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Abstract. In this article we use a weighted version of Poincaré’s inequality to study density and extension
properties of weighted Sobolev spaces over some open set Ω ⊆ RN . Additionally, we study the specific case
of monomial weights

w(x1, . . . , xN ) =
N∏
i=1

|xi|ai , ai ≥ 0,

showing properties of the associated weighed Sobolev spaces.

1. Introduction

For given N ≥ 1 and p ≥ 1, one version of the the classical (local) Poincaré inequality asserts the existence
of a constant C > 0 for which

(1)
ˆ
Q

|u− uQ|p dx ≤ Cl(Q)p
ˆ
Q

|∇u|p dx

holds for any u ∈ C1(RN ) with average uQ = 1
|Q|
´
Q
udx over the cube Q ⊆ RN of edge length l(Q). The

Poincaré inequality is central in the study of Sobolev spaces, which in turn are of great importance in the
analysis of partial differential equations (see for instance [14] and the many references therein). By using this
classical result as an inspiration one can ask oneself for the validity of weighted versions of (1), namely

(2)
ˆ
Q

|u− uQ,w|p w dx ≤ Cl(Q)p
ˆ
Q

|∇u|p w dx,

where

uQ,w =
1´

Q
w dx

ˆ
Q

uw dx

is the weighted average of u over Q, and w is some locally integrable non-negative function. In general it
is difficult to characterize the weights for which (2) is valid, but there are a some relevant results that are
worth mentioning. On the one hand in dimension N = 1 the question was completely answered by Chua and
Wheeden [11] in a vast more general setting. One of their results reads that (2) is valid for p > 1 if and only
if w satisfies

(3)
1

w[a, b]

{
sup

a<x<b

[
w[x, b]

1
p

(ˆ x

a

w[a, t]p
′
w(t)1−p′

dt

) 1
p′
]

+ sup
a<x<b

w[a, x] 1p (ˆ b

x

w[t, b]p
′
w(t)1−p′

dt

) 1
p′
 <∞,

where w[x, y] =
´ y
x
w(s) ds and p′ is the Hölder conjugate exponent of p. A similar result is valid for p = 1.

On the other hand, if N ≥ 2 the question is in general open, however there are a few classes of weights
that are worth mentioning:
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• The Muckenhoupt class Ap. A weight w belongs to the class Ap for p > 1 if there exists a constant
C > 0 such that (ˆ

Q

w dx

)(ˆ
Q

w1−p′
dx

)p−1

≤ Cl(Q)Np

holds for every cube Q ⊆ RN . As one can see for instance in [15, Chapter 15] if w ∈ Ap then w
satisfies (2).

• A function f : RN → RN is a quasi-conformal map if f = (f1, f2, . . . , fN ) is a homeomorphism
satisfying fk ∈W 1,p

loc (RN ) and there is a constant C > 0 such that

max
|h|=1

|DF (x)h|N ≤ C |detDF (x)| for a.e. x ∈ RN .

It can also be seen in [15, Chapter 15] that if f is quasi-conformal then w = |detDF |1−
p
N satisfies

(2).
• Chanillo and Wheeden showed in [6] the validity of (2) for some weights that are neither Ap nor

obtained from quasi-conformal maps: they consider weights w which can be written as

w(x) = (1 + |x|)δ
m∏
i=1

(
|x− ai|

1 + |x− ai|

)γi

v(x)

where v ∈ Ap, δ ≥ 0, γi ≥ 0.
We are interested in weights for which the weighted Poincaré inequality (2) holds, but that do not

necessarily belong to any of the above classes. One of the main reasons for only focusing on such weights, is
that having a (weighted) Poincaré inequality opens the door to several other important results, but in order
to make this statement precise we need to give a few definitions.

In what follows we will call a function w a weight over Ω ⊆ RN if w is a locally integrable function
and non-negative a.e. in Ω. We will denote the measure w dx by dw or dw(x), and for any Lebesgue
measurable set E ⊆ Ω we will write w(E) =

´
E
w dx. For a measurable set E and p ≥ 1 we will denote by

Lp,w(E) = Lp(E, dw) the set of Lebesgue measurable functions satisfying

∥u∥pp,w =

ˆ
E

|u|p dw <∞,

additionally for a measurable set E ⊆ Ω satisfying 0 < w(E) <∞ we will write

(4) uE,w =
1

w(E)

ˆ
E

udw,

the weighted average of the function u over E.
In what follows we will consider w a weight over Ω ⊆ RN satisfying the weighted Poincaré inequality (2)

for all cubes Q ⊆ Ω,

(5)
w1−p′

∈ L1
loc(Ω) if p > 1,

w−1 ∈ L∞
loc(Ω) if p = 1,

and that w is a doubling weight in Ω, that is there exists a constant C0 > 0 such that

(6) w(2Q) ≤ C0w(Q)

for every cube Q ⊆ Ω. Here λQ denotes the cube with the same center as Q but with its edge length
multiplied by λ > 0.

As we mentioned before the validity of a Poincaré inequality opens the door to several results in the theory
of weighted Sobolev spaces, in particular we are interested in two aspect of the theory: the density of smooth
functions and the extension problem. It is known (see for instance [15, Chapter 20]) that a doubling weight
satisfying in addition the weighted (1, p)-Poincaré inequality

1

w(Q)

ˆ
Q

|u− uQ,w| dw ≤ C1l(Q)

(
1

w(λQ)

ˆ
λQ

|∇u|p dw

) 1
p

for some λ ≥ 1, then it also satisfies the following two properties:
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(PI) Uniqueness of the gradient : If (un)n∈N ⊆ C1(Ω) satisfyˆ
Ω

|un|p dw −→
n→∞

0 and
ˆ
Ω

|∇un − v|p dw −→
n→∞

0

for some v : Ω → RN , then v = 0.
(PII) Sobolev inequality : There exists a constant C2 > 0 and k > 1 such that(

1

w(Q)

ˆ
Q

|u|kp dw

) 1
kp

≤ C2l(Q)

(
1

w(Q)

ˆ
Q

|∇u|p dw

) 1
p

for u ∈ C1
c (Q).

On the one hand, property (PI) allows us to properly define the weighted Sobolev space

(7) H1,p,w(Ω) = the completion of {u ∈ C1(Ω) : u,
∂u

∂xi
∈ Lp,w(Ω) for all i }

under the norm

(8) ∥u∥p1,p,w = ∥u∥pp,w + ∥∇u∥pp,w
as one can see in [15, Section 1.9]. On the other hand the Sobolev inequality (PII) is one of the cornerstones
when studying the regularity of solutions of PDEs which can be located in such weighted Sobolev spaces (see
for example [12]).

The space H1,p,w(Ω) is not the only weighted Sobolev space that one can define, in fact, one can consider
the Banach space

(9) W 1,p,w(Ω) = the completion of {u ∈W 1,1
loc (Ω) : u,

∂u

∂xi
∈ Lp,w(Ω) for all i } ,

under the norm (8). Notice that H1,p,w(Ω) ⊆W 1,p,w(Ω), and observe that if the weight satisfies (5) then the
class defining the space W 1,p,w(Ω) is already complete, and that the definition of H1,p,w(Ω) becomes simpler
as one can see that

H1,p,w(Ω) = the closure of C1(Ω) ∩W 1,p,w(Ω) in W 1,p,w(Ω).

In the unweighted case w = 1 it is known that H1,p(Ω) =W 1,p(Ω) for any open set Ω: this is the classical
result of Meyers and Serrin [18], nonetheless for N ≥ 2 one can construct a weight w ̸≡ 1 for which
H1,p,w(Ω) ⊊W 1,p,w(Ω). The complete description of the weights for which one has equality is a non trivial
task (see for instance [23]).

An interesting fact discovered by Serra Cassano [20] is that if Ω ⊆ RN is bounded and w is a weight
satisfying (2) and (5) for p = 2 then H1,2,w(Ω) =W 1,2,w(Ω). This result can be generalized for every p ≥ 1
and Ω not necessarily bounded to obtain

Theorem 1 (Weighted H =W ). Let p ≥ 1, Ω ⊆ RN a open set, and w a weight over Ω satisfying (5) and
(2) for every cube Q ⊆ Ω then

H1,p,w(Ω) =W 1,p,w(Ω).

