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Abstract. Given α > 0 and f ∈ L2(0, 1), we are interested in the equation{
−(x2αu′(x))′ + u(x) = f(x) on (0, 1],

u(1) = 0.

We prescribe appropriate (weighted) homogeneous boundary conditions at the origin and prove the existence
and uniqueness of H2

loc(0, 1] solutions. We study the regularity at the origin of such solutions. We perform

a spectral analysis of the differential operator Lu := −
(
x2αu′

)′
+ u under those appropriate homogenous

boundary conditions.

1. Introduction

This paper concerns the following Sturm-Liouvile equation{
−(x2αu′(x))′ + u(x) = f(x) on (0, 1],

u(1) = 0,
(1)

where α is a positive real number and f ∈ L2(0, 1) is given. In this work we will study the existence,
uniqueness and regularity of solutions of equation (1), under suitable homogeneous boundary data. We also

discuss spectral properties of the differential operator Lu := −
(
x2αu′

)′
+ u.

The classical ODE theory says that if for instance the right hand side f is a continuous function on
(0, 1], then the solution set of equation (1) is a one parameter family of C2(0, 1]-functions. As we already
mentioned, the first goal of this work is to select “distinguished” elements of that family by prescribing
(weighted) homogeneous boundary conditions at the origin. In a subsequent paper, [3], we will study the
equation (1) under non-homogeneous boundary conditions at the origin.

When 0 < α < 1
2 , we have both a Dirichlet and a (weighted) Neumann problem. When α ≥ 1

2 , we only
have a “Canonical” solution obtained by prescribing either a (weighted) Dirichlet or a (weighted) Neumann
condition; as we are going to explain in Remark 19, the two boundary conditions yield the same solution.

1.1. The case 0 < α < 1
2 .

We first consider the Dirichlet problem.
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Theorem 1.1 (Existence for Dirichlet Problem). Given 0 < α < 1
2 and f ∈ L2(0, 1), there exists a function

u ∈ H2
loc(0, 1] satisfying (1) together with the following properties:

(i) limx→0+ u(x) = 0.
(ii) u ∈ C0,1−2α[0, 1] with ‖u‖C0,1−2α ≤ C ‖f‖L2 .

(iii) x2αu′ ∈ H1(0, 1) with
∥∥x2αu′

∥∥
H1 ≤ C ‖f‖L2 .

(iv) x2α−1u ∈ H1(0, 1) with
∥∥x2α−1u

∥∥
H1 ≤ C ‖f‖L2 .

(v) x2αu ∈ H2(0, 1) with
∥∥x2αu

∥∥
H2 ≤ C ‖f‖L2 .

Here the constant C only depends on α.

Before stating the uniqueness result, we would like to give a few remarks of about this Theorem.

Remark 1. There exists a function f ∈ C∞0 (0, 1) such that near the origin the solution given by Theorem 1.1
can be expanded in the following way

u(x) = a1x
1−2α + a2x

3−4α + a3x
5−6α + · · · (2)

where a1 6= 0. See Section 3.1 for the proof.

Remark 2. Theorem 1.1 only says (x2αu′)′ = x2αu′′+2αx2α−1u′ is in L2(0, 1). A natural question is whether
each term on the right-hand side belongs to L2(0, 1). The answer is that, in general, neither of them is in
L2(0, 1); in fact, they are not even in L1(0, 1). One can see this phenomenon in equation (2), where we have
that x2α−1u′(x) ∼ x2αu′′(x) ∼ x−1 /∈ L1(0, 1).

Remark 3. Part (iii) in Theorem 1.1 implies that u ∈ W 1,p(0,1) for all 1 ≤ p < 1
2α with ‖u′‖Lp ≤ C ‖f‖L2 ,

where C is a constant only depending on α. However, one cannot expect that u ∈ W 1, 1
2α (0, 1) even if

f ∈ C∞0 (0, 1), as the power series expansion (2) shows that u′ ∼ x−2α near the origin.

Remark 4. Concerning the assertions in Theorem 1.1, we have the following implications: (i) and (iii) ⇒
(iv); (iv) ⇒ (ii); (iii) and (iv) ⇒ (v). Those implications can be found in the proof of Theorem 1.1.

Remark 5. The assertions in Theorem 1.1 are optimal in the following sense: there exists f ∈ L2(0, 1)
such that u /∈ C0,β [0, 1] ∀β > 1 − 2α; and one can find another f ∈ L2(0, 1) such that x2α−1u /∈ H2(0, 1),
x2αu′ /∈ H2(0, 1), and x2αu /∈ H3(0, 1). See Section 3.1 for the counterexamples.

Remark 6. Theorem 1.1 tells us that both x2αu′ and x2α−1u belong to H1(0, 1), so in particular they are
continuous up to the origin. It is natural to examine their values at the origin and how they are related to
the right-hand side f ∈ L2(0, 1). We actually have

lim
x→0+

x2αu′(x) =

∫ 1

0

f(x)g(x)dx, (3)

and

lim
x→0+

x2α−1u(x) =
1

1− 2α

∫ 1

0

f(x)g(x)dx, (4)

where the function g is the solution of
−(x2αg′(x))′ + g(x) = 0 on (0, 1],

g(1) = 0,

lim
x→0+

g(x) = 1.

See Section 3.1 for the proof of this Remark. The existence and regularity of such function g is the main
topic of the subsequent paper [3] (the uniqueness of such g comes from Theorem 1.2 below).
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Theorem 1.2 (Uniqueness for the Dirichlet problem). Let 0 < α < 1
2 . Assume that u ∈ H2

loc(0, 1] satisfies
−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

u(x) = 0.

(5)

Then u ≡ 0.

In order to simplify the terminology, we denote by uD the unique solution to (1) given by Theorem 1.1.
Next we consider the regularity property of the solution uD when the right-hand side f has a better regularity.

Theorem 1.3. Let 0 < α < 1
2 and f ∈ W 1, 1

2α (0, 1). Let uD be the solution to (1) given by Theorem 1.1.

Then x2α−1uD ∈ W 2,p(0, 1) for all 1 ≤ p < 1
2α with

∥∥x2α−1uD
∥∥
W 2,p ≤ C ‖f‖W 1,p , where C is a constant

only depending on p and α.

Remark 7. One cannot expect that x2α−1uD ∈ W 2, 1
2α (0, 1) even if f ∈ C∞0 (0, 1), as the power series

expansion (2) shows that (x2α−1uD(x))′′ ∼ x−2α near the origin.

Remark 8. When α ≥ 1
2 , we cannot prescribe the Dirichlet boundary condition limx→0+ u(x) = 0. Actually,

for α ≥ 1
2 , there is no H2

loc(0, 1]-solution of
−(x2αu′(x))′ + u(x) = f on (0, 1],

u(1) = 0,

lim
x→0+

u(x) = 0,

(6)

for either f ≡ 1 or some f ∈ C∞0 (0, 1). See Section 3.1 for the proof.

Next we consider the case 0 < α < 1
2 together with a weighted Neumann condition.

Theorem 1.4 (Existence for Neumann Problem). Given 0 < α < 1
2 and f ∈ L2(0, 1), there exists a function

u ∈ H2
loc(0, 1] satisfying (1) together with the following properties:

(i) u ∈ H1(0, 1) with ‖u‖H1 ≤ C ‖f‖L2 .

(ii) limx→0+ x2α− 1
2u′(x) = 0.

(iii) x2α−1u′ ∈ L2(0, 1) and x2αu′′ ∈ L2(0, 1), with
∥∥x2α−1u′

∥∥
L2 +

∥∥x2αu′′
∥∥
L2 ≤ C ‖f‖L2 . In particular,

x2αu′ ∈ H1(0, 1).

Here the constant C only depends on α.

Remark 9. Notice the difference between Dirichlet and Neumann with respect to property (iii) of Theorem
1.4. See Remark 2.

Remark 10. The boundary behavior limx→0+ x2α− 1
2u′(x) = 0 is optimal in the following sense: for any

0 < x ≤ 1
2 , define

Kα(x) = sup
‖f‖L2≤1

∣∣∣x2α− 1
2u′(x)

∣∣∣ .
Then 0 < δ ≤ Kα(x) ≤ 2, for some constant δ only depending on α. See Section 3.2 for the proof.

Remark 11. Theorem 1.4 implies that u ∈ C0[0, 1], so it is natural to consider the dependence on f of the
quantity limx→0+ u(x). One has

lim
x→0+

u(x) =

∫ 1

0

f(x)h(x)dx, (7)
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where h is the solution of 
−(x2αh′(x))′ + h(x) = 0 on (0, 1],

h(1) = 0,

lim
x→0+

x2αh′(x) = 1.

In particular, equation (7) implies that the quantity limx→0+ u(x) is not necessarily 0. See Section 3.2 for
the proof of this Remark. The existence and regularity of h is part of [3], but the uniqueness of h comes
from Theorem 1.5 below.

Theorem 1.5 (Uniqueness for the Neumann Problem). Let 0 < α < 1
2 . Assume that u ∈ H2

loc(0, 1] satisfies
−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

x2αu′(x) = 0.

(8)

Then u ≡ 0.

We denote by uN the unique solution of (1) given by Theorem 1.4. We now state the following
regularity result.

Theorem 1.6. Let 0 < α < 1
2 and f ∈ L2(0, 1). Let uN be the solution of (1) given by Theorem 1.4.

(i) If f ∈W 1, 1
2α (0, 1), then uN ∈W 2,p(0, 1) for all 1 ≤ p < 1

2α with

‖uN‖W 2,p(0,1) ≤ C ‖f‖W 1,p .

(ii) If f ∈W 2, 1
2α (0, 1), then x2α−1u′N ∈W 2,p(0, 1) for all 1 ≤ p < 1

2α , with∥∥x2α−1u′N
∥∥
W 2,p(0,1)

≤ C ‖f‖W 2,p .

Here the constant C depends only on p and α.

Remark 12. One cannot expect that uN ∈ W 2, 1
2α (0, 1) nor x2α−1u′N ∈ W 2, 1

2α (0, 1). Actually, there exists

an f ∈ C∞0 (0, 1) such that, uN /∈W 2, 1
2α (0, 1) and x2α−1u′N /∈W 2, 1

2α (0, 1). See Section 3.2 for the proof.

We now turn to the case α ≥ 1
2 . It is convenient to divide this case into three subcases. As we already

pointed out, we only have a “Canonical” solution obtained by prescribing either a (weighted) Dirichlet or a
(weighted) Neumann condition.

1.2. The case 1
2 ≤ α <

3
4 .

Theorem 1.7 (Existence for the “Canonical” Problem). Given 1
2 ≤ α < 3

4 and f ∈ L2(0, 1), there exists

u ∈ H2
loc(0, 1] satisfying (1) together with the following properties:

(i) u ∈ C0, 32−2α with ‖u‖
C0, 3

2
−2α ≤ C ‖f‖L2 . In particular, limx→0+ (1− lnx)

− 1
2 u(x) = 0.

(ii) limx→0+ x2α− 1
2u′(x) = 0.

(iii) x2α−1u′ ∈ L2(0, 1) and x2αu′′ ∈ L2(0, 1), with
∥∥x2α−1u′

∥∥
L2 +

∥∥x2αu′′
∥∥
L2 ≤ C ‖f‖L2 . In particular,

x2αu′ ∈ H1(0, 1).

Here the constant C depends only on α.
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Remark 13. The same conclusions as in Remark 9–11 still hold for the solution given by Theorem 1.7.

Theorem 1.8 (Uniqueness for the “Canonical” Problem). Let 1
2 ≤ α <

3
4 . Assume u ∈ H2

loc(0, 1] satisfies{
−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0.

If in addition one of the following conditions is satisfied

(i) limx→0+ x2αu′(x) = 0,

(ii) limx→0+ (1− lnx)
−1
u(x) = 0 when α = 1

2 ,

(iii) u ∈ L
1

2α−1 (0, 1) when 1
2 < α < 3

4 ,

(iv) limx→0+ x2α−1u(x) = 0 when 1
2 < α < 3

4 ,

then u ≡ 0.

Again, to simplify the terminology, we call the unique solution of (1) given by Theorem 1.7 the
“Canonical” solution and denote it by uC . We now state the following regularity result.

Theorem 1.9. Let α = 1
2 , k be an positive integer, and f ∈ Hk(0, 1). Let uC be the solution to (1) given

by Theorem 1.7. Then uC ∈ Hk+1(0, 1) and xuC ∈ Hk+2(0, 1) with

‖uC‖Hk+1 + ‖xuC‖Hk+2 ≤ C ‖f‖Hk ,
where C is a constant depending only on k.

Remark 14. A variant of Theorem 1.9 is already known. For instance in [4], the authors study the Legendre

operator Lu = −
(
(1− x2)u′

)′
in the interval (−1, 1), and they prove that the operator A = L+ I defines an

isomorphism from Dk(A) :=
{
u ∈ Hk+1(−1, 1) : (1− x2)u(x) ∈ Hk+2(−1, 1)

}
to Hk(−1, 1) for all k ∈ N.

Theorem 1.10. Let 1
2 < α < 3

4 and f ∈W 1, 1
2α−1 (0, 1). Let uC be the solution to (1) given by Theorem 1.7.

Then both uC ∈W 1,p(0, 1) and x2α−1u′C ∈W 1,p(0, 1) for all 1 ≤ p < 1
2α−1 with

‖uC‖W 1,p +
∥∥x2α−1u′C

∥∥
W 1,p ≤ C ‖f‖W 1,p ,

where C is a constant depending only on p and α.

Remark 15. One cannot expect that uC ∈W 1, 1
2α−1 (0, 1) nor x2α−1u′C ∈W

1, 1
2α−1 (0, 1). Actually, there exists

an f ∈ C∞0 (0, 1) such that uC /∈W 1, 1
2α−1 (0, 1) and x2α−1u′C /∈W 1, 1

2α−1 (0, 1). See Section 3.2 for the proof.

1.3. The case 3
4 ≤ α < 1.

Theorem 1.11 (Existence for the “Canonical” Problem). Given 3
4 ≤ α < 1 and f ∈ L2(0, 1), there exists

a function u ∈ H2
loc(0, 1] satisfying (1) together with the following properties:

(i) u ∈ Lp(0, 1) with ‖u‖Lp ≤ C ‖f‖L2 , where p is any number in [1,∞) if α = 3
4 , and p = 2

4α−3 if
3
4 < α < 1.

