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Abstract. We study the semi-linear Sturm-Liouville equation{
−(x2αu′)′ = λu+ |u|p−1 u in (0, 1),

u(1) = 0,
where α ≥ 1, p > 1, and λ are real parameters. We prove that all non-trivial
solutions are oscillatory and unbounded as x approaches 0. Moreover, there
exist γ > 0 and δ > 0 such that any solution u(x) resembles x−γη(x−δ) near
the origin, where η is a non-trivial periodic solution to the Emden-Fowler
equation δ2η′′ + |η|p−1 η = 0 in [0,∞).

1. Introduction

Consider the semi-linear Sturm-Liouville equation

(1)
{
−(x2αu′)′ = λu+ |u|p−1

u in (0, 1),
u(1) = 0,

where α ≥ 1, p > 1, and λ are real parameters.
In [5] we performed a detailed study of the existence and non-existence of positive

solutions to (1) when α > 0. One important feature of (1) that appears when
0 < α < 1 is that the spectrum of the differential operator Lu := −(x2αu′(x))′
consists solely of isolated eigenvalues (see [6, Theorem 1.17]), therefore classical
bifurcation theory (see for example [7, 8]) tells us that there exists a branch of
positive solutions to (1) emanating from the first eigenvalue of L. The results in
[5] give us some detailed information on how that branch behaves in the space
R × C0[0, 1] for different values of α, λ, and p. For instance, it is shown that for
0 < α < 1 there exists a critical exponent pα for which (1) behaves quite similarly
to the classical Brezis-Nirenberg problem in the unit ball [3], in the sense that the
parameter 0 < α < 1 plays a role comparable to the dimension in the case of the
Brezis-Nirenberg problem (see [5, Section 1.4] for the details).
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On the other hand equation (1) changes dramatically when α ≥ 1. Firstly, the
spectrum of the differential operator L has no eigenvalues for α ≥ 1, in fact the
spectrum is purely essential and it can be computed to be the continuum [ 1

4 ,∞)
when α = 1, and [0,∞) when α > 1 (see [6]), therefore classical bifurcation theory
does not apply. However, one can still ask whether bifurcation occurs form the
bottom of the spectrum, situation that has been studied vastly in the past. We
refer to the very good survey paper written by Stuart [9] (and the references therein)
where a general framework for this situation is discussed, as well as the papers by
Stuart and Stuart-Vuillaume [10–13] where the buckling of a tapered rod is studied
and the operator L appears naturally. Regarding (1) when α ≥ 1, we established
that (1) has no positive solutions, for all values of p > 1 and λ ∈ R (see [5, Theorem
1.10]). We also established in [5] that solutions with finitely many zeros do not exist,
in fact, any non-trivial solution u to (1) must be oscillatory in (0,1), in the sense
that there exists a sequence { zn }n≥1 ⊂ (0, 1) of zeros of u such that zn → 0 as
n→∞.

Aside from the oscillatory behavior mentioned above (which can also be deduced
from the results in [4]), to our knowledge there is no further literature for equation
(1) when α ≥ 1. A related work is the one of Berestycki and Esteban [2], who study
the bifurcation phenomena for the equation

(2)
{
−x2αu′′ = λu+ |u|p−1

u in (0, 1),
u(0) = u(1) = 0,

for α = 1. One of the results they prove is that for each positive integer k and
λ < 1

4 , there exists a solution in C0[0, 1] to (2) with exactly k zeros in (0, 1): this
fact alone shows us that (1) and (2) have very different features, as no such solutions
can be found for (1). Equation (2) in the case α > 1 is considered in [1].

With the above in mind, the purpose of this paper is to answer some of the
questions raised in [5] regarding equation (1) when α ≥ 1, more precisely, we would
like to answer the following two questions:
Question 1. Do bounded solutions exist to the equation (1) when α ≥ 1? If so,
how many are there?
Question 2. What is the rate of convergence of zn → 0 as n→∞?

To answer these questions we use a shooting argument, that is we consider the
“final” value problem

(3)


−(x2αu′)′ = λu+ |u|p−1

u in (0, 1),
u(1) = 0,
u′(1) = θ.

for θ 6= 0. From the Cauchy-Lipschitz-Picard theorem we know that (3) has a
unique solution in a neighborhood of x = 1, which we denote by u(x; θ). It is not
difficult to show that there exists a positive constant C = C(θ, α, p, λ) such that

(4) |u(x; θ)| ≤ Cx−2α, and |u′(x; θ)| ≤ Cx−1−2α, for all 0 < x < 1,

from where we deduce that blow up, if any, can only occur at the origin. We are
able to prove the following

Theorem 1. Given α > 1, p > 1, λ ∈ R, and θ 6= 0, consider u(x; θ) the solution
of (3).
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(i) Let γ := 2α
p+3 , then there exists a sequence xn → 0 and a constant C0 > 0

such that
|u(xn; θ)| ≥ C0

xγn
.