Having a precise ambient space leads to other questions, in particular we are also interested in the so
called extension problem, that is to find open sets Ω ⊆ RN for which it is possible to define a bounded linear
operator E :W 1,p,w(Ω) →W 1,p,w(RN ) satisfying Eu = u inside Ω. A set Ω for which such extension operator
can be found is called a (weighted) Sobolev extension domain, and in the unweighted case the class of such
domains has been vastly studied: it has been show to include smooth domains [16], Lipschitz domains [3, 21],
and the so called (ε, δ)-domains [17]. Let us recall the definition of (ε, δ)-domains: an open connected set
Ω ⊆ RN is an (ε, δ)-domain if for all x, y ∈ Ω satisfying |x− y| < δ there exists a rectifiable path γ ⊆ Ω from
x to y such that

L(γ) <
|x− y|
ε

and dist(z, ∂Ω) >
ε|x− z||y − z|

|x− y|
∀ z ∈ γ,

where L(γ) is the length of γ. If we denote by

rad(Ω) = inf
x∈Ω

sup
y∈Ω

|x− y| = sup { r > 0 : ∂B(x, s) ∩ Ω ̸= ∅ ∀x ∈ Ω, ∀ 0 ≤ s < r } ,
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then the result of Jones [17] says that an (ε, δ)-domain with rad(Ω) > 0 is an unweighted Sobolev extension
domain. The result of Jones has been generalized to the weighted case by Chua in a series of articles [7–10]
under different hypotheses over the weight w, in particular Chua shows that if Ω is an (ε, δ)-domain with
rad(Ω) > 0 and w is a weight satisfying (2) for all cubes in Ω, and also (5) and (6), then Ω is a weighted
Sobolev extension domain.

A further generalization can be made to the results of Jones and Chua, namely we can localize the extension
in the sense that for a given open set Ω̃ ⊇ Ω we can construct an extension operator E :W 1,p,w(Ω) →W 1,p,w(Ω̃)
as the following theorem shows.

Theorem 2 (Localized Extension). Let Ω be an (ε, δ)-domain with rad(Ω) > 0, and let Ω̃ ⊆ RN be an open
set such that Ω ⊆ Ω̃. If 1 ≤ p <∞ and w is a weight over Ω for which (2) holds for every cube Q ⊆ Ω. If in
addition the weight satisfies (5) and (6) then there exists a bounded linear operator

E : Liploc(Ω) → Liploc(Ω̃)

such that Eu = u almost everywhere in Ω and

∥Eu∥W 1,p,w(Ω̃) ≤ C ∥u∥W 1,p,w(Ω)

for every u ∈ Liploc(Ω).

This localized extension theorem is useful if the weight that we are working with satisfies (2), (5), and
(6) locally. Consider for instance a set Ω̃ ⊊ RN and a weight w satisfying (2),(5), and (6) only in Ω̃ (not
necessarily in all RN ), then H1,p,w(Ω̃) =W 1,p,w(Ω̃) by (1) and therefore the extension operator induces an
extension operator

E :W 1,p,w(Ω) →W 1,p,w(Ω̃).

The situation described in the above paragraph appears clearly when dealing with monomial weights:
For each k ∈ { 1, 2, . . . ,M } we consider Ωk ⊆ RNk and wk weights over Ωk. We can define a weight over
Ω :=

∏M
k=1 Ωk ⊆ RN by

(10) w(x) = w(x1, x2, . . . , xN ) :=

M∏
k=1

wk(xk),

where N = N1 +N2 + . . .+NM . These weights satisfy (2) provided each of the functions wk also satisfy it
as the following result shows:

Theorem 3. For every k ∈ { 1, 2, . . . ,M } suppose that wk is a weight for which Poincaré inequality (2)
holds in Ωk ⊆ RNk , that is there exists a constant Ck > 0 such thatˆ

Qk

|u− uQk,wk
|p dwk ≤ Ckl(Qk)

p

ˆ
Qk

|∇u|p dwk,

holds for every cube Qk ⊆ Ωk and every u ∈ C1(RNk).
Then for the weight w(x) =

∏M
k=1 wk(xk) there exists C > 0 such thatˆ
Q

|u− uQ,w|p dw ≤ Cl(Q)p
ˆ
Q

|∇u|p dw

holds for every cube Q ⊆ Ω =
∏M

k=1 Ωk and every u ∈ C1(RN ).

Weights of the form (10) have recently attracted attention as one can see in [1, 2, 4, 5, 13, 19, 22] and
references therein. In those works, weighted Sobolev-type inequalities were studied for the monomial weight
w : RN → R+ defined as

(11) w(x1, . . . , xN ) = xA := |x1|a1 · |x2|a2 · . . . · |xN |aN ,

where A = (a1, . . . , aN ) ∈ RN satisfies ai ≥ 0 for all i. One can easily see that this kind of weight belongs to
the class Ap if it satisfies ai < p− 1 for all i and as a consequence it satisfies (2) for every Q ⊆ RN . However
if one of the ai’s verifies ai ≥ p− 1 then the weight is no longer Ap and does not satisfy (5) in RN , thus one
cannot deduce the validity of the Poincaré inequality (2) nor its consequences. However if we restrict the
analysis to the cone

RN
A = { (x1, . . . , xN ) ∈ RN : xi > 0 whenever ai > 0 }
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instead of the whole space we can see that if ai ≥ 0 for all i then xA satisfies (5) and additionally it follows
from [2, 4] that the weighted Sobolev inequality

(12)

(ˆ
RN

A

|u|
Dp

D−p xA dx

)D−p
Dp

≤ C

(ˆ
RN

A

|∇u|p xA dx

) 1
p

holds for any u ∈ C1
c (RN ), and D = N + a1 + . . . + aN . We will see in Sections 5 and 6 that monomial

weights verify a stronger version of (2) thus allowing us to use Theorems 1 and 2 to properly defined weighted
Sobolev spaces for Ω ⊆ RN

A . To make the relevance of this precise suppose for example that Ω = (0, 1)N , then
Theorem 2 and (12) induce an embedding

W 1,p,xA

(Ω) ↪→ Lq,xA

(Ω)

for every 1 ≤ q ≤ Dp
D−p which in complete analogy with the unweighted case we prove to be compact if

q < Dp
D−p (see Theorem 5 in Section 6 below). Other important properties regarding the space W 1,p,xA

and
inspired by the unweighted case will be given in Section 6. For example, we will prove the existence of a
bounded trace operator γi :W 1,p,xA

(Ω) 7→ Lq,wi({xi = 0 }) if ai is sufficiently small (Theorem 6), and the
density of smooth function with support away from the face {xi = 0 } if ai is large (Theorem 8).

The rest of this article is organized as follows: Sections 2 and 3 are devoted to the proof of Theorem 1
and Theorem 2 respectively. In Section 4 we prove Theorem 3. We use Section 5 to introduce a special type
of weights on the real line for which a stronger version of (2) holds, and finally in Section 6 we analyze the
case of monomial weights xA, where we study embeddings into weighted Lp∗

(Ω), Lp∗(∂Ω), and an additional
density results for W 1,p,xA

(RN
A ) when ai ≥ p− 1.

