =14+ onI ,
o, ( + p) 1,47
w=20 on F2,4r-

It is not difficult to show that one can find a unique w, in H'(B}) through Lax-Milgram Theorem satisfying
p )
L2(T1,4r)

/+ |—e2p|" dt < CRoe12p? < CRop* ™7 < C.
B
P

s [, ()
1

1 / ()P do(x)
o0

u(wp)Pd

p P+ o (z
< 2/m|u<x>| do(z),

u(wp)

Z,
lwplli sy < © (HprHmwz,» + H (1 + ;’)

moreover, observe that for each ¢ > 2, and all p > 1

Also

' do(t)

(o2

/Fl,4r

™

but from Lemma [T] and Corollary [[] we obtain that

Jo )

for every p > 1 and every ¢ > 2. Hence, from |18, Theorem 5.3] we conclude that when ¢ > 4, w, must be
in W2tta(Bf) for 0 < t < 2/q with

q

do(t) < C,

2 P
1 <C||-&? 1+ 22 <C 20
prHWfH’q(BL) a (H ) pH“(BL)JFH( * p) Lqm,m) T 20

where the constant C is independent of p.
Consider now the function ¢y, 1= w, — 2 + [[wp|| e 57y Which solves

—Ap+efp=¢ ||wp||L°°(B;;) in B,

Oy

£ =90 I

882 on t14
>0 in Bf,,

and define, for t = (t1,t5) € R?, the function

. wp(t) if to >0,
Gp(t) =977 .
()Op(th 7t2) if to < O,



then @ is a non-negative weak solution of —Ay + 2p = £2 HwP”L‘x’(B* ) in By, therefore one can apply the
4r

L2(B47‘))

Harnack inequality (|8, Theorem 9.22|) and obtain that for every a > 1

1
~a ) . ~ 2
(7@ “0”> SC(}Bﬁf*”ﬁHf ol s, |
3r

< C (pp(0) +£°C)
<C,

where we have used the fact that z,(0) = 0. Therefore

1

||%2’pHLa(B3T) < C|Bs|* <C,

for all p > p; and a > 1. This implies that ¢, is bounded in B3, independently of p, and as a consequence

we get that z, = w, + pr||L°°(B+) — ¢p is bounded in L>(Bj,) independently of p. Finally, by interior
4ar,

elliptic regularity (see for instance [8, Theorem 9.13]) we obtain that

oy <€ (|2 0nlimisso] o, + 1600y ) < (21)

because [|¢p|[ (g, ) < C- Putting Inegs. and together yield

HZPHW%ﬂ,q(B;) <C,
forq > 4,0 <t < 2/q,and any p > p;. By the Morrey embedding theorem, we obtain that HZp||co,a(B+) <C
27

for some a > 0, therefore, by the Shauder estimates for the Neumann problem (see for example |9, Theorem
2.8]) we deduce that

p
z
bolennisty < (-l + | (14 2) s

§C7

CO-(T'1,2r)

With the aid of the above lemma, we can now prove Theorem [2]in the flat case.

Proof of Theorem[3 From Lemma [2| we know that for 0 < f < a < 1 we can find zo € C’llo’f(]H) such

that, after extracting a subsequence (still denoted by z,), 2, — 2o strongly in C*#(B;) for each r > 0.
Therefore, we can pass to the limit p — oo in equation

—Az, + €22, = —€%p in B},
0zp 2\’
—— =11 £ r T
Ot ( * p) ot
and obtain that z., is a solution of

Az=0 in H,
0 22

_= e on OH. (22)
Ota

To prove that z,, is as in , we need the following

Claim. fB]H e*> < oo.



Indeed, for fixed fix r > 0, and each |t;| < r we have

P {ln (1 + Zp(tl’o)) - Zp(tl’o)] — 0,

so we can use Fatou’s lemma to write

r T zp(t1,0) zp(t1,0)
/ o0 gy < fim [ e (0 p (1) - 2R

_r p—oo J_ .
p
— lim (1 + Zp(t)) do(t)
p—oe Jp, | P
t p
< lim Up(Et ) [ o
P Jaq, up(p)
1 p
= lim — () do(z)
p=oc € Joq | up(wp)

IN

lim 27 ( / fup ()P do(x)) "
o0

pooe cuy ()P

1 _2p_
. |oQ]PT St
= hm —_—
p—oc  gup(zp)P

1 _2p_

0017 pSg

= lim ————
P00 up(p)

but from Lemma [T and Corollary [[] we obtain that

)

_1 _2p_
up(zp) > Cw1 (pSf,) pot p:él, pSy~* pjo 2me,

hence r
/ e#=(110) 4t) < 2me,  for all ¥ > 0.

