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Abstract. Given α > 0 and f ∈ L2(0, 1), consider the following singular Sturm-Liouville equation,{
−(x2αu′(x))′ + u(x) = f(x) a.e. on (0, 1),

u(1) = 0.

We prove existence of solutions under (weighted) non-homogeneous boundary conditions at the
origin.

1. Introduction

In [2] we studied the following Sturm-Liouvile equation{
−(x2αu′(x))′ + u(x) = f(x) a.e on (0, 1),

u(1) = 0,
(1)

where α is a positive real number and f ∈ L2(0, 1) is given. In that paper, we proved existence,
along with regularity and spectral properties for (1) by prescribing certain (weighted) homogeneous
Dirichlet and Neumann boundary conditions at the origin. In order to conclude that the boundary
conditions we used in [2] are the only appropriate boundary conditions, we investigate the existence of
solutions for equation (1) under the corresponding (weighted) non-homogeneous boundary conditions
at the origin.

Without loss of generality, we always assume that f ≡ 0 throughout this paper. Consider the
following (weighted) non-homogeneous Neumann problem,

−(x2αu′(x))′ + u(x) = 0 on (0, 1),

u(1) = 0,

lim
x→0+

ψα(x)u′(x) = 1,

(2)

where

ψα(x) =


x2α if 0 < α < 1,

x
3+
√

5
2 if α = 1,

x
3α
2 e

x1−α
1−α if α > 1,

(3)
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and the following (weighted) non-homogeneous Dirichlet problem,
−(x2αu′(x))′ + u(x) = 0 on (0, 1),

u(1) = 0,

lim
x→0+

φα(x)u(x) = 1,

(4)

where

φα(x) =



1 if 0 < α < 1
2 ,

(1− lnx)−1 if α = 1
2 ,

x2α−1 if 1
2 < α < 1,

x
1+
√

5
2 if α = 1,

x
α
2 e

x1−α
1−α if α > 1.

(5)

We have the following existence results for Eqns. (2) and (4):

Theorem 1.1. Given α > 0, there exists a solution u ∈ C∞(0, 1] to the Neumann problem (2).

Theorem 1.2. Given α > 0, there exists a solution u ∈ C∞(0, 1] to the Dirichlet problem (4).

Remark 1.1. The solutions given by theorems 1.1 and 1.2 are unique. This has already been proved
in [2].

Remark 1.2. As one will see in the proof, when α ≥ 1
2 , the solution of (4) is a constant multiple

of the solution of (2) and the constant only depends on α. Therefore, when α ≥ 1
2 , the boundary

regularity of the solutions to both problems is automatically determined by the weight function φα
given by (5).

Remark 1.3. When 0 < α < 1
2 , by introducing a new unknown (e.g. ũ = u − x1−2α−1

1−2α for equation

(2) and ũ = u + (x2 − 1) for equation (4)), both problems can be rewritten into the corresponding
homogeneous problems with a right-hand side f ∈ L2(0, 1), and therefore the existence, uniqueness
and regularity results from [2] readily apply. However, in this case, we still provide a proof of
independent interest for the Neumann problem via the Fredholm Alternative.

2. Proof of the Theorems

Proof of Theorem 1.1 when 0 < α < 1.

Let 0 < α < 1 and 1 < p < 1
α . We introduce the following functional framework. Recall the

following functional space defined in [2],

Xα,p
·0 (0, 1) =

{
u ∈W 1,p

loc (0, 1) : u ∈ Lp(0, 1), xαu′ ∈ Lp(0, 1), u(1) = 0
}
,

equipped with the (equivalent) norm |u|α,p := ‖xαu′‖p (Theorem A.1 in [2]). Define E = Xα,p
·0 (0, 1)

and F = Xα,p′

·0 (0, 1) and notice that since 1 < p <∞, both E and F are reflexive Banach spaces.

For u ∈ E and v ∈ F , we define B : E 7−→ F ∗ by

B(u)v =

∫ 1

0

x2αu′(x)v′(x)dx.

We claim that B is an isomorphism. Clearly B is a linear bounded map with ‖B(u)‖F∗ ≤ ‖u‖E , so
we only need to prove its invertibility.
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To prove the surjectivity of B, consider the adjoint operator B∗ : F 7−→ E∗ given by B∗(v)u =
B(u)v. It suffices to show that (see e.g. Theorem 2.20 in [1]) ‖v‖F ≤ ‖B∗(v)‖E∗ . Indeed, let g be any

function in Lp(0, 1) with ‖g‖p = 1, and consider ug(x) := −
∫ 1

x
s−αg(s)ds. Notice that xαu′g(x) = g

and u(1) = 0, thus ‖ug‖E =
∥∥xαu′g∥∥p = ‖g‖p = 1. Therefore ug ∈ E and by definition we have

‖B∗v‖E∗ ≥ B
∗(v)ug

= B(ug)v

=

∫ 1

0

x2αu′g(x)v′(x)dx

=

∫ 1

0

xαv′(x)g(x)dx.