2. Proof of Theorem 1

We begin this section by recalling some facts about the Whitney cover of a set (see for instance [21,
Chapter VI]). Given an open domain Ω there exists a countable collection W of closed cubes satisfying the
following properties:

(W1) Ω =
⋃

Q∈W Q.
(W2) The sides of each Q ∈ W are parallel to the coordinate axes.
(W3) The edge length of Q ∈ W satisfies l(Q) = 2−k for some k ∈ Z.
(W4) If Q1 touches Q2, that is if Q1 ∩Q2 ̸= ∅ then l

4 l(Q2) ≤ l(Q1) ≤ 4l(Q2).
(W5) int(Q1) ∩ int(Q2) = ∅ if Q1 ̸= Q2, where int(Q) denotes the interior of the cube Q.
(W6) For every Q ∈ W one has

√
Nl(Q) ≤ dist(Q,Ωc) ≤ 4

√
Nl(Q), where dist(Q,Ωc) denotes the distance

from Q to the complement of Ω.
An important fact following from (W6) is that for every Q ∈ W we have that 17

16Q ⊆ Ω.
For a given open set Ω and W its Whitney cover we will construct a partition of unity in the following

fashion: for n ∈ N we partition W as follows

W≤ = {Q ∈ Q : l(Q) ≤ 2−n } ,
W> = {Q ∈ Q : l(Q) > 2−n } .

and notice that if Q ∈ W> then l(Q) = 2k for some k > −n. Hence each Q ∈ W> can be bisected k + n

times to obtain 2(k+n)N cubes Q̂ of edge length l(Q̂) = 2−n covering Q. We denote by W ′
>(Q) the collection

of all the resulting bisected cubes Q̂ of the cube Q. Therefore if we denote by Wn = W≤ ∪
⋃

Q∈W>
W ′

>(Q)
then we obviously get

Ω =
⋃

Q∈Wn

Q,

and because 17
16Q ⊆ Ω for all Q ∈ W then we also have 17

16Q ⊆ Ω for all Q ∈ Wn. Additionally it is not
difficult to see that there exists a constant C > 0, depending only on the dimension N , such that for each
x ∈ Ω there are at most C cubes in Wn satisfying x ∈ 17

16Q (this is due to the fact that the bisection process
produces at most 3N touching cubes and properties (W4) and (W6)).
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We consider the following partition of the unity: if Q ∈ Wn let Q̃ = 17
16Q and φ̃Q̃ ∈ C∞

c (RN ) such that

0 ≤ φ̃Q̃ ≤ 1, φ̃Q̃ ≡ 1 in Q, supp φ̃Q̃ ⊆ Q̃, and
∣∣∣∇φ̃Q̃

∣∣∣ ≤ Cl(Q̃)−1. Finally let

φQ̃ :=
φ̃Q̃∑

Q∈Wn

φ̃Q̃

and we observe that because the sum in the denominator is locally finite we have

∣∣∣∇φQ̃

∣∣∣ ≤ C

l(Q̃)
and that

∑
Q∈Wn

φQ̃ = 1.

Proof of Theorem 1. Let u ∈ W 1,p,w(Ω) and n ∈ N, consider the partition of unity constructed above
{φQ̃ }

Q∈Wn
and define

un =
∑

Q∈Wn

uQ̃,wφQ̃,

which clearly belongs to C∞(Ω) because the sum is locally finite. We firstly claim that un −→
n→∞

u in Lp,w(Ω),

indeed the Poincaré inequality (2) over each Q̃ gives

ˆ
Ω

|un − u|p dw =

ˆ
Ω

∣∣∣∣∣∣
∑

Q∈Wn

φQ̃(uQ̃,w − u)

∣∣∣∣∣∣
p

dw

≤ C
∑

Q∈Wn

ˆ
Q̃

∣∣∣uQ̃,w − u
∣∣∣p dw

≤ C
∑

Q∈Wn

l(Q̃)p
ˆ
Q̃

|∇u|p dw

≤ C2−np
∑

Q∈Wn

ˆ
Ω

|∇u|p χQ̃ dw

≤ C2−np

ˆ
Ω

|∇u|p dw,
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hence un −→
n→∞

u in Lp,w(Ω). Similarly we have

ˆ
Ω

|∇ (un − u)|p dw =

ˆ
Ω

∣∣∣∣∣∣∇
 ∑

Q∈Wn

φQ̃(uQ̃,w − u)

∣∣∣∣∣∣
p

dw

=

ˆ
Ω

∣∣∣∣∣∣
 ∑

Q∈Wn

∇φQ̃(uQ̃,w − u)

−
∑

Q∈Wn

φQ̃∇u

∣∣∣∣∣∣
p

dw

≤ C

ˆ
Ω

∣∣∣∣∣∣
∑

Q∈Wn

∇φQ̃(uQ̃,w − u)

∣∣∣∣∣∣
p

dw

+ C

ˆ
Ω

∣∣∣∣∣∣
∑

Q∈Wn

φQ̃∇u

∣∣∣∣∣∣
p

dw

≤ C

ˆ
Ω

∣∣∣∣∣∣
∑

Q∈Wn

(uQ̃,w − u)χQ̃

l(Q̃)

∣∣∣∣∣∣
p

dw + C

ˆ
Ω

|∇u|p dw

≤ C
∑

Q∈Wn

1

l(Q̃)p

ˆ
Ω

∣∣∣uQ̃,w − u
∣∣∣p χQ̃ dw + C

ˆ
Ω

|∇u|p dw

≤ C

ˆ
Ω

|∇u|p dw,

where χA denotes the characteristic function of the set A.
The above tells us that the sequence {un }n∈N is bounded in W 1,p,w(Ω) and that un −→

n→∞
u in Lp,w(Ω).

Since for 1 < p <∞ W 1,p,w(Ω) is a reflexive Banach space, by passing to a sub-sequence (denoted the same)
we may suppose that un ⇀ u weakly in W 1,p,w(Ω). Finally, Mazur’s lemma tells us there is a sequence
consisting of convex combinations of un converging strongly to u in W 1,p,w(Ω).

In the case p = 1 we can proceed in the same fashion to obtain in addition that for every measurable set
A ⊆ RN one has ˆ

Ω∩A

|∇ (un − u)| dw ≤ C

ˆ
Ω∩A

|∇u| dw,

and since ∇u ∈ (L1,w(Ω))N we conclude that

sup
n∈N

ˆ
Ω∩A

|∇ (un − u)| dw −→
A↘∅

0,

therefore the sequence {∇ (un − u) }n∈N is equi-integrable and uniformly bounded in (L1,w(Ω))N , hence the
Dunford-Pettis theorems tells us that up to a subsequence (denoted the same) we obtain that ∇ (un − u)⇀ v
weakly for some some v ∈ (L1,w(Ω))N . As before, Mazur’s lemma tells us that there is a sequence of convex
combinations of un − u denoted by fn such that ∇fn converges strongly to v in (L1,w(Ω))N . However,
because un → u in L1,w(Ω) we also have that fn −→

n→∞
0 strongly in L1,w(Ω), so by recalling that w satisfies

the weighted Poincaré inequality, we can use (PI) to conclude that v = 0 and as a consequence fn −→
n→∞

0

strongly in W 1,1,w(Ω). ■

3. Proof of Theorem 2

The proof of this theorem is an adaptation of the original proof of Jones [17] and its modification by Chua
[7–10] to weighted spaces. Most of the calculations are similar to the aforementioned works so we will only
highlight the key differences in the proof.

In the classical proof of Jones the extension operator is built from Ω to the whole space RN and the initial
step is to consider the Whitney covers W1, W2 of Ω and of RN \ Ω respectively. Then by using the fact
that Ω is an (ε, δ) domain one can select a subset of W3 ⊆ W2 of cubes Q that are near ∂Ω and having a
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“reflection” Q∗ ∈ W1. In our case the situation is similar, we consider W1 the Whitney cover of Ω and W2

the Whitney cover of Ω̃ \ Ω. The set W3 of Jones’ would be the set

W3 = {Q ∈W2 : l(Q) ≤ εδ̃

16N
} ,

where δ̃ = min { δ, rad(Ω) } however, depending on the choice of Ω̃ the cubes in W3 could be far from ∂Ω

(and near ∂Ω̃) and no appropriate “reflected” cube can be found. To fix this, we instead consider

W̃3 = {Q ∈ W2 : dist(Q, ∂Ω) ≤ εδ̃

16
√
N

}

and we observe that for each Q ∈ W̃3 we have that

l(Q) ≤ dist(Q, ∂(Ω̃ \ Ω))√
N

≤ dist(Q, ∂Ω)√
N

≤ εδ̃

16N

and therefore W̃3 ⊆ W3. As a consequence the following properties of W̃3 follow almost verbatim from [17,
Lemmas 2.4-2.8]: There exists a constant C > 0 such that

(J1) For every cube Q ∈ W̃3 there exists a cube S ∈ W1 such that

l(Q) ≤ l(S) ≤ 4l(Q) and dist(S,Q) ≤ Cl(Q).