(ii) For δ := α− 1 + α(p−1)
p+3 , the sequence of zeros { zn } of u(x; θ) satisfies

zn = O
(
n−

1
δ

)
as n→∞.

Remark 1. The result of Theorem 1 follows from Proposition 1 in Section 2, where
we show that for x near 0, u(x; θ) resembles x−γη∞(x−δ), where γ and δ are as in
Theorem 1. The function η∞ is a periodic solution to the Emden-Fowler equation

δ2η̈∞(t) + |η∞(t)|p−1
η∞(t) = 0, t ≥ 0.

The rest of this paper is organized as follows: in Section 2 we establish the
notation and some preliminary results, and in Section 3 we present the proof of
Theorem 1.

2. Preliminaries

In what follows, we will assume that α ≥ 1, p > 1 and λ ∈ R are given, but
we will omit the dependence on these parameters to make the notation simpler.
For θ 6= 0, consider u(x) = u(x; θ) the unique solution of (3) which we know can
be extended to all (0, 1) (because of (4)). To prove our result, we consider the
following change of variables t = x−δ and

η(t) = xγu(x),

where δ and γ are to be chosen. In what follows we will use the “prime” notation to
denote derivatives with respect to the variable x, and the “dot” notation to denote
derivatives with respect to the variable t. Observe that

u′(x) = −γx−γ−1η(t)− δx−δ−γ−1η̇(t),

and(
x2αu′(x)

)′ = δ2x2α−2δ−γ−2η̈(t)− δ (2α− δ − 2γ − 1)x2α−δ−γ−2η̇(t)
− γ (2α− γ − 1)x2α−γ−2η(t),

therefore, η satisfies

δ2η̈(t)− δ (2α− δ − 2γ − 1) t−1η̇(t) +
(
λt

2α−2
δ −2 − γ (2α− γ − 1) t−2

)
η(t)

+ t
−2+2α−2δ+γ(p−1)

δ |η(t)|p−1
η(t) = 0.

If we choose γ and δ so that 2α− δ − 2γ − 1 = 0 and −2 + 2α− 2δ + γ(p− 1) = 0,
that is

(5) γ := 2α
p+ 3 > 0,

and

(6) δ := α− 1 + α

p+ 3(p− 1) > 0,
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we obtain that η is a solution of

(7)


−δ2η̈(t) = g(t)η(t) + |η(t)|p−1

η(t), t ∈ (1,∞),
η(1) = 0,

η̇(1) = −θ
δ
,

where g(t) := (λt 2α−2
δ − λc)t−2 and λc := γ(2α− γ − 1) > 0.

For η solution to (7), consider the following “energy” functional

(8) Eη(t) := δ2

2 η̇(t)2 + 1
2g(t)η(t)2 + |η(t)|p+1

p+ 1 .

Observe that

Ėη(t) =
(
δ2η̈(t) + g(t)η(t) + |η(t)|p−1

η(t)
)
η̇(t) + 1

2 ġ(t)η(t)2,

therefore, using (7) we obtain

(9) Ėη(t) = 1
2 ġ(t)η(t)2,

where

(10) ġ(t) := −2
[
λ

(
1− α− 1

δ

)
t

2α−2
δ − λc

]
t−3.

Remark 2. Notice that from (9) and (10), we deduce that Eη(t) is eventually non-
decreasing (resp. non-increasing), in the sense that there exists T0 ≥ 1 such that
Ėη(t) ≥ 0 (resp. ≤ 0) for all t ≥ T0. More precisely if α > 1 we can define T0 as
the unique zero of ġ(t). We will be using this later.

With the aid of this energy functional, we can prove the following

Lemma 1. Let η be a solution of (7), then there exists a constant C > 0 such that

|η(t)| ≤ C for all t ≥ 1.

Although the proof can be carried out directly for all α ≥ 1, for the sake of
clarity we will present the cases α = 1 and α > 1 separately.