(ii) limx→0+ (1− lnx)
− 1

2 u(x) = 0 if α = 3
4 ; limx→0+ x2α− 3

2u(x) = 0 if 3
4 < α < 1.

(iii) limx→0+ x2α− 1
2u′(x) = 0.

(iv) x2α−1u′ ∈ L2(0, 1) and x2αu′′ ∈ L2(0, 1), with
∥∥x2α−1u′

∥∥
L2 +

∥∥x2αu′′
∥∥
L2 ≤ C ‖f‖L2 . In particular,

x2αu′ ∈ H1(0, 1).

Here the constant C depends only on α.



6 HERNÁN CASTRO AND HUI WANG

Remark 16. The boundary behavior in assertion (ii) of Theorem 1.11 is optimal in the following sense: for
any 0 < x ≤ 1

2 and 3
4 ≤ α < 1, define

K̃α(x) =


sup

‖f‖L2≤1

∣∣∣(1− lnx)
− 1

2 u(x)
∣∣∣ , when α =

3

4
,

sup
‖f‖L2≤1

∣∣∣x2α− 3
2u(x)

∣∣∣ , when
3

4
< α < 1.

Then 0 < δ ≤ K̃α(x) ≤ C, for some constants δ and C only depending on α. See Section 3.2 for the proof.

Remark 17. The same conclusions as in Remark 9 and 10 hold for the solution given by Theorem 1.11.

Theorem 1.12 (Uniqueness for the “Canonical” Problem). Let 3
4 ≤ α < 1. Assume that u ∈ H2

loc(0, 1]
satisfies {

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0.

If in addition one of the following conditions is satisfied

(i) limx→0+ x2αu′(x) = 0,
(ii) limx→0+ x2α−1u(x) = 0,

(iii) u ∈ L
1

2α−1 (0, 1),

then u ≡ 0.

We still call the unique solution of (1) given by Theorem 1.11 the “Canonical” solution and denote it
by uC . Concerning the regularity of uC for 3

4 ≤ α < 1 we have the following

Theorem 1.13. Let 3
4 ≤ α < 1 and f ∈W 1, 1

2α−1 (0, 1). Let uC be the solution to (1) given by Theorem 1.11.

Then both uC ∈W 1,p(0, 1) and x2α−1u′C ∈W 1,p(0, 1) for all 1 ≤ p < 1
2α−1 with

‖uC‖W 1,p +
∥∥x2α−1u′C

∥∥
W 1,p ≤ C ‖f‖W 1,p ,

where C is a constant depending only on p and α.

Remark 18. The same conclusion as in Remark 15 holds here.

1.4. The case α ≥ 1.

Theorem 1.14 (Existence for the “Canonical” Problem). Given α ≥ 1 and f ∈ L2(0, 1), there exists a
function u ∈ H2

loc(0, 1] satisfying (1) together with the following properties:

(i) u ∈ L2(0, 1) with ‖u‖L2 ≤ ‖f‖L2 .
(ii) limx→0+ x

α
2 u(x) = 0.

(iii) limx→0+ x
3α
2 u′(x) = 0.

(iv) xαu′ ∈ L2(0, 1) and x2αu′′ ∈ L2(0, 1) with ‖xαu′‖L2 +
∥∥x2αu′′

∥∥
L2 ≤ C ‖f‖L2 , where C is a constant

depending only on α. In particular, x2αu′ ∈ H1(0, 1).

Theorem 1.15 (Uniqueness for the “Canonical” Problem). Let α ≥ 1. Assume that u ∈ H2
loc(0, 1] satisfies{

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0.

If in addition one of the following conditions is satisfied
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(i) limx→0+ x
3+
√

5
2 u′(x) = 0 when α = 1,

(ii) limx→0+ x
1+
√

5
2 u(x) = 0 when α = 1,

(iii) limx→0+ x
3α
2 e

x1−α
1−α u′(x) = 0 when α > 1,

(iv) limx→0+ x
α
2 e

x1−α
1−α u(x) = 0 when α > 1,

(v) u ∈ L1(0, 1),

then u ≡ 0.

As before, we call the solution of (1) given by Theorem 1.14 the “Canonical” solution and still denote
it by uC .

Remark 19. For α ≥ 1
2 , the existence results (Theorem 1.7, 1.11, 1.14) and the uniqueness results (Theorem

1.8, 1.12, 1.15) guarantee that the weighted Dirichlet and Neumann conditions yield the same “Canonical”
solution uC .

1.5. Connection with the variational formulation.

Next we give a variational characterization of the unique solutions uD, uN and uC given by Theorem
1.1, 1.4, 1.7, 1.11, 1.14. We begin by defining the underlying space

Xα =
{
u ∈ H1

loc(0, 1) : u ∈ L2(0, 1) and xαu′ ∈ L2(0, 1)
}
, α > 0. (9)

For u, v ∈ Xα define

a(u, v) =

∫ 1

0

x2αu′(x)v′(x)dx+

∫ 1

0

u(x)v(x)dx

and

I(u) = a(u, u).

The space Xα becomes a Hilbert space under the inner product a(·, ·). See Appendix A for a detailed
analysis of the space Xα.

Notice that the elements of Xα are continuous away from 0 (in fact they are in H1
loc(0, 1]), so the

following is a well-defined (closed) subspace

Xα
0 = {u ∈ Xα : u(1) = 0} . (10)

Also, as it is shown in the Appendix A, when 0 < α < 1
2 , the functions in Xα are continuous at the origin,

making

Xα
00 = {u ∈ Xα

0 : u(0) = 0} (11)

a well defined subspace.

Let 0 < α < 1
2 and f ∈ L2(0, 1). Then the Dirichlet solution uD given by Theorem 1.1 is characterized

by the following property:

uD ∈ Xα
00, and min

v∈Xα00

{
1

2
I(v)−

∫ 1

0

f(x)v(x)dx

}
=

1

2
I(uD)−

∫ 1

0

f(x)uD(x)dx, (12)

while the Neumann solution uN given by Theorem 1.4 is characterized by:

uN ∈ Xα
0 , and min

v∈Xα0

{
1

2
I(v)−

∫ 1

0

f(x)v(x)dx

}
=

1

2
I(uN )−

∫ 1

0

f(x)uN (x)dx. (13)
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Let α ≥ 1
2 and f ∈ L2(0, 1). Then the ”Canonical” solution uC given by Theorem 1.7, 1.11, or 1.14 is

characterized by the following property:

uC ∈ Xα
0 , and min

v∈Xα0

{
1

2
I(v)−

∫ 1

0

f(x)v(x)dx

}
=

1

2
I(uC)−

∫ 1

0

f(x)uC(x)dx. (14)

The variational formulations (12), (13) and (14) will be established at the beginning of Section 3, which is
the starting point for the proofs of all the existence results.

1.6. The spectrum.

Now we proceed to state the spectral properties of the differential operator Lu := −
(
x2αu′

)′
+u. We

can define two bounded operators associated with it: when 0 < α < 1
2 , we define the Dirichlet operator TD,

TD : L2(0, 1) −→ L2(0, 1)
f 7−→ TDf = uD,

(15)

where uD is characterized by (12). We also define, for any α > 0, the following “Neumann-Canonical”
operator Tα,

Tα : L2(0, 1) −→ L2(0, 1)

f 7−→ Tαf =


uN if 0 < α <

1

2
,

uC if α ≥ 1

2
,

(16)

where uN and uC are characterized by (13) and (14) respectively. By Theorem A.3 in the Appendix A, we
know that TD is a compact operator for any 0 < α < 1

2 while Tα is compact if and only if α < 1.

In what follows, for given ν ∈ R, the function Jν : (0,∞) −→ R denotes the Bessel function of the
first kind of parameter ν. We use the positive increasing sequence {jνk}∞k=1 to denote all the positive zeros
of the function Jν (see e.g. [11] for a comprehensive treatment of Bessel functions). The results about the
spectrum of the operators TD and Tα read as:

Theorem 1.16 (Spectrum of the Dirichlet Operator). For 0 < α < 1
2 , define ν0 =

1
2−α
1−α , and let µν0k =

1 + (1− α)2j2
ν0k

. Then

σ(TD) = {0} ∪
{
λν0k :=

1

µν0k

}∞
k=1

.

For any k ∈ N, the functions defined by

uν0k(x) := x
1
2−αJν0(jν0kx

1−α)

is the eigenfunction of TD corresponding to the eigenvalue λν0k. Moreover, for fixed 0 < α < 1
2 and k

sufficiently large, we have

µν0k = 1 + (1− α)2

[(
π

2

(
ν0 −

1

2

)
+ πk

)2

−
(
ν2

0 −
1

4

)]
+O

(
1

k

)
. (17)

Theorem 1.17 (Spectrum of the “Neumann-Canonical” Operator). Assume α > 0 and let Tα be the operator
defined above.

(i) For 0 < α < 1, define ν =
α− 1

2

1−α , and let µνk = 1 + (1− α)2j2
νk. Then

σ(Tα) = {0} ∪
{
λνk :=

1

µνk

}∞
k=1

.
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For any k ∈ N, the functions defined by

uνk(x) := x
1
2−αJν(jνkx

1−α)

is the eigenfunction of Tα corresponding to the eigenvalue λνk. Moreover, for fixed 0 < α < 1 and
k sufficiently large, we have

µνk = 1 + (1− α)2

[(
π

2

(
ν − 1

2

)
+ πk

)2

−
(
ν2 − 1

4

)]
+O

(
1

k

)
. (18)

(ii) For α = 1, the operator T1 has no eigenvalues, and the spectrum is exactly σ(T1) =
[
0, 4

5

]
.

(iii) For α > 1, the operator Tα has no eigenvalues, and the spectrum is exactly σ(Tα) = [0, 1].

Recall that the discrete spectrum of an operator T is defined as

σd(T ) = {λ ∈ σ(T ) : T − λI is a Fredholm operator},
and the essential spectrum is defined as

σe(T ) = σ(T )\σd(T ).

We have the following corollary about the essential spectrum.

Corollary 1.18 (Essential Spectrum of the “Neumann-Canonical” Operator). Assume that α > 0 and let
Tα be the operator defined above.

(i) For 0 < α < 1, σe(Tα) = {0}.
(ii) For α = 1, σe(T1) =

[
0, 4

5

]
.

(iii) For α > 1, σe(Tα) = [0, 1].

Remark 20. This corollary follows immediately from the fact (see e.g. Theorem IX.1.6 of [5]) that, for any
self-adjoint operator T on a Hilbert space, σd(T ) consists of the isolated eigenvalues with finite multiplicity.
In fact, for Corollary 1.18 to hold, it suffices to prove that σd(T ) ⊂ EV (T ), where EV (T ) is the set of all
the eigenvalues. We present in Section 4.1.2 a simple proof of this inclusion.

As the reader can see in Theorem 1.17, when α < 1 the spectrum of the operator Tα is a discrete
set and when α = 1 the spectrum of T1 becomes a closed interval, so a natural question is whether σ(Tα)
converges to σ(T1) as α→ 1− in some sense. The answer is positive as the reader can check in the following

Theorem 1.19. Let α ≤ 1. For the spectrum σ(Tα), we have

(i) σ(Tα) ⊂ σ(T1) for all 2
3 < α < 1.

(ii) For every λ ∈ σ(T1), there exists a sequence αm → 1− and a sequence of eigenvalues λm ∈ σ(Tαm)
such that λm → λ as m→∞.

Remark 21. Notice that in particular σ(Tα)→ σ(T1) in the Hausdorff metric sense, that is

dH(σ(Tα), σ(T1))→ 0, as α→ 1−,

where dH(X,Y ) = max
{

supx∈X infy∈Y |x− y| , supy∈Y infx∈X |x− y|
}

is the Hausdorff metric (see e.g.
Chapter 7 of [7]).

Remark 22. When α ≤ 1, the spectrum of Tα has been investigated by C. Stuart [9]. In fact, he considered the
more general differential operator Nu = −(A(x)u′)′ under the conditions u(1) = 0 and limx→0+ A(x)u′(x) =
0, with

A ∈ C0([0, 1]); A(x) > 0,∀x ∈ (0, 1] and lim
x→0+

A(x)

x2α
= 1. (19)
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Notice that if A(x) = x2α, we have the equality Tα = (N + I)−1, where the inverse is taken in the space
L2(0, 1). When α < 1, C. Stuart proves that σ(N) consists of isolated eigenvalues; this is deduced from a
compactness argument. When α = 1, C. Stuart proves that maxσe

(
(N + I)−1

)
= 4

5 . On the other hand,

C. Stuart has constructed an elegant example of function A satisfying (19) with α = 1 such that (N + I)−1

admits an eigenvalue in the interval ( 4
5 , 1]. Moreover, G. Vuillaume (in his thesis [10] under C. Stuart) used

a variant of this example to get an arbitrary number of eigenvalues in the interval ( 4
5 , 1]. However, we still

have an

Open Problem 1. If A satisfies (19) for α = 1, is it true that σe
(
(N + I)−1

)
= [0, 4

5 ]?

Similarly, when α > 1, one can still consider the differential operator Nu = −(A(x)u′)′ under the
conditions u(1) = 0 and limx→0+ A(x)u′(x) = 0, where A satisfies (19), and the operator (N + I)−1, where
the inverse is taken in the space L2(0, 1), is still well-defined. By the same argument as in the case A(x) = x2α

(Theorem 1.17 (iii)) we know that σ
(
(N + I)−1

)
⊂ [0, 1]. However, we still have

Open Problem 2. Assume that A satisfies (19) for α > 1.

(i) Is it true that σ
(
(N + I)−1

)
= [0, 1]?

(ii) Is it true that maxσe
(
(N + I)−1

)
= 1, or more precisely σe

(
(N + I)−1

)
= [0, 1]?

The rest of the paper is organized as the following. We begin by proving the uniqueness results in
Section 2. We then prove the existence and regularity results in Section 3. The analysis of the spectrum
of the operators TD and Tα is performed in Section 4. Finally we present in Appendix A some properties
about weighted Sobolev spaces used throughout this work.

2. Proofs of all the Uniqueness Results

In this section we will provide the proofs of the uniqueness results stated in the Introduction.