We will refer any S ∈ W1 satisfying mentioned properties as the Jones’ reflection of Q, and we will
denote it as Q∗.

(J2) If Q ∈ W̃3 and if S1, S2 ∈ W1 are Jones’ reflections of Q, then dist(S1, S2) ≤ Cl(Q).
(J3) For all cubes S ∈ W1 there are at most C cubes Q ∈ W̃3 such that S is a Jones’ reflection of Q.
(J4) If Q1, Q2 ∈ W̃3 touch then dist(Q∗

1, Q
∗
2) ≤ Cl(Q1).

(J5) If Q1, Q2 ∈ W̃3 touch then there exists a chain F = {Q∗
1 = S0, S1, . . . , Sm = Q∗

2} of touching cubes
in W1 connecting Q∗

1 and Q∗
2, with m ≤ C.

The second step is using the above construction to define the extension operator. We consider a partition of
the unity subordinated to W̃3 in the following fashion: for every Q ∈ W̃3 we choose a function ψQ ∈ C∞

c (Rn)
such that ψQ = 1 on Q with support in 17

16Q, |∇ψQ| ≤ Cl(Q)−1 and∑
Q∈W̃3

ψQ = 1 in
⋃

Q∈W̃3

Q, and 0 ≤
∑

Q∈W̃3

ψQ ≤ 1 everywhere.

Recalling that for an (ε, δ) domain Ω one has |∂Ω| = 0 (see [17, Lemma 2.3]) then one can define the extension
operator for almost every x ∈ Ω̃ as follows, for u ∈ Liploc(Ω) we define

(13) Eu(x) =

u(x) if x ∈ Ω,∑
Q∈W̃3

uQ,ωψQ(x) if x ∈ Ω̃ \ Ω.

The final steps consists on showing that this operator satisfies the required properties, but using the fact
that w satisfies (2),(5), and (6) allows us to follow almost verbatim the proof of [8, Theorem 1.1] to obtain

∥Eu∥W 1,p,w(Ω̃) ≤ C ∥u∥W 1,p,w(Ω) ,

and that Eu is locally Lipschitz, we omit the details. ■

Remark 1. We chose to present Theorem 2 only for the space Liploc(Ω), but as the reader can see, the
technique introduced by Jones and adapted by Chua allows us to obtain a similar theorem for the space
Lipk−1

loc (Ω), k ≥ 1.

4. Proof of Theorem 3

The proof of Theorem 3 is a direct consequence of the following
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Proposition 1. For i = 1, 2 suppose that µi is a measure satisfying the following Poincaré inequality for a
cube Qi ⊆ RNi of edge length li:

ˆ
Qi

∣∣∣∣u− 1

µi(Qi)

ˆ
Qi

udµi

∣∣∣∣p dµi ≤ Cil
p
i

ˆ
Qi

|∇u|p dµi,

for u ∈ C1(RNi). Then the product measure µ = µ1 × µ2 satisfies
ˆ
Q1×Q2

∣∣∣∣u− 1

µ(Q1 ×Q2)

ˆ
Q1×Q2

udµ

∣∣∣∣p dµ ≤ Cmax { lp1, l
p
2 }
ˆ
Q1×Q2

|∇u|p dµ,

for u ∈ C1(RN1 × RN2).

Proof. Suppose that 1
µ(Q1×Q2)

´
Q1×Q2

udµ = 0 and for u ∈ C1(RN1 × RN2) consider

g(x) =
1

µ2(Q2)

ˆ
Q2

u(x, y) dµ2(y).

Observe that 1
µ1(Q1)

´
Q1
g(x) dµ1(x) = 0 therefore

ˆ
Q1

|g(x)|p dµ1(x) ≤ Clp1

ˆ
Q1

|∇g(x)|p dµ1(x),

but on the one hand Minkowski’s inequality for integrals tells us that(ˆ
Q1

|∇g(x)|p dµ1(x)

) 1
p

=
1

µ2(Q2)

(ˆ
Q1

∣∣∣∣ˆ
Q2

∇xu(x, y) dµ2(y)

∣∣∣∣p dµ1(x)

) 1
p

≤ 1

µ2(Q2)

ˆ
Q2

(ˆ
Q1

|∇xu(x, y)|p dµ1(x)

) 1
p

dµ2(y)

≤
(

1

µ2(Q2)

ˆ
Q2

ˆ
Q1

|∇xu(x, y)|p dµ1(x) dµ2(y)

) 1
p

,

and on the other handˆ
Q1×Q2

|u|p dµ ≤ 2p−1

ˆ
Q1×Q2

|u− g|p dµ+ 2p−1

ˆ
Q1×Q2

|g|p dµ

≤ 2p−1

ˆ
Q1

ˆ
Q2

∣∣∣∣u(x, y)− 1

µ2(Q2)

ˆ
Q2

u(x, y) dµ2(y)

∣∣∣∣p dµ2(y) dµ1(x)

+ 2p−1lp1

ˆ
Q2

ˆ
Q1

|∇g(x)|p dµ1(x) dµ2(y)

≤ C22
p−1lp2

ˆ
Q1

ˆ
Q2

|∇yu(x, y)|p dµ2(y) dµ1(x)

+ C12
p−1lp1µ2(Q2)

ˆ
Q1

|∇g(x)|p dµ1(x)

≤ C22
p−1lp2

ˆ
Q1

ˆ
Q2

|∇yu(x, y)|p dµ2(y) dµ1(x)

+ C12
p−1lp1

ˆ
Q2

ˆ
Q1

|∇xu(x, y)|p dµ1(x) dµ2(y)

≤ Cmax {C1l
p
1, C2l

p
2 }
ˆ
Q1×Q2

|∇u|p dµ.

■
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5. A special class of weights

In the introduction we mentioned that the problem of classifying the weights for which the Poincaré
inequality (2) is valid in dimension N = 1 is completely solved in [11]. In this section we introduce a special
class of weights with a condition that is a bit easier to verify than (3) yet producing a slightly stronger version
of the Poincaré inequality (2) in dimension N = 1.

Definition 1. For a function w : I → [0,∞) and p > 1, one says that w satisfies the condition (†p) on the
interval I if there exists a constant K ≥ 0 such that for every sub-interval (α, β) ⊆ I one has

(†p)
ˆ β

α

∣∣∣∣ˆ y

α

w(s)1−p′
ds

∣∣∣∣p−1

+

∣∣∣∣∣
ˆ β

y

w(s)1−p′
ds

∣∣∣∣∣
p−1
w(y) dy ≤ K |β − α|p .

Remark 2. Observe that if w is Ap in I then one could write for (α, β) ⊆ I

ˆ β

α

w(y)

∣∣∣∣ˆ y

α

w(s)1−p′
ds

∣∣∣∣p−1

dy ≤

(ˆ β

α

w(y) dy

)
·

(ˆ β

α

w(s)1−p′
ds

)p−1

≤ K |β − α|p ,
and

ˆ β

α

w(y)

∣∣∣∣∣
ˆ β

y

w(s)1−p′
ds

∣∣∣∣∣
p−1

dy ≤

(ˆ β

α

w(y) dy

)
·

(ˆ β

α

w(s)1−p′
ds

)p−1

≤ K |β − α|p ,
because w is Ap in I, therefore every Ap weight satisfies (†p).