The claim then follows by letting r — oco.
To continue we need a better understanding of zo,. Observe that zo(t) < 250(0) = 0 therefore, by
following the idea in the proof of |10, Proposition 3.2] one can show that

Zoo() d

log [t] [t|=e0 7

d:/ eF=.
oH

1
w(t) = 7/ log |s — t] e*=) do(s),
OH

™

(23)

for

Indeed, consider

ow
then w is harmonic in H and Eie —e®>~ on JH, and it is easy to see that
v
w(t) d

1og [t] [t o0 7

Thus if we define v = 2o, + w then

Av =0, in H,
0
a—z =0 on JH,

8



and v(t) = 240 (t) + w(t) < w(t) since 2o, < 0. If we extend v to R? by even reflection, we obtain a function
© which is harmonic in R? such that 9(t) < C(1 + log(1 + |t|)) for some constant C' > 0. Hence ¥ must be
constant and follows.

From we can show that

Claim. [;; e**> < occ.

To see this notice, that from follows that there exist constants ci,co > 0 such that
_d _d
alt| ™= < ez < ¢, |t| ™=

holds for all |¢| > 1 in H. This implies that

o0
01/ t*%dtg/ e < 21e < 00,
1 OH

thus d > 7, hence

/ e?#=®) qt = / e?=®) q¢ + / e?#= ) q¢
H B(0,1)+ H\B(0,1)+

oo
§C+7T02/ tlfz?ddt<+oo
1

since d > 7.
A consequence of the above estimate is that we can explicitly compute z,, with the aid of the results
from [10,|14,21]. Namely, it is known that all solutions to Eq. satisfying in addition

/ e* < oo, /622<OO,
oH H

2412
(tr = p1)? + (t2 + p2)?’

for some p2 > 0 and p; € R. But in our case z,(0,0) = 0 for all p > 1, thus we deduce that

must be of the form
Z(tl, tg) =In

20

0 = 2.0(0,0) = In :
0,0 p3 + 3

hence 25 = p? + p3. By its definition, we have that z,(t1,t2) < 2,(0,0) = 0 for all (¢1,t2) € BEO/QE. Thus,
if p is large enough, we can choose t; = uy and t; = 0 to find that the only possibility is that pu; = 0, and
M2 = 2, i.e.

4

Zoo(t1,ty) =In 5—— .
(f1,t2) 2 4 (ty + 2)2

Remark 1. An important observation is that we can explicitly compute faH e*>. Indeed

e (11,0) gy :/ = at :2/ — _dp=1om
/8]H ' o 1T+ 4 ! Ceo PP F1



Now we begin the proof of Theorem 1| by giving an alternative proof of the upper bound in @ Recall

that e = p~ 15, ?vp () 7P and write
1= [ Jo@l*! doto)
o9
N
= vp(mp)p“s/ (1 1) )> do(t)
a9y, p

+1

vp(ffp)z / ( Zp)p
= 1+ = do(t).
pSy  Joa, p ()

Notice that for » > 0 and p > p; given by Lemma [2| we can write, thanks to Fatou’s lemma,

2 p+1 2 p+1
/ (1 + p) do(t) > / <1 + p) do(t)
aQ, p Ty, p

Iy

where o(1) is a quantity that goes to 0 as p tends to infinity. Thus we find that

2P+1

PSp o
ez (t1.0) dty + o(1)"