Proof of Theorem 1.2. Since u ∈ C0(0, 1] with limx→0+ u(x) = 0, we have that u ∈ C0[0, 1]. Notice that,

for any 0 < x < 1, we can write x2αu′(x) = u′(1) −
∫ 1

x
u(s)ds, which implies that x2αu′ ∈ C[0, 1]. Then

we can multiply the equation (5) by u and integrate by parts over [ε, 1], and with the help of the boundary
condition we obtain ∫ 1

ε

x2αu′(x)2dx+

∫ 1

ε

u(x)2dx = x2αu′(x)u(x)|1ε → 0, as ε→ 0+.

Therefore, u = 0. �

Proof of Theorem 1.5. We first claim that u ∈ C0[0, 1]. Since u ∈ C1(0, 1] and limx→0+ x2αu′(x) = 0,
there exists C > 0 such that −Cx−2α ≤ u′(x) ≤ Cx−2α, which implies that −Cx1−2α ≤ u(x) ≤ Cx1−2α,
hence u ∈ L∞(0, 1) because 0 < α < 1

2 . Write u′(x) = 1
x2α

∫ x
0
u(s)ds and deduce that u′ ∈ L∞(0, 1), thus

u ∈W 1,∞(0, 1). In particular u ∈ C0[0, 1].

Then we can multiply the equation (8) by u and integrate by parts over [ε, 1], and with the help of
the boundary condition we obtain∫ 1

ε

x2αu′(x)2dx+

∫ 1

ε

u(x)2dx = x2αu′(x)u(x)|1ε → 0, as ε→ 0+.

Therefore, u ≡ 0. �
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Proof of (i) of Theorem 1.8 and (i) of Theorem 1.12. As in the proof of Theorem 1.5, it is enough to show

that u ∈ C0[0, 1]. As before, the boundary condition implies that u(x) ∼ x1−2α, which gives u ∈ L 1
α (0, 1).

To prove that u ∈ C0[0, 1], we first write x2α−1u′(x) = 1
x

∫ x
0
u(s)ds. Let p0 := 1

α > 1. Since u ∈ Lp0(0, 1),

one can apply Hardy’s inequality and obtain
∥∥x2α−1u′

∥∥
Lp0
≤ C ‖u‖Lp0 . Since u(1) = 0, this implies that

u ∈ X2α−1,p0
·0 (0, 1). By Theorem A.2, we have two alternatives

• u ∈ Lq(0, 1) for all q <∞ when α ≤ 2
3 or

• u ∈ Lp1(0, 1) where p1 := 1
3α−2 > p0 when 2

3 < α < 1.

If the first case happens and u ∈ Lq(0, 1) for all q < ∞, then we apply Hardy’s inequality and obtain

u ∈ X2α−1,q
·0 (0, 1) for all q < ∞, which embeds into C0[0, 1] for q large enough. If the second alternative

occurs and we apply Hardy’s inequality once more, we conclude that u ∈ X2α−1,p1
·0 (0, 1). Therefore, either

u ∈ Lq(0, 1) for all q <∞ when α ≤ 4
5 or u ∈ Lp2(0, 1) where p2 = 1

5α−4 when 4
5 < α < 1. By repeating this

argument finitely many times we can conclude that u ∈ C0[0, 1]. �

Proof of (ii) of Theorem 1.8. Let α = 1
2 and suppose that u ∈ H2

loc(0, 1] satisfies
−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

u(x)

1− ln(x)
= 0.

Notice that u ∈ C(0, 1] together with limx→0+(1 − lnx)−1u(x) = 0 and the integrability of lnx, gives
u ∈ L1(0, 1). Define w(x) = u(x)(1− lnx)−1. It is enough to show that w = 0. Notice that w solves

(x(1− lnx)w′(x))′ = (1− lnx)w(x) + w′(x) on (0, 1),

w(1) = 0,

w(0) = 0.

(20)

We integrate equation (20) to obtain

x(1− lnx)w′(x) = w′(1)−
∫ 1

x

(1− ln s)w(s)dx = u′(1)−
∫ 1

x

u(s)ds.

Since u ∈ L1(0, 1), the above computation shows that x(1 − lnx)w′(x) ∈ C[0, 1]. Now we multiply (20) by
w and we integrate by parts over [ε, 1] to obtain∫ 1

ε

x(1− lnx)w′(x)2dx+

∫ 1

ε

(1− lnx)w2(x)dx = x(1− lnx)w′(x)w(x)|1ε −
1

2
w2(x)|1ε → 0,

as ε→ 0+, proving that w = 0. �

At this point we would like to mention that the proof of (iii) of Theorem 1.8 and (iii) of Theorem 1.12
will be postponed to Proposition 3.4 of Section 3.2.
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Proof of (iv) of Theorem 1.8 and (ii) of Theorem 1.12. Let 1
2 < α < 1 and suppose that u ∈ H2

loc(0, 1]
satisfies 

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

x2α−1u(x) = 0.

Notice that u ∈ C(0, 1] together with limx→0+ x2α−1u(x) = 0 and the integrability of x1−2α for α < 1, gives
u ∈ L1(0, 1). Define w(x) = x2α−1u(x). We will show that w = 0. Notice that w satisfies

−(xw′(x))′ + (2α− 1)w′(x) + x1−2αw(x) = 0 on (0, 1],

w(1) = 0,

w(0) = 0.

(21)

Integrate (21) to obtain

xw′(x) = w′(1)−
∫
x

s1−2αw(s)ds = u′(1)−
∫ 1

x

u(s)ds,

from which we conclude xw′(x) ∈ C[0, 1]. Finally, multiply (21) by w and integrate by parts over [ε, 1] to
obtain ∫ 1

ε

xw′(x)2dx+

∫ 1

ε

x1−2αw(x)2dx = xw′(x)w(x)|1ε −
(
α− 1

2

)
w2(ε).

Letting ε→ 0+ and we conclude that w = 0. �

Proof of Theorem 1.15. Assume that (i) holds. Suppose that u ∈ H2
loc(0, 1] satisfies

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

x
3+
√

5
2 u′(x) = 0.

Let v(x) = x
1+
√

5
2 u(x). Then v ∈ H2

loc(0, 1] and it satisfies
−(xv′(x))′ +

√
5v′(x) = 0 on (0, 1],

v(1) = 0,

lim
x→0+

(
xv′(x)− 1 +

√
5

2
v(x)

)
= 0,

(22)

from which we obtain that xv′ − 1+
√

5
2 v ∈ C[0, 1] and xv′ −

√
5v ∈ H1(0, 1). Therefore v ∈ C[0, 1]. Multiply

(22) by v and integrate over [ε, 1] to obtain∫ 1

ε

xv′(x)2dx+
1

2
v2(ε) =

(
xv′(x)− 1 +

√
5

2
v(x)

)
v(x)|1ε → 0, as ε→ 0+.

Therefore v is constant and thus v(x) ≡ v(1) = 0.
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Assume that (ii) holds. Suppose that u ∈ H2
loc(0, 1] satisfies

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

x
1+
√

5
2 u(x) = 0.

Let w(x) = x
1+
√

5
2 u(x). Then w ∈ H2

loc(0, 1] and it satisfies
−(xw′(x))′ +

√
5w′(x) = 0 on (0, 1],

w(1) = 0,

w(0) = 0.

(23)

Therefore xw′+
√

5w ∈ H1(0, 1), w ∈ C[0, 1], and xw′ ∈ C[0, 1]. Multiply (23) by w and integrate over [ε, 1]
to obtain ∫ 1

ε

xw′(x)2dx = xw′(x)w(x)|1ε −
√

5

2
w2(x)|1ε → 0, as ε→ 0+.

Therefore w is constant, so w(x) ≡ w(1) = 0.

Assume that (iii) holds. Suppose that u ∈ H2
loc(0, 1] satisfies

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

x
3α
2 e

x1−α
1−α u′(x) = 0.

Define g(x) = e
x1−α
1−α u(x). Then g ∈ H2

loc(0, 1] and it satisfies
−(x2αg′(x))′ + (xαg(x))′ + xαg′(x) = 0 on (0, 1],

g(1) = 0,

lim
x→0+

(
x

3α
2 g′(x)− xα2 g(x)

)
= 0.

Multiply the above by g and integrate over [ε, 1] to obtain∫ 1

ε

x2αg′(x)2dx = x2αg′(x)g(x)|1ε − xαg2(x)|1ε

=
(
x

3α
2 g′(x)− xα2 g(x)

)
x
α
2 g(x)|1ε . (24)

We now study the function h(x) := x
α
2 g(x). We have

h(x) = −
∫ 1

x

h′(s)ds

= −
∫ 1

x

(α
2
s
α
2−1g(s) + s

α
2 g′(s)

)
ds

=
α

2

∫ 1

x

s
3α
2 −1g′(s)ds−

(
x

3α
2 g′(x)− xα2 g(x)

)
= −α

2

(
3α

2
− 1

)∫ 1

x

s
3α
2 −2g(s)ds− α

2
xα−1h(x)−

(
x

3α
2 g′(x)− xα2 g(x)

)
.
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Hence we can write

h(x) =
[
1 +

α

2
xα−1

]−1
[
−α

2

(
3α

2
− 1

)∫ 1

x

s
3α
2 −2g(s)ds−

(
x

3α
2 g′(x)− xα2 g(x)

)]
.

We claim that there exists a sequence εn → 0 so that

lim
n→∞

∣∣∣∣∫ 1

εn

s
3α
2 −2g(s)ds

∣∣∣∣ <∞.
Otherwise, assume that limε→0+

∫ 1

ε
s

3α
2 −2g(s)ds = ±∞. Then

lim
x→0+

x
α
2 e

x1−α
1−α u(x) = lim

x→0+
h(x) = ±∞.

This forces limx→0+ u(x) = ±∞, so L’Hopital’s rule applies to u and one obtains that

lim
x→0+

x
α
2 e

x1−α
1−α u(x) = lim

x→0+

x
3α
2 e

x1−α
1−α u′(x)

−α2 xα−1 − 1
= 0,

which is a contradiction. Therefore limεn→0+ h(εn) exists for some sequence εn → 0. Finally, use that

sequence εn → 0+ in (24) to obtain that
∫ 1

0
x2αg′(x)2dx = 0, which gives g is constant, that is g(x) ≡ g(1) =

0.

Assume that (iv) holds. Suppose that u ∈ H2
loc(0, 1] satisfies

−(x2αu′(x))′ + u(x) = 0 on (0, 1],

u(1) = 0,

lim
x→0+

x
α
2 e

x1−α
1−α u(x) = 0.

Let p(x) = e
x1−α
1−α u(x), then w satisfies

−(x2αp′(x))′ + (xαp(x))′ + xαp′(x) = 0 on (0, 1],

p(1) = 0,

lim
x→0+

x
α
2 p(x) = 0.

(25)

We claim that lim
x→0+

x
3α
2 p′(x) exists, thus implying that x

3α
2 p′(x) belongs to C[0, 1]. Define q(x) = x

3α
2 p′(x),

then using (25) we obtain that, for 0 < x < 1,

q′(x) = −α
2
x

3α
2 −1p′(x) + αx

α
2−1p(x) + 2x

α
2 p′(x).

A direct computation shows that, for 0 < x < 1,∫ 1

x

q′(s)ds =
α

2

(
3α

2
− 1

)∫ 1

x

x
3α
2 −2p(s)ds+

α

2
xα−1x

α
2 p(x)− 2x

α
2 p(x).

Since x
α
2 p(x) ∈ C[0, 1], we obtain that x

3α
2 −2p(x) ∈ L1(0, 1) which implies that x

3α
2 p′(x) = q(x) =

−
∫ 1

x
q′(s)ds is continuous and that the limx→0+ q(x) exists. We now multiply (25) by p(x) and integrate by

parts to obtain ∫ 1

0

x2αp′(x)2 = x
3α
2 p′(x)x

α
2 p(x)|10 = 0.

Thus proving that p(x) is constant, i.e. p(x) ≡ p(1) = 0.
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Finally assume that (v) holds. Define k(x) = x2αu′(x). Notice that since u ∈ L1(0, 1) ∩ H2
loc(0, 1],

from the equation we obtain that k(x) = u′(1) −
∫ 1

x
u(s)ds, so k(x) ∈ C0[0, 1]. We claim that k(0) = 0.

Otherwise, near the origin u′(x) ∼ 1
x2α and u(x) ∼ 1

x2α−1 , which contradicts u ∈ L1(0, 1). Therefore,

limx→0+ x2αu′(x) = 0. We are now in the case where (i) or (iii) applies, so we can conclude that u = 0. �

3. Proofs of all the Existence and the Regularity Results

Our proof of the existence results will mostly use functional analysis tools. We take the weighted
Sobolev space Xα defined in (9) and its subspaces Xα

00 and Xα
0 defined by (11) and (10). As we can see

from the Appendix A, Xα equipped with the inner product given by

(u, v)α =

∫ 1

0

(
x2αu′(x)v′(x) + u(x)v(x)

)
dx,

is a Hilbert space. Xα
00 and Xα

0 are well defined closed subspaces. We define two notions of weak solutions
as follows: given 0 < α < 1

2 and f ∈ L2(0, 1) we say u is a weak solution of the first type of (1) if u ∈ Xα
00

satisfies ∫ 1

0

x2αu′(x)v′(x)dx+

∫ 1

0

u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx, for all v ∈ Xα
00; (26)

and given α > 0 and f ∈ L2(0, 1) we say that u is a weak solution of the second type of (1) if u ∈ Xα
0 satisfies∫ 1

0

x2αu′(x)v′(x)dx+

∫ 1

0

u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx, for all v ∈ Xα
0 . (27)

The existence of both solutions are guaranteed by Riesz Theorem. Actually, (26) is equivalent to (12),
while (27) is equivalent to (13) or (14) (see e.g. Theorem 5.6 of [1]). As we will see later, the weak solution
of the first type is exactly the solution uD mentioned in the Introduction, whereas the weak solution of the
second type corresponds to either uN when 0 < α < 1

2 or uC when α ≥ 1
2 .

3.1. The Dirichlet Problem.

Proof of Theorem 1.1. We will actually prove that the solution of (26) is the solution we are looking for in
Theorem 1.1. Notice that by taking v ∈ C∞0 (0, 1) in (26) we obtain that w(x) := x2αu′(x) ∈ H1(0, 1) with
(x2αu′(x))′ = u(x)− f(x) and ‖w′‖L2 ≤ 2 ‖f‖L2 . Also since u ∈ Xα

00 we have that u(0) = u(1) = 0.