Since the above inequality holds for all g ∈ Lp(0, 1) with ‖g‖p = 1, taking supremum over all such g

yields ‖v‖F = ‖xαv′‖p′ ≤ ‖B∗v‖E∗ as claimed.

To prove the injectivity of B, notice that B(u) = 0 is equivalent to
∫ 1

0
x2αu′(x)v′(x)dx = 0 for

all v ∈ F . Taking v ∈ C∞0 (0, 1) ⊂ F implies that x2αu′(x) = C for some constant C. Furthermore,
by taking v ∈ C∞[0, 1] with v(0) = 1 and v(1) = 0 gives that C = 0. Hence u is constant and it must
be zero.

Next, we define K : E 7−→ F ∗ by

K(u)v =

∫ 1

0

u(x)v(x)dx.

Clearly this is a bounded linear map, with ‖K(u)‖F∗ ≤ C ‖u‖E . Also since the embedding E ↪→
Lp(0, 1) is compact when α < 1 (Theorem A.3 in [2]), we obtain that K is a compact operator.

Finally, consider the operator A : E 7−→ F ∗ defined by A := B + K. Then, the Fredholm
Alternative theorem (see e.g. Theorem 6.6 in [1]) applies to the map Ã : E 7−→ E defined by

Ã := B−1 ◦A = Id+B−1 ◦K and we obtain

R(A) = R(Ã) = N(Ã∗)⊥ = N(A∗)⊥.

We claim that N(A∗) = {0}. Indeed, A∗v = 0 is equivalent to∫ 1

0

x2αu′(x)v′(x)dx+

∫ 1

0

u(x)v(x)dx = 0,

for all u ∈ E. By taking u ∈ C∞0 (0, 1) we obtain that (x2αv′(x))′ = v(x). Taking u in C∞[0, 1]
with u(1) = 0 and u(0) = 1 implies that limx→0+ x2αv′(x) = 0. Since v ∈ F we have that v(1) = 0.
That is, v satisfies equation (1) with the homogeneous Neumann boundary condition as studied in
[2]. Hence the uniqueness result applies and we obtain v ≡ 0. This proves that N(A∗) = {0}, which
implies R(A) = F ∗. Therefore the equation Au = φ is uniquely solvable in E for all φ ∈ F ∗.

Using the above framework, take φ(v) = −v(0), ∀v ∈ F . Since 1 < p < 1
α , we can apply

Theorem A.2 in [2], and obtain that the space F is continuously embedded into C[0, 1], so g ∈ F ∗.
Then a direct computation shows that the solution u ∈ E of Au = φ is in fact in C∞(0, 1] and it
satisfies (2). �

Proof of Theorem 1.1 when α = 1.
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One can directly check that u(x) = − 2
1+
√

5
x
−1−

√
5

2 + 2
1+
√

5
x
−1+

√
5

2 solves


−(x2u′(x))′ + u(x) = 0 on (0, 1),

u(1) = 0,

lim
x→0+

x
3+
√

5
2 u′(x) = 1.

�

Proof of Theorem 1.1 when α > 1.

Define1

I(x) := x1−2α

∫ 1

−1

(1− t2)
α

2(α−1) e
tx1−α
α−1 dt

and

A = −(α− 1)
3α−2
2α−2 2

α
2(α−1) Γ

(
3α− 2

2α− 2

)
.

We claim that 
−(x2αI ′(x))′ + I(x) = 0 on (0, 1],

lim
x→0+

x
3α
2 e

x1−α
1−α I ′(x) = A.

Indeed,

I ′(x) = (1− 2α)x−2α

∫ 1

−1

(1− t2)
α

2(α−1) e
tx1−α
α−1 dt− x1−3α

∫ 1

−1

t(1− t2)
α

2(α−1) e
tx1−α
α−1 dt,

and

(x2αI ′(x))′

= −(2− 3α)x−α
∫ 1

−1

t(1− t2)
α

2(α−1) e
tx1−α
α−1 dt+ x1−2α

∫ 1

−1

t2(1− t2)
α

2(α−1) e
tx1−α
α−1 dt

= −(α− 1)x−α
∫ 1

−1

(
(1− t2)

α
2(α−1)

+1
)′
e
tx1−α
α−1 dt+ x1−2α

∫ 1

−1

t2(1− t2)
α

2(α−1) e
tx1−α
α−1 dt

= (α− 1)x−α
∫ 1

−1

(1− t2)(1− t2)
α

2(α−1) e
tx1−α
α−1

x1−α

α− 1
dt+ x1−2α

∫ 1

−1

t2(1− t2)
α

2(α−1) e
tx1−α
α−1 dt

= I(x).