UP (‘Tp)z S f
Ty

Finally, note that by Lemma [T we have

p+1

pSp? Tt — 2me,

p—00
therefore )
me
lim sup u,(z,)? < , for all » > 0,
p_)oop p( p) = frl e7oe (t1,0) ¢,

so when we send r to infinity, we obtain the desired upper bound from |20, Theorem 1].
To prove that in fact one has

lim wuy(xpy) = Ve,

p—r 00

we will argue by contradiction and assume that

Tim uy(z,) < Ve,

To obtain such contradiction, we will perform a deep analysis of Eq. linearized around u,, but in order
to present a cleaner proof of Theorem [I} we will perform such analysis in Section [5] At this point it suffices

to say that we have the following

Proposition 1. If lim uy(z,) < Ve, there exist constants ko > 0, ki1 € R, and r > 2 such that for every
p—o0

p large enough,
Zp(t) S Zoo(kot) + ]Cl

for all t € Q, satisfying r1 < |t| < Ro/4e.
Let us now prove our Theorem.

Proof of Theorem[1. We can write

p+1 p+1 p+l
L8 o 03 ()
o9y b Ty Rrg/ae p AUAVSW AYZE p

10



If we assume that lim w,(z,)? < e, then Proposition (1| and the dominated convergence theorem (observe
pP— 00

that 2,(t) < zeo(kot)+ki for ri < [t| < Ro/4e, t € 8p; and that by Theorem 2] we can write z,(t) < oo (£)+1
for all p large and [t| < rqy, t € 9Q,,) tell us that

/F (1 + pr(t)>p+1 do(t) —
1. Ro/1e

e (t1.0) 4, = o7,

To estimate the second integral in ([24]), consider a fixed 7 > 0 and notice that @ implies that for every
7> 0 and all p large enough one has u(z)? < 7 [, u? for all z € 9Q \ B,.. Therefore

Cr
uP(r) < —,
(z) ,
because by Lemma |1| we have pfaﬂ uP™ = O(1). Hence we deduce the following for each t € 9, \ B, /.

(o) = (o)

_u(et +xp,)P

IN

u(zp)P
Cr
= pu(wy,)P
<O
~ pufzy)Pt
= Cre.
Therefore )
zp(s) P
1+ +——= do(s) < Cre do(s) = CT|09)].
O\t /e p o0,
Since the above holds for all p sufficiently large, we deduce
P p+1
0< liminf/ (1 + p)
P70 Jo\I e p
2\ P
< limsup/ (1 + p)
p—=00 JOQ\Ty /e p

< C7009,

for all 7 > 0, so by letting 7 — 0, we can conclude that, for all fixed r > 0,

2 p+1
lim (1 + p) =0,
P90 JaQ,\1 e p

(25)
therefore, upon taking r = Rg/4 we obtain

2, \P!
lim (1 + p) = 2.
P Jaq, p

p+1

p—

pSp”!
up(xp)2 = £

= — €
f 14 2 PHL posoo
21979 P

a contradiction with the assumption that lim u,(z,) < v/e. The proof is now completed.
p—00

Finally, recall that we can write

11



4. The general case

To handle the case of a general smooth bounded domain, we will straighten the boundary 9 in a
neighborhood of the origin by means of the map ¥ defined in (|14). That is, we define for ® as in (17)
g gin by p ( ;

Yp = (yp,ho) = (I)(:Ep)? (26)

and we will assume that there exists pg > 1 such that y, € Br, /4 for all p > po.
Consider

tp(y) = up(¥(y)),

and observe that a rather straightforward computation tells us that u, is a solution of an equation of the
form

RO/27 (27)

~ _ o~ . +
Li, =1, in B
N’l]p = &g on PLRO/Z’

where L := a;;(y)0;; + bi(y)0;, and

aij(y) =Voi(¥(y)) - Vo;(¥(y)), bi(y) = Agi(¥(y)) fori,j=1,2.

Notice that —L is an uniformly elliptic operator with smooth coeflicients only depending on ¥, and satisfying
a;;(0) = &;;. The operator N := v,(y)0; is the nowhere tangential boundary operator defined by

1
Ve (2(y))]

Observe that by our assumptions over ¥, we have that v(0) = (0, —1).
The precise version of Theorem |Z| that we have is the following: let Z, be the function defined as

O e | (28)

Yi(y) = Vo (U(y)) - Vs (¥(y)), fori=1,2.