Proof of Lemma 1 for α = 1. Observe that for α = 1 we have g(t) = (λ − λc)t−2,
thus (8) and (9) become

Eη(t) = δ2

2 η̇(t)2 + λ− λc
2t2 η(t)2 + |η(t)|p+1

p+ 1 ,

Ėη(t) = − (λ− λc) t−3η(t)2,

respectively. With this in mind, we study the cases λ ≥ λc, and λ < λc.
If λ ≥ λc, we obtain that Ėη(t) = − (λ− λc) t−3η(t)2 ≤ 0 for all t ≥ 1, therefore

Eη must be a non-increasing function, that is 0 ≤ Eη(t) ≤ Eη(1) = θ2

2 .
In particular, for all t ≥ 1 we have

|η(t)|p+1

p+ 1 ≤ δ2

2 η
′(t)2 + λ− λc

2t2 η(t)2 + |η(t)|p+1

p+ 1 = Eη(t) ≤ θ2

2 ,

therefore η is bounded.
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To prove that η(t) is bounded when λ < λc we argue by contradiction, that is,
we will suppose that there exists a sequence tn →∞ such that

|η(tn)| = max { |η(t)| : 1 ≤ t ≤ tn } −→
n→∞

+∞.

For n > 1 we have

(11) Eη(tn)− Eη(t1) =
ˆ tn

t1

Ėη(t) dt.

On the one hand, we can write

Eη(tn)− Eη(t1) = δ2

2 η̇(tn)2 + |η(tn)|p+1

p+ 1 + λ− λc
2t2n

η(tn)2

− δ2

2 η̇(t1)2 − |η(t1)|p+1

p+ 1 − λ− λc
2t21

η(t1)2

≥ |η(tn)|p+1

p+ 1 + λ− λc
2t2n

η(tn)2

− δ2

2 η̇(t1)2 − |η(t1)|p+1

p+ 1 − λ− λc
2t21

η(t1)2.

On the other hand, since |η(tn)| ≥ |η(t)| for t1 ≤ t ≤ tn we obtainˆ tn

t1

Ėη(t) dt = −(λ− λc)
ˆ tn

t1

t−3η(t)2 dt

≤ −(λ− λc)η(tn)2
ˆ tn

t1

t−3 dt

= (λ− λc)η(tn)2
(

1
2t2n
− 1

2t21

)
.

To conclude, notice that if we define

f(x) := |x|
p+1

p+ 1 + λ− λc
2t21

|x|2 ,

then identity (11) together with the above estimates tell us that

f(η(tn)) ≤ f(η(t1)) + δ2

2 η̇(t1)2,

but since f(x)→∞ when |x| → ∞ we reach a contradiction by letting n→∞. �

Proof of Lemma 1 when α > 1. Recall that

Ėη(t) = 1
2 ġ(t)η(t)2,

and observe that by our choice of δ in (6) we have δ > α−1, therefore if λ > 0 then
ġ(t) < 0 for sufficiently large t. Thus Ėη(t) ≤ 0 for sufficiently large t. Hence Eη
is non-increasing for large t, and as a consequence Eη(t) ≤ C1 for some constant
C1 > 0. Also, for every large t we have g(t) = t−2

(
λt

2α−2
δ − λc

)
≥ 0. In particular,

for every sufficiently large t we have
1

p+ 1 |η(t)|p+1 ≤ δ2

2 η̇(t)2 + 1
2g(t)η(t)2 + 1

p+ 1 |η(t)|p+1 = Eη(t) ≤ C1,

hence |η(t)| is bounded.
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If λ ≤ 0 we argue by contradiction. As before, we use the sequence tn → ∞
satisfying

|η(tn)| = max { |η(t)| : 1 ≤ t ≤ tn } −→
n→∞

+∞.

On the one hand we have

Eη(tn)− Eη(t1) = δ2

2 η̇(tn)2 + 1
p+ 1 |η(tn)|p+1 + 1

2g(tn)η(tn)2

− δ2

2 η̇(t1)2 − 1
p+ 1 |η(t1)|p+1 − 1

2g(tn)η(t1)2

≥ 1
p+ 1 |η(tn)|p+1 + 1

2g(tn)η(tn)2

− δ2

2 η̇(t1)2 − 1
p+ 1 |η(t1)|p+1 − 1

2g(tn)η(t1)2.

