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Abstract. In this paper we consider the following Sturm-Liouville equation

(⋆)

{
−(x2αu′(x))′ + u(x) = f(x) on (0, 1],

u(1) = 0,

where α < 1 is a nonzero real number and f belongs to Lp(0, 1) for p ≥ 1. We
analyze the existence and regularity of solutions to (⋆) under suitable weighted
Dirichlet boundary condition at the origin.

1. Introduction

In this work we are interested in the following family of Sturm-Liouville equations

(1)

{
−(x2αu′(x))′ + u(x) = f(x) on (0, 1],

u(1) = 0,

where f ∈ Lp(0, 1) for 1 ≤ p ≤ ∞ and α < 1 is a non-zero real number.
The literature is vast regarding both regular and singular Sturm-Liouville equa-

tions and it is not our intention to go through the history of these equations, but
the interested reader might want to use the monograph of Anton Zettl [16] and the
comprehensive reference list therein as a starting point into the theory.

It is also worth mentioning that the choice of the weight x2α is not arbitrary. As
it was shown by Stuart [9, Section 1.1], if one considers an unshearable, inextensible
rod whose resistance to bending is governed by the Bernoulli–Euler law then the
differential operator

LAu(x) := −(A(x)u′(x))′

appears naturally. In that model established by Stuart, the function A represents
the profile of the tapered rod, and it is said to be of order p if

lim
x→0

A(x)

xp
= L

for some positive constant L. A study of the spectrum of LA and other relevant
results regarding a non-linear problem modeling the tapered rod were established
by Stuart and Vuillaume. We refer the interested to the series of articles [8, 9, 10,
11, 12, 14, 13].

Later, Castro and Wang in [5, 6, 4] studied (1) for the case α > 0 and f ∈ L2.
In those articles the problem of existence and uniqueness was studied together a
study of the spectral properties of the operator Lαu(x) = −(x2αu′(x))′ + u(x), but
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the question of regularity and behavior of solutions near the origin was of particular
interest.

On the one hand, it was shown in [5] that due to the weight x2α the pure Dirichlet
condition u(0) = 0 only makes sense for α < 1

2 and in that case the unique solution
uD satisfies

x2α−1uD ∈ H1(0, 1)

so that in particular uD(x) not only vanishes at x = 0 but it vanishes like x1−2α.
On the other hand, a weighted Neumann boundary condition x2αu′(x)

∣∣
x=0

= 0
can be imposed for every α > 0. Just as in the Dirichlet case, the behavior near the
origin of the unique solution uN under this condition is better than the natural one
in the sense that one verifies that

x2α−1u′ ∈ L2(0, 1) and lim
x→0+

x2α−
1
2u′(x) = 0.

The main motivation of this article is to extend what was done in [5] to the case
f ∈ Lp(0, 1) for 1 ≤ p ≤ ∞ while also considering the case α < 0 which was not
studied before. As the reader can see in the Appendix A, solutions to equation
(1) can be represented rather explicitly with the aid of Bessel functions, however
one of the purposes of this article is to avoid explicit representation of solutions
and instead use tools that might be used for more general problems. For instance,
as it was mentioned at the beginning, it would be of interest to study (1) where
instead of the function x2α we have a general weight satisfying A(x) ∼ x2α near
the origin in suitable fashion: in that case one might not have good representation
formulas for the solutions. Instead of going through that road we use tools that are
common in the study of partial differential equations such as functional analysis
methods and the use of a priori bounds to prove existence and regularity of solutions.
Additionally, while some of the techniques we use throughout this work make use
of the one dimensional nature of the problem, there are also parts that can be
generalized to similar problems in higher dimension such as

(2) −div(A(x) · ∇u(x)) + u(x) = f(x) in Ω ⊆ RN ,

where A(x) could be a matrix valued function with eigenvalues behaving like the
radial weight |x|α or the monomial weight xA = |x1|a1 · . . . · |xN |aN . In particular
the use of weighted Sobolev spaces and its properties associated to the weight
function A (such as weighted Sobolev inequalities and embeddings into classical and
weighted Lebesgue spaces) are heavily used throughout this work and such tools
are available to the study of equations like (2) (for instance the Caffarelli-Kohn-
Nirenberg inequality [2] for |x|α or what was done in [1, 3] for monomials xA). This
later extension to higher dimension is something we are interested in and this article
could be thought as a stepping stone towards that goal.

As it was established in [5] it is convenient to separate the main results regarding
(1) into two cases depending on the behavior near the origin we want to prescribe:
the Dirichlet problem and the Neumann problem.

1.1. Dirichlet problem. We first consider (1) under the condition lim
x→0+

u(x) = 0.

As it was observed in [5] this is only possible for α < 1
2 . We recover the results

obtained for the case f ∈ L2 and 0 < α < 1
2 in [5] and extend them for f ∈ Lp and

every α < 1
2
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Theorem 1.1. For any given α < 1
2 and f ∈ Lp(0, 1) with 1 ≤ p ≤ ∞ there exists

a unique function uD ∈W 2,p
loc ((0, 1]) satisfying (1) a.e. and the following properties:

(i) uD ∈ Lp(0, 1) with ∥uD∥Lp ≤ C ∥f∥Lp ,
(ii) x2αu′D, x

2α−1uD ∈W 1,p(0, 1) with

∥x2αu′D∥W 1,p + ∥x2α−1uD∥W 1,p ≤ C∥f∥Lp ,

(iii) x2αuD ∈W 2,p(0, 1) with ∥x2αuD∥W 2,p ≤ C∥f∥Lp .

Additionally, uD satisfies
(iv) uD ∈ C0, 12−α[0, 1], with ∥uD∥

C0, 1
2
−α ≤ C∥f∥Lp when 0 < α < 1

2 .

(v) uD ∈ C0, 12 [0, 1], with ∥uD∥
C0, 1

2
≤ C∥f∥Lp when α < 0.

(vi) lim
x→0+

uD(x) = 0, and in fact one has
∣∣x2α−1uD(x)

∣∣ ≤ Cx
1
p .

Remark 1.1. In the above theorem and throughout the rest of this work, the constant
C > 0 will denote a universal constant depending on the parameters of the problem
α and p, but not on f . Also, the value of C might change from one line to the next.

Remark 1.2. Observe that from Theorem 1.1 we have that (x2αu′D)′ = 2αx2α−1u′D+
x2αu′′D ∈ Lp(0, 1) but it is not necessarily true that both x2α−1u′D and x2αu′′D belong
to Lp(0, 1). This can be seen from the fact that there exists a function f ∈ C∞

c (0, 1)
such that, near the origin, the solution given by Theorem 1.1 expands as

uD(x) = a1x
1−2α + a2x

3−4α + a3x
5−6α + · · · .

Therefore x2α−1u′D ∼ x2αu′′D ∼ x−1 /∈ Lp(0, 1) for any 1 ≤ p ≤ ∞.

Remark 1.3. The boundary behavior near the origin is optimal in the following
sense. If we define

KD(x) := sup
∥f∥Lp≤1

∣∣x2α−1uD(x)
∣∣ ,

there exist ε0 > 0, C1 > 0, and C2 > C1 such that, for all 0 < x ≤ ε0 one has

C1 ≤ KD(x) ≤ C2.

This fact will be shown below in Section 4.2.

1.2. Neumann problem. If we study (1) under the (weighted) Neumann boundary
condition lim

x→0+
x2αu′(x) = 0 we have the following generalization of the results from

[5].

Theorem 1.2. For α < 1 and f ∈ Lp(0, 1) with 1 ≤ p ≤ ∞ there exists a unique
function uN ∈W 2,p

loc ((0, 1]) satisfying (1) and the following
(i) uN ∈ Lp with ∥uN∥Lp ≤ C ∥f∥Lp ,
(ii) lim

x→0+
x2αu′N (x) = 0, and in fact one has limx→0+ x

2α−1+ 1
pu′N (x) = 0,

(iii) x2αu′N ∈W 1,p(0, 1) with
∥∥x2αu′N∥∥W 1,p ≤ C ∥f∥Lp ,

(iv) If p > 1 then x2α−1u′N ∈ Lp(0, 1) and x2αu′′N ∈ Lp(0, 1), with

∥x2α−1u′N∥Lp + ∥x2αu′′N∥Lp ≤ C∥f∥Lp .