3

where z, is defined in and y, is as in ; equivalently one can write

- D -
Z,(8) = = (Up(es+yp) — Up(yp)) -
P( U(yp) P p P P))
Notice that since y, € Bpg, 4, then Z, solves
—L,3, +€%3, = —€%p in B o
z
0<1+2 <1 in B},
+ p = n Br o (29

3 p
Npgp = <1 =+ ;) on FI,RO/QE'

where L, := ap;(5)0;; + bp.i(s)0;, with a, ;;(s) = aij(es +yp), bpi(s) = ebi(es + yp); and N, := v, ;0; with
Vp,i(8) =vi(es+yp) for 4,5 =1,2.

Remark 2. Observe that ¥(0) =0, DU(0) = I, and the continuity of D*¥(y), imply for i,7 = 1,2 that

12



Moreover, from and we conclude that each convergence is at least uniform. In fact, if we assume
that U is C*, k > 2, then the convergence is in C*~2

Then Theorem |2 can be written in the following fashion

Theorem 3. There exists 0 < 8 < 1 such that, for any sequence p,, — oo there exists a subsequence (denoted
- . 1,8 . .

the same) so that Z, T Feo I C,.L(H), where zo is as in (13).

Remark 3. We would like to emphasize that, even though z, depends on V, the fact that Z, = Z, w converges

to zeo Temains valid for any smooth map ¥ that flattens 02 near 0. We will use this fact later when proving

the general version of Theorem [1]

Since the idea of the proof of Theorem [3]is very similar to the flat case version stated in Theorem [2 we
will just mention the key differences that appear.

Proof of Theorem[3. For fixed r > 0 we consider p; > po large enough so that 8r < Ry for all p > pg, and
consider the problem of finding w,, solution of

—L, + %% = —pe? in B},
2 p
Ny = (1 + p) on I'y 4, (30)
p
w=0 on I'y 4.

Firstly, as in the flat case, the existence of such w, € H 1(BZT) is guaranteed by Lax-Milgram theorem. In
addition, the result from [17] still applies when dealing with general operators as (L,, N,). Moreover, since
the coefficients of (L, N,) can be bounded independently of p > 1, the constant C' appearing in

Lq(FLu))

does not depend on p (as before in the flat case, 0 < ¢t < ¢/2). By performing a change of coordinates, we

see that
z qp 2 pq
/ <1+”> g/ <1+”) <C ifg>2,
Ty ar b a0, p

as we already showed in the flat case. The above estimate tells us that in particular w, has its L> norm
bounded independently of p > p;. If we consider ¢ := W, — Z, + || Wpl|; ~, We observe that it satisfies the
hypotheses for the Harnack inequality [4, Theorem 2.1], so the function ¢, is bounded in B;T. By using
a further transformation of coordinates we can map y(y) to (0, —1) for all y € I'y 4,, so that the resulting
function can be extended across so = 0, and also be a solution to an elliptic equation in Bs, with smooth
coefficients (with norms that can be bounded independently of p). Hence, we can use interior L4 regularity
and obtain a fortior:i that ¢, is bounded in WQ’Q(B;T). Finally, Shauder regularity will tell us that Z, is
bounded in C1%(B;") for some 0 < o < 1, independently of p > 1 large.

The rest of the argument is as follows: We can find Z, € C’llo’f (H) such that Z, — Z, in C’llo’f (H) for
0 < 8 < a < 1. This allows us to pass to the limit in Eq. (29) and obtain that Z, solves Eq. (see
Remark . It is not difficult to see, from Fatou’s lemma and a change of variables, that f SH e~ < oo and
fIH e?¥~ < 0o, and as a consequence, we find that in fact Z., = 2., must be the function given by . |

p

I~ p
ey 20 (s 1+

Finally we provide the key steps in the proof of Theorem [I| in the general non-flat case. First of all, in
light of Remark [3] we will use a particular straightening of the boundary to make the computations a bit
simpler.

Notice that one can find a conformal straightening of the boundary which satisfies the required properties
(see for instance |6} p. 485]), that is, we can find a map W, : B, — QN By, such that ¥.(0) = 0, D¥.(0) =1,
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and in addition, for any sufficiently regular function f : Q — R, if one defines f(y) = f(¥.(y)), then for all
y € Bf,

Af(y) = 9(y)Af(Ye(y)) (31)
for g(y) = |det D¥.(y)|; and for y = (y1,0)

O ROEAA) (32)

for h(y) = |DW.(y)e1|, where e; = (1,0). Note that g(0) = h(0) = 1, and that by and , lgll . < o0,
1]l < oo
As in the flat case, we will prove the result by contradiction, that is, we will assume that

plggo up(zp) < Ve.