On the other hand, it is known that if −1 < a < p− 1 then w(y) = |y|a is Ap in R (see for instance [15])
and in particular for every I ⊆ R, but if a ≥ p− 1 then w is not Ap in R+ (and a fortiori in R). Indeed, if
a > p− 1, 0 < α < β then for 0 < x = α

β < 1 we could write(´ β
α
w(y) dy

)(´ β
α
w(y)1−p′

dy
)p−1

(β − α)p
∼ (1− x1+a)(1− x

a
p−1−1)p−1

xa−p+1(1− x)p
−→
x→0+

+∞.

Similarly, if a = p− 1 we have
´ β
α
w(y) dy

∣∣∣´ βα w(y)1−p′
dy
∣∣∣p−1

(β − α)p
∼ (1− xp)(− lnx)p−1

(1− x)p
−→
x→0+

+∞,

however, we will see that |y|a does satisfy (†p) in R+ for all a > −1.

Weights satisfying (†p) satisfy a stronger Poincaré inequality in dimension N = 1 as the following result
shows:

Proposition 2. For an interval I ⊆ R suppose w : I → [0,∞) satisfies (†p) in I. Then for every p > 1 there
exists a constant C > 0 such that for every interval Q ⊆ I of length l > 0 and every u ∈ C1(R) one hasˆ

Q

ˆ
Q

|u(x)− u(y)|p dw(x) dw(y) ≤ Clpw(Q)

ˆ
Q

|u′(x)|p dw(x).

Proof. For x, y ∈ Q write

|u(x)− u(y)| ≤
ˆ x

y

|u′(s)| ds ≤
(ˆ

Q

|u′(s)|p dw(s)

) 1
p
(ˆ x

y

w1−p′
(s) ds

)1− 1
p

,

henceˆ
Q

ˆ
Q

|u(x)− u(y)|p dw(y) dw(x) ≤
(ˆ

Q

|u′(s)|p dw(s)

)
×
ˆ
Q

ˆ
Q

∣∣∣∣ˆ x

y

w1−p′
(s) ds

∣∣∣∣p−1

dw(y) dw(x),
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but if Q = (α, β) thenˆ
Q

ˆ
Q

∣∣∣∣ˆ x

y

w1−p′
(s) ds

∣∣∣∣p−1

dw(x) dw(y)

=

ˆ
Q

ˆ β

α

∣∣∣∣ˆ x

y

w1−p′
(s) ds

∣∣∣∣p−1

dw(x) dw(y)

=

ˆ
Q

(ˆ x

α

∣∣∣∣ˆ x

y

w1−p′
(s) ds

∣∣∣∣p−1

dw(y)

)
dw(x)

+

ˆ
Q

(ˆ β

x

∣∣∣∣ˆ x

y

w1−p′
(s) ds

∣∣∣∣p−1

dw(y)

)
dw(x)

≤
ˆ
Q

(K |x− α|p) dw(x) +
ˆ
Q

(K |β − x|p) dw(x)

≤ 2Klpw(Q),

hence ˆ
Q

ˆ
Q

|u(x)− u(y)|p dw(y) dw(x) ≤ 2Klpw(Q)

ˆ
Q

|u′(s)|p dw(s).

■

Corollary 1. With the same hypotheses as Proposition 2 we can find a constant C > 0 such that for every
interval Q ⊆ I and every u ∈ C1(R) one hasˆ

Q

|u− uQ,w|p dw ≤ Kl(Q)p
ˆ
Q

|∇u|p dw.

Proof. Observe that for any x ∈ Q one can write

|u(x)− uQ,w|p ≤ 1

w(Q)

ˆ
Q

|u(x)− u(y)|p dw(y)

thanks to Hölder’s inequality. The result follows by integrating with respect to dw(x) and using Proposition 2.
■

6. The case of Monomial weights

In this section we use the previous results to study the case of monomials weights of the form

w(x) = w(x1, x2, . . . , xN ) =

k∏
i=1

|xi|ai

where 1 ≤ k ≤ N and ai ≥ 0. We begin by proving that the weight function w(s) = |s|a satisfies (†p) in R+

for all a > −1, and moreover any function resembling |s|a does satisfy (†p).
In what follows, we will say that f ∼ g for f, g : U → R if there exists C ≥ 1 such that

1

C
g(s) ≤ f(s) ≤ Cg(s) ∀ s ∈ U.

Lemma 1. Let p > 1, a > −1, and w : [0,∞) → [0,∞) satisfying

w(s) ∼ |s|a ∀ s > 0,

then w satisfies (†p) in R+.

Proof. For 0 < b < c <∞ define Ib, Jc : (b, c) → R as

Ib(x) =

ˆ x

b

w(y)

∣∣∣∣ˆ x

y

w(s)1−p′
ds

∣∣∣∣p−1

dy,

Jc(x) =

ˆ c

x

w(y)

∣∣∣∣ˆ x

y

w(s)1−p′
ds

∣∣∣∣p−1

dy.
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By the hypothesis over w we have∣∣∣∣ˆ y

x

w(s)1−p′
ds

∣∣∣∣ ∼ ∣∣∣∣ˆ y

x

|s|−
a

p−1 ds

∣∣∣∣ ∼

∣∣∣|y|− a

p−1 y − |x|−
a

p−1 x
∣∣∣ if a ̸= p− 1,∣∣∣ln(y

x

)∣∣∣ if a = p− 1.

We separate the study into three cases: −1 < a < p− 1, a = p− 1, and a > p− 1. Although the first case
follows directly by noticing that |s|a is an Ap weight we will provide a proof for the sake completeness.
Case 1 −1 < a < p− 1: Observe that

Ib(x) ∼ xp−1−a

ˆ x

b

ya
(
1−

(y
x

) p−1−a
p−1

)p−1

dy

if y = t
p−1

p−1−ax then

Ib(x) ∼ xp
ˆ 1

( b
x )

p−1−a
p−1

t
ap

p−1−a (1− t)p−1 dt

but if Ĩ(s) =
´ 1
s
t

ap
p−1−a (1− t)p−1 dt then we have

Ĩ(s) ≤ K1(1− s
p−1

p−1−a )p ∀ s ∈ [0, 1],

because L’Hôpital’s theorem tells us that if s ∼ 1 then

Ĩ(s)

(1− s
p−1

p−1−a )p
∼
(

1− s

1− s
p−1

p−1−a

)p−1

∼ 1,

and because −1 < a < p− 1 we also know that

Ĩ(0) =

ˆ 1

0

t
ap

p−1−a (1− t)p−1 dt <∞

therefore we deduce that K1 = sup
s∈[0,1]

Ĩ(s)

(1−s
p−1

p−1−a )p
is finite. This immediately gives

Ib(x) ∼ xpĨ

((
b

x

) p−1−a
p−1

)
≤ K1(x− b)p.

Similarly

Jc(x) ∼ xp−1−a

ˆ c

x

ya
((y

x

) p−1−a
p−1 − 1

)p−1

dy

if y = t
p−1

p−1−ax then

Jc(x) ∼ xp
ˆ ( c

x )
p−1−a
p−1

1

t
ap

p−1−a (t− 1)p−1 dt.

If we let J̃(s) =
´ s
1
t

ap
p−1−a (t− 1)p−1 dt then

J̃(s) ≤ K2(s
p−1

p−1−a − 1)p, ∀ s ≥ 1.

Indeed, observe that for s > 1 large L’Hôpital’s rule gives us that

J̃(s)

(s
p−1

p−1−a − 1)p
∼

(
s

a
p−1−a (s− 1)

s
p−1

p−1−a − 1

)p−1

=

(
1− s−1

1− s−
p−1

p−1−a

)p−1

∼ 1,

and similarly for s ∼ 1 we have

J̃(s)

(s
p−1

p−1−a − 1)p
∼
(

s− 1

s
p−1

p−1−a − 1

)p−1

∼ 1,

therefore K2 = sup
s≥1

J̃(s)

(s
p−1

p−1−a −1)p
is finite and we conclude that

Jc(x) ≤ K2(c− x)p.
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Case 2 a = p− 1: In this case we find that

Ib(x) ∼ xp
ˆ ln( x

b )

0

e−pttp−1 dt

but if H(s) =
´ s
0
e−pttp−1 it is not difficult to see that

H(s) ≤ K3(1− e−s) ∀ s ≥ 0,

which immediately gives
Ib(x) ≤ K3(x− b)p.