Additionally we have
(v) uN (x) ∈ C0, 12−α[0, 1], with ∥uN∥

C0, 1
2
−α ≤ C∥f∥Lp , if 0 < α < 1

(vi) uN ∈W 1,p(0, 1) with ∥uN∥W 1,p ≤ C∥f∥Lp if α ≤ 0.
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Remark 1.4. Unlike the Dirichlet problem, each of the terms in the expansion of
(x2αu′(x))′ = 2αx2α−1u′(x) + x2αu′′(x) belong to Lp(0, 1) when u = uN and p > 1.
However, this is no longer true for p = 1. We will see this in Section 5.2.1 by giving
an explicit example of a function f ∈ L1 for which x2α−1u′N /∈ L1.

Remark 1.5. The boundary behavior lim
x→0+

x2α−1+ 1
pu′N (x) = 0 is optimal in the

following sense: there exists a ε0 such that and constants 0 < C1 < C2 such that

C1 ≤ KN (x) := sup
∥f∥Lp≤1

∣∣∣x2α−1+ 1
pu′N (x)

∣∣∣ ≤ C2

for all 0 < x ≤ ε0. This fact will be shown below in Section 5.3.

The rest of this article consists on the proof of these results. To make the
exposition clear we have divided each proof into the following parts: in Section 2
we prove the uniqueness of both types of solutions and then in Section 3 we prove
the existence part for both Theorems 1.1 and 1.2. Then in Section 4 we prove the
regularity properties of the solution uD mentioned in Theorem 1.1 to then study
the solution uN given in Theorem 1.2 in Section 5. We conclude this paper with
some results about Bessel’s function in the Appendix A.

2. Uniqueness in both Theorems 1.1 and 1.2

This was done for α > 0 in [5] and the same argument remains valid for α < 0.
We include the main steps on each proof for the reader’s convenience.

2.1. The Dirichlet problem.

Proposition 2.1. If α < 1
2 and u ∈W 2,p

loc (0, 1) for some 1 ≤ p ≤ ∞ satisfies

(3)


−(x2αu′(x))′ + u(x) = 0 in (0, 1],

u(1) = 0,

lim
x→0+

u(x) = 0,

then u ≡ 0.

Proof. Observe that since W 2,p
loc (0, 1) ↪→ C0(0, 1) and because lim

x→0+
u(x) = u(1) = 0

we have u ∈ C0([0, 1]). Additionally, for every 0 < x < y < 1 we can write

y2αu′(y)− x2αu′(x) =

ˆ y

x

(s2αu′(s))′ds =

ˆ y

x

u(s)ds,

so that the function x2αu′(x) is continuous in [0, 1], in particular if we multiply (3)
by u and integrate we have that for all 0 < ε < 1

0 = −
ˆ 1−ε

ε

(x2αu′(x))′u(x)dx+

ˆ 1−ε

ε

u2(x)dx

=

ˆ 1−ε

ε

|xαu′(x)|2 dx+

ˆ 1−ε

ε

u2(x)dx− x2αu′(x)u(x)
∣∣∣x=1−ε

x=ε

−−−→
ε→0

ˆ 1

0

|xαu′(x)|2 dx+

ˆ 1

0

u2(x)dx,

therefore u = 0 a.e., and because u ∈ C0([0, 1]) in fact we deduce that u ≡ 0.
■
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2.2. The Neumann problem.

Proposition 2.2. If α < 1 and u ∈W 2,p
loc (0, 1) for some 1 ≤ p ≤ ∞ satisfies

(4)


−(x2αu′(x))′ + u(x) = 0 in (0, 1],

u(1) = 0,

lim
x→0+

x2αu′(x) = 0,

then u ≡ 0.

Proof. Suppose for a moment that u ∈ C0([0, 1]), if that is the case then just as in
the proof of Proposition 2.1 we can write

0 = −
ˆ 1−ε

ε

(x2αu′(x))′u(x)dx+

ˆ 1−ε

ε

u2(x)dx

=

ˆ 1−ε

ε

|xαu′(x)|2 dx+

ˆ 1−ε

ε

u2(x)dx− x2αu′(x)u(x)
∣∣∣x=1−ε

x=ε

−−−→
ε→0

ˆ 1

0

|xαu′(x)|2 dx+

ˆ 1

0

u2(x)dx,

and therefore u ≡ 0.
So we only need to show that u ∈ C0([0, 1]). Observe that from the equation

and the fact that u ∈W 2,p
loc (0, 1) we readily obtain that u ∈ C1((0, 1]). Additionally

since lim
x→0+

x2αu′(x) = 0 we deduce that x2αu′(x) is bounded in [0, 1], hence

|u(y)− u(x)| =
∣∣∣∣ˆ y

x

u′(s)ds

∣∣∣∣ ≤ C

ˆ y

x

s−2αds ≤ C
∣∣y1−2α − x1−2α

∣∣ ,
thus u ∈ C0([0, 1]) for any α < 1

2 . To prove that u ∈ C0([0, 1]) for 1
2 ≤ α < 1 the

argument is similar to what we will do in Section 5.1.2. We refer the reader to the
proof of [5, Theorems 1.8 and 1.12] for the detailed argument for the uniqueness. ■

3. Existence of solutions

The solutions given by Theorems 1.1 and 1.2 can be characterized as follows. For
each α < 1 we define the space

Xα =
{
u ∈ H1

loc(0, 1) : u ∈ L2(0, 1) andxαu′ ∈ L2(0, 1)
}
,

and equip it with the inner product

(u, v)Xα =

ˆ 1

0

(
x2αu′(x)v′(x) + u(x)v(x)

)
dx,

which makes Xα a Hilbert space. Observe that for α = 0 then Xα = H1(0, 1) the
classical Sobolev space, where it is clear that if α < 0 then Xα ↪→ H1(0, 1) and if
α > 0 then H1(0, 1) ↪→ Xα, both inclusions being bounded. Moreover, it is also
clear that for any α ∈ R we have the embedding Xα ↪→ H1

loc((0, 1]) and in particular,
elements in Xα are continuous near x = 1, therefore it makes sense to define the
closed subspace

Xα
·0 = {u ∈ Xα(0, 1) : u(1) = 0 }

which is a natural space to find weak solutions to (1) with (weighted) Neumann
type behavior near the origin. Additionally, it is known from [5, Appendix] that if
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0 < α < 1
2 then Xα ↪→ C

1
2−α([0, 1]) and because Xα ↪→ H1(0, 1) ↪→ C

1
2 ([0, 1]) for

α < 0 we can also define the closed subspace

Xα
00 = {u ∈ Xα : u(1) = u(0) = 0 }

for any α < 1
2 , which gives another natural space to find solutions to (1), this time

with Dirichlet boundary behavior near the origin.
With the above in mind we consider weak solutions to (1) as solutions to

(5)
ˆ 1

0

(
x2αu′(x)v′(x) + u(x)v(x)

)
dx =

ˆ 1

0

f(x)v(x)dx, ∀ v ∈ X,

where X is either Xα
·0 or Xα

00.
In order to have existence of solutions to (5), Riesz’s theorem tells us that it

would suffice that f belongs to the dual space of X, in particular, given f ∈ Lp(0, 1)
for 1 ≤ p ≤ ∞ we should analyze whether the functional

φf : Xα(0, 1) −→ R

v 7−→ φf (v) =

ˆ 1

0

f(x)v(x)dx
,

is bounder or not. On the one hand, because Xα(0, 1) ↪→ L∞(0, 1) for every α < 1
2

it follows that φf ∈ (Xα)
∗ for every 1 ≤ p ≤ ∞ with

∥φf∥(Xα)∗ ≤ C ∥f∥Lp ,

and on the other hand for α ≥ 1
2 we know from [5] that

• If α = 1
2 then Xα ↪→ Lq(0, 1) for 1 ≤ q <∞,

• If 1
2 < α ≤ 1 then Xα ↪→ Lq(0, 1) for 1 ≤ q ≤ 2

2α−1

from where we deduce that

• If α = 1
2 then φf ∈ (Xα)

∗ for 1 < p ≤ ∞,
• If 1

2 < α ≤ 1 then φf ∈ (Xα)
∗ for 2

3−2α ≤ p ≤ ∞.

Therefore, either for α < 1
2 and every 1 ≤ p ≤ ∞ or for 1

2 ≤ α < 1 and p as above,
we readily have the existence of weak solutions to (5) in either Xα

00 or Xα
·0 thus

proving the existence part of Theorem 1.1 and part of the existence for Theorem 1.2.
However to handle the existence part for Theorem 1.2 in each of the remaining cases
we will have to look for solutions elsewhere.

For 1 ≤ q ≤ ∞ we consider the space

Xα,q =
{
u ∈W 1,q

loc (0, 1) : u ∈ Lq(0, 1) andxαu′ ∈ Lq(0, 1)
}
,

which is a reflexive Banach space when 1 < q <∞ when equipped with the norm

∥u∥qXα,q = ∥xαu′∥qLq + ∥u∥qLq .