To get a contradiction, we will prove the following generalization of Proposition [I]

Proposition 2. If lim wu,(z,) < /e, then there exist constants ko > 0, k1 € R, and 1 > 2 such
p—00
Zp,w.(8) — zoo(kos) < k1
for all s € Blt,o/4s \ By, .
The proof of Proposition [2] will be given in Section [5} Let us now prove Theorem
Proof of Theorem/[]] in the general case. We can write

p+1 p+1 p+1
/ (1+Z”) :/ <1+Z”> +/ <1+Z”> :
o0, p T p A\ Ty p

p

where

V(es+yp) —
"rp::{ 610 p

s € F17R0/4€ } - 8Qp

On one hand, if we assume that lim u,(z,) < /e, then from Proposition [2| we obtain 2, v, (s)
p—0o0

IN

IN

Zoo(kos) + Ky for s € Bgo/% \ B;', and from Theorem [3| we can say that for all p sufficiently large Z, v_(s)

717

Zoo(8) + 1 in B;f. Therefore, with the aid of the dominated convergence theorem we get

[ (Hz@;ﬂ)”“ aott) = |

P 1,Rq/4e

hies+yp) <1 + ’g”*ij(s)yﬂ do(s)

— e*= () dg(s) = 2.

On the other hand, since the map W is a diffeomorphism, we can find r > 0 small enough so that B,.,.NoSY, C
T, for all sufficiently large p. Hence, by we obtain

2 p+1 2 p+1
lim (1 + ”) < lim (1 + p) =0.
P00 JoQ,\ T, p P J90,\B,./. p

Therefore
5 \ P+l
lim 1+ 2 =27,
P2 Jaq, p
and the conclusion follows as in the flat case. | |
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5. Proof of Proposition

The proof of Proposition [2 (Proposition [1] is a direct corollary of Proposition [2 as when € is flat near
Zoo = 0, as one can take ¥ = 1) is divided into several steps, the key step being the fact that the operator
(L,N)

0] _
L=-A+1 N=o- — pSpub ',

satisfies the maximum principle far away from 0 when one looks at the operator through the straightening
U, (see the proof of |1, Theorem 1.2]).

Let us establish some notation to make our statement precise: denote by A1 (£, N;Q) and \2(L,N;Q)
the first and second eigenvalues respectively of (£, ) in H*(£2). Also, for D C Q and I'y, 'y relatively open
subsets of 0D, define the energy functional

J(w;D,m=/D|ww2+|so|2—p52/r 2 pf?.
1

In addition, we will use the sub-space of H!(D) defined by

s

H}, (D) = { @ € HY(D): | =0 in the trace sence }

Lemma 3. M\ (L,N;Q) >0

Proof. The proof of this is rather standard, since we linearized Eq. about a minimizer v, (see for instance
|11, Lemma 1]). For the sake of completeness, we will provide such proof. Let ¢ € H'(Q2) and define

_ fQ IV (vp + t‘P)|2 + |vp + t¢|2
= 2
(fag |Up + t@‘erl) m

where v, is the minimizer defined by (§). Observe that since v, is a minimizer, one has Sz = f,(0),
f5(0) =0, and f7(0) > 0. It follows by a direct computation that

2
7(0) =2 [ /Q Vel + ol - /8 RE W] T 2(p - 1)S2 ( /8 ) vﬁw) .

Therefore, for £, = { pe HY Q) : faQ vhp =0 } one has

fo(?)

)

Ao (L,N;Q) = sup  inf J(p;Q,00)
EcH(Q) ¥€F
codimFE=1
fsz ‘192:1

> inf J(p;Q,00
Z wé%up (Qov s )

Joe?=1
1 pn
sfo(0
= inf 2f¢( 2)
PEE, fQ |l
> 0.

Now, denote by (L£,,/N}) the scaled operator in €, namely

0
£p:—A+E2, sza—ﬁpl,
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where
By(t) = (1 N zpp(t)>17—1.