Proceeding in the same fashion gives Jc(x) ≤ K4(c− x)p, we omit the details.
Case 3 a > p− 1: As above we obtain that

Ib(x) ∼ xp
ˆ ( x

b )
a−p+1
p−1

1

t
ap

p−1−a (t− 1)
p−1

dt

but if Ĩ(s) =
´ s
1
t

ap
p−1−a (t− 1)

p−1
dt, and just as in the previous cases it is not difficult to see that

Ĩ(s) ≤ K(1− s
p−1

p−1−a )p ∀ s ≥ 1,

which immediately gives
Ib(x) ≤ K(x− b)p.

Likewise we obtain Jc(x) ≤ K(c− x)p.
■

Thanks to Lemma 1 we are able to apply Theorems 1 to 3 to the weight

w(x) = w(x1, x2, . . . , xN ) =

k∏
i=1

|xi|ai = xA

and conclude that the weighted Poincaré inequality (2) is valid in every open subset of RN
A = (R+)

k × RN−k

whenever A = (a1, . . . , ak, 0) ∈ Rk × RN−k satisfies ai > −1 for all i ∈ { 1, . . . , k }. In addition we can define
the spaces

Lp,A(Ω) = Lp,xA

(Ω),

W 1,p,A(Ω) =W 1,p,xA

(Ω),

H1,p,A(Ω) = H1,p,xA

(Ω),

and that for each (ε, δ) domain Ω ⊆ RN
A we have the existence of an extension operator E : W 1,p,A(Ω) →

W 1,p,A(RN
A ).

Remark 3. Observe that if Ω⊂ RN
A then xA ≥ κ > 0 for all x ∈ Ω and as a consequence

W 1,p,A(Ω) ↪→W 1,p(Ω)

continuously. In order to avoid this situation and to “see” the behavior of the weight xA over Ω we will suppose
that Ω contains a set of the form (0, 1)k × Ω̃ for some Ω̃ ⊆ RN−k.

As we mentioned in the introduction, and with the aid of [2, Theorem 1.3] or [4, Theorem 1], the above
construction allows us to obtain a Sobolev embedding theorem of such domains, that is

Theorem 4. Suppose that A ∈ (R+)
k × { 0 }N−k and that Ω ⊆ RN

A , then

W 1,p,A(Ω) ↪→ Lr,A(Ω),

for every p ≤ r ≤ Dp
N−p , where D = N + a1 + . . .+ ak.

In particular one has that
W 1,p,A(Ω) ↪→ Lr,A(Ω)

for all 1 ≤ r ≤ Dp
D−p for bounded Ω, and just as in the unweighted case this embedding is compact in the

subcritical case.
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Theorem 5. Let A ∈ (R+)
k×{ 0 }N−k and Ω a bounded domain in RN

A . The inclusion W 1,p,A(Ω) ↪→ Lr,A(Ω)

is compact when 1 ≤ r < Dp
D−p .

Proof. Observe that it is enough to prove the result for r = 1, as if we know that the embedding W 1,p,A(Ω) ↪→
L1,A(Ω) is compact when for 1 < r < Dp

D−p one can use the interpolation inequality to obtain θ ∈ (0, 1) such
that

∥u∥Lr,A(Ω) ≤ ∥u∥θ
L

Dp
D−p

,A
(Ω)

∥u∥1−θ
L1,A(Ω) ≤ C ∥u∥θW 1,p,A(Ω) ∥u∥

1−θ
L1(K)

so if (un)n∈N ⊆ W 1,p,A(Ω) is a bounded sequence then for any subsequence (denoted the same) such that
(un) is Cauchy in L1,A(Ω), then (un)n∈N is also Cauchy in Lr,A(Ω).

Let B be the unit ball in W 1,p,A(Ω), we will show that that B is totally bounded in L1,A(Ω). Let ε > 0
and define

Ωm =

k⋃
i=1

{x ∈ Ω : |xi| <
2

m
} .

Observe that either Ωm is empty or |Ωm| = o(1) as m → ∞ (since |Ω| < ∞). Using the Hardy-Sobolev
inequality [4, Theorem 1] we deduce

∥u∥L1,A(Ωm) ≤ ∥u∥
L

Dp
D−p

,A
(Ω)

|Ωm|1−
D−p
Dp

≤ C ∥u∥W 1,p,A(Ω) |Ωm|1−
D−p
Dp

≤ C |Ωm|1−
D−p
Dp , ∀ u ∈ B,

therefore we can find m > 0 large enough such that

∥u∥L1,A(Ωm) <
ε

3
, ∀ u ∈ B.

Now consider ϕ ∈ C∞(R) with 0 ≤ ϕ ≤ 1, |ϕ′| ≤ L such that

ϕ(t) =

{
0 if t ≤ 1

1 if t ≥ 2,

and define Φm(x) =
∏N

i=1 ϕ(mxi), which satisfies 0 ≤ Φm ≤ 1 and |∇Φm| ≤ Lm. Clearly the set

ΦmB = {Φmu : u ∈ B }

is bounded in W 1,p(Ω). Indeed, if x ∈ suppΦmu then maxA ≥ 1, thereforeˆ
Ω

|∇ (Φmu)|p ≤ ma

ˆ
Ω

|∇ (Φmu)|p xA dx

≤ Cpm
a

(ˆ
Ω

|∇u|p xA dx+ Lpmp

ˆ
Ω

|u|p xA dx

)
≤ C(Ω,m) ∥u∥pW 1,p,A(Ω) .

Similarly
´
Ω
|Φmu|p dx ≤ C(Ω,m) ∥u∥pW 1,p,A(Ω) and we can use Rellich theorem to conclude that ΦmB is

totally bounded in L1(Ω). We claim that since ai ≥ 0 for all i, then ΦmB is also totally bounded in L1,A(Ω).
Indeed, observe that by Hölder’s inequality we haveˆ

Ω

∣∣xAv∣∣ ≤ (max
x∈Ω

xA
)ˆ

Ω

|v| ≤ C(Ω, A)

ˆ
Ω

|v| ,

thus if we have an δ-cover of ΦmB in L1(Ω), then we have a δC(Ω, A)-cover of ΦmB in L1,A(Ω).
Hence we may cover ϕmB by a finite number of balls of radius ε > 0 in L1,A(Ω), that is, there exist

{ g1, . . . , gM } ⊆ L1,A(Ω) such that for any u ∈ B there is i ∈ { 1, . . . ,M } such that

∥Φmu− gi∥L1,A(Ω) <
ε

3
,
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from here we can write

∥u− gi∥L1,A(Ω) ≤ ∥Φmu− gi∥L1,A(Ω) + ∥u− Φmu∥L1,A(Ω)

<
ε

3
+ 2 ∥u∥L1,A(Ωm)

≤ ε.

This implies that we can construct a ε-cover of B in L1,A(Ω). ■

In analogy with the unweighted case, one can try to define traces of functions in W 1,p,A(Ω) onto part
of the boundary {xi = 0 } ∩ ∂Ω. A simple computation involving functions of the form xγi lnxi tells us
that it is impossible to define the trace of a function u when ai ≥ p − 1 and {xi = 0 } ∩ ∂Ω contains an
(N − 1)-dimensional open set. However, if the parameter satisfies ai < p− 1 one has the following

Theorem 6. Suppose A ∈ (R+)
k × { 0 }N−k satisfies a1 < p− 1. For D = N + a1 + . . .+ ak define

p1 =
(D − a1 − 1)p

D − p

and Â1 = (a2, . . . , ak, 0) ∈ (R+)
k−1×RN−k. Then, there exists a constant C > 0 such that for all u ∈ C1

c (RN )

∥u(0, ·)∥
Lp1,Â1 ((R+)k−1×RN−k)

≤ C ∥∇u∥Lp,A(RN
A ) .