Now we write

u(x) =

∫ x

0

u′(s)ds = − 1

1− 2α

∫ x

0

(
s2αu′(s)

)′
s1−2αds+

xu′(x)

1− 2α
,

where we have used that lims→0+ su′(s) = lims→0+ s2αu′(s) · s1−2α = 0 for all α < 1
2 . It implies that

x2α−1u(x) =
x2αu′(x)

1− 2α
+
x2α−1

2α− 1

∫ x

0

(
s2αu′(s)

)′
s1−2αds,

and (
x2α−1u(x)

)′
= x2α−2

∫ x

0

(
s2αu′(s)

)′
s1−2αds.

From here, since α < 1
2 , we obtain ∣∣∣(x2α−1u(x)

)′∣∣∣ ≤ 1

x

∫ x

0

(
s2αu′(s)

)′
ds,
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so Hardy’s inequality gives ∥∥∥(x2α−1u
)′∥∥∥

L2
≤ 2

∥∥∥(x2αu′
)′∥∥∥

L2
≤ 4 ‖f‖L2 .

Therefore,
∥∥x2α−1u

∥∥
H1 ≤ C ‖f‖L2 , where C is a constant depending only on α. Combining this result and

the fact that x2αu′ ∈ H1(0, 1), we conclude that x2αu ∈ H2(0, 1).

Also notice that u ∈ C0,1−2α[0, 1] is a direct consequence of x2α−1u ∈ C[0, 1] ∩ C1(0, 1]. The proof is
finished. �

Proof of Remark 1. Take f ∈ C∞0 (0, 1). We know that u(x) = Aφ1(x) + Bφ2(x) + F (x) where φ1(x) and
φ2(x) are two linearly independent solutions of the equation −(x2αu′(x))′ + u(x) = 0 and

F (x) = φ1(x)

∫ x

0

f(s)φ2(s)ds− φ2(x)

∫ x

0

f(s)φ1(s)ds.

Moreover, one can see that φi(x) = x
1
2−αfi

(
x1−α

1−α

)
where fi(z)’s are two linearly independent solutions of

the Bessel equation

z2φ′′(z) + zφ′(z)−

(
z2 +

( 1
2 − α
1− α

)2
)
φ(z) = 0.

By the properties of the Bessel function (see e.g. Chapter III of [11]), we know that near the origin,

φ1(x) = a1x
1−2α + a2x

3−4α + a3x
5−6α + · · · , for 0 < α <

1

2
,

and

φ2(x) = b1 + b2x
2−2α + b3x

4−4α + b4x
6−6α + · · · , for 0 < α < 1.

Also,

φ1(0) = 0, φ2(0) 6= 0, φ1(1) 6= 0, for 0 < α <
1

2
,

lim
x→0+

|φ1(x)| =∞, lim
x→0+

φ2(x) = b1, for α ≥ 1

2
,

and

lim
x→0+

x2αφ′1(x) 6= 0, lim
x→0+

x2αφ′2(x) = 0, φ2(1) 6= 0, for 0 < α < 1.

Notice that F (x) ≡ 0 near the origin. Therefore, when imposing the boundary conditions u(0) = u(1) = 0,

we obtain u(x) = Aφ1(x) + F (x) with A = − F (1)
φ1(1) . Take f such that

F (1) =

∫ 1

0

f(s)[φ2(s)φ1(1)− φ1(s)φ2(1)]ds 6= 0.

Then u(x) ∼ φ1(x) near the origin and we get the desired power series expansion. �

Proof of Remark 3. From the proof of Theorem 1.1, we conclude that w ∈ C0[0, 1] with ‖w‖∞ ≤ 2 ‖f‖L2 .
From here we have

|u′(x)| =
∣∣w(x)x−2α

∣∣ ≤ ‖w‖∞ x−2α.

Thus, for 1 ≤ p < 1
2α ,

‖u′‖Lp ≤ ‖w‖∞
∥∥x−2α

∥∥
Lp(0,1)

≤ C(α, p) ‖f‖2 .
�
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Proof of Remark 5. If we take f(x) := −(x2αu′(x))′ + u(x), where u(x) = x1−2α(x − 1), we will see that

u /∈ C0,β [0, 1], ∀β > 1−2α. When u(x) = x
7
4−2α(x−1), we will see that x2α−1u /∈ H2(0, 1), x2αu′ /∈ H2(0, 1),

and x2αu /∈ H3(0, 1). �

Proof of Remark 6. From [3] we know that the function g exists and x2αg′(x) ∈ L∞(0, 1). Therefore, inte-
gration by parts gives∫ 1

0

f(x)g(x)dx =

∫ 1

0

−(x2αu′(x))′g(x) + u(x)g(x)dx = lim
x→0+

x2αu′(x).

And the L’Hopital’s rule immediately implies that

lim
x→0+

x2α−1u(x) = lim
x→0+

1

1− 2α
x2αu′(x) =

1

1− 2α

∫ 1

0

f(x)g(x)dx.

�

Before we prove Theorem 1.3, we need the following lemma.

Lemma 3.1. Let 0 < α < 1
2 and k0 ∈ N. Assume u ∈ W k0+1,p

loc (0, 1) for some p ≥ 1. If limx→0+ u(x) = 0

and limx→0+ xk−2α dk−1

dxk−1

(
s2αu′(s)

)
= 0 for all 1 ≤ k ≤ k0, then for 0 < x < 1

dk

dxk
(
x2α−1u(x)

)
= x2α−k−1

∫ x

0

sk−2α d
k

dsk
(
s2αu′(s)

)
ds, for all 1 ≤ k ≤ k0.

Moreover ∥∥∥∥ dkdxk (x2α−1u
)∥∥∥∥
Lp
≤ C

∥∥∥∥ dkdxk (x2αu′
)∥∥∥∥
Lp
,

where C is a constant depending only on p, α and k.

Proof. When k0 = 1 we can write

(
x2α−1u(x)

)′
=

(
x2α−1

∫ x

0

s2αu′(s)

(
s1−2α

1− 2α

)′
ds

)′

=

(
x2α−1

2α− 1

∫ x

0

(
s2αu′(s)

)′
s1−2αds+

x2αu′(x)

1− 2α

)′
= x2α−2

∫ x

0

(
s2αu′(s)

)′
s1−2αds.

The rest of the proof is a straightforward induction argument. We omit the details. The norm bound is
obtained by Fubini’s Theorem when p = 1 and by Hardy’s inequality when p > 1. �

Proof of Theorem 1.3. Notice that limx→0+ x2−2α
(
s2αu′(s)

)′
=0 since both u and f are continuous. With

the aid of Lemma 3.1 for k0 = 2 we can write(
x2α−1u(x)

)′′
= x2α−3

∫ x

0

s2−2α
(
s2αu′

)′′
ds = x2α−3

∫ x

0

s2−2α (u(s)− f(s))
′
ds.

The result is obtained by using the estimate in Lemma 3.1. �
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Proof of Remark 8. We use the same notation as in the proof of Remark 1. We know that u(x) = Aφ1(x) +
Bφ2(x) +F (x) where φ1(x) and φ2(x) are two linearly independent solutions of the equation −(x2αu′(x))′+
u(x) = 0 and

F (x) = 1, if f ≡ 1,

or

F (x) = φ1(x)

∫ x

0

f(s)φ2(s)ds− φ2(x)

∫ x

0

f(s)φ1(s)ds, if f ∈ C∞0 (0, 1).

In either case we have F ∈ C[0, 1]. We also know that

lim
x→0+

|φ1(x)| =∞, lim
x→0+

φ2(x) = b1, for α ≥ 1

2
.

Therefore, if one wants a continuous function at the origin, one must have A = 0. Then u(x) = Bφ2(x)+F (x).
We see now that the conditions u(1) = 0 and limx→0+ u(x) = 0 are incompatible. �

3.2. The Neumann Problem and the “Canonical” Problem.

Proof of Theorems 1.4, 1.7, 1.11. For 0 < α < 1, let u ∈ Xα
0 solving∫ 1

0

x2αu′(x)v′(x)dx+

∫ 1

0

u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx, for all v ∈ Xα
0 .

First notice that

‖u‖L2 + ‖xαu′‖L2 ≤ ‖f‖L2 .

Also, if we take v ∈ C∞0 (0, 1), then x2αu′ ∈ H1(0, 1) with (x2αu′(x))′ = u(x)− f(x).

We now proceed to prove that w(x) := x2αu′(x) vanishes at x = 0. Take v ∈ C2[0, 1] with v(1) = 0
as a test function and integrate by parts to obtain

0 =

∫ 1

0

(
−(x2αu′(x))′ + u(x)− f(x)

)
v(x)dx = lim

x→0+
x2αu′(x)v(x).

The claim is obtained by taking any such v with v(0) = 1.

The above shows that w(x) := x2αu′(x) ∈ H1(0, 1) with w(0) = 0. Then, notice that for any function
w ∈ H1(0, 1) with w(0) = 0 one can write

|w(x)| =
∣∣∣∣∫ x

0

w′(x)dx

∣∣∣∣ ≤ x 1
2

(∫ x

0

w′(x)2dx

) 1
2

,

thus

lim
x→0+

x2α− 1
2u′(x) = 0.

Also, Hardy’s inequality implies that w
x ∈ L

2(0, 1) with
∥∥w
x

∥∥
L2 ≤ 2 ‖w′‖L2 . Now recall that w′(x) =

(x2αu′(x))′ = u(x)−f(x), so ‖w′‖L2 ≤ ‖u‖L2 +‖f‖L2 ≤ 2 ‖f‖L2 . Hence we have the estimate
∥∥x2α−1u′

∥∥
L2 ≤

4 ‖f‖L2 .

In order to prove
∥∥x2αu′′

∥∥
L2 ≤ C ‖f‖L2 , one only need to apply the above estimates and notice that

x2αu′′(x) = (x2αu′(x))′ − 2αx2α−1u′(x).

By Theorem A.2, property (i) of Theorems 1.4, 1.7, 1.11 is a direct consequence of the fact that
u ∈ X2α−1

0 .
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Finally we establish the property (ii) of Theorem 1.11. For α = 3
4 , first notice that∫ 1

0

u2(x)

x(1− lnx)
dx ≤ −

∫ 1

0

x

(
2u(x)u′(x)

x(1− lnx)
− u2(x)

x2(1− lnx)
+

u2(x)

x2(1− lnx)2

)
dx

= −2

∫ 1

0

u(x)u′(x)

1− lnx
dx+

∫ 1

0

u2(x)

x(1− lnx)
dx−

∫ 1

0

u2(x)

x(1− lnx)2
dx,

thus ∫ 1

0

u2(x)

x(1− lnx)2
dx ≤ 2

∣∣∣∣∫ 1

0

u(x)

x
1
2 (1− lnx)

x
1
2u′(x)dx

∣∣∣∣ . (28)

Now Holder’s inequality gives (1− lnx)−1x−
1
2u(x) ∈ L2(0, 1). Therefore(

(1− lnx)−1u2(x)
)′

= (1− lnx)−2x−1u2(x) + 2(1− lnx)−1x−
1
2u(x)x

1
2u′(x) ∈ L1(0, 1),

so limx→0+ (1− lnx)
− 1

2 u(x) exists. If the limit is non-zero, then near the origin (1 − lnx)−1x−
1
2u(x) ∼

(1− lnx)
1
2x−

1
2 /∈ L2(0, 1), which is a contradiction. For 3

4 < α < 1, notice that

x4α−3u2(x) = −
∫ 1

x

(
t4α−3u2(t)

)′
dt = −(4α− 3)

∫ 1

x

t4α−4u2(t)dt− 2

∫ 1

x

t4α−3u′(t)u(t)dt.

Since we know x2α−1u′ ∈ L2(0, 1), Theorem A.1 implies that x2α−2u ∈ L2(0, 1), hence limx→0+ x2α− 3
2u(x)

exists. If the limit is non-zero, then near the origin u(x) ∼ x 3
2−2α /∈ L

2
4α−3 (0, 1), which is a contradiction. �

Proof of Remark 10 for all 0 < α < 1. First notice that x2α− 1
2u′(x) = 1√

x

∫ x
0

(u(s) − f(s))ds. Therefore,∣∣∣x2α− 1
2u′(x)

∣∣∣ ≤ 2 ‖f‖L2 . i.e. K(x) ≤ 2.

On the other hand, for fixed 0 < x ≤ 1
2 , define

f(t) =

{
x−

1
2 if 0 < t ≤ x

0 if x < t < 1.

Then ‖f‖L2 = 1. Consider first the case when 3
4 < α < 1. From Theorem 1.11 we obtain that u ∈ X2α−1

0 ,

which embeds into Lp0 for p0 = 2
4α−3 > 2. Thus one obtains that

∣∣∣ 1√
x

∫ x
0
u(s)ds

∣∣∣ ≤ x 1
2−

1
p0 . Then

Kα(x) ≥
∣∣∣∣ 1√
x

∫ x

0

(u(s)− f(s))ds

∣∣∣∣ ≥ 1− x
1
2−

1
p0 ≥ 1−

(
1

2

) 1
2−

1
p0

.

Therefore Kα(x) ≥ δα for δα := 1−
(

1
2

) 1
2−

1
p0 . Notice that when 0 < α ≤ 3

4 , then u ∈ Lp for all p > 1, so the
above argument remains valid. The proof is now finished. �

Proof of Remark 11 for all α < 3
4 . To prove (7), first notice that, from [3], the function h exists and x

1
2h ∈

L∞(0, 1). Therefore, integration by parts gives∫ 1

0

f(x)h(x)dx =

∫ 1

0

(−(x2αu′(x))′h(x) + u(x)h(x))dx = lim
x→0+

u(x).

�

In order to prove the further regularity results we need the following
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Lemma 3.2. Let α > 0 be a real number and k0 ≥ 0 be an integer. Assume u ∈ W k0+2,p
loc (0, 1) for some

p ≥ 1, and limx→0+ xk dk

dxk

(
x2αu′(x)

)
= 0 for all 0 ≤ k ≤ k0. Then for 0 < x < 1

dk

dxk
(
x2α−1u′(x)

)
=

1

xk+1

∫ x

0

sk
dk+1

dsk+1

(
s2αu′(s)

)
ds, for all 0 ≤ k ≤ k0.