Additionally we consider its closed subspace

Xα,q
·0 = {u ∈ Xα,q(0, 1) : u(1) = 0 } ,

and equip it with the equivalent norm (thanks to [5, Theorem A.2])

∥u∥Xα,q
·0

= ∥xαu′∥Lq .
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3.1. Existence part of Theorem 1.2: the case 1
2 ≤ α < 1 and 1 ≤ p < 2

3−2α .
To deal with this case we will argue by duality with the help of the following

Proposition 3.1. Suppose that 1
2 ≤ α < 1 and let g ∈ Ls(0, 1) with s > 1

1−α . Then
there exists w ∈ Xα

·0 solution to

(6) −(x2αw′(x))′ + w(x) = −(xαg(x))′ in (Xα
·0)

∗,

satisfying in addition ∥w∥L∞ ≤ C ∥g∥Ls .

Before proving this proposition let us use it to analyze the existence part of
Theorem 1.2 for case 1 ≤ p < 2

3−2α and 1
2 ≤ α < 1. Take f ∈ Lp(0, 1) and since

2
3−2α < 2 we can construct a sequence fn ∈ L2(0, 1) such that fn

n→∞−−−−→ f strongly
in Lp. From the L2 theory at the beginning of this section we know that there exists
un ∈ Xα

·0 weak solution to (1) with fn as the right hand side. We claim that un
converges to some u solution of (1) with f as its right hand side. Indeed, fix s > 1

1−α
and consider arbitrary g ∈ Ls with w = wg the solution given by Proposition 3.1.
We then use ψ = un − um as a test function in (6), that is in

ˆ 1

0

x2αw′(x)ψ′(x)dx+

ˆ 1

0

w(x)ψ(x)dx =

ˆ 1

0

xαg(x)ψ′(x)dx

and we observe that thanks to Proposition 3.1 we have

∣∣∣∣ˆ 1

0

xαψ′(x)g(x)dx

∣∣∣∣ = ∣∣∣∣ˆ 1

0

x2αw′(x)ψ′(x)dx+

ˆ 1

0

w(x)ψ(x)dx

∣∣∣∣
=

∣∣∣∣ˆ 1

0

(−(x2αψ′(x))′ + ψ(x))w(x)dx

∣∣∣∣
≤ ∥w∥L∞

∥∥−(x2αψ′)′ + ψ
∥∥
Lp

≤ C ∥g∥Ls ∥fn − fm∥Lp .

Therefore

(7) ∥xαψ′∥Ls′ = sup
∥g∥Ls=1

∣∣∣∣ˆ 1

0

xαψ′(x)g(x)dx

∣∣∣∣ ≤ C ∥fn − fm∥Lp ,

and in particular the sequence (un) is a Cauchy sequence in Xα,s′

·0 and therefore we
can find u ∈ Xα,s′

·0 such that (un) converges to u in Xα,s′

·0 . Furthermore we can pass
to the limit inˆ 1

0

x2αu′n(x)v
′(x)dx+

ˆ 1

0

un(x)v(x)dx =

ˆ 1

0

fn(x)v(x)dx ∀ v ∈ C1
c ([0, 1))

to deduce that −(x2αu′)′ + u = f a.e. in (0, 1) and that

∥u∥
Xα,s′

·0
≤ Cα,1 ∥f∥Lp .

Since s > 1
1−α was arbitrary we conclude that in fact u ∈ Xα,q

·0 for any 1 ≤ q < 1
α

with
∥u∥Xα,q

·0
≤ C ∥f∥Lp ,

and in particular ∥u∥Lq ≤ C ∥f∥Lp .
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Proof of Proposition 3.1. Observe that for α ≥ 1
2 it holds that 1

1−α ≥ 2, in particular
if g ∈ Ls(0, 1) for s > 1

1−α then g ∈ L2(0, 1). Therefore the functional φ 7→´ 1
0
xαg(x)φ′(x)dx is a well defined element of the dual space of Xα

·0 and Riesz’s
theorem guarantees the existence and uniqueness of a function w ∈ Xα

·0 such that

(8)
ˆ 1

0

x2αw′(x)φ′(x)dx+

ˆ 1

0

w(x)φ(x)dx =

ˆ 1

0

xαg(x)φ′(x)dx, ∀φ ∈ Xα
·0

and

∥w∥L2 ≤ ∥w∥Xα
·0
≤ ∥g∥L2 ≤ ∥g∥Ls .

So what remains to be shown is that in fact w ∈ L∞(0, 1) with

∥w∥L∞ ≤ C ∥g∥Ls .

For this purpose we write s = 2
(2−ε)(1−α) for some 0 < ε < 2 and to prove the

boundedness of the solution w we will use Moser’s iteration method as in [7], that
is for m ≥ 1 and 0 ≤ k ≤ l we define F : [k,∞) → R and we consider

(9) F (x) = Fm,k,l(x) =

{
xm if k ≤ x ≤ l,

lm−1(mx− (m− 1)l) if x > l.

Observe that F ∈ C1[k,∞) with |F ′(x)| ≤ mlm−1 and that if we define G : R → R
as

(10) G(x) = sign(x)
(
F (x)|F ′(x)| −mkβ

)
where β = 2m− 1 and x = |x|+ k. Observe that F and G satisfy

|G| ≤ F (x)|F ′(x)|,
xF ′(x) ≤ mF (x),

G′(x) =


β

m
|F ′(x)|2 if |x| < l − k,

|F ′(x)|2 if |x| > l − k.



Lp THEORY FOR A SINGULAR STURM-LIOUVILLE EQUATION 9

To continue, we take η ∈ C∞
c ([0, 1)) and observe that φ = η2G(w) belongs to

Xα
·0 so it is a valid test function in (8). Since 0 ≤ xα ≤ 1 in (0, 1) we have(
x2αw′ − xαg

)
φ′ + wφ = η2G′(w)

(
x2αw′ − xαg

)
w′ + 2ηG(w)η′

(
x2αw′ − xαg

)
+ η2G(w)w

≥ η2G′(w)

(
1

2
|xαw′|2 − 1

k2
|g|2 w2

)
− 2η |η′G(w)|

(
x2α|w′|+ 1

2k
|g|w

)
− η2|G(w)|w

=
1

2
η2G′(w) |xαw′|2 − 2η|G(w)η′|x2α|w′|

− 2

k
η|G(w)η′| |g|w

−
(

1

2k2
|g|2 η2G′(w)w2 + η2|G(w)|w

)
≥ 1

2
|xαηF ′(w)w′|2 − 2|η′F (w)| |xαηF ′(w)w′|

− 2

k
|g| |η′F (w)| |ηF ′(w)w|

−
(

β

2mk2
|g|2 |ηwF ′(w)|2 + |ηF (w)| |ηF ′(w)w|

)
≥ 1

2
|xαηF ′(w)w′|2 − 2|η′F (w)| |xαηF ′(w)w′|

− 2m

k
|g| |η′F (w)| |ηF (w)|

−m

(
β

2k2
|g|2 + 1

)
|ηF (w)|2

By denoting v = F (w) the above can be written as(
x2αw′ − xαg

)
φ′ + wφ ≥ 1

2
|xαηv′|2 − 2|η′v| |xαηv′| − 2m

k
|g| |η′v| |ηv|

−mβ

(
1

2k2
|g|2 + 1

)
|ηv|2

because β = 2m− 1 ≥ 1 since m ≥ 1. If we integrate the above and we use (8) we
obtain

(11)
ˆ 1

0

|ηv′|2x2αdx ≤ 4

ˆ 1

0

|η′v| |xαηv′|dx+
4m

k

ˆ 1

0

|g| |η′v| |ηv|dx

+ 2mβ

ˆ 1

0

(
1

2k2
|g|2 + 1

)
|ηv|2dx

To continue we divide the analysis into two cases 1
2 < α < 1 and α = 1

2 . Firstly
we consider 1

2 < α < 1 and we note that by our hypotheses the following estimates
holds ˆ 1

0

|η′v| |xαηv′|dx ≤ ∥η′v∥L2∥xαηv′∥L2 ,
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and if we select k = ∥g∥Ls and write 2∗ = 2
2α−1 then by using Hölder’s inequality

for 1 = 1
r + 1

2 + 1
2∗ and [5, Theorem A.2] we obtain

1

k

ˆ 1

0

|g| |η′v| |ηv|dx ≤ 1

k
∥g∥Lr∥η′v∥L2∥ηv∥L2∗

≤ 1

k
∥g∥

L
1

1−α
∥η′v∥L2∥ηv∥L2∗

≤ C

k
∥g∥Ls∥η′v∥L2 (∥xαη′v∥L2 + ∥xαηv′∥L2)

≤ C
(
∥η′v∥2L2 + ∥η′v∥L2∥xαηv′∥L2

)
.