1A variant of this function can be found in Chapter III of [3], page 79.
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Applying the dominated convergence theorem gives, as x→ 0+,

x
3α
2 e

x1−α
1−α I ′(x)

=(1− 2α)xα−1(α− 1)
3α−2
2α−2

∫ 0

−2x1−α
α−1

(−2r − (α− 1)r2xα−1)
α

2(α−1) erdr

− (α− 1)xα−1(α− 1)
3α−2
2α−2

∫ 0

−2x1−α
α−1

r(−2r − (α− 1)r2xα−1)
α

2(α−1) erdr

− (α− 1)
3α−2
2α−2

∫ 0

−2x1−α
α−1

(−2r − (α− 1)r2xα−1)
α

2(α−1) erdr

→− (α− 1)
3α−2
2α−2

∫ 0

−∞
(−2r)

α
2(α−1) erdr

=A.

From [2], we know that there exists a unique solution w ∈ C∞(0, 1] for the homogeneous equation
−(x2αw′(x))′ + w(x) =

I(1)

A
on (0, 1),

w(1) = 0,

lim
x→0+

x
3α
2 e

x1−α
1−α w′(x) = 0.

Therefore, by linearity, u(x) = w(x) + (I(x)−I(1))
A ∈ C∞(0, 1] solves (2) for α > 1. �

Proof of Theorem 1.2 when 0 < α < 1
2 .

From [2] we know that there is a unique function w ∈ C∞(0, 1] solving
−(x2αw′(x))′ + w(x) = −2(2α+ 1)x2α + (x2 − 1) on (0, 1),

w(1) = 0,

w(0) = 0.

Then by linearity, u(x) = w(x)− (x2 − 1) solves
−(x2αw′(x))′ + w(x) = 0 a.e. on (0, 1),

w(1) = 0,

w(0) = 1.

�

Proof of Theorem 1.2 when 1
2 ≤ α < 1.

We know from Theorem 1.1 that there exists w ∈ C∞(0, 1] solving the Neumann problem
−(x2αw′(x))′ + w(x) = 0 on (0, 1),

w(1) = 0,

lim
x→0+

x2αw′(x) = 1.

(6)
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Define

u(x) =

{
(1− 2α)w(x) when 1

2 < α < 1,

−w(x) when α = 1
2 .

We claim u solves 
−(x2αu′(x))′ + u(x) = 0 on (0, 1),

u(1) = 0,

lim
x→0+

x2α−1u(x) = 1.

Indeed, from (6) we know that there exists 0 < ε0 < 1 so that

1

2x2α
≤ w′(x) ≤ 3

2x2α
, ∀0 < x < ε0.

Since 1
2 ≤ α < 1, by integrating the above inequality, we obtain that

lim
x→0+

|u(x)| = lim
x→0+

|w(x)| =∞.

Therefore L’Hopital’s rule applies, and we obtain that

lim
x→0+

x2α−1u(x) = lim
x→0+

x2αu′(x)

1− 2α
= 1, when

1

2
< α < 1,

and

lim
x→0+

u(x)

1− lnx
= − lim

x→0+
xu′(x) = 1, when α =

1

2
.

�

Proof of Theorem 1.2 when α = 1.

One can directly check that u(x) = x
−1−

√
5

2 − x−1+
√

5
2 solves

−(x2u′(x))′ + u(x) = 0 on (0, 1),

u(1) = 0,

lim
x→0+

x
1+
√

5
2 u(x) = 1.

�

Proof of Theorem 1.2 when α > 1.

We know from Theorem 1.1 that there exists w ∈ C∞(0, 1] solving the Neumann problem
−(x2αw′(x))′ + w(x) = 0 on (0, 1),

w(1) = 0,

lim
x→0+

x
3α
2 e

x1−α
1−α w′(x) = 1.

Define u(x) = −w(x). We claim that w solves
−(x2αu′(x))′ + u(x) = 0 on (0, 1),

u(1) = 0,

lim
x→0+

x
α
2 e

x1−α
1−α u(x) = 1.
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Indeed, from the boundary condition limx→0+ x
3α
2 e

x1−α
1−α w′(x) = 1 we know that limx→0+ |u(x)| =

limx→0+ |w(x)| =∞. Therefore L’Hopital’s rule applies, and we obtain that

lim
x→0+

x
α
2 e

x1−α
1−α u(x) = lim

x→0+

x
3α
2 e

x1−α
1−α u′(x)

−α2 xα−1 − 1
= 1.

�
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