On the other hand, since λ ≤ 0 we obtain that ġ(t) > 0, for all t ≥ 1, in addition,
|η(tn)| ≥ |η(t)| for t1 ≤ t ≤ tn thereforeˆ tn

t1

Ėη(t) dt = 1
2

ˆ tn

t1

ġ(t)η(t)2 dt

≤ 1
2η(tn)2

ˆ tn

t1

ġ(t) dt

= 1
2η(tn)2 (g(tn)− g(t1)) .

Notice that setting

f(x) := |x|
p+1

p+ 1 + 1
2g(t1) |x|2 ,

then the conclusion follows as in the case α = 1. We omit the details. �

Remark 3. When α = 1 and λ = λc, the proof of Lemma 1 tells us that Eη(t) is in
fact constant, that is Eη(t) = Eη(1) = θ2

2 for all t ≥ 1, so (8) becomes
δ2

2 η̇(t)2 + 1
p+ 1 |η(t)|p+1 = θ2

2 .

Observe that this implies that η is a non-trivial periodic function, which gives a
rather explicit description of u for λ = λc.

Lemma 2.
Ėη(t) −→

t→∞
0

and there exists E∞ > 0 such that
Eη(t) −→

t→∞
E∞.

Proof. Lemma 1 tells us that η is uniformly bounded, therefore∣∣Ėη(t)
∣∣ = 1

2η(t)2 |ġ(t)| ≤ C |ġ(t)| ,

and from (10) we obtain that |ġ(t)| → 0 as t→∞, thus Ėη(t)→ 0.
By Remarks 2 and 3 we know that Eη(t) is either constant or eventually non-

increasing/non-decreasing, therefore
E∞ := lim

t→∞
Eη(t)
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exists in the extended sense (it might be infinite). However, we have shown that η is
bounded, therefore by considering the sequence of critical points of η, we conclude
that E∞ <∞. Also, by taking the sequence of zeros of η we deduce that E∞ ≥ 0.

To conclude we need to show that in fact E∞ > 0. From Remark 2 we know
that either Eη is eventually non-decreasing or eventually non-increasing. In the non-
decreasing case we have E∞ ≥ Eη(T0) > 0. In the the case when Eη is eventually
non-increasing we need to be a little more careful. Since we have shown that η is
bounded, we distinguish two cases:
Case 1 : ‖η‖∞ is not achieved in (T0,∞). In this case, and because η is oscillatory
(by [5, Remark 1.10] u must be oscillatory in (0, 1)), one can construct a sequence
tn →∞ of critical points of η in (T0,∞) such that

|η(tn)| = max { |η(t)| : 1 ≤ t ≤ tn } .

Since ġ(t) ≤ 0 for all t ≥ T0, we have

Eη(tn)− Eη(T0) =
ˆ tn

T0

Ėη(t) dt

= 1
2

ˆ tn

T0

ġ(t)η(t)2 dt

≥ η(tn)2

2

ˆ tn

T0

ġ(t) dt

= 1
2g(tn)η(tn)2 − 1

2g(T0)η(tn)2.

In addition, and because tn is a critical point of η, we have

1
p+ 1 |η(tn)|p+1 + 1

2g(T0)η(tn)2 ≥ Eη(T0)

= δ2

8 η̇(T0)2 + 1
2g(T0)η(T0)2 + |η(T0)|p+1

p+ 1
> 0,

because g(T0) > 0 and η 6≡ 0. As a consequence we deduce the existence of a
positive constant C such that |η(tn)| ≥ C for all sufficiently large n, therefore,

E∞ = lim
n→∞

E(tn) > 0.

Case 2 : There exists T1 ≥ T0, a critical point of η, such that

‖η‖L∞(T0,∞) = |η(T1)| > 0.
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If we consider tn → ∞, the sequence of zeros of η in (T1,∞) and we use the fact
ġ(t) ≤ 0 for t ≥ T0, we have

Eη(tn)− Eη(T1) =
ˆ tn

T1

Ėη(t) dt

= 1
2

ˆ tn

T1

ġ(t)η(t)2 dt

≥ η(T1)2

2

ˆ tn

T1

ġ(t) dt

= 1
2g(tn)η(T1)2 − 1

2g(T1)η(T1)2,

thus obtaining

E(tn) ≥ Eη(T1) + 1
2g(tn)η(T1)2 − 1

2g(T1)η(T1)2.