Proof. We write x = (x1, y) and we begin with inequality (32) in [4, Theorem 6] (which follows from [2,
Theorem 1.6]) for k = 1 to obtain for each y ∈ RN−1, q = (D−a1)p

D−p and α = q + p
p−a1−1

|u(0, y)|α ≤ C

(ˆ
R+

|u(x1, y)|q dx1

)(ˆ
R+

|∂1u(x1, y)|p xa1
1 dx1

) 1
p−a1−1

,

since a1 < p− 1. We raise this inequality to the power
p1
α

, we multiply it by yÂ1 and we integrate it over the

y variable over (R+)
k−1 × RN−k to obtain

ˆ
(R+)k−1×RN−k

|u(0, y)|p1 yÂ1 dy

≤ C

ˆ
(R+)k−1×RN−k

(ˆ
R+

|u(x1, y)|q yÂ1 dx1

) p1
α

×

(ˆ
R+

|∂1u(x1, y)|p xa1
1 y

Â1 dx1

) p1
α(p−a1−1)

 dy,

because p1

α + p1

α(p−a1−1) = 1. Using Hölder’s inequality yields

ˆ
(R+)k−1×RN−k

|u(0, y)|p1 yÂ1 dy

≤ C

(ˆ
(R+)k−1×RN−k

ˆ
R+

|u(x1, y)|q yÂ1 dx1 dy

) p1
α

×

(ˆ
(R+)k−1×RN−k

ˆ
R+

|∂1u(x1, y)|p xa1
1 y

Â1 dx1 dy

) p1
α(p−a1−1)

.



16 HERNÁN CASTRO AND MARCO CORNEJO

The choice of q = (D−a1)p
D−p also allows us to use [4, Theorem 1] to say that

ˆ
(R+)k−1×RN−k

ˆ
R+

|u(x1, y)|q yÂ1 dx1 dy

≤ C

(ˆ
(R+)k−1×RN−k

ˆ
R+

|∇u(x1, y)|p xa1
1 y

Â1 dx1 dy

) q
p

and as a consequenceˆ
(R+)k−1×RN−k

|u(0, y)|p1 yÂ1 dy

≤ C

(ˆ
(R+)k−1×RN−k

ˆ
R+

|∇u(x1, y)|p xa1
1 y

Â1 dx1 dy

) qp1
pα +

p1
α(p−a1−1)

,

this concludes the proof when noticing that

α = q +
p

p− a1 − 1
⇒ qp1

αp
+

p1
α(p− a1 − 1)

=
p1
p
.

■

The above theorem tells us that it is convenient to suppose (after possibly relabeling the coordinates) that
the vector A = (a1, . . . , ak, 0) satisfies

ai < p− 1 if i ≤ k1(14)
ai ≥ p− 1 if k1 < i ≤ k(15)

for some 0 ≤ k1 ≤ k. With this convention and for i ≤ k we can consider the sets

Γi = {x ∈ RN : xj > 0 ∀ j ∈ { 1, . . . , k } \ { i } , xi = 0 }

which correspond to each of the faces of the boundary of RN
A . Theorem 6 above tells us that if i ≤ k1 there is

a bounded trace operator γi :W 1,p,A(RN
A ) → Lpi,Âi(Γi), where

pi =
(D − ai − 1)p

D − p
,

Âi = (a1, . . . , ai−1, ai+1, . . . , ak) ∈ Rk−1,

and consequently we can define the space

W 1,p,A
0 (RN

A ) =

k1⋂
i=1

ker γi,

which serves as the analog of the unweighted space W 1,p
0 of traceless functions. This space can also be defined

as the closure of the set of smooth functions with compact support in the cone (R+)
k1 ×RN−k1 , that is if we

consider
H1,p,A

0 (RN
A ) = C1

c ((R+)k1 × RN−k1)
W 1,p,A(Ω)

then we have

Theorem 7. W 1,p,A
0 ((R+)

k1 × RN−k1) = H1,p,A
0 ((R+)

k1 × RN−k1)

Proof. In order to make the notation simpler, we will suppose that k1 = k = N . Since C∞
c ((R+)

N ) ⊆
W 1,p,A

0 ((R+)
N ) we only need to show the inclusion W 1,p,A

0 ((R+)
N ) ⊆ H1,p,A

0 ((R+)
N ).

Let u ∈ W 1,p,A
0 ((R+)

N ), then u ∈ W 1,p,A((R+)
N ) and γiu = 0 in Lpi,Âi((R+)

N−1) for all i. Consider
a smooth function ρ such that ρ(s) = 0 if |s| ≤ 1, ρ(s) = 1 if |s| ≥ 2 and 0 ≤ ρ(s) ≤ 1. Define
ρn(x) =

∏N
i=1 ρ(nxi) and for u ∈ W 1,p,A(Ω) consider un = ρnu. We claim that if u ∈ W 1,p,A

0 ((R+)
N ) then

un −→
n→∞

u in W 1,p,A((R+)
N ). Observe that

∇un = ρn∇u+∇ρnu,
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and as a consequence

ˆ
(R+)N

|∇(u− un)|p xA dx ≤ C

ˆ
(R+)N

|(1− ρn)∇u|p xA dx+

ˆ
(R+)N

|u∇ρn|p xA dx.

Since ρn −→
n→∞

1 in (R+)
N we deduce by dominated convergence that the first term tends to zero as n

tends to ∞. For the second term, we observe that |∇ρn| ≤ Cn and that it has support on the set⋃N
i=1 {x ∈ RN : 0 ≤ xi ≤ 2

n } and as a consequence we only need to show that

np
ˆ 2

n

0

ˆ
(R+)N−1

|u(x̂i + xiei)|p xA dx̂i dxi −→
n→∞

0,

or equivalently

1

mp

ˆ m

0

ˆ
(R+)N−1

|u(x̂i + xiei)|p xA dx̂i dxi −→
m→0

0,

for all i.
Observe that for xi > 0 and almost every x̂i ∈ (R+)

N−1 we can write

|u(x̂i + xiei)− u(x̂i)| ≤
ˆ xi

0

∣∣∣∣ ∂u∂xi (x̂i + sei)

∣∣∣∣ ds
≤ Cx

p−1−ai
p

i

(ˆ xi

0

∣∣∣∣ ∂u∂xi (x̂i + sei)

∣∣∣∣p sai ds

) 1
p

and as a consequence

|u(x̂i + xiei)− u(x̂i)|p xA ≤ Cxp−1
i

ˆ xi

0

|∇u(x̂i + sei)|p sai x̂
Âi
i ds.

Now, consider B ⊆ (R+)
N−1 a bounded set and integrate the above inequality over B, to obtain

ˆ
B

|u(x̂i + xiei)− u(x̂i)|p xA dx̂i ≤ Cxp−1
i

ˆ xi

0

ˆ
B

|∇u(x̂i + sei)|p x̂Âi
i sai dx̂i ds.

We integrate the above in the xi variable over the interval (0,m) and we get

ˆ m

0

ˆ
B

|u(x̂i + xiei)− u(x̂i)|pxA dx̂i dxi

≤ C

ˆ m

0

xp−1
i

ˆ xi

0

ˆ
B

|∇u(x̂i + sei)|p x̂Âi
i sai dx̂i dsdxi

≤ C

ˆ m

0

xp−1
i

ˆ m

0

ˆ
B

|∇u(x̂i + sei)|p x̂Âi
i sai dx̂i dsdxi

= Cmp

ˆ m

0

ˆ
B

|∇u(x̂i + xiei)|p xA dx̂i dxi.
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Consequently, we obtain