Moreover ∥∥∥∥ dkdxk (x2α−1u′
)∥∥∥∥
Lp
≤ C

∥∥∥∥ dk+1

dxk+1

(
x2αu′

)∥∥∥∥
Lp
,

where C is a constant depending only on p, α and k.

Proof. If k0 = 0 then the statement is obvious. When k0 = 1, the condition x
(
x2αu′(x)

)′ → 0 gives

(
x2α−1u′(x)

)′
=

(
1

x

∫ x

0

(
s2αu′(s)

)′
ds

)′
=

(
− 1

x

∫ x

0

s
(
s2αu′(s)

)′′
ds+

(
x2αu′(x)

)′)′
=

1

x2

∫ x

0

s
(
s2αu′(s)

)′′
ds.

The rest of the proof is a straightforward induction argument. We omit the details. The norm bound is
obtained by Fubini’s Theorem when p = 1 and by Hardy’s inequality when p > 1. �

Proof of Theorem 1.6. Assume that f ∈W 1, 1
2α (0, 1). First notice that for 1 ≤ p < 1

2α we have u′ ∈ Lp since

x2αu′ ∈ H1(0, 1). Also notice that x(x2αu′(x))′ = x(u− f)→ 0 since both u and f are continuous. We use
Lemma 3.2 for k0 = 1 to conclude∥∥(x2α−1u′)′

∥∥
Lp
≤ C

∥∥(x2αu′)′′
∥∥
Lp

= C ‖(u− f)′‖Lp ≤ C ‖f‖W 1,p ,

where C is a constant only depending on p and α. Recall that x2αu′′ = u− 2αx2α−1u′ − f ∈ W 1,p(0, 1). It
implies

|u′′(x)| =
∣∣x2αu′′

∣∣x−2α ≤ C ‖f‖W 1,p x
−2α,

where C is a constant only depending on p and α. The above inequality gives that u ∈ W 2,p(0, 1) for all
1 ≤ p < 1

2α , with the corresponding estimate.

Assume now f ∈ W 2, 1
2α (0, 1). We first notice that x2

(
x2αu′(x)

)′′
= x2 (u− f)

′
= x2αu′(x)x2−2α −

x2f ′(x)→ 0 as x→ 0+ since f ∈ C1[0, 1]. This allows us to apply Lemma 3.2 and obtain(
x2α−1u′(x)

)′′
=

1

x3

∫ x

0

s2
(
s2αu′(s)

)′′′
ds =

1

x3

∫ x

0

s2 (u(s)− f(s))
′′
ds.

Lemma 3.2 also gives the desired estimate. �

Proof of Remark 12, 15, 18. It is enough to prove the following claim: there exists f ∈ C∞0 (0, 1) such that
the solution u can be expanded near the origin as

u(x) = b1 + b2x
2−2α + b3x

4−4α + b4x
6−6α + · · · (29)

where b1 6= 0, b2 6= 0.
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We use the same notation as the proof of Remark 1. Take f ∈ C∞0 (0, 1). We know that u(x) =
Aφ1(x) + Bφ2(x) + F (x) where φ1(x) and φ2(x) are two linear independent solutions of the equation
−(x2αu′(x))′ + u(x) = 0 and

F (x) = φ1(x)

∫ x

0

f(s)φ2(s)ds− φ2(x)

∫ x

0

f(s)φ1(s)ds.

Moreover,

lim
x→0+

x2αφ′1(x) 6= 0, lim
x→0+

x2αφ′2(x) = 0, φ2(1) 6= 0, for 0 < α < 1.

Notice that F (x) ≡ 0 near the origin. Therefore, the boundary conditions limx→0+ x2αu′(x) = u(1) = 0

imply that we have u(x) = Bφ2(x) + F (x) with B = − F (1)
φ2(1) . Take f such that

F (1) =

∫ 1

0

f(s)[φ2(s)φ1(1)− φ1(s)φ2(1)]ds 6= 0.

Then u(x) ∼ φ2(x) near the origin and we get the desired power series expansion. �

Proof of Theorem 1.9. When k = 0 we have already established that u ∈ X0 = H1(0, 1). Also, we have that
xu′′ ∈ L2, so (xu)

′′
= (u+ xu′)

′
= 2u′ + xu′′, that is xu ∈ H2(0, 1).

When k = 1, notice that x (xu′(x))
′

= x (u− f) → 0 since both f and u are in H1(0, 1). we use
Lemma 3.2 to write

u′′(x) =
1

x2

∫ x

0

s (su′(s))
′′
ds =

1

x2

∫ x

0

s (u(s)− f(s))
′
ds.

We conclude that u′′ ∈ L2(0, 1) using Lemma 3.2. The rest of the proof is a straightforward induction
argument using Lemma 3.2. We omit the details. �

Lemma 3.3. Suppose 0 < α < 1 and let f ∈ L∞(0, 1). If u is the solution of (27), then u ∈ C0[0, 1] and
x2α−1u′ ∈ L∞(0, 1) with

‖u‖L∞ +
∥∥x2α−1u′

∥∥
L∞
≤ C ‖f‖L∞ ,

where C is a constant depending only on α.

Proof. To prove x2α−1u′ ∈ L∞(0, 1), it is enough to show that u ∈ L∞(0, 1) with ‖u‖L∞ ≤ C ‖f‖L∞ .
Indeed, if this is the case, by (27) we obtain that x2αu′ ∈ W 1,∞(0, 1) with limx→0+ x2αu′(x) = 0. By
Hardy’s inequality, we obtain that

∥∥x2α−1u′
∥∥
L∞
≤ Cα ‖f‖L∞ .

Now we proceed to prove that u ∈ C0[0, 1]. First notice that if α < 3
4 then u ∈ C0[0, 1] by Theorem

1.7. So we only need to study what happens when 3
4 ≤ α < 1.

Suppose 3
4 ≤ α < 1. Since u ∈ X2α−1 we can use Theorem A.2 to say that u ∈ Lp0(0, 1) for p0 = 2

4α−3 ,

so g := f − u ∈ Lp0(0, 1). From (27) we obtain that
(
x2αu′(x)

)′
= g(x), therefore x2αu′ ∈ W 1,p0(0, 1).

Now since p0 > 1 and limx→0+ x2αu′(x) = 0, we are allowed to use Hardy’s inequality and obtain that
x2α−1u′ ∈ Lp0(0, 1). Using Theorem A.2 once more gives that either u ∈ C0[0, 1] if α < 7

8 , in which case we

are done, or u ∈ Lp1(0, 1) for p1 := 2
8α−7 if 7

8 ≤ α < 1. If we are in the latter case, we repeat the argument.

This process stops in finite time since α < 1, thus proving that u ∈ C0[0, 1]. �
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Proof of Theorem 1.10, 1.13. We begin by recalling from Lemma 3.3 that if f ∈ L∞(0, 1) then x2α−1u′ ∈
L∞(0, 1), so |u′(x)| ≤

∥∥x2α−1u′(x)
∥∥
L∞

x1−2α. This readily implies u ∈W 1,p(0, 1). Now just as in the proof
of Theorem 1.6 we can use Lemma 3.2 and write

(x2α−1u′(x))′ =
1

x2

∫ x

0

s(s2αu′(s))′′ds =
1

x2

∫ x

0

s(u(s)− f(s))′ds.

Notice that |xu′(x)| ≤
∥∥x2α−1u′

∥∥
L∞

x2−2α. From here we obtain∣∣(x2α−1u′(x))′
∣∣ ≤ C (∥∥x2α−1u′

∥∥
L∞

x1−2α + ‖f ′‖Lp
)
.

The conclusion then follows by integration. �

Proof of Remark 16. First notice that, from the proof of (ii) of Theorem 1.11, when α = 3
4 ,∣∣∣(1− lnx)

− 1
2 u(x)

∣∣∣ ≤ C ∥∥∥x 1
2u′(x)

∥∥∥
L2
≤ C ‖f‖L2 ,

and when 3
4 < α < 1, ∣∣∣x2α− 3

2u(x)
∣∣∣ ≤ Cα ‖xαu′(x)‖L2 ≤ Cα ‖f‖L2 .

That is, K̃α(x) ≤ Cα.

On the other hand, we can write

u(x) =

∫ 1

x

1

t2α

∫ t

0

(u(s)− f(s))dsdt

=
1

1− 2α

(
1

x2α−1

∫ x

0

f(t)dt+

∫ 1

x

f(t)

t2α−1
dt

)
+

1

1− 2α

(∫ 1

0

(u(t)− f(t))dt− 1

x2α−1

∫ x

0

u(t)dt−
∫ 1

x

u(t)

t2α−1
dt

)
.

When α = 3
4 , for fixed 0 < x ≤ 1

2 , take

f(t) =

{
0 if 0 < t ≤ x
t−

1
2 (− lnx)−

1
2 if x < t < 1.

Then ‖f‖L2 = 1. Since u ∈ Lp(0, 1) for all p < ∞, we can say that, there exists Mα > 0 independent of x
such that ∣∣∣∣∫ 1

0

(u(t)− f(t))dt− 1

x2α−1

∫ x

0

u(t)dt−
∫ 1

x

u(t)

t2α−1
dt

∣∣∣∣ ≤Mα.

Then

K̃α(x) ≥ 1

2α− 1

(
(− lnx)

1
2

(1− lnx)
1
2

− Mα

(1− lnx)
1
2

)
.

When 3
4 < α < 1, for fixed 0 < x ≤ 1

2 , take

f(t) =

{
x−

1
2 if 0 < t ≤ x

0 if x < t < 1.

Then ‖f‖L2 = 1. Since u ∈ Lp0(0, 1) for p0 = 2
4α−3 > 2, we can say that, there exists Mα > 0 and γα > 0

such that ∣∣∣∣x2α− 3
2

∫ 1

0

(u(t)− f(t))dt− 1√
x

∫ x

0

u(t)dt− x2α− 3
2

∫ 1

x

u(t)

t2α−1
dt

∣∣∣∣ ≤Mαx
γα .
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Then

K̃α(x) ≥ 1

2α− 1
(1−Mαx

γα) .

Now, for 3
4 ≤ α < 1, take εα > 0 such that K̃α(x) ≥ 1

4 for all 0 < x < εα. If εα < x ≤ 1
2 , we take

f(t) = −2(3− 2α)t+ 3(4− 2α)t2 + t3−2α − t4−2α, hence u(t) = t3−2α − t4−2α. Notice that 0 < ‖f‖L2 ≤ 10,
so we obtain

K̃α(x) ≥ x
3
2 − x 5

2

10
≥ ε

3
2
α − ε

5
2
α

10
> 0,

for all εα ≤ x ≤ 1
2 . The result follows when we take δα := min

{
1
4 ,

ε
3
2
α−ε

5
2
α

10

}
. �

Proof of Theorem 1.14. Let u be the solution of (27). By definition of u, we have that u ∈ L2(0, 1) and
xαu′ ∈ L2(0, 1). As in the proof of Theorem 1.4, we have that u satisfies (1), w(x) = x2αu′(x) ∈ H1(0, 1),
w(0) = 0 and for any function v in Xα

0 ,

lim
x→0+

x2αu′(x)v(x) = 0.

Take v(x) = xαu′(x)− u′(1). Since α ≥ 1, we have

xα(xαu′(x))′ = w′(x)− αxα−1xαu′(x) ∈ L2(0, 1),

which means that v ∈ Xα
0 . Thus we obtain

lim
x→0+

x3αu′
2
(x) = 0.

To prove that limx→0+ x
α
2 u(x) = 0, we first claim that limx→0+ x

α
2 u(x) exists. To do this, we write

xαu2(x) = −
∫ 1

x
(sαu2(s))′ds. Notice that

(xαu2(x))′ = αxα−1u2(x) + 2xαu′(x)u(x) ∈ L1(0, 1).

Therefore

lim
x→0+

xαu2(x) = −
∫ 1

0

(sαu2(s))′ds.

Now, we can conclude that limx→0+ x
α
2 u(x) = 0. Otherwise, u(x) ∼ 1

x
α
2
/∈ L2(0, 1). �

Before we finish this section, we present a proposition which will be used when dealing with the
spectral analysis of the operator Tα. Also, this proposition gives the postponed proof of (iii) of Theorem 1.8
and (iii) of Theorem 1.12.

Proposition 3.4. Given 1
2 ≤ α ≤ 1 and f ∈ L2(0, 1), suppose that u ∈ H2

loc(0, 1] solves
−(x2αu′(x))′ + u(x) = f(x) in (0, 1),

u(1) = 0,

u ∈ L
1

2α−1 (0, 1).

(30)

Then u is the weak solution obtained from (27).
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Proof. We claim that xαu′ ∈ L2(0, 1). To do this, define w(x) = x2αu′(x). Then w ∈ H1(0, 1). If w(0) 6= 0,
then without loss of generality one can assume that there exists δ > 0 such that 0 < M1 ≤ w(x) ≤ M2 for
all x ∈ [0, δ]. Therefore, ∫ δ

x

M1

t2α
dt ≤

∫ δ

x

u′(t)dt ≤
∫ δ

x

M2

t2α
dt, ∀x ∈ (0, δ].

It implies that

M1(ln δ − lnx) ≤ u(δ)− u(x) ≤M2(ln δ − lnx), ∀x ∈ (0, δ],

when α = 1
2 , and

M1

2α− 1

(
1

x2α−1
− 1

δ2α−1

)
≤ u(δ)− u(x) ≤ M2

2α− 1

(
1

x2α−1
− 1

δ2α−1

)
, ∀x ∈ (0, δ],

when α > 1
2 . In either situation, we reach a contradiction with u ∈ L

1
2α−1 (0, 1). Therefore, w(0) = 0, so

Hardy’s inequality gives

‖xαu′‖22 =

∫ 1

0

w2(x)

x2α
≤
∫ 1

0

w2(x)

x2
<∞.

Since w ∈ H1(0, 1) satisfies w(0) = 0, we conclude that, in the same way as in the proof of Theorem 1.7,

that limx→0+ x−
1
2w(x) = 0. Now, integrate (30) against any test function v ∈ Xα

0 on the interval [ε, 1] and
obtain ∫ 1

ε

x2αu′(x)v′(x)dx+ ε2αu′(ε)v(ε) +

∫ 1

ε

u(x)v(x)dx =

∫ 1

ε

f(x)v(x)dx.