Recalling that g(t) → 0 as t → ∞ and that T1 is a critical point, if we let n → ∞
we conclude that

E∞ ≥ Eη(T1)− 1
2g(T1)η(T1)2 = 1

p+ 1 |η(T1)|p+1
> 0,

and the proof is complete. �

Proposition 1. Given any sequence tn ≥ 1 going to infinity, there exists a periodic
function η∞ ∈ C2(1,∞) and a sequence nk →∞ such that ηnk(t) := η(t+ tnk) con-
verges in the C1-norm over compact subsets of [0,∞) to η∞ as k →∞. Moreover,
η∞ is a non-trivial periodic solution to the Emden-Fowler equation
(12) δ2η̈∞(t) + |η∞(t)|p−1

η∞(t) = 0.

Proof. Given { tn }, define ηn(t) := η(t+ tn). Observe that for n sufficiently large,
ηn satisfies the equation

(13) δ2

2 η̇n(t)2 = Eη(t+ tn)− 1
p+ 1 |ηn(t)|p+1 − g(t+ tn)ηn(t), t ∈ [0,∞).

From Lemmas 1 and 2 we deduce the existence of C > 0 independent of n such
that Eη(t+ tn) ≤ C, and that |η(t+ tn)| ≤ C for all t ≥ 0. In addition,

g(t+ tn)→ 0 as n→∞,
hence from (13) we deduce that |η̇n(t)| is bounded independently of n. Therefore,
by the Arzela-Ascoli theorem, we obtain the existence of a function η∞ ∈ C0[0,∞)
and a subsequence nk →∞ such that

ηnk(t) −→
k→∞

η∞(t)

uniformly over compact subsets of [0,∞). This allows us to pass to the limit in
(13) and deduce that in fact η∞ ∈ C1[0,∞) and that it is a solution to

(14) δ2

2 η̇∞(t)2 + 1
p+ 1 |η∞(t)|p+1 = E∞, t ∈ [0,∞).

Moreover, by differentiating (13) we also obtain that |η̈n(t)| is uniformly bounded,
therefore by passing to a further subsequence if necessary, we deduce that the
convergence is in fact in the C1-norm over compact subsets of [0,∞), and that η∞
is solution to the Emden-Fowler equation (12). Since E∞ > 0 and by observing
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that the non-trivial trajectories in equation (14) are closed curves, thus we conclude
that η∞ is non-trivial and periodic. �

Remark 4. The function η∞ depends on the sequence tn in the following fashion:
if we denote by ξ the unique solution to (12) satisfying in addition

ξ(0) = 0 and ξ̇(0) = 2E∞
δ2 ,

then η∞(t) = ξ(t + t∞), where t∞ ≥ 0 depends on the sequence tn used in the
definition of ηn. In particular, if tn is the sequence of zeros of η, then t∞ = 0 and
η∞ = ξ.

3. Proof of Theorem 1

Notice that Proposition 1 tells us that for every θ 6= 0, and any sequence tn →∞,
the function ηn(t) = η(t + tn) is close to the periodic function η∞. In particular,
this implies that between two consecutive large zeros of η the maximum value of |η|
must be close to the maximum value of |η∞| in the same interval. By Remark 4,
we have that ‖η∞‖∞ = ‖ξ‖∞, so with this in mind let

C0 := 1
2 ‖ξ‖∞ > 0

and denote by { z̃n } the sequence of zeros of η. Observe that we can construct a
sequence { m̃n }, satisfying for n sufficiently large

z̃n < m̃n < z̃n+1 and |η(m̃n)| ≥ C0.

By taking the sequence mn ∈ (0, 1), defined by mn := m̃
− 1
δ

n → 0 as n → ∞, we
obtain

|u(mn; θ)| = |η(m̃n)|
mγ
n
≥ C0

mγ
n
,

thus proving the first part of the theorem.
In addition, from Proposition 1 we deduce that for n large, the sequence of zeros

{ z̃n } of η must become very close to the sequence of zeros of η∞, denoted { z̃∞n }.
Observe that the sequence { z̃∞n } grows at order n, in fact the sequence satisfies

z̃∞n = a+ bn,

for some constants a, b > 0 (this follows from the fact that η∞ is a periodic solution
of (14)). As a consequence we deduce that the sequence { z̃n } must satisfy an
estimate of the form

a1 + b1n ≤ z̃n ≤ a2 + b2n, for all sufficiently large n,
and ai, bi constants close to a, b. Recalling that u(x) = x−γη(x−δ), we conclude
that { zn }, the sequence of zeros of u(x; θ), must tend to zero at a rate of order
n−

1
δ as n→∞, or more precisely(

1
a2 + b2n

) 1
δ

≤ zn ≤
(

1
a1 + b1n

) 1
δ

.

�
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