Also, for D C Q, and I'y C 9D, we have the associated scaled energy functional
T DT = [ VP4 lol = [ Blel.
D Iy

Lemma 4. A\o(L,, N,;8,) >0

Proof. Notice that the scaling x = s + z,, yields

1
)\Q(ﬁp,Np;Qp) — ?A2(£7N,Q) > 0.
|

Using the conformal change of variables W, defined by Egs. and , we introduce the scaled version
of our operators in the flat variable, namely we have

L,=-A+e*gl,  for §(s) = gles + yp),

882

For D C 3;0/25 and I'y € I'y g, /2:, we can define the energy functional

K=-2 51 for B—h (1 + Z”p‘P> , 7(s) = hles + gp)-

@) = [ Vel +glel - [ Gylaf
D IS
Our first result tells us that the first eigenvalue of (ﬁp, ./\7,,) in a fixed neighborhood of 0 is negative, more
precisely, we have:
Lemma 5. For all r > 2, and all p sufficiently large
M(Ly, Ny B = inf Jp(@; BTy ,) <0,
P gent, (BO\(0}
I+ glgl*=1
where we recall that HE(D) denotes the subspace of H'(D) of functions vanishing on T in the trace sense.
Proof. To prove this, it is enough to exhibit a function ¢ € Hy, (B;7)\ {0} satisfying
Jp(@) = Jp(@; B, T1,) < 0.
Consider z, as in . Define for all ¢ € 0€2,, the function

sop<t>=t-wp<t>+pi (z(t) + D).

1
and let

2p(s) = @p (\IIC(ES +€y”) — Ip) .

A direct computation using and tells us that ¢, solves

- (33)

Lypy = =25 (Zpw, +p) in Brya,
Np@p = 0 on Fl,Ro/QE'
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By Theorem 3| we know that Z, g, converges to 2. in C’llo’f (H), hence we deduce that ¢, converges to
1+ 5 V2o in C%F(B;F). Indeed, from the definition of 2, g, we find that

£a(s) = pp (LTI )

3

1 Uo(es+yp) — xp We(es +yp) — Tp
~ -1 [Zpw.(s) +p] + [ - ] V2 ( - )
= = . (5) +

4 | P Z R (D (e 4 4)7) V500

— 145 Vzs(s),

p—00

because, z, = ¥.(y,) — 0 and the smoothness of ¥, imply for s € B;"

\IJC(ES + yp) — \Ilc(yp) - \Ifc(as + yp) - \IJC(yp) — DU (0)3
= c :
- c p—+00

Observe that

4—|s|”
1+SVZOO(S): m,
— 20

hence, for every |s| =7 > 2 one has 1 + s- Vzo(s) < 0, and if p is sufficiently large, the set
Apy={seBl:¢,(s)>0}

must be far away from I' .. Consequently ¢ := max(0, $,) must vanish on I'y .. Moreover, since

we have that @ # 0 in B},

Let ¢ := @}, we claim that Jp(¢) < 0. Indeed, multiply Eq. by ¢ and integrate by parts over B,
for some r > 2 to obtain

@)= [ el +alel - [ Bylet =22 [ 5500+ 50w <0
B Ty Bf
because g > 0, ¢ > 0, and Z, v, (s) +p > 1 in B, for all p sufficiently large. |

Lemma 6. For each r > 2, and all p sufficiently large, let D := Bgo/zg \ By, T'1 :=T'1 gyj2c \I'1,r, and
FQ = ].—‘2’,,- U FQ,RQ/QS' Then

M(Lp,Np; D) :=  inf  J(¢;D,Ty) >0
peHL, (D)

fD §‘¢|2:1

Proof. This result follows from the following principle (see for instance [19, Lemma 4|): For Dy, Dy be two
disjoint sub-domains of D, then
A2(D) < A (Dq) + A (D3).