Since 1
2 ≤ α ≤ 1, we write

ε2αu′(ε)v(ε) =
[
ε2α−

1
2w(ε)

] [
ε

1
2 v(ε)

]
.

The estimate (47) tells us that
∣∣∣x 1

2 v(x)
∣∣∣ ≤ Cα ‖v‖α, so we can send ε→ 0+ and obtain (27) as desired. �

4. Analysis of the Spectrum

4.1. The Operator Tα.

In this section we study the spectrum of the operator Tα. We divide this section into three parts. In
subsection 4.1.1 we study the eigenvalue problem of Tα for all α > 0. In subsection 4.1.2 we explore the
rest of the spectrum of Tα for the non-compact case α ≥ 1. Finally, in subsection 4.1.3, we give the proof of
Theorem 1.19.

4.1.1. The Eigenvalue Problem for all α > 0.

In this subsection, we focus on finding the eigenvalues and eigenfunctions of Tα. That is, we seek
(u, λ) ∈ L2(0, 1)× R such that u 6= 0 and Tαu = λu. By definition of Tα in Section 1.6, we have λ 6= 0 and
the pair (u, λ) satisfies∫ 1

0

x2αu′(x)v′(x)dx+

∫ 1

0

u(x)v(x)dx =
1

λ

∫ 1

0

u(x)v(x)dx, ∀v ∈ Xα
0 . (31)

From here we see right away that if λ > 1 or λ < 0, then Lax-Milgram Theorem applies and equation (31)
has only the trivial solution. Also, a direct computation shows that u ≡ 0 is the only solution when λ = 1.
This implies that all the eigenvalues belong to the interval (0, 1). So we will analyze (31) only for 0 < λ < 1.



A SINGULAR STURM-LIOUVILLE EQUATION UNDER HOMOGENEOUS BOUNDARY CONDITIONS 25

As the existence and uniqueness results show, it amounts to study the following ODE for µ := 1
λ > 1,

−(x2αu′(x))′ + u(x) = µu(x) on (0, 1), (32)

under certain boundary behaviors. To solve (32), we will use Bessel’s equation

y2f ′′(y) + yf ′(y) + (y2 − ν2)f(y) = 0 on (0,∞). (33)

Indeed, we have the following

Lemma 4.1. For α 6= 1 and any β > 0, let fν be any solution of (33) with parameter ν2 =
(
α− 1

2

α−1

)2

and

define u(x) = x
1
2−αfν(βx1−α). Then u solves

−(x2αu′(x))′ = β2(α− 1)2u(x).

Proof. Notice that by definition u′(x) = ( 1
2 − α)x−

1
2−αfν(βx1−α) + β(1 − α)x

1
2−2αf ′ν(βx1−α), and thus

x2αu′(x) = (1
2 − α)x−

1
2 +αfν(βx1−α) + β(1− α)x

1
2 f ′ν(βx1−α). A direct computation shows that

(x2αu′(x))′ = −
(
α− 1

2

)2

xα−
3
2 fν(βx1−α) + β(α− 1)2x−

1
2 f ′ν(βx1−α) + β2(α− 1)2x

1
2−αf ′′ν (βx1−α).

Using (33) evaluated at y = βx1−α gives

β2x2(1−α)f ′′ν (βx1−α) + βx1−αf ′ν(βx1−α) = (ν2 − β2x2(1−α))fν(βx1−α). (34)

Multiply (34) by (α− 1)2xα−
3
2 and obtain

β2(α− 1)2x
1
2−αf ′′ν (βx1−α) + β(α− 1)2x−

1
2 f ′ν(βx1−α) = (ν2(α− 1)2xα−

3
2 − β2(α− 1)2x

1
2−α)fν(βx1−α).

Thus we obtain, by our choice of ν,

(x2αu′(x))′ = −
(
α− 1

2

)2

xα−
3
2 fν(βx1−α) + (ν2(α− 1)2xα−

3
2 − β2(α− 1)2x

1
2−α)fν(βx1−α)

=

(
−
(
α− 1

2

)2

+ ν2(α− 1)2

)
xα−

3
2 fν(βx1−α)− β2(α− 1)2x

1
2−αfν(βx1−α)

= −β2(α− 1)2x
1
2−αfν(βx1−α)

= −β2(α− 1)2u(x).

The proof is now completed. �

We will need a few known facts about Bessel functions, which we summarize in the following Lemmas
(for the proofs see e.g. Chapter III of [11]).

Lemma 4.2. For non-integer ν, the general solution to equation (33) can be written as

fν(x) = C1Jν(x) + C2J−ν(x). (35)

The function Jν(x) is called the Bessel function of the first kind of order ν. This function has the following
power series expansion

Jν(x) =
1

Γ(ν + 1)

(x
2

)ν
+

∞∑
m=1

(−1)m

m! Γ(m+ ν + 1)

(x
2

)2m+ν

.

A similar expression can be obtained for J ′ν(x) by differentiating Jν(x).
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Lemma 4.3. For non-negative integer ν, the general solution to equation (33) can be written as

fν(x) = C1Jν(x) + C2Yν(x). (36)

The function Jν(x) is the same as the one from Lemma 4.2, and the function Yν(x) is called the Bessel
function of second kind which satisfies the following asymptotics: for 0 < x << 1,

Yν(x) ∼

{
2
π

[
ln
(
x
2

)
+ γ
]

if ν = 0,

−Γ(ν)
π

(
2
x

)ν
if ν > 0,

where γ := lim
n→∞

(∑n
k=1

1
k − ln(n)

)
is Euler’s constant.

Remark 23. We have been using the notation f(x) ∼ g(x). This notation means that there exists constants
c1, c2 > 0 such that

c1 |g(x)| ≤ |f(x)| ≤ c2 |g(x)| .

Remark 24. Suppose that α 6= 1, and let β =
√
µ−1
|α−1| . Then Lemma 4.1, 4.2 and 4.3 guarantee that the

general solution of (32) is given by

u(x) =

{
C1x

1
2−αJν(βx1−α) + C2x

1
2−αJ−ν(βx1−α) if ν is not an integer,

C1x
1
2−αJν(βx1−α) + C2x

1
2−αYν(βx1−α) if ν is an non-negative integer.

(37)

Now the problem has been reduced to select the eigenfunctions from the above family.

We first study the eigenvalue problem for the compact case 0 < α < 1.

Proof of (i) of Theorem 1.17. We first consider the case when 0 < α < 1
2 . In this case notice that ν =

α− 1
2

1−α
is negative and non-integer. From theorems 1.4 and 1.5, and equations (31), (32) and (37), we have that the
eigenfunction is of the form

u(x) = C1x
1
2−αJν(βx1−α) + C2x

1
2−αJ−ν(βx1−α)

with β =
√
µ−1
|α−1| , lim

x→0+
x2αu′(x) = 0 and u(1) = 0. Then Lemma 4.2 gives that x2αu′(x) ∼ C2

β−ν( 1
2−α)

2−νΓ(−ν+1) . so

the boundary condition lim
x→0+

x2αu′(x) = 0 forces C2 to vanish. Therefore u(x) = C1x
1
2−αJν(βx1−α). Now,

the condition u(1) = 0 forces β to satisfy Jν(β) = 0, that is β must be a positive root of the the Bessel

function Jν , for ν =
α− 1

2

1−α .

Therefore, we conclude that if we let jνk be the k-th positive root of Jν(x), then

uνk(x) = x
1
2−αJν(jνkx

1−α), k = 1, 2, · · ·
are the eigenfunctions and the corresponding eigenvalues are given by

λνk =
1

1 + (1− α)2j2
νk

, k = 1, 2, · · · .

Next, we investigate the case when 1
2 ≤ α < 1. In this case, ν =

α− 1
2

1−α is non-negative and could be
integer or non-integer. Using Lemma 4.2 and 4.3, we obtain the asymptotics of the general solution near the
origin,

u(x) ∼


C1β

ν

Γ(ν+1)2ν + C22ν

βνΓ(1−ν)x
1−2α if α > 1

2 , and ν is not an integer,
C1β

ν

Γ(ν+1)2ν −
2νΓ(ν)C2

βνπ x1−2α if α > 1
2 , and ν is an integer,

C1β
ν

Γ(ν+1)2ν + 2C2

π [ln(β
√
x) + γ] if α = 1

2 .
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Now Proposition 3.4 says that it is enough to impose u ∈ L
1

2α−1 (0, 1) which forces C2 = 0 and

u(x) = C1x
1
2−αJν(βx1−α). Moreover, the condition u(1) = 0 forces β to satisfy Jν(β) = 0, that is β must

be a positive root of the Bessel function Jν , for ν =
α− 1

2

1−α .

As before we conclude that

uνk(x) = x
1
2−αJν(jνkx

1−α), k = 1, 2, · · ·
are the eigenfunctions and the corresponding eigenvalues are given by

λνk =
1

1 + (1− α)2j2
νk

, k = 1, 2, · · · .

Finally, the asymptotic behavior of jνk as k → ∞ is well understood (see e.g. Chapter XV of [11]).
We have

jνk = kπ +
π

2

(
ν − 1

2

)
− 4ν2 − 1

8
(
kπ + π

2

(
ν − 1

2

)) +O

(
1

k3

)
. (38)

Using (38), we obtain that

µνk = 1 + (1− α)2

[(
π

2

(
ν − 1

2

)
+ πk

)2

−
(
ν2 − 1

4

)]
+O

(
1

k

)
.

�

Next we consider the case α = 1. In this case, the equation (37) is not the general solution for (32).
However, as the reader can easily verify, the general solution for (32) when α = 1 is given by

u(x) =


C1x

− 1
2 +
√

5
4−µ + C2x

− 1
2−
√

5
4−µ for µ < 5

4 ,

C1x
− 1

2 + C2x
− 1

2 lnx for µ = 5
4 ,

C1x
− 1

2 cos
(√

µ− 5
4 lnx

)
+ C2x

− 1
2 sin

(√
µ− 5

4 lnx
)

for µ > 5
4 .

(39)

With equation (39) in our hands, we can prove the following:

Proposition 4.4. If α = 1, then Tα has no eigenvalues.

Proof. For the general solution given by (39), we impose u(1) = 0, and obtain that any non-trivial solution
has the form:

u(x) =


Cx−

1
2 +
√

5
4−µ

(
1− x−2

√
5
4−µ

)
for µ < 5

4 ,

Cx−
1
2 lnx for µ = 5

4 ,

Cx−
1
2 sin

(√
µ− 5

4 lnx
)

for µ > 5
4 ,

for some C 6= 0. From here we see right away that if µ ≥ 5
4 then u /∈ L2(0, 1). And when µ < 5

4 , we obtain
that ∫ 1

0

u2(x)dx = C2

∫ 1

0

x−1+2
√

5
4−µ

(
1− x−2

√
5
4−µ

)2

dx.

Let y = x2
√

5
4−µ, so this integral becomes∫ 1

0

u2(x)dx = C2

∫ 1

0

(
1− 1

y

)2

dy ≥ C2

4

∫ 1
2

0

1

y2
dy = +∞.

This says that when α = 1, there are no eigenvalues and eigenfunctions. �
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Finally we investigate the case α > 1. To investigate the eigenvalue problem in this case, we need the
following fact about the Bessel’s equation.

Lemma 4.5. Assume that fν(t) is a non-trivial solution of Bessel’s equation

t2f ′′ν (t) + tf ′ν(t) + (t2 − ν2)fν(t) = 0. (40)

Then
∫∞
s
tf2
ν (t)dt =∞, ∀s > 0,∀ν > 0.

Proof. We first define the function gν(t) = fν(bt), for some b 6= 1. Then gν(t) satisfies the ODE

t2g′′ν (t) + tg′ν(t) + (b2t2 − ν2)gν(t) = 0. (41)

From equation (40) and (41), we have

t2(f ′′ν (t)gν(t)− fν(t)g′′ν (t)) + t(f ′ν(t)gν(t)− fν(t)g′ν(t)) + t2(1− b2)fν(t)gν(t) = 0,

or

t(f ′′ν (t)gν(t)− fν(t)g′′ν (t)) + (f ′ν(t)gν(t)− fν(t)g′ν(t)) + t(1− b2)fν(t)gν(t) = 0,

i.e.
d

dt
[t(f ′ν(t)gν(t)− fν(t)g′ν(t))] + t(1− b2)fν(t)gν(t) = 0.

Integrating the above equation we obtain∫ N

s

tfν(t)gν(t)dt =
N(f ′ν(N)gν(N)− fν(N)g′ν(N))

b2 − 1
− s(f ′ν(s)gν(s)− fν(s)g′ν(s))

b2 − 1

=
Nf ′ν(N)fν(bN)− bNfν(N)f ′ν(bN)

b2 − 1
− sf ′ν(s)fν(bs)− bsfν(s)f ′ν(bs)

b2 − 1

, A−B.
We then pass the limit as b→ 1. Notice that

lim
b→1

A = lim
b→1

Nf ′ν(N)fν(bN)− bNfν(N)f ′ν(bN)

b2 − 1

= lim
b→1

N2f ′ν(N)f ′ν(bN)−Nfν(N)f ′ν(bN)− bN2fν(N)f ′′ν (bN)

2b

=
N2f ′ν(N)f ′ν(N)−Nfν(N)f ′ν(N)−N2fν(N)f ′′ν (N)

2

=
1

2

(
N2f ′2ν (N) +N2f2

ν (N)− ν2f2
ν (N)

)
,

and

lim
b→1

B = lim
b→1

sf ′ν(s)fν(bs)− bsfν(s)f ′ν(bs)

b2 − 1

=
1

2

(
s2f ′2ν (s) + s2f2

ν (s)− ν2f2
ν (s)

)
.

Therefore∫ N

s

tf2
ν (t)dt =

1

2

(
N2f ′2ν (N) +N2f2

ν (N)− ν2f2
ν (N)

)
− 1

2

(
s2f ′2ν (s) + s2f2

ν (s)− ν2f2
ν (s)

)
.

Sending N →∞, we deduce from the asymptotic behavior of the Bessel’s function that
∫∞
s
tf2
ν (t)dt =∞. �

Proposition 4.6. If α > 1, then Tα has no eigenvalues.
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Proof. We argue by contradiction. Suppose λ = 1
µ is an eigenvalue and u ∈ L2(0, 1) is the corresponding

eigenfunction, then µ > 1 and the pair (u, λ) satisfies (32). Lemma 4.1 says that u(x) = x
1
2−αfν(βx1−α)

where β =
√
µ−1
α−1 and fν(t) is a non-trivial solution of

t2f ′′ν (t) + tf ′ν(t) + (t2 − ν2)fν(t) = 0.