If we write g̃ = 1 + |g|2
2k2 then

ˆ 1

0

g̃|ηv|2dx ≤ ∥g̃∥
L

s
2
∥ηv∥εL2 ∥ηv∥2−ε

L2∗

≤ C
(
1 +

∥∥∥g
k

∥∥∥s
Ls

) 2
s

∥ηv∥εL2

(
∥η′v∥2−ε

L2 + ∥xαηv′∥2−ε
L2

)
≤ C∥ηv∥εL2

(
∥η′v∥2−ε

L2 + ∥xαηv′∥2−ε
L2

)
.

Therefore we reach the following

(12) ∥xαηv′∥2L2 ≤ C
(
∥η′v∥L2∥xαηv′∥L2 +m(∥η′v∥2L2 + ∥η′v∥L2∥xαηv′∥L2)

+2mβ∥ηv∥εL2

(
∥η′v∥2−ε

L2 + ∥xαηv′∥2−ε
L2

))
.

Now we take z = ∥xαηv′∥L2

∥η′v∥L2
and ζ =

∥ηv∥L2

∥ηv′∥L2
so the above can be written as

z2 ≤ C(z +m(1 + z) + 2m(2m− 1)ζε(1 + z2−ε)),

and thanks to [7, Lemma 2] we obtain

z ≤ Cm
2
ε (1 + ζ),

which translates to

∥xαηv′∥L2 ≤ Cm
2
ε (∥η′v∥L2 + ∥ηv∥L2) ,

and because |(ηv)′| ≤ |ηv′|+ |η′v| the above also gives

∥xα(ηv)′∥L2 ≤ Cm
2
ε (∥η′v∥L2 + ∥ηv∥L2) .

Hence we can use [5, Theorem A.2] and deduce that

(13)
(ˆ 1

0

|ηv|2χdx
) 1

2χ

≤ Cm
2
ε

((ˆ 1

0

|ηv|2dx
) 1

2

+

(ˆ 1

0

|η′v|2dx
) 1

2

)
,

where χ = 1
2α−1 .

If α = 1
2 then s = 4

2−ε . We start from (11) and estimate the terms on the right
hand side as follows: we still haveˆ 1

0

|η′v| |xαηv′|dx ≤ ∥η′v∥L2∥xαηv′∥L2 ,
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but for the second term we recall that ∥u∥Lt ≤ C ∥xαu′∥L2 for any t < ∞ when
α = 1

2 , hence we can write

1

k

ˆ 1

0

|g| |η′v| |ηv|dx ≤ 1

k
∥g∥Ls∥η′v∥

L
8

4+ε
∥ηv∥

L
8
ε

≤ C

k
∥g∥Ls∥η′v∥L2 (∥xαη′v∥L2 + ∥xαηv′∥L2)

≤ C∥η′v∥2L2 + ∥η′v∥L2∥xαηv′∥L2 ,

and for the third term we obtainˆ 1

0

g̃|ηv|2dx ≤ ∥g̃∥
L

s
2
∥ηv∥

ε
2

L
8

4+ε
∥ηv∥2−

ε
2

L
8
ε

≤ C
(
1 +

∥∥∥g
k

∥∥∥s
Ls

) 2
s

∥ηv∥
ε
2

L2

(
∥η′v∥2−

ε
2

L2 + ∥xαηv′∥2−
ε
2

L2

)
≤ C∥ηv∥

ε
2

L2

(
∥η′v∥2−

ε
2

L2 + ∥xαηv′∥2−
ε
2

L2

)
.

so by repeating what we did for the case 1
2 < α < 1 we reach (12) but with ε

2 instead
of ε, so instead of (13) we reach

(14)
(ˆ 1

0

|ηv|2χdx
) 1

2χ

≤ Cm
4
ε

((ˆ 1

0

|ηv|2dx
) 1

2

+

(ˆ 1

0

|η′v|2dx
) 1

2

)
,

for χ = 4
ε > 1.

In summary, for any 1
2 ≤ α < 1 we have that

(15)
(ˆ 1

0

|ηv|2χdx
) 1

2χ

≤ Cm
L
ε

((ˆ 1

0

|ηv|2dx
) 1

2

+

(ˆ 1

0

|η′v|2dx
) 1

2

)
.

where L = 2 or L = 4 and the appropriate χ > 1.
We now proceed to select the cut-off function η. For each n ∈ N ∪ { 0 } we write

In = [0, 12 + 2−n−1) and take ηn ∈ C∞
c (In) in such a way that ηn ≡ 1 in In+1, and

that |η′n| ≤ C2n. If we use such ηn in (15) and we pass to the limit l → ∞ we
deduce that (ˆ

In+1

|w|2mχdx

) 1
2mχ

≤ C
1
m 2

n
mm

L
mε

(ˆ
In

|w|2mdx
) 1

2m

,

for each m ≥ 1. In particular, if we take mn = χn and sn = 2χn we obtain(ˆ
In+1

|w|sn+1dx

) 1
sn+1

≤ Cχ−n

2nχ
−n

χ
L
ε χ−n

(ˆ
In

|w|sndx
) 1

sn

.

Since χ > 1 we know that both
∑∞

k=0 kχ
−k and

∑∞
k=0 χ

−k converge, therefore after
iterating the above inequality we have(ˆ

In+1

|w|sn+1dx

) 1
sn+1

≤ C

(ˆ 1

0

|w|2dx
) 1

2

,

for some constant C independent of n. Finally, by passing to the limit n→ ∞ we
have

(16) ∥w∥L∞(0, 12 )
≤ C (∥w∥L2 + k) ,
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and since we already know that ∥w∥L2 ≤ ∥w∥Xα ≤ C ∥g∥Ls we deduce

∥w∥L∞(0, 12 )
≤ C ∥g∥Ls(0,1)

and the proof is completed if we notice that we already know that

∥w∥L∞( 1
4 ,1)

≤ C ∥g∥Ls(0,1)

from the fact that Xα(0, 1) ↪→ H1( 14 , 1) ↪→ L∞( 14 , 1). ■

4. Analysis of uD ∈ Xα
00

As we established in Sections 2 and 3 for any α < 1
2 and f ∈ Lp(0, 1) with

1 ≤ p ≤ ∞ there exists a unique uD ∈ Xα
00 satisfying (1) such that

∥uD∥Xα = ∥φf∥(Xα)∗ ≤ C ∥f∥Lp .

Throughout the rest of this section and to ease the notation we will denote by u the
solution with the above properties.

4.1. Regularity. Firstly observe that because Xα ↪→ C[0, 1] ⊆ Lp(0, 1) for α <
1
2 we also have ∥u∥Lp ≤ C ∥f∥Lp , and what remains to be proven is that u ∈
W 2,p

loc ((0, 1]), u satisfies (1) a.e. and the following properties:
(i) x2αu′ ∈W 1,p(0, 1) with ∥x2αu′∥W 1,p ≤ C∥f∥Lp ,
(ii) x2α−1u ∈W 1,p with ∥x2α−1u∥W 1,p ≤ C∥f∥Lp ,
(iii) x2αu ∈W 2,p(0, 1) with ∥x2αu∥W 2,p ≤ C∥f∥Lp .

(iv) u ∈ C0, 12−α[0, 1], with ∥u∥
C0, 1

2
−α ≤ C∥f∥Lp when 0 < α < 1

2 .

(v) lim
x→0+

x2α−1+ 1
pu(x) = 0, for 2α+ 1

p < 1 and 1 ≤ p ≤ ∞.

To do the above, firstly observe that by taking v ∈ C∞
c (0, 1) ⊆ Xα

00 in (5) we
have that w′(x) = u(x)− f(x) a.e. where w(x) = x2αu′(x), that is (1) is satisfied
a.e. in (0,1). Since we already know that u ∈ Lp, the previous observation tells us
that

∥w′∥Lp ≤ ∥u∥Lp + ∥f∥Lp ≤ C ∥f∥Lp .

In order to continue, we divide the analysis into two cases: 0 < α < 1
2 and α < 0:

4.1.1. The case 0 < α < 1
2 . Since α > 0 and u ∈ Xα we deduce that w = xα · xαu′

satisfies
∥w∥L1 ≤ ∥w∥L2 ≤ ∥xαu′∥L2 ≤ ∥u∥Xα ≤ C∥f∥Lp ,

and since w′ ∈ Lp(0, 1) we conclude that w ∈W 1,1(0, 1) with

∥w∥W 1,1 ≤ C ∥f∥Lp .