1

mp

ˆ m

0

ˆ
B

|u(x̂i + xiei)|p xA dx̂i dxi ≤
C

mp−1−ai

ˆ
B

|u(x̂i)|p x̂Âi
i dx̂i

+ C

ˆ m

0

ˆ
B

|∇u(x̂i + xiei)|p xA dx̂i dxi

≤ C |B|1−
p
pi

mp−1−ai

(ˆ
B

|u(x̂i)|pi x̂Âi
i dx̂i

) p
pi

+ C

ˆ m

0

ˆ
B

|∇u(x̂i + xiei)|p xA dx̂i dxi

≤ C |B|1−
p
pi

mp−1−ai

(ˆ
(R+)N−1

|γiu(x̂i)|pi x̂Âi
i dx̂i

) p
pi

+ C

ˆ m

0

ˆ
B

|∇u(x̂i + xiei)|p xA dx̂i dxi

= C

ˆ m

0

ˆ
B

|∇u(x̂i + xiei)|p xA dx̂i dxi

≤ C

ˆ m

0

ˆ
(R+)N−1

|∇u(x̂i + xiei)|p xA dx̂i dxi

because we are supposing γiu = 0 on Lpi,Âi((R+)
N−1). By taking B ↗ (R+)

N−1 and using monotone
convergence we deduce that

1

mp

ˆ m

0

ˆ
(R+)N−1

|u(x̂i + xiei)|p xA dx̂i dxi

≤ C

ˆ m

0

ˆ
(R+)N−1

|∇u(x̂i + xiei)|p xA dx̂i dxi

−→
m→0

0,

by dominated convergence.
■

A more surprising fact occurs if we define

H̃1,p,A
0 (RN

A ) := C1
c (Rk1 × (R+)k−k1 × RN−k)

W 1,p,A(Ω)

which in some sense is the space of functions “vanishing” on Γi when k1 < i ≤ k (so that ai ≥ p− 1 and no
bounded trace operator can exist). It turns out that this space coincides with W 1,p,A(RN

A ) as it can be seen
in the following

Theorem 8. C1
c (Rk1 × (R+)

k−k1 × RN−k) is dense W 1,p,A(RN
A ).

To prove this result we need the following is a version of a critical Hardy inequality that it is well known
but we provide its proof for the reader’s convenience.

Lemma 2. Let p > 1 and R > 0, then for every u ∈ C1(R) satisfying suppu ⊆ (−R,R) one has

ˆ R

0

1

x

∣∣∣∣∣ u(x)

1− ln
(
x
R

) ∣∣∣∣∣
p

dx ≤
(

p

p− 1

)p ˆ R

0

xp−1 |u′(x)|p dx
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Proof. Observe that for δ > 0 we can integrate by parts to get

ˆ R

δ

|u|p

x(1− ln
(
x
R

)
)p−1

= − |u(δ)|p

(1− ln
(
δ
R

)
)p−1

−
ˆ R

δ

x

(
|u|p

x(1− ln
(
x
R

)
)p−1

)′

dx

≤ −
ˆ R

δ

x

(
|u|p

x(1− ln
(
x
R

)
)p−1

)′

dx

= −p
ˆ R

δ

p |u|p−2
uu′

(1− ln
(
x
R

)
)p−1

dx

+

ˆ R

δ

|u|p

x(1− ln
(
x
R

)
)p−1

dx

− (p− 1)

ˆ R

δ

|u|p

x(1− ln
(
x
R

)
)p

dx,

hence

(p− 1)

ˆ R

δ

|u|p

x(1− ln
(
x
R

)
)p

dx ≤ −p
ˆ R

δ

p |u|p−2
uu′

(1− ln
(
x
R

)
)p−1

dx

and the result follows from Hölder’s inequality and by letting δ decrease to zero. ■

Proof of Theorem 8. We suppose without loss of generality that k1 = 0 and that k = N so that the notation
becomes less crowded.

We will show that C1
c ((R+)

N ) is dense in H1,p,A((R+)
N ), so we take u ∈ H1,p,A((R+)

N ) and ε > 0. By
definition we know that u, ∂xi

u ∈ Lp,A((R+)
N ) and there exists uε ∈ C1((R+)

N ) with support contained in
B(0, R) for some R = Rε > 1 such that

∥uε∥W 1,p,A((R+)N ) ≤ C ∥u∥W 1,p,A((R+)N ) , andˆ
(R+)N

|u− uε|p xA dx+

ˆ
(R+)N

|∇(u− uε)|p xA dx ≤ ε.

For 0 < δ < 1
eR4 , we consider a cut-off function ρδ ∈ C1(R) satisfying supp ρδ ⊂ [δ4,∞) and

ρδ(y) = 1 for all y ≥ δ,

|ρδ(y)| ≤ C,

|ρ′δ(y)| ≤
C

y |ln δ|
,

which can be done by mollifying the continuous function

ρ(y) =


0 if y < δ3,

3− ln y

ln δ
if δ3 ≤ y < δ2,

1 if y ≥ δ2.

Define φδ(x) =
∏N

i=1 ρδ(xi) and consider uε,δ = φδuε. We claim that for δ > 0 small we have
ˆ
(R+)N

|uε,δ − uε|p xA dx+

ˆ
(R+)N

|∇(uε,δ − uε)|p xA dx ≤ ε.

Indeed, we notice that ˆ
(R+)N

|uε,δ − uε|p xA dx =

ˆ
(R+)N

|(φε − 1)uε|p xA dx
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and that ˆ
(R+)N

|∇(uε,δ − uε)|p xA dx =

ˆ
(R+)N

|(φδ − 1)∇uε +∇φδuε|p xA dx

≤ C

[ˆ
(R+)N

|(φδ − 1)∇uε|p xA dx

+

N∑
i=1

ˆ
(R+)N

|ρ′δ(xi)uε|
p
xA dx

]
.

If ai > p− 1, thanks to the Hardy-Sobolev inequality [4, Theorem 1] we haveˆ
(R+)N

|ρ′δ(xi)uε|
p
xA dx ≤ 1

|ln δ|p
ˆ
(R+)N−1

x̂Âi
i

ˆ δ

0

|uε(xiei + x̂i)|p xai−p
i dxi dx̂i

≤ C

|ln δ|p
ˆ
(R+)N−1

x̂Âi
i

ˆ ∞

0

|∂iuε(xiei + x̂i)|p xai
i dxi dx̂i

=
C

|ln δ|p
ˆ
(R+)N

|∂iuε(x)|p xA dx

On the other hand if ai = p− 1 we use Lemma 2 to obtain that

(16)
ˆ
(R+)N−1

x̂Âi
i

ˆ R

0

1

xi

∣∣∣∣uε(xiei + x̂i)

1− ln xi

R

∣∣∣∣p dxi dx̂i ≤
(

p

p− 1

)p ˆ
(R+)N

|∂iuε(x)|p xA dx

≤ C ∥u∥pW 1,p,A((R+)N ) .

From the assumption that δ < e−1R−4 we deduce that 1− 4 ln
(
δ
R

)
≤ −5 ln δ andˆ

(R+)N
|ρ′δ(xi)uε|

p
xA dx =

ˆ
(R+)N−1

x̂Âi
i

ˆ δ

δ4

1

xi

∣∣∣∣uε(xiei + x̂i)

ln δ

∣∣∣∣p dxi dx̂i

≤ 5p
ˆ
(R+)N−1

x̂Âi
i

ˆ δ

δ4

1

xi

∣∣∣∣∣uε(xiei + x̂i)

1− 4 ln δ
R

∣∣∣∣∣
p

dxi dx̂i

≤ 5p
ˆ
(R+)N−1

x̂Âi
i

ˆ δ

δ4

1

xi

∣∣∣∣uε(xiei + x̂i)

1− ln xi

R

∣∣∣∣p dxi dx̂i

−→
δ→0

0.

In any case we conclude thatˆ
(R+)N

|uε,δ − uε|p xA dx+

ˆ
(R+)N

|∇(uε,δ − uε)|p xA dx−→
δ→0

0,

therefore we can select δε > 0 small so thatˆ
(R+)N

|uε,δε − uε|p xA dx+

ˆ
(R+)N

|∇(uε,δε − uε)|p xA dx ≤ ε

hence for given ε > 0 we have found a function uε,δε ∈ C1
c ((R+)

N ) such thatˆ
(R+)N

|u− uε,δε |
p
xA dx+

ˆ
(R+)N

|∇(u− uε,δε)|
p
xA dx ≤ Cε.

■
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