Applying the change of variable βx1−α = t and Lemma 4.5 gives

∫ 1

0

u2(x)dx =

∫ 1

0

x1−2αf2
ν (βx1−α)dx

=
1

β(α− 1)

∫ ∞
β

(
t

β

) 1−2α
1−α + 1

1−α−1

f2
ν (t)dt

=
1

β2(α− 1)

∫ ∞
β

tf2
ν (t)dt =∞,

which is a contradiction. �

4.1.2. The Rest of the Spectrum for the Case α ≥ 1.

We have found the eigenvalues of Tα for all α > 0. Next we study the rest of the spectrum for the non-
compact case α ≥ 1. It amounts to study the surjectivity of the operator Tα − λI in L2(0, 1), that is, given
f ∈ L2(0, 1), we want determine whether there exists h ∈ L2(0, 1) such that (T − λ)h = f . Since ‖Tα‖ ≤ 1,
Tα is a positive operator, and Tα is not surjective, we can assume that 0 < λ ≤ 1. By letting u = λh + f ,
the existence of the function h ∈ L2(0, 1) is equivalent to the existence of the function u ∈ L2(0, 1) satisfying

Tα

(
u− f
λ

)
= u.

By the definition of Tα in Section 1.6, the above equation can be written as

∫ 1

0

(
x2αu′(x)v′(x) +

(
1− 1

λ

)
u(x)v(x)

)
dx = − 1

λ

∫ 1

0

f(x)v(x)dx, ∀v ∈ Xα
0 . (42)

Since we proved that there are no eigenvalues when α ≥ 1, a real number λ is in the spectrum of the operator
Tα if and only if there exists a function f ∈ L2(0, 1) such that (42) is not solvable. To study the solvability
of (42) we introduce the following bilinear form,

aα(u, v) ,
∫ 1

0

x2αu′(x)v′(x)dx+

(
1− 1

λ

)∫ 1

0

u(x)v(x)dx, (43)

and we first study the coercivity of a1(u, v).

Lemma 4.7. If λ > 4
5 , then a1(u, v) is coercive in X1

0 .
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Proof. We use Theorem A.1 and obtain

a1(u, u) =

∫ 1

0

(xu′(x))2dx−
(

1

λ
− 1

)∫ 1

0

u2(x)dx

≥
∫ 1

0

(xu′(x))2dx− 4

(
1

λ
− 1

)∫ 1

0

(xu′(x))2

=

(
1− 4

(
1

λ
− 1

))∫ 1

0

(xu′(x))2dx

≥ 1

5

(
1− 4

(
1

λ
− 1

))
‖u‖2X1

0
.

Thus if λ > 4
5 , this bilinear form is coercive. �

Now we can prove the next

Proposition 4.8. For α = 1, the spectrum of the operator T1 is exactly σ(T1) =
[
0, 4

5

]
.

Proof. The coercivity of a1(u, v) gives immediately that σ(T1) ⊂
[
0, 4

5

]
. To prove the reverse inclusion, we

first claim that (T1 − λ)u = −λ is not solvable when 0 < λ ≤ 4
5 . Otherwise, by equation (42), there would

exist µ = 1
λ and u ∈ L2(0, 1) such that{

−(x2u′(x))′ + (1− µ)u(x) = 1,

u(1) = 0.
(44)

Equation (44) can be solved explicitly as

u(x) =

x
− 1

2

[
C −

(
C + 1

1−µ

)
lnx
]

+ 1
1−µ for µ = 5

4 ,

Cµx
− 1

2 sin
(
Aµ +

√
µ− 5

4 lnx
)

+ 1
1−µ for µ > 5

4 ,

where Cµ =
C2+ 1

(1−µ)2√
µ− 5

4

, sinAµ = C
C2+ 1

(1−µ)2
and C could be any real number. So we have that

∥∥∥∥u(x)− 1

1− µ

∥∥∥∥2

L2(0,1)

=


∫ 0

−∞

(
C −

(
C + 1

1−µ

)
y
)2

dy for µ = 5
4 ,

Cµ
∫ 0

−∞ sin2 (Aµ + y) dy for µ > 5
4 .

Notice that the right hand side above is +∞ independently of C, thus proving that u /∈ L2(0, 1). Therefore
(T1 − λ)h = −λ is not solvable in L2(0, 1) for 0 < λ ≤ 4

5 . Also 0 ∈ σ(T1), because T1 is not surjective. This

gives
[
0, 4

5

]
⊂ σ(T1) as claimed. �

Proposition 4.9. For α > 1, the spectrum of the operator Tα is exactly σ(Tα) = [0, 1].

Proof. As we already know, σ(Tα) ⊂ [0, 1]. So let us prove the converse. We first claim that the equation
(Tα − λ)u = −λ is not solvable for 0 < λ < 1. As before, this amounts to solve

−(x2αu′(x))′ + (1− µ)u(x) = 1,

where µ = 1
λ . Lemma 4.1 implies that u(x) = x

1
2−αfν(βx1−α) + 1 where β =

√
µ−1
α−1 and fν(t) is a non-trivial

solution of
t2f ′′ν (t) + tf ′ν(t) + (t2 − ν2)fν(t) = 0.

By Lemma 4.5 we conclude that ‖u‖2 =∞. So (Tα − λ)h = −λ is not solvable when λ ∈ (0, 1).
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When λ = 1, take f(x) = −λxε− 1
2 , where ε > 0 is to be determined, and try to solve (Tα − I)u = f ,

which is equivalent to solve {
−(x2αu′(x))′ = xε−

1
2 ,

u(1) = 0.

The general solution of this ODE is given by

u(x) =
1

( 1
2 + ε)( 3

2 + ε− 2α)
x

3
2 +ε−2α + Cx−2α+1 − C − 1

( 1
2 + ε)( 3

2 + ε− 2α)
.

We choose 0 < ε < 2α − 2 so that 3
2 + ε − 2α < − 1

2 . Therefore, ‖u‖2 = ∞ independently of C, thus
(Tα − I)u = f is not solvable. Hence (0, 1] ⊂ σ(Tα). Also 0 ∈ σ(Tα); thus the result is proved. �

Proof of Corollary 1.18. To prove (i), it is enough to notice that when 0 < α < 1 the operator Tα is compact
and R(Tα) is not closed.

To prove (ii) and (iii), by the definition of essential spectrum and the fact that Tα has no eigenvalue
when α ≥ 1, it is enough to show that σd(Tα) ⊂ EV (Tα), where EV (Tα) is the set of the eigenvalues.
Actually, for λ ∈ σd(Tα), we claim that dimN(Tα−λI) 6= 0. Suppose the contrary, then dimN(Tα−λI) = 0,
and one obtains that

R(Tα − λI)⊥ = N(T ∗α − λI) = N(Tα − λI) = {0}.
Since Tα − λI is Fredholm, it means that R(Tα − λI) is closed and therefore R(Tα − λI) = L2(0, 1). That
leads to the bijectivity of Tα − λI, which contradicts with λ ∈ σd(Tα). �

4.1.3. The proof of Theorem 1.19.

Proof. To prove (i), it is equivalent to prove that µνk ≥ 5
4 for all k = 1, 2, . . . and ν > 1

2 . Indeed, since

ν > 1
2 , we have the following inequality (see [6]) for all k = 1, 2, . . .

jνk > ν +
kπ

2
− 1

2
≥ ν +

π − 1

2
,

so

(1− α)jνk =
1

2(ν + 1)
jνk ≥

1

2
+

π − 3

4(ν + 1)
≥ 1

2
.

Thus µνk = 1 + (1− α)2j2
νk ≥ 5

4 .

To prove (ii), from [6] we obtain that for fixed x > 0, we have

lim
ν→∞

jν,νx
ν

= i(x), (45)

where i(x) := sec θ and θ is the unique solution in
(
0, π2

)
of tan θ−θ = πx. Using this fact, and the definition

of ν, we can write

µνk = 1 + (1− α)2j2
νk = 1 +

(
α− 1

2

)2(
jνk
ν

)2

.

Define νk = k
x (or equivalently, αk = 1− 1

2( kx+1)
), then (45) implies that

µm := µνmm = 1 +

(
αm −

1

2

)2

i2(x) (1 + o(1)) ,
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where o(1) is a quantity that goes to 0 as m → ∞. So for fixed x > 0 we find that (notice that m → ∞
implies νm →∞, which necessarily implies that αm → 1−)

λm :=
1

µm
→ 1

1 + 1
4 i

2(x)
=: λ(x).

It is clear from the definition of i(x), that i(x) is injective and that i((0,+∞)) = (1,+∞), which gives that
λ(x) is injective and λ((0,+∞)) =

(
0, 4

5

)
. So we only need to take care of the endpoints, that is 0 and 4

5 .
Firstly, consider jν1, the first root of Jν(x). It is known that (see e.g. Chapter XV of [11])

jν1 = ν +O(ν
1
3 ) as ν →∞.

Consider µm = µm1 = 1 +
(
αm − 1

2

)2
(1 + o(1)) , where αm = 1 − 1

2(m+1) , and o(1) goes to 0 as m → ∞.

This implies that

λm →
4

5
as αm → 1−.

To conclude the proof of (ii), recall that Tα is compact for all α < 1 so 0 ∈ σ(Tα). �

Proof of Remark 21. Notice that part (i) in Theorem 1.19 gives supx∈σ(Tα) infy∈σ(T1) |x− y| = 0 for all
2
3 < α < 1. Therefore, it is enough to prove

lim
α→1−

sup
x∈σ(T1)

inf
y∈σ(Tα)

|x− y| = 0.

Indeed, the compactness of σ(T1) implies that, for any ε > 0, there exists {xi}ni=1 ∈ σ(T1) such that

sup
x∈σ(T1)

inf
y∈σ(Tα)

|x− y| ≤ max
i=1,...,n

d(xi, σ(Tα)) +
ε

2
.

Then part (ii) in Theorem 1.19 gives the existence of αε < 1 such that d(xi, σ(Tα)) ≤ ε
2 for all αε < α < 1

and all i = 1, . . . , n. �

4.2. The operator TD.

Proof of Theorem 1.16. In order to find all the eigenvalues and eigenfunctions, we need the nontrivial solu-
tions of {

−(x2αu′(x))′ + u(x) = µu(x) on (0, 1),

u(0) =u(1) = 0.

Let ν0 =
1
2−α
1−α , which is positive and never an integer. Equation (37) gives us its general solution

u(x) = C1x
1
2−αJν0(βx1−α) + C2x

1
2−αJ−ν0(βx1−α),

where β =
√
µ−1
|α−1| . The asymptotic of Jν0 when 0 < x << 1 yields

u(x) ∼ C1k
ν0

Γ(ν0 + 1)2ν0
x1−2α +

C22ν0

kν0Γ(1− ν0)
,

so imposing u(0) = 0 forces C2 = 0. i.e. u(x) = C1x
1
2−αJν0(βx1−α). Then u(1) = 0 forces β to satisfy

Jν0(β) = 0, that is β must be a positive root of the Bessel function Jν0 , for ν0 =
1
2−α
1−α .

Therefore, we conclude that

uν0k(x) = x
1
2−αJν0(jν0kx

1−α), k = 1, 2, · · ·
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are the eigenfunctions and the corresponding eigenvalues are given by

λν0k =
1

1 + (1− α)2j2
ν0k

, k = 1, 2, · · · .

The behavior of µν0k is then obtained from the asymptotic of jν0k just as we did in the study of the
operators Tα. We omit the details. �

Appendix A

For α > 0 and 1 ≤ p ≤ ∞ define

Xα,p(0, 1) =
{
u ∈W 1,p

loc (0, 1) : u ∈ Lp(0, 1), xαu′ ∈ Lp(0, 1)
}
.

Notice that the functions in Xα,p(0, 1) are continuous away from 0. It makes sense to define the following
subspace

Xα,p
·0 (0, 1) = {u ∈ Xα,p(0, 1) : u(1) = 0} .

When p = 2, we simplify the notation and write Xα := Xα,2(0, 1) and Xα
0 := Xα,2

·0 (0, 1). The space
Xα,p(0, 1) is equipped with the norm

‖u‖α,p = ‖u‖Lp(0,1) + ‖xαu′‖Lp(0,1) ,

or sometimes, if 1 < p <∞, with the equivalent norm(
‖u‖pLp(0,1) + ‖xαu′‖pLp(0,1)

) 1
p

.

The space Xα is equipped with the scalar product

(u, v)α =

∫ 1

0

(
x2αu′(x)v′(x) + u(x)v(x)

)
dx,

and with the associated norm

‖u‖α =
(
‖u‖2L2(0,1) + ‖xαu′‖2L2(0,1)

) 1
2

.

One can easily check that, for α > 0 and 1 ≤ p ≤ ∞, the space Xα,p(0, 1) is a Banach space and Xα,p
·0 (0, 1)

is a closed subspace. When 1 < p <∞ the space is reflexive. Moreover, the space Xα is a Hilbert space.

Weighted Sobolev spaces have been studied in more generality (see e.g. [8]). However, since our
situation is more specific, we briefly discuss some properties which are relevant for our study.

Theorem A.1. For 1 ≤ p ≤ ∞, let β be any real number such that β + 1
p > 0. Assume that u ∈W 1,p

loc (0, 1]

and u(1) = 0. Then ∥∥xβu∥∥
Lp
≤ Cp,β

∥∥xβ+1u′
∥∥
Lp
, (46)

where Cp,β = p
1+pβ for 1 ≤ p < ∞ and C∞,β = 1

β . In particular, for 1 ≤ p < ∞ and 0 < α ≤ 1,

|u|α,p := ‖xαu′‖Lp defines an equivalent norm for Xα,p
·0 (0, 1).
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Proof. We first assume 1 ≤ p <∞ and write∫ 1

ε

xpβ |u(x)|p dx = −
∫ 1

ε

x
(
xpβ |u(x)|p

)′
dx− εpβ+1 |u(ε)|p

≤ −
∫ 1

ε

x
(
xpβ |u(x)|p

)′
dx

= −pβ
∫ 1

ε

xpβ |u(x)|p dx− p
∫ 1

ε

xpβ+1 |u(x)|p−2
u(x)u′(x)dx.