But because W 1,1(0, 1) ↪→ Lp(0, 1) continuously, we deduce that ∥w∥Lp ≤ C∥f∥Lp

and as a consequence w ∈W 1,p(0, 1) with ∥w∥W 1,p ≤ C∥f∥Lp which proves Item (i).
Additionally, because w ∈W 1,p(0, 1) ↪→ C([0, 1]) and because α < 1

2 we have

lim
s→0+

su′(s) = lim
s→0+

s1−2αw(s) = 0,

from where we can write the identity

x2α−1u(x) =
x2αu′(x)

1− 2α
+
x2α−1

2α− 1

ˆ x

0

(s2αu′(s))′s−2α+1ds ∀x ∈ (0, 1),
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which gives

(17) (x2α−1u(x))′ = x2α−2

ˆ x

0

w′(s)s1−2αds.

If p = 1 we can use Tonelli’s theorem to write
ˆ 1

0

|(x2α−1u(x))′|dx ≤
ˆ 1

0

x2α−2

ˆ x

0

|w′(s)|s1−2αds dx

=

ˆ 1

0

|w′(s)|s1−2α

ˆ 1

s

x2α−2dx ds

=
1

1− 2α

ˆ 1

0

|w′(s)|s1−2α(s2α−1 − 1)ds

=
1

1− 2α

ˆ 1

0

|w′(s)|(1− s1−2α)ds

≤ C∥w′∥L1

≤ C∥f∥L1 .

If 1 < p <∞ we use Hardy’s inequality to get
ˆ 1

0

|(x2α−1u(x))′|pdx ≤
ˆ 1

0

(
x2α−2

ˆ x

0

|w′(s)|s1−2αds

)p

dx

≤
ˆ 1

0

(
1

x

ˆ x

0

|w′(s)|ds
)p

dx

≤ C∥w′∥pLp

≤ C ∥f∥pLp .

And if p = ∞ then from (17) we obtain∣∣(x2α−1u(x))′
∣∣ ≤ x2α−2

ˆ x

0

|w′(s)| s1−2αds ≤ 1

2− 2α
∥w′∥∞ ≤ C ∥f∥L∞ ,

so that in every possible case we deduce that ∥(x2α−1u)′∥Lp ≤ C∥f∥Lp . Furthermore,
we have that

(x2α−1u(x))′ = (2α− 1)x2α−2u(x) + x2α−1u′(x),

where if we notice that x2α−1u(x) = 1
2α−1

(
x(x2α−1u(x))′ − w(x)

)
then it follows

that
∥x2α−1u∥Lp ≤ C∥f∥Lp ,

so that x2α−1u ∈W 1,p(0, 1) with ∥x2α−1u∥W 1,p ≤ C∥f∥Lp and Item (ii) is proven.
Observe that by writing x2αu = x · x2α−1u we see that

∥x2αu∥Lp ≤ ∥x2α−1u∥Lp ≤ C∥f∥Lp ,

and also we have

(x2αu(x))′ = 2αx2α−1u(x) + w(x) ∈W 1,p(0, 1),

thus ∥x2αu∥W 2,p ≤ C∥f∥Lp and Item (iii) is proven and as a consequence we also
have that u ∈W 2,p

loc ((0, 1]).
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Finally Item (iv) follows from the embedding Xα ↪→ C
1
2−α([0, 1]) whereas to

obtain Item (v) when 0 < α < 1
2 , we recall that u(0) = 0 so we can we write

|u(x)| ≤
ˆ x

0

|u′(s)|ds =
ˆ x

0

|w(s)|s−2αds

and we observe that for 1 < p <∞ and 2α+ 1
p < 1 this gives

|u(x)| ≤ C

(ˆ x

0

|w(s)|pds
)1/p

x1−2α− 1
p

where as if p = ∞ one gets

|u(x)| ≤ C ∥w∥L∞(0,x) x
1−2α

so that if 2α+ 1
p < 1 we improve the behavior at x = 0 by

|u(x)| ≤ Cx1−2α− 1
p ∥f∥p if 1 < p ≤ ∞.

4.1.2. The case α < 0. To prove that w = x2αu′ ∈ W 1,p(0, 1) we need to proceed
differently as in the case α > 0 because we do not longer have the inequality
∥w∥L2 ≤ ∥xαu′∥L2 directly. Instead we take g ∈ C2(0, 1] ∩ C([0, 1]) as the solution
of (32), namely of

(18)


−(x2αg′(x))′ + g(x) = 0 in (0, 1],

g(1) = 0,

lim
x→0+

g(x) = 1.

whose existence and uniqueness is guaranteed by Lemma A.3 in the Appendix. For
ε ∈ (0, 1) we multiply (1) by g and integrate by parts on the interval (ε, 1) to obtain

−w(x)g(x)|1ε +
ˆ 1

ε

x2αu′(x)g′(x)dx+

ˆ 1

ε

u(x)g(x)dx =

ˆ 1

ε

f(x)g(x)dx.

Since g ∈ C2((0, 1]) and g(1) = 0 we can integrate by parts once more to obtain

w(ε)g(ε) + x2αg′(x)u(x)
∣∣∣1
ε
−
ˆ 1

ε

(x2αg′(x))′u(x)dx+

ˆ 1

ε

g(x)u(x)dx

=

ˆ 1

ε

f(x)g(x)dx.

Because lim
x→0+

u(x) = u(1) = 0, lim
x→0+

x2αg′(x) converges, and since g satisfies (32)

we have as a consequence that lim
x→0+

w(x) exists and it is given by

(19) lim
x→0+

w(x) =

ˆ 1

0

f(x)g(x)dx,

furthermore, for x ∈ (0, 1) it holds that

w(x) =

ˆ x

0

w′(s)ds+ lim
s→0+

w(s),

so that

|w(x)| ≤
ˆ 1

0

|w′(s)|ds+
ˆ 1

0

|f(x)g(x)|dx
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and as a consequence

|w(x)| ≤
ˆ 1

0

|w′(s)|ds+
ˆ 1

0

|f(x)g(x)|dx,

but then

∥w∥Lp ≤ ∥w∥L∞ ≤ ∥w′∥L1 + ∥g∥L∞ ∥f∥L1 ≤ C (∥w′∥Lp + ∥f∥Lp) ≤ C ∥f∥Lp ,

thus we have shown that ∥w∥W 1,p ≤ C∥f∥Lp .
Notice that (17) remains valid for α < 0 and hence

|(x2α−1u(x))′| ≤ x2α−2

ˆ x

0

|w′(s)|s1−2αds.

therefore the same conclusions reached for the case 0 < α < 1
2 can be reached for

α < 0, with the addition that in this case the limit

lim
x→0+

x2α−1+ 1
pu(x) = 0 if 1 < p <∞

also works for p = 1. We omit those details.

4.2. Optimality of the behavior near 0. Here we prove Remark 1.3, that is, we
analyze the following quantity

KD(x) = sup
∥f∥Lp≤1

∣∣x2α−1u(x)
∣∣

and we show it is bounded above and below for sufficiently small x. For that purpose
consider g ∈ C2((0, 1]) ∩ C([0, 1]), the solution of (32) and use (19) to write

t2αu′(t) =

ˆ 1

0

g(s)f(s)ds+

ˆ t

0

(s2αu′(s))′ds ∀ t ∈ (0, 1),

thus

u(x) =

ˆ x

0

t−2α

ˆ 1

0

g(s)f(s)ds dt,+

ˆ x

0

t−2α

ˆ t

0

(f(s)− u(s))ds dt

=

ˆ x

0

t−2α

ˆ 1

0

g(s)f(s)ds dt,+

ˆ x

0

ˆ x

t

t−2α(f(s)− u(s))dt ds

=
x1−2α

1− 2α

ˆ 1

0

g(s)f(s)ds+
1

1− 2α

ˆ x

0

(f(s)− u(s))(x1−2α − s1−2α)ds

which gives

|x2α−1u(x)| ≤ C

(ˆ 1

0

|f(s)g(s)|ds+ ∥f∥Lp

)
,

because ∥f − u∥L1 ≤ ∥f∥Lp + ∥u∥Lp ≤ (1 + C) ∥f∥Lp and s1−2α ≤ x1−2α for s ≤ x
and α < 1

2 . In particular we obtain that

KD(x) ≤ C(1 + ∥g∥∞).