We will just sketch the general idea of the proof: consider ¢, p and ¢, B be the eigenfunctions associated
to Al(ﬁp,Np; D) and Al(ﬁp,Np; B;F) respectively, each of them having their respective weighted L? norm
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equal to 1. Observe that one can extend each of the eigenfunctions by 0 to all of Bg, /2. as functions in
H'(Bpg, /2), because

PLD|p, = 0= $1,B; To.r

in the trace sense. If we abuse the notation and we maintain the name of each extended function, we can
define

¢ = p1p + 29y g,
where (a1, as) € R? is to be chosen. Next, we define (recall that ®. = 1)

oft) = b <<I>c(€t+xp) yp> |

3

and extend it by 0 to be a function in H'(£2,). Finally select a; and s satisfying
2 2 _ _
drad=1 ad [ gq-o,
QP
where ¢; € H'((2,) is an eigenfunction associated to

M (L, Np; Qp) :=  inf  J((;9Qp,00,)
CeH' ()
fsip ¢*=1

Therefore one has

A2 (L, Np; Q) = inf{ Jp(Q):Ce Hl(Qp),/

Qp

<P =1, u@}

< Jp(@)
= Q%Al(zpa/\yp;D) + ag/\l(ﬁpajvp;Bj)
< Al(ivaMD) + Al(ﬁvam Br—’i_)

From here we conclude that
0< )‘Q(EP»NPJQP) < >‘1([:pa-/\7p§D) + )‘l(épagp§Br+)7
thus Ay (Ly, Np; D) > =A1(Ly, Ny; Bif) > 0 by Lemma [f] [ |

As a consequence of o
M (Lp, N3 By 5.\ Br) > 0,
we get that (ﬁp,Np) satisfies the maximum principle in Bgo /2 \ B, for all r > 2. More precisely, we have
the existence of a non-negative eigenfunction ¢, satisfying
Log1=Mgp1 in Bf o\ By,
Npp1 =0 on I'y ry/2e \ T, (34)
=0 on 'y py/2e UT2 1,

for some r > 2. Moreover, by [13, Theorem 4.2|, he have that ¢; > 0 away from I'y = I'y g, /2. U2,
We will break the proof of Proposition 2] into several small lemmas. Recall that Z, v, is given by .

Lemma 7. Suppose r > 2, 6 >0, and that kg > 0 ar given, then for all p sufficiently large

2
rko +2 ) forall s €Ty ;.

Zpw(8) — zoo(kos) < d+2In (
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Proof. From the convergence Z, ¢ — 2o, in C%#(B;}) we deduce that for all p sufficiently large Z, ¢ (s) —
Zoo(8) < 4 in B;F. Also, for |s| = r we can write

|s — sol

thus concluding the proof. |

Now, if we are in the setting of Proposition [2} we have:

Lemma 8. If lim u(z,) < +/e, and ko > 0 is given, then there exists a constant C1 > 0 so that
p—r00

D+ 2oo(kos) > C1 — 2In kg
for all |s| < Ro/4e and all p large.

Proof. Observe that for any A > 0, if |s| < Ae~!, we can write for p large enough
2A
|s —sol <24 1s| < — = 2Ap5§v(xp)p*1,

where sg = (0, —2). Therefore
4
s — so|?

2 2
>In4 —21In (24pS;) — (p— 1) Inv(zy)
>1—2In (ApSf,) - p,

Zoo(8) =1n

because we are supposing that Inv(x,)? < 1. In particular, if we take A = koRy/4 we have that for all
|s| < Ro/4e
P+ 200 (kos) > C1 — 21n ko,

for 16
e
Cr=infdIn——F=:p>1 7 < o0,
1 n { n (Ropsg)z p } 0
because pSf, — 27e by Lemma (1} If needed, we can take a smaller Ry > 0, so that C; > 0. |

Lemma 9. If lim u(z,) < /e, then there exist a constant Cy > 0, such that for any ko > 0 given, we can
p—o0

write
Zpw(8) = 200 (kos) < O + C1 — 2In kg

for all s € 'y g, /4c. Here Cy is the constant from Lemma @

Proof. From |20, Lemma 11| we know that for given p > 0 fixed, there exists a constant C' > 0 such that

u(x)gc/mup

for all 2 € Q satisfying |2| > p. From this and p [,, u? = O(1), we deduce that pu(z) = O(1) when |z| > p.
Therefore, using that ¥, is a diffeomorphism, and Lemma [T} we deduce the existence of C5 > 0 such that