Applying Holder’s inequality, we obtain

(1 + pβ)

∫ 1

ε

xpβ |u(x)|p dx ≤ p
∫ 1

ε

xpβ |u(x)|p xβ+1 |u′(x)| dx ≤ p
∥∥xβu∥∥p−1

Lp

∥∥xβ+1u′
∥∥
Lp
.

Then equation (46) is derived for 1 ≤ p < ∞ and Cp,β = p
1+pβ . When p = ∞, it is understood that 1

p = 0

and β > 0, so we pass the limit for p→∞ in equation (46) and obtain∥∥xβu∥∥
L∞
≤ 1

β

∥∥xβ+1u′
∥∥
L∞

.

�

Theorem A.2. For 0 < α ≤ 1, 1 ≤ p ≤ ∞, the space Xα,p(0, 1) is continuously embedded into

(i) C0,1− 1
p−α[0, 1] if 0 < α < 1− 1

p and p 6= 1,

(ii) Lq(0, 1) for all q <∞ if α = 1− 1
p ,

(iii) L
p

pα−p+1 (0, 1) if 1− 1
p < α ≤ 1 and p 6=∞.

Proof. For all 0 < x < y < 1, we write |u(y)− u(x)| ≤
∫ y
x
|sαu′(s)| s−αds. Applying Holder’s inequality, we

obtain

|u(y)− u(x)| ≤ Cα,p ‖sαu′‖Lp



x−α if p = 1∣∣∣y1− αp
p−1 − x1− αp

p−1

∣∣∣ p−1
p

if 1 < p <∞ and α 6= 1− 1
p

|ln y − lnx|
p−1
p if 1 < p <∞ and α = 1− 1

p∣∣y1−α − x1−α
∣∣ if p =∞ and α 6= 1

|ln y − lnx| if p =∞ and α = 1.

(47)

Then assertions (i) and (ii) of Theorem A.2 follow directly from equation (47).

Next, we prove the assertion (iii) with u ∈ Xα,p
·0 (0, 1). That is, for 1 ≤ p < ∞, 1 − 1

p < α ≤ 1 and

u ∈W 1,p
loc (0, 1] with u(1) = 0, we claim

‖u‖
L

p
pα−p+1

≤ pα

pα− p+ 1

(
1

α

)α
21−α ‖xαu′‖Lp . (48)

If α = 1, estimate (48) is a special case of (46). We now prove (48) for p = 1 and 0 < α < 1. Notice that,
from equation (46),

‖xαu‖L∞ ≤
∥∥(xαu)

′∥∥
L1

≤ α
∥∥xα−1u

∥∥
L1 + ‖xαu′‖L1

≤ 2 ‖xαu′‖L1 .
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Therefore, ∫ 1

0

|u(x)|
1
α dx = − 1

α

∫ 1

0

x |u(x)|
1
α−2

u(x)u′(x)dx− lim
x→0+

x |u(x)|
1
α

≤ 1

α
‖xαu′‖L1

∥∥∥x1−α |u(x)|
1
α−1

∥∥∥
L∞

≤ 1

α
2

1−α
α ‖xαu′‖

1
α

L1 .

That is

‖u‖
L

1
α
≤
(

1

α

)α
21−α ‖xαu′‖L1 . (49)

Finally we assume 1 < p < ∞ and 1 − 1
p < α < 1, we proceed as in the proof of the Sobolev-Gagliardo-

Nirenberg inequality. That is, applying the inequality (49) to u(x) = |v(x)|γ , for some γ > 1 to be chosen,
it gives (∫ 1

0

|v(x)|
γ
α dx

)α
≤ γ

(
1

α

)α
21−α

∫ 1

0

|v(x)|γ−1 |v′(x)|xαdx.

Using Holder inequality yields(∫ 1

0

|v(x)|
γ
α dx

)α
≤ γ

(
1

α

)α
21−α ‖xαv′‖Lp

(∫ 1

0

|v(x)|
p(γ−1)
p−1

)1− 1
p

.

Let γ
α = p(γ−1)

p−1 . That is γ = pα
pα−p+1 > 1 and the above inequality gives the desired result.

Finally, the assertion (iii) in the general case follows immediately from (48), because ‖u‖Lp ≤
‖u− u(1)‖Lp + |u(1)|, while u− u(1) ∈ Xα,p

·0 (0, 1) and |u(1)| ≤ (2pα + 1) ‖u‖α,p. �

We would like to point out that, by the assertion (i) in Theorem A.2, we can define, for 1 < p ≤ ∞
and 0 < α < 1− 1

p ,

Xα,p
00 (0, 1) = {u ∈ Xα,p(0, 1) : u(0) = u(1) = 0} .

Remark 25. Notice that the inequalities (46) and (48) are particular cases of the inequalities proved by
Caffarelli, Kohn and Nirenberg. For further reading on this topic we refer to their paper [2].

Theorem A.3. Let 1 ≤ p ≤ ∞. Then Xα,p(0, 1) is compactly embedded into Lp(0, 1) for all α < 1. On the
other hand, the embedding is not compact when α ≥ 1.

Proof. We first prove that, for 1 ≤ p <∞ and 0 < α < 1, the space Xα,p
·0 (0, 1) is compactly embedded into

Lp(0, 1). Let F be the unit ball in Xα,p
·0 (0, 1). It suffices to prove that F is totally bounded in Lp(0, 1).

Notice that, by equation (47), ∀ε > 0, there exists a positive integer m, such that

‖u‖Lp(0, 2
m ) < ε, ∀u ∈ F .

Define φ(x) ∈ C∞(R) with 0 ≤ φ ≤ 1 such that

φ(x) =

{
0 if x ≤ 1

1 if x ≥ 2,

and take φm(x) = φ(mx). Now φmF is bounded in W 1,p(0, 1), and therefore is totally bounded in Lp(0, 1).
Hence we may cover φmF by a finite number of balls of radius ε in Lp(0, 1), say

φmF ⊂
⋃
i

B(gi, ε), gi ∈ Lp(0, 1).
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We claim that
⋃
i

B(gi, 3ε) covers F . Indeed, given u ∈ F there exists some i such that

‖φmu− gi‖Lp(0,1) < ε.

Therefore,

‖u− gi‖Lp(0,1) ≤ ‖φmu− gi‖Lp(0,1) + ‖u− φmu‖Lp(0,1)

< ε+ 2 ‖u‖Lp(0, 2
m )

≤ 3ε.

Hence we conclude that F is totally bounded in Lp(0, 1).

To prove the compact embedding for Xα,p(0, 1) with 1 ≤ p < ∞ and 0 < α < 1, notice that for any
sequence {vn} ⊂ Xα,p(0, 1) with ‖vn‖α,p ≤ 1. One can define un(x) = vn(x)− vn(1) ∈ Xα,p

·0 (0, 1). Then

‖un‖α,p = ‖xαu′n‖Lp = ‖xαv′n‖Lp ≤ 1.

What we just proved shows that there exists u ∈ Lp(0, 1) such that, up to a subsequence, un → u in Lp.
Notice in addition that |vn(1)| ≤ (2pα + 1) ‖v‖α,p ≤ 2pα + 1, thus there exists M ∈ R such that, after maybe

extracting a further subsequence, vn(1)→M . Then it is clear that vn(x)→ u(x) +M in Lp.

We now prove the embedding is not compact when 1 ≤ p < ∞ and α ≥ 1. To do so, define the
sequence of functions

vn(x) =

(
1

nx(1− lnx)1+ 1
n

) 1
p

,

and

un(x) = vn(x)−
(

1

n

) 1
p

, ∀n ≥ 2.

Clearly ‖vn‖Lp(0,1) = 1 and 1−
(

1
2

) 1
p ≤ ‖un‖Lp(0,1) ≤ 2. Also ‖xu′n‖Lp(0,1) ≤

6
p . It means that {un(x)}∞n=2

is a bounded sequence in Xα,p
·0 (0, 1) for α ≥ 1. However, it has no convergent subsequence in Lp(0, 1) since

un → 0 a.e. and ‖un‖Lp(0,1) is uniformly bounded below.

If p =∞ and 0 < α < 1, take u ∈ Xα,∞(0, 1) and equation (47) implies that

|u(x)− u(y)| ≤ Cα ‖xαu′‖L∞ |x− y|
1−α

.

Therefore, the embedding is compact by the Ascoli-Arzela theorem. To prove that the embedding is not
compact for p =∞ and α ≥ 1, define the sequence of functions

φn(x) =

{
− ln x

lnn if 1
n ≤ x ≤ 1

1 if 0 ≤ x < 1
n .

We can see that φn is a bounded sequence in Xα,∞(0, 1) for α ≥ 1. However it has no convergent subsequence
in L∞(0, 1) since φn → 0 a.e but ‖φn‖L∞ = 1. �

We conclude the Appendix with the following density result, which is not used in the paper but is of
independent interest.

Theorem A.4. Assume 1 ≤ p <∞.

(i) If p 6= 1 and 0 < α < 1 − 1
p , we have that C∞([0, 1]) is dense in Xα,p(0, 1) and that C∞0 (0, 1) is

dense in Xα,p
00 (0, 1).
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(ii) If α > 0 and α ≥ 1− 1
p , we have that C∞0 (0, 1] is dense in Xα,p(0, 1).

Proof. For any 1 ≤ p < ∞, α > 0 and u ∈ Xα,p(0, 1), we first claim that there exists a sequence {εn > 0}
with limn→∞ εn = 0 such that:

• either |u(εn)| ≤ C uniformly in n, or
• |u(εn)| ≤ |u(x)| for all n and 0 < x < εn.

Indeed, if |u(x)| is unbounded along every sequence converging to 0, we would have limx→0+ |u(x)| = +∞, in
which case we can define εn > 0 to be such that |u(εn)| = min0<x≤ 1

n
|u(x)|, thus completing the argument.

In the rest of this proof, for any u ∈ Xα,p(0, 1), sequence {εn} is chosen to have the above property.

We first prove (i). Assume 1 < p < ∞ and 0 < α < 1 − 1
p . To prove that C∞([0, 1]) is dense in

Xα,p(0, 1), it suffices to show that W 1,p(0, 1) is dense in Xα,p(0, 1). Take u ∈ Xα,p(0, 1). Define

un(x) =

{
u(εn) if 0 < x ≤ εn
u(x) if εn < x ≤ 1.

Then one can easily check that un ∈W 1,p(0, 1) and that un → u in Xα,p(0, 1) by the dominated convergence

theorem. To prove that C∞0 (0, 1) is dense in Xα,p
00 (0, 1), it suffices to show that W 1,p

0 (0, 1) is dense in
Xα,p

00 (0, 1), to do so, we adapt a technique by H. Brezis (see the proof of Theorem 8.12 of [1], page 218):
Take G ∈ C1(R) such that |G(t)| ≤ |t| and

G(t) =

{
0 if |t| ≤ 1

t if |t| > 2.

For u ∈ Xα,p
00 (0, 1), define un = 1

nG(nu). Then one can easily check that un ∈ C0(0, 1) ∩ Xα,p(0, 1) ⊂
W 1,p

0 (0, 1) and that un → u in Xα,p(0, 1) by the dominated convergence theorem.

To prove the assertion (ii), we notice that it is enough to prove that C∞0 (0, 1) is dense in Xα,p
·0 (0, 1).

Indeed, for any u ∈ Xα,p(0, 1), define φ(x) ∈ C∞0 (0, 1] such that |φ(x)| ≤ 1 with

φ(x) =

{
1 if 2

3 ≤ x ≤ 1

0 if 0 ≤ x ≤ 1
3 .

Define v(x) := u(x) − φ(x)u(1), then v ∈ Xα,p
·0 (0, 1). If we can approximate v by vn ∈ C∞0 (0, 1), then

un(x) = vn(x) + φ(x)u(1) belongs to C∞0 (0, 1] and it approximates u in Xα,p
·0 (0, 1). So let α > 1 − 1

p and

1 ≤ p < ∞, to prove that C∞0 (0, 1) is dense in Xα,p
·0 (0, 1), it suffices to show that W 1,p

0 (0, 1) is dense in
Xα,p
·0 (0, 1). To do so, for fixed u ∈ Xα,p

·0 (0, 1), define

un(x) =

{
u(εn)
εn

x if 0 ≤ x ≤ εn
u(x) if εn < x ≤ 1.

Then un ∈ W 1,p
0 (0, 1) and on the interval (0, εn) we have either |un(x)| ≤ |u(x)| and |u′n(x)| ≤ |u(x)|

x , or

|un(x)| ≤ C and |u′n(x)| ≤ C
x where C is independent of n. In both cases, since α > 1− 1

p and xα−1u(x) ∈ Lp
by Theorem A.1, one can conclude that un → u in Xα,p(0, 1) by the dominated convergence theorem.
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For α = 1 − 1
p and 1 < p < ∞, again, it suffices to prove that W 1,p

0 (0, 1) is dense in Xα,p
·0 (0, 1). For

fixed u ∈ Xα,p
·0 (0, 1), define

un(x) =

{
u(εn)(1−ln εn)

1−ln x if 0 ≤ x ≤ εn
u(x) if εn < x ≤ 1.

One can easily check that un ∈ C[0, 1] ∩Xα,p(0, 1) and un(0) = un(1) = 0. On the interval (0, εn), we have

either |un(x)| ≤ |u(x)| and |u′n(x)| ≤ |u(x)|
x(1−ln x) , or |un| ≤ C and |u′n(x)| ≤ C

x(1−ln x) where C is independent of

n. Notice that by using the same trick used in estimate (28), one can show that x−
1
p (1− lnx)−1u ∈ Lp(0, 1)

for any u ∈ X1− 1
p ,p

·0 (0, 1) with 1 < p <∞. Therefore, one can conclude that un → u in Xα,p(0, 1).

The above shows that that {u ∈ C[0, 1] ∩Xα,p(0, 1) : u(0) = u(1) = 0} is dense in Xα,p
·0 (0, 1). Fi-

nally, notice that by using the same argument used to prove (i), we obtain that W 1,p
0 (0, 1) is dense in

{u ∈ C[0, 1] ∩Xα,p(0, 1) : u(0) = u(1) = 0}, thus concluding the proof. �
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