On the other hand, observe that for 1 < p ≤ ∞ we have∣∣∣∣x2α−1

ˆ x

0

s1−2α(f(s)− u(s))ds

∣∣∣∣ ≤ ˆ x

0

|f(s)− u(s)| ds = x1−
1
p ∥f∥p ,

and for p = 1∣∣∣∣x2α−1

ˆ x

0

s1−2α(f(s)− u(s))ds

∣∣∣∣ ≤ ˆ x

0

|f(s)− u(s)| ds = o(x),
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where o(x) is a quantity that goes to 0 as x→ 0 (depending on f). Therefore for
every 1 ≤ p ≤ ∞ we have

x2α−1u(x) =
1

1− 2α

ˆ 1

0

g(s)f(s)ds+ o(x).

and if we fix f ≡ 1 we get

KD(x) ≥ 1

1− 2α

∣∣∣∣ˆ 1

0

g(s)ds

∣∣∣∣− o(x) > 0

for all sufficiently small x > 0

5. Analysis of uN ∈ Xα
·0

5.1. The cases α < 1
2 , or 1

2 ≤ α < 1 and p ≥ 2
3−2α . As we established in Section 3

there exists uN ∈ Xα
·0 satisfying (5) for every v ∈ Xα

·0 with ∥uN∥Xα
·0

≤ C∥f∥Lp .
Since no confusion is present, we will simple denote by u such solution throughout
this part. Also we will suppose for the moment that u ∈ Lp with ∥u∥p ≤ C ∥f∥p to
do some computations and later we will prove it.

By taking v ∈ C∞
c (0, 1), then w′ = u− f a.e. in (0,1) for w(x) = x2αu′(x) from

where we obtain
∥w′∥Lp ≤ ∥u∥Lp + ∥f∥Lp ≤ C∥f∥Lp .

For 0 < ε < 1 we multiply (1) by v ∈ C2[0, 1] and integrate over (ε, 1) to obtain

0 = −
ˆ 1

ε

(x2αu′(x))′v(x)dx+

ˆ 1

ε

(u(x)− f(x))v(x)dx

= −x2αu′(x)v(x)
∣∣∣1
ε
+

ˆ 1

ε

x2αu′(x)v′(x)dx+

ˆ 1

ε

u(x)v(x)dx−
ˆ 1

ε

f(x)v(x)dx,

therefore, limε→0+ x
2αu′(x)v(x)

∣∣∣1
ε
= 0 and if we take v such that v(1) = 0 and

v(0) = 1 then we have that

(20) lim
x→0+

x2αu′(x) = 0.

The above allows us to write for every x ∈ (0, 1)

|w(x)| ≤
ˆ x

0

|(x2αu′(x))′|dx ≤ ∥w′∥Lp ≤ C∥f∥Lp ,

which implies that, ∥w∥W 1,p(0,1) ≤ C∥f∥Lp . In particular ∥u′∥Lp ≤ Cα,p∥f∥Lp when
α < 0, so that w, u ∈W 1,p(0, 1) in this case.

Now for 1 ≤ p <∞ we have

|x2αu′(x)| ≤
ˆ x

0

|w′(x)|dx ≤ x1−
1
p

(ˆ x

0

|w′(x)|pdx
) 1

p

,

and if p = ∞
|x2αu′(x)| ≤ x ∥w′∥L∞ ,

so it follows that

lim
x→0+

x2α−1+ 1
pu′(x) = 0 for every 1 < p ≤ ∞.

Observe that the case p = 1 can be included in the above limit because

x2αu′(x) −−−−→
x→0+

0
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thanks to (20). Similarly we have

|x2α−1u′| ≤ 1

x

ˆ x

0

|w′(s)|ds,

so that for 1 < p ≤ ∞ we can use Hardy’s inequality to obtain that

(21)

ˆ 1

0

|x2α−1u′(x)|pdx ≤
ˆ 1

0

(
1

x

ˆ x

0

|w′(s)| ds
)p

dx

≤ C∥w′∥pLp ,

therefore ∥x2α−1u′∥Lp ≤ C∥f∥Lp and since we are assuming that ∥u∥Lp ≤ C ∥f∥Lp ,
from the equation satisfied by u we also conclude that

∥∥x2αu′′∥∥
Lp ≤ C ∥f∥Lp .

Observe that all these bounds tell us that u ∈W 2,p
loc (0, 1).

To conclude we need to show that u ∈ Lp(0, 1) with ∥u∥p ≤ C ∥f∥p. Firstly
observe that if α < 1

2 then we have the embedding Xα ↪→ L∞(0, 1) so the fact that
u ∈ Xα

·0 readily implies that ∥u∥Lp ≤ C∥f∥Lp . Secondly, if α = 1
2 and p <∞ then

we have the embedding Xα ↪→ Lq(0, 1) for every q <∞, in particular for q = p it
follows that ∥u∥Lp ≤ C∥f∥Lp , just as before. Therefore we are left with: the case
α = 1

2 with p = ∞, and the case 1
2 < α < 1 with 1 ≤ p ≤ ∞.

Remark 5.1. Observe that for every α < 1
2 and every 1 ≤ p <∞ the above shows

that there exists some p0 > p such that in fact ∥u∥Lp0 ≤ C ∥f∥Lp .

5.1.1. The case α = 1
2 and p = ∞. Recall that Xα ↪→ L2 so in particular we have

that
∥u∥L2 ≤ ∥f∥L∞ .

By following what we did to reach (21) for α = 1
2 we deduce that

∥u′∥L2 ≤ C ∥(xu′)′∥L2 = C ∥u− f∥L2 ≤ C ∥f∥L∞ ,

so that u ∈ H1
0 (0, 1), which in particular implies

∥u∥L∞ ≤ C ∥f∥L∞

due to the embedding H1(0, 1) ↪→ L∞(0, 1).

5.1.2. The case 1
2 < α < 1 and 2

3−2α ≤ p ≤ ∞. Notice that if 1
2 < α < 1 then it

holds that 2
3−2α < 2

2α−1 , and we analyze the situation by cases.
If 2

3−2α ≤ p ≤ 2
2α−1 , and because Xα ↪→ Lq(0, 1) for all q ≤ 2

2α−1 , it follows that

∥u∥Lp ≤ C∥u∥Xα ≤ C∥f∥Lp ,

and we are done.
If 2

2α−1 < p: by the same argument used in (21) we have that

∥x2α−1u′∥
L

2
2α−1

≤ C ∥w′∥
L

2
2α−1

≤ C
(
∥u∥ 2

2α−1
+ ∥f∥ 2

2α−1

)
≤ C (∥u∥Xα + ∥f∥Lp)

≤ C∥f∥Lp ,

hence x2α−1u′ ∈ L
2

2α−1 and u ∈ L
2

2α−1 , therefore u ∈ X2α−1, 2
2α−1 with

∥u∥
X

2α−1, 2
2α−1

≤ C∥f∥Lp .
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Furthermore, from [5, Theorem A.2] we have

u ∈ X2α−1, 2
2α−1 ↪→


Lq(0, 1) for all q <∞ if α ≤ 5

6

Lq(0, 1) for all q ≤ 2

6α− 5
if

5

6
< α < 1.

Therefore for α < 5
6 it follows that ∥u∥Lp ≤ C∥u∥

X
2α−1, 2

2α−1
≤ C∥f∥Lp , whereas

for 5
6 < α < 1 we have that 2

2α−1 <
2

6α−5 .
We repeat the above argument and separate the analysis into two cases: if
2

2α−1 ≤ p ≤ 2
6α−5 : as X2α−1, 2

2α−1 ↪→ Lq(0, 1) for all q ≤ 2
6α−5 , then it follows that

∥u∥Lp ≤ Cα∥u∥
X

2α−1, 2
2α−1

≤ C∥f∥Lp .

And if 2
6α−5 < p: from (21) we have

∥x2α−1u′∥
L

2
6α−5

≤ Cp

(
∥u∥ 2

6α−5
+ ∥f∥ 2

6α−5

)
≤ C

(
∥u∥

X
2α−1, 2

2α−1
+ ∥f∥Lp

)
≤ C∥f∥Lp ,

hence

u ∈ X2α−1, 2
6α−5 ↪→


Lq(0, 1) for all q <∞ if α ≤ 9

10
,

Lq(0, 1) for all q ≤ 2

10α− 9
if

9

10
< α < 1,

therefore if α < 9
10 then ∥u∥Lp ≤ C∥f∥Lp .