- u(es + ~
p+Zu(s) = pw < 2pu(es + yp) < Co,

a(yp)

for all p > 1 and all |s| = Ry/4e. Hence, with the aid of Lemma [8| we can write

2p,w,(8) = 2zoo(kos) = p + 2pw.(5) — (P + 2o (kos)) < Co + Cy — 21In k.
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Lemma 10. Let kg > 0 and k1 € R be given constants, then for all p > 1 we have

(1 + Z”’qg(s)y < (1 + Zm(ko;) * kl)p + (1 + ’Z”’q;(‘s)yl (Zpow, () — 200 (kos) — k1)

Jor all s € 'y gy /se-

Proof. This result follows directly from the convexity of the function
P
z
flz)= <1 + ) .
(2) p

Now we can prove Proposition
Proof of Proposition[4 We want to prove the existence of ky > 0, k1 € R, and r; > 2 such
Zp,w.(8) = 2oo(kos) < k1

for all s € B}, \ Bjf. For § >0, kg >0, k; € R, and 75 > 2 to be chosen later, consider the function

Ry /2e

Sy Zpw,(8) = Zeo(kos) — K1
P(s) = O

9

where @1 is as in Eq. for r = ry. Let
D= BEO/% \ Bry+1,
ry:= I‘1,130/45 \ Fl,r2+17

then a straightforward computation tells us that if we define
fl(S) = —52g(8) [p —+ Zoo(kOS) + kl]
P
fa(s) == — koe*=k0%) L p(s) Kl + w)
p

— (1 + %’\I;(S))pl (Zpw,(8) = 2o (kos) — kl)]

fs(s) := Zpw.(s) — 200 (kos) — k1
then ¢ satisfies
—p1A¢ =2V - Vo + Mgp=fi inD,
. 0¢
—Prg L =fo onlYy,
P19 =fs onTa,, 41,
P19 =f3 on Iy R e,

for all p > p; given by Lemma |7} We Would like to emphasize that by |13, Theorem 4.2] we have ¢1 > 0 in
D. Observe that from Lemmas |7 to [L0] we have the following estimates

fi(s) < —€%G(s) [C1 —21Inkg + k1] for all s € D,

fa(s) < (|[h]| o € — ko) e Fo®) for all s € I'y,
ko + 2

fa(s) <d+2In <(T2+);+) — k1 for all s € I'y y, 41, and
ry —

fg(S) <Co+Ci—2Inky— Kk for all s € F27R0/45~
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Firstly, we will exhibit kg > 0, k1 € R, and ro > 2 such that each right hand side in the above estimates
is non-positive. For this to happen, we will find constants kg, ki, and ro such that

2111]60 - Cl S /4}1, (35)

12l o € < ko, (36)

21n (WW> +68 < ky, (37)
ro — 2

21n/€0+02—01 ékl (38)

Observe that if 21n kg+Cs < k; then and follow. Besides, we can write as k1 <Inko—In R,
so it would be enough to prove the existence of ky > 0, and ro > 2 such that

1)k 2
21n (W> <Cy+2Inky=Inko —In|h, (39)
ro —

as later one can define
kl = C2 +2h’1k0 = lnko — lth”oo s

and let 6 > 0 small enough so that

21n (WW> +5 S 02 —|—21nk;0 = kl-
ro — 2
To find such ko > 0 and ry > 2, observe that from Cy 4+ 2Inkg = Inky — In ||h|| . we obtain that
e~ ¢2
ko := Tz > 0, (40)

and that we can write

Ca
ko (1 + 267) 42

W(e® 1)

2ln ((7‘2 + 1)]€0+2

)<CQ+21I1]€0 & ro >
’I"2—2

therefore, for ky as in , we define

Ca
ko (1 n 267) 42

To =
ko (6% — ].)
and the desired inequalities follow.
Finally, observe that for r; := 7y + 1, ¢ solves

+2>2,

~P1A¢ —2V@1 - Vo + Mgp <0 in By, \ By,
_0¢

P15, S0 on TRy e \ Ty,

P19 <0 onlg,,
©19 <0 onlsR,/se;

thus, by the weak maximum principle, we deduce that ¢ <0 in BEO Jae \ By, , and the proof is completed. B
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