The above can be repeated inductively in the following fashion. Let n ∈ N and
suppose that for α > 4n−3

4n−2 we have

u ∈ X2α−1,rn−1 ↪→


Lq(0, 1) for all q <∞ if α ≤ 4n+ 1

4n+ 2

Lq(0, 1) for all q ≤ rn if
4n+ 1

4n+ 2
< α < 1

with ∥u∥Y ≤ C∥f∥Lp , where Y := X2α−1,rn−1 and rn = 2
(4n+2)α−(4n+1) .

Since Y ↪→ Lq(0, 1) for all q ≤ rn and if rn−1 ≤ p ≤ rn then we have that
∥u∥Lp ≤ C∥f∥Lp . Whereas if rn−1 < rn < p we have

∥x2α−1u′∥Lrn ≤ Cp (∥u∥Lrn + ∥f∥Lrn )

≤ Cα (∥u∥Y + ∥f∥Lp)

≤ C∥f∥Lp .

Therefore

u ∈ X2α−1,rn ↪→


Lq(0, 1) for all q <∞ if α ≤ 4(n+ 1) + 1

4(n+ 1) + 2

Lq(0, 1) for all q ≤ rn+1 if
4(n+ 1) + 1

4n+ 2
< α < 1

with ∥u∥X2α−1,rn ≤ C∥f∥Lp .
And since for any α < 1 there exists n ∈ N such that α < 4n+1

4n+2 we can conclude
that ∥u∥Lp ≤ C∥f∥Lp for every α < 1 and every 2

2α−1 ≤ p ≤ ∞.
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Remark 5.2. Note that for every 1
2 ≤ α < 1 and every 2

3−2α ≤ p <∞ the above
shows that there exists some p0 > p for which ∥u∥Lp0 ≤ C ∥f∥Lp .

5.2. The case 1
2 < α < 1 and 1 ≤ p < 2

3−2α . We just need to prove that
∥u∥Lp ≤ C ∥f∥Lp as the rest of the argument from Section 5.1 remains valid if
u ∈ Xα,q

·0 instead of in Xα
·0. The argument to show the Lp bound for u is similar to

what we did in Section 5.1.2, so we only show the first steps and the rest is left to
the reader.

Recall that the solution found belongs to Xα,q
·0 for all 1 ≤ q < 1

α ≤ 2. We identify
two cases, either α ≤ 3

4 ⇔ 2
3−2α ≤ 1

α or 3
4 < α < 1 ⇔ 2

3−2α ≥ 1
α . In the first case,

since u ∈ Xα,q
·0 for every q < 1

α , then in particular we can take q = p < 2
3−2α ≤ 1

α

so that u ∈ Xα,p
·0 and therefore

α ≤ 3

4
⇒ ∥u∥Lp ≤ C ∥f∥Lp .

If 3
4 < α < 1 ⇔ 2

3−2α > 1
α we also have two cases, either 1 ≤ p < 1

α or
1
α ≤ p < 2

3−2α . If 1 ≤ p < 1
α then we again can use q = p and the solution belongs

to Xα,p
·0 so in particular

∥u∥Lp ≤ C ∥f∥Lp .

If 1
α ≤ p < 2

3−2α we observe that the solution u still verifies the weak equation
ˆ 1

0

(
x2αu′(x)v′(x) + u(x)v(x)

)
dx =

ˆ 1

0

f(x)v(x)dx ∀ v ∈ C1
c ([0, 1]),

and in particular we still have that −(x2αu′)′ + u(x) = f(x) a.e. with

lim
x→0+

x2αu′(x) = 0,

so that the identity

x2αu′(x) =

ˆ x

0

(u(s)− f(s))ds⇒ x2α−1u′(x) =
1

x

ˆ x

0

(u(s)− f(s))ds

remains valid. In particular, for any q > 1 Hardy’s inequality tells us that∥∥x2α−1u′
∥∥
Lq ≤ C (∥u∥Lq + ∥f∥Lq ) .

Hence if 1
α ≤ p < 2

3−2α then we can use any 1 < q < 1
α and write∥∥x2α−1u′

∥∥
Lq ≤ C (∥u∥Lq + ∥f∥Lq ) ≤ C ∥f∥Lp .

In particular u ∈ X2α−1,q for any 1 < q < 1
α and because α ≥ 3

4 we have q < 1
α <

1
2(1−α) and as a consequence

∥u∥Lt ≤ C ∥u∥X2α−1,q

for all t < 1
3α−2 .

The above can be divided again into two cases, either α ≤ 7
8 ⇔ 1

3α−2 ≥ 2
3−2α or

7
8 < α < 1 ⇔ 1

3α−2 <
2

3−2α . If 3
4 ≤ α ≤ 7

8 we have p < 2
3−2α ≤ 1

3α−2 so we can take
t = p and deduce that

α ≤ 7

8
⇒ ∥u∥Lp ≤ C ∥f∥Lp ,

whereas if 7
8 < α < 1 ⇔ 1

3α−2 <
2

3−2α we consider the two cases: 1 ≤ p < 1
3α−2 and

1
3α−2 ≤ p < 2

3−2α . Just as before, if 1 ≤ p < 1
3α−2 then we immediately deduce that

∥u∥Lp ≤ C ∥f∥Lp ,
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and if 1
3α−2 ≤ p < 2

3−2α then u ∈ X2α−1,q for any q < 1
3α−2 . Observe that if

7
8 < α ≤ 4

5 then X2α−1,q embeds into Lt for all t <∞ hence

∥u∥Lp ≤ C ∥f∥Lp

and if 4
5 < α < 1 then

∥u∥Lt ≤ C ∥f∥Lp ∀ t < 1

5α− 4
.

In particular (
α ≤ 11

12
⇔ 2

3− 2α
≤ 1

5α− 4

)
⇒ ∥u∥Lp ≤ C ∥f∥Lp .

As the reader can easily verify, after n steps of the above iteration we are led to
the following: for any n ∈ N we have

α ≤ 3 + 4n

4 + 4n
⇒ ∥u∥Lp ≤ C ∥f∥Lp ,

and the desired bound is obtained since 3+4n
4+4n −−−−→

n→∞
1.

Remark 5.3. Notice again that for every 1
2 ≤ α < 1 and every 1 ≤ p < 2

3−2α there
exists some p0 > p such that ∥u∥Lp0 ≤ C ∥f∥Lp .

5.2.1. The proof of Remark 1.4. As me mentioned in Remark 1.4, and as the reader
can see from the above results, the existence part in Theorem 1.2 and the fact that
∥uN∥Lp ≤ C ∥f∥Lp remain valid for p = 1, but it is not necessarily true that

x2α−1u′ ∈ L1(0, 1)

for given f ∈ L1(0, 1). To see this consider f(x) =
(
x(1− lnx)

3
2

)−1

and observe
that it belongs to L1(0, 1) so but we did before we can find a solution uN in Xα,q

for every 1 ≤ q < 1
α . In particular uN ∈ Lq for some q > 1. However if we consider

the problem 
−(x2αv′(x))′ = f(x) in (0, 1)

v(1) = 0

lim
x→0+

x2αv′(x) = 0

then a direct computation tells us that its solution verifies

x2αv′(x) = − 2

(1− lnx)
1
2

.

Finally, from (1) and the fact that x2αu′N (x) −−−−→
x→0+

0 we can write

x2α−1u′N (x) =
1

x

ˆ x

0

(u(s)− f(s))ds

=
1

x

ˆ x

0

uN (s)ds+ x2α−1v′(x)

=
1

x

ˆ x

0

uN (s)ds− 2

x(1− lnx)
1
2

and thanks to Hardy’s inequality the first term belongs to Lq(0, 1) ⊆ L1(0, 1), but
the second term is not in L1(0, 1), therefore x2α−1u′N cannot be in L1 and a fortiori
neither can x2αu′′N .
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5.3. Optimality of the behavior near 0. Here we show Remark 1.5, that is we
prove that

KN (x) = sup
∥f∥Lp≤1

∣∣∣x2α−1+ 1
pu′(x)

∣∣∣ .
is bounded above and below for sufficiently small x, to do we notice that for
1 < p <∞

x2α−1+ 1
pu′(x) = x

1
p−1

ˆ x

0

(s2αu′(s))′ds = x
1
p−1

ˆ x

0

(u(s)− f(s))ds.

Then,

|x2α−1+ 1
pu′(x)| ≤ x

1
p−1

ˆ x

0

|f(s)− u(s)|ds

≤ ∥f − u∥Lp

≤ C∥f∥Lp .

And if we observe that the above remains valid for p = 1 and p = ∞ we conclude
that KN (x) ≤ C for all 1 ≤ p ≤ ∞ and all 0 < x < 1.

Observe that from Remarks 5.1 to 5.3 we know that for every 1 ≤ p < ∞ and
every α < 1 the solution u belongs to Lp0 for some p0 > p with ∥u∥Lp0 ≤ C ∥f∥Lp .
From this fact we can write∣∣∣∣ˆ x

0

u(s)

∣∣∣∣ ds ≤ Cx1−
1
p0 ∥f∥Lp .

Now, for fixed 0 < x < 1 we define a function fx as

fx(t) =

{
x−

1
p if 0 ≤ t ≤ x,

0 if x < t ≤ 1,

which satisfies ∥fx∥Lp = 1 and ˆ x

0

fx(s)ds = x1−
1
p ,

for all 1 ≤ p <∞. Therefore, for each 0 < x < 1 we have

KN (x) ≥
∣∣∣∣x 1

p−1

ˆ x

0

(u(s)− fx(s))ds

∣∣∣∣
≥ x

1
p−1

ˆ x

0

fx(s)ds− x
1
p−1

ˆ x

0

|u(s)|ds

≥ 1− Cx
1
p−

1
p0 ∥f∥Lp ,

thus

KN (x) ≥ 1− Cx
1
p−

1
p0 ≥ 1

2
for all sufficiently small x.

If p = ∞, we take f ≡ 1 and by Remark A.2 the solution u can be written as

u(x) = Aϕ−(x) + 1,

for some A ̸= 0 so that

x2α−1u′(x) = A(2− 2α)b2 +O(x2−2α),
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where O(xβ) is a quantity that can be bounded above and below by Cxβ for some
constant C > 0. Thus

KN (x) ≥ |A(2− 2α)b2| −O(x2−2α) ≥ A(2− 2α)b2
2

for all sufficiently small x.

Appendix A. Bessel’s equations

Let us recall some results regarding Bessel’s differential equations which are
closely related to (1). For ν ≥ 0 we consider the modified Bessel equation

(22) y2f ′′(y) + yf ′(y)− (y2 + ν2)f(y) = 0,

It is known that the solutions to (22) are given by the modified Bessel’s functions.
This fact and some additional properties of the modified Bessel functions are
summarized in the following lemma (see [15] for a detailed treatise on Bessel
functions)

Lemma A.1. For non-integer ν > 0, the general solution of (22) can be written as

fν(y) = C1Iν(y) + C2I−ν(y).

The function Iν is the modified Bessel functions of the first type, and it has the
following power series expansion near the origin

(23) Iν(y) =

∞∑
m=0

1

m! Γ(m+ ν + 1)

(y
2

)2m+ν

,

and it satisfies

(24) I ′ν(y) =
Iν+1(y) + Iν−1(y)

2

For integer ν ≥ 0, the general solution of (22) can be written as

fν(y) = C1Iν(y) + C2Kν(y).

The function Kν is the modified Bessel function of the second which satisfies

(25) Kν(y) =
1

2

ν−1∑
m=0

(−1)m(ν −m− 1)!

m!

(y
2

)2m−ν

+ (−1)ν+1
∞∑

m=0

(
y
2

)ν+2m

m!(ν +m)!

{
log
(y
2

)
− 1

2
ψ(m+ 1)− 1

2
ψ(ν +m+ 1)

}
,

for ν > 0 and

(26) K0(y) = − log
(y
2

)
I0(y) +

∞∑
m=0

(
y
2

)2m
(m!)2

ψ(m+ 1),

where ψ(z) =
Γ′(z)

Γ(z)
is the digamma function. The function Kν satisfies in addition

(27) K ′
ν(y) = −Kν+1(y) +Kν−1(y)

2
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Remark A.1. Observe that for ν > 0 the expansion (25) tells us that for y ∼ 0

Kν(y) =
1

2

ν−1∑
m=0

(−1)m(ν −m− 1)!

m!

(y
2

)2m−ν

+O (yν log y) ,

and that (23) and (26) tell us that

K0(y) = −γ − log
(y
2

)
+O(y2 log y),

where γ is Euler’s constant.

The above equations are relevant to us because of the following results, which
is an adaptation of [5, Lemma 4.1], but we will include its proof for the reader’s
convenience.

Lemma A.2. For α < 1, let fν a solution of (22) with ν =
∣∣∣ 1

2−α

1−α

∣∣∣. Then u(x),

defined as u(x) = x
1
2−αfν

(
x1−α

1−α

)
, solves

−(x2αu′(x))′ + u(x) = 0.

Proof. Using (22) with y = x1−α

1−α we have

x2−2α

(1− α)2
f ′′ν (y) +

x1−α

1− α
f ′ν (y) =

[
x2−2α

(1− α)2
+

( 1
2 − α

1− α

)2
]
fν(y).

Multiplying by (1− α)2xα−
3
2 we have

x
1
2−αf ′′ν (y) + (1− α)x−

1
2 f ′ν (y) =

[
x

1
2−α +

(
1

2
− α

)2

xα−
3
2

]
fν(y).

Then

(28) x
1
2−αf ′′ν (y) + (1− α)x−

1
2 f ′ν (y)−

(
1

2
− α

)2

xα−
3
2 fν(y) = x

1
2−αfν(y).

Notice that if

(29) u(x) = x
1
2−αfν

(
x1−α

1− α

)
,

then

u′(x) =

(
1

2
− α

)
x−α− 1

2 fν(y) + x−2α+ 1
2 f ′ν(y),

x2αu′(x) =

(
1

2
− α

)
xα−

1
2 fν(y) + x

1
2 f ′ν(y).

Deriving

(x2αu′(x))′ = −
(
1

2
− α

)2

xα−
3
2 fν(y) +

(
1

2
− α

)
x−

1
2 f ′ν(y)

+
1

2
x−

1
2 f ′ν(y) + x

1
2−αf ′′ν (y)

= −
(
1

2
− α

)2

xα−
3
2 fν(y) + (1− α)x−

1
2 f ′ν(y) + x

1
2−αf ′′ν (y).

Replacing with (28) and (29) we have (x2αu′(x))′ = u(x). ■
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The following lemma summarizes a few facts regarding (22) (see for instance
[15]).

Remark A.2. For f ∈ C(0, 1), the equation −(x2αu′(x))′ + u(x) = f(x) has a
general solution given by u(x) = Aϕ+(x) +Bϕ−(x) + F (x) where ϕ+(x) and ϕ−(x)
are linearly independent solutions of −(x2αu′(x))′ + u(x) = 0 and F (x) is given by

F (x) = ϕ+(x)

ˆ x

0

f(s)ϕ−(s)ds− ϕ−(x)

ˆ x

0

f(s)ϕ+(s)ds.

If α < 1
2 then ν =

1
2−α

1−α is non-integer so from Lemmas A.1 and A.2 we deduce

that ϕ±(x) = x
1
2−αI±ν

(
x1−α

1−α

)
and therefore, we can verify that

ϕ+(x) = a1x
1−2α + a2x

3−4α + a3x
5−6α + · · ·

and
ϕ−(x) = b1 + b2x

2−2α + b3x
4−4α + b4x

6−6α + · · · ,

from where one obtains

ϕ′+(x) = a1(1− 2α)x−2α + a2(3− 4α)x2−4α + a3(5− 6α)x4−6α + · · ·

and

ϕ′−(x) = b2(2− 2α)x1−2α + b3(4− 4α)x3−4α + b4(6− 6α)x5−6α + · · · ,

for certain non-zero constants ai, bi. Therefore for α < 1
2 we have

(30) ϕ+(0) = 0, and ϕ−(0) = b1.

and for any α < 1

(31) lim
x→0

x2αϕ′+(x) = a1(1− 2α), and lim
x→0

x2αϕ′−(x) = 0.

The above results allow us to obtain the following

Lemma A.3. For any α < 1
2 there exists g ∈ C2(0, 1] ∩ C0[0, 1] such as

(32)


−(x2αg′(x))′ + g(x) = 0 in (0, 1),

g(1) = 0,

lim
x→0+

g(x) = 1.

Furthermore lim
x→0+

x2αg′(x) exists and it is non zero.

Proof. Observe that we can take g(x) = Aϕ+(x) + Bϕ−(x) as in the previous
remark. Indeed, we have that lim

x→0+
g(x) = Bb1, therefore, if we take B = 1

b1
, then

g(1) = Aϕ+(1) +
1
b1
ϕ−(1). Taking A = − ϕ−(1)

b1ϕ+(1) , we have the boundary conditions
verified. Therefore it is clear that

lim
x→0+

x2αg′(x) = lim
x→0+

Ax2αϕ′+(x) = Aa1(1− 2α) ̸= 0

■
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