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Abstract. In this paper we study the essential spectrum of the operator
LAu(x) = −(A(x)u′(x))′ + u(x)

where A(x) is a positive absolutely continuous function on (0, 1) that resembles x2α for some
α ≥ 1. We prove that the essential spectrum of LA coincides with the essential spectrum of
the operator Lαu(x) := −(x2αu′(x))′ + u(x).

1. Introduction

We consider the singular Sturm-Liouville differential operator

(1) LAu(x) := −(A(x)u′(x))′ + u(x)

over the interval (0, 1), where A(x) = Aα(x) is an absolutely continuous function on [0, 1] such
that A(x) > 0 for all 0 < x ≤ 1. In addition we suppose that there exist constants c1, c2 > 0
and α > 0 such that

c1x
2α ≤ A(x) ≤ c2x

2α, for all x ∈ (0, 1], and(H1)
lim
x→0

x−2αA(x) = 1.(H2)

Associated with (1) one can define the following operator

TA : Xα
0 −→ Xα

0
f 7−→ TA(f) = u,

where u is the (unique) solution of

(2)
ˆ 1

0
A(x)u′(x)v′(x) dx+

ˆ 1

0
u(x)v(x) dx =

ˆ 1

0
f(x)v(x) dx, ∀ v ∈ Xα

0 .

Here Xα
0 is the space of real valued functions u in L2 having a weak derivative satisfying

xαu′ ∈ L2 such that u(1) = 0 (see [2, Appendix] for more details about these spaces). The
fact that the operator TA is a well defined bounded operator is a direct consequence of the
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Lax-Milgram theorem (see section 2 for some of the details). In addition, a straightforward
computation tells us that if u = TAf , then u is the unique weak solution of

(3)


−(A(x)u′(x))′ + u(x) = f(x) a.e. in (0, 1),

lim
x→0+

A(x)u′(x) = 0,

u(1) = 0,

For the special case A(x) = x2α a complete study of (3) has been developed in [2,3], exhibiting
properties of existence, uniqueness, and regularity of solutions in terms of the L2 norm of f ,
as well as a detailed description of the spectrum of the respective operator TA, denoted by Tα
in this particular case.

One important feature of the spectrum of Tα is that it changes from a spectrum consisting
solely on isolated simple eigenvalues σ(Tα) = {λi : i ∈ N} to a purely essential (continuum)
spectrum when α crosses the α = 1 barrier, namely σ(T1) = σe(T1) = [0, 4

5 ] (see [2, Theorem
1.17]). A study of the spectrum of TA, and other relevant results regarding a non-linear
problem, had been established by Stuart and Vuillaume in a more general setting. In the
series of articles [6,8–13] the authors studied the bifurcation properties of a heavy tapered rod,
and in this context with the aid of the Bernoulli-Euler bending law for beams, the differential
operator NAu(x) = (LA − I)u(x) = −(A(x)u′(x))′ appears naturally (see [8, Section 1.1] for
more details on how this kind of operators arise in this context). In particular, in [9] Stuart
studied the spectral properties of the operator NA under the boundary conditions

lim
x→0+

A(x)u′(x) = 0 and u(1) = 0,

and also of the operator TA − I in the case 0 ≤ α ≤ 1, proving that

σ(TA − I) =
{ 1
λ

: λ ∈ σ(NA)
}
∪ {0}

and
σe(TA − I) =

{ 1
λ

: λ ∈ σe(NA)
}
∪ {0} .

Stuart also established, using a compactness argument, that for α < 1 the spectrum of
TA − I consists solely of simple eigenvalues (in particular σe(TA − I) = {0}), but as soon as
α = 1 the essential spectrum becomes non-trivial. He also gives conditions on A(x) for the
existence/non-existence of eigenvalues when α = 1.

The purpose of this work is to answer some questions raised in [2] regarding the spectrum
of the operators LA and TA when α ≥ 1. In particular, for α = 1 Stuart has shown that
max σe(TA) = 4

5 , implying that σe(TA) ⊆ [0, 4
5 ], but the question of whether σe(TA) = [0, 4

5 ]
remained open. For α > 1 there is less information, as the existence/non-existence of eigenval-
ues in σ(TA) and estimates over σe(TA) or max σe(TA) have not been discussed. The following
result answers such questions.

Theorem 1. Let α ≥ 1 and TA be as before.
(i) If α = 1, then σe(TA) = [0, 4

5 ] = σe(Tα).
(ii) If α > 1, then σe(TA) = σ(TA) = [0, 1] = σ(Tα) = σe(Tα).

In addition, we show that the analysis of the spectrum of TA is equivalent to the analysis of
the spectrum of LA as an unbounded operator from D(LA) ⊂ L2(0, 1) to L2(0, 1) (the domain
D(LA) will be specified later in section 5), as the following theorem shows.

Theorem 2. Let α ≥ 1 and for δ ∈ R \ {0} consider γ = δ−1. Then we have
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(i) LA−γI : D(LA) −→ L2 is an isomorphism⇐⇒ TA−δI : Xα
0 −→ Xα

0 is an isomorphism.
(ii) LA − γI : D(LA) −→ L2 is Fredholm ⇐⇒ TA − δI : Xα

0 −→ Xα
0 is Fredholm.

(iii)
σ(TA) =

{
λ ∈ R : λ−1 ∈ σ(LA)

}
∪ {0} ,

and
σe(TA) =

{
λ ∈ R : λ−1 ∈ σe(LA)

}
∪ {0} .

(iv) TA = L−1
A

∣∣∣
Xα

0
.

Remark 1. It is important to mention that there are several notions of essential spectra that
can be defined, however for the particular case of a self-adjoint operator on a Hilbert space,
most of these notions coincide (see for instance [4, Theorem IX.1.6]). As we will see later,
both operators TA and LA are indeed self-adjoint.

The rest of this paper is organized as follows. We establish the notation and the definitions
used throughout this work in section 2. In section 2 we prove a proposition that is key in the
proof of Theorem 1. Then we separate the proof of Theorem 1 into the cases α = 1 and α > 1
in sections 3 and 4 respectively. Finally, in section 5 we establish the connection between TA
and LA and prove Theorem 2.

2. Preliminaries

For α > 0, recall the definition of the real vector spaces Xα = Xα(0, 1) given in [2]

Xα =
{
u ∈ H1

loc(0, 1] : u ∈ L2(0, 1), xαu′ ∈ L2(0, 1)
}
,

where H1
loc(0, 1] is the set of function belonging to the Sobolev space H1(K) for all K compact

subset of (0, 1]. Additionally, since functions in Xα are continuous away from the origin, the
subset

Xα
0 = {u ∈ Xα : u(1) = 0} ,

is a well defined closed subspace of Xα. In [2] we established that Xα
0 is a Hilbert space for

the inner product
〈u, v〉Xα = 〈u, v〉+

〈
xαu′, xαv′

〉
,

where throughout this work

〈u, v〉 =
ˆ 1

0
u(x)v(x) dx

will denote the usual inner product in L2 = L2(0, 1). Because of the Riesz representation
theorem we know the existence of an operator Tα : Xα

0 −→ Xα
0 defined by the identity

(4) 〈Tαf, v〉Xα = 〈f, v〉 ∀v ∈ Xα
0 .

If we let u = Tαf , we have shown that u is in fact the unique weak solution to the singular
Sturm-Liouville equation (see [2, 3])

−(x2αu′(x))′ + u(x) = f a.e. in (0, 1),
u(1) = 0,

lim
x→0

x2αu′(x) = 0.

The following estimate also follows from [2]
‖Tαf‖Xα ≤ ‖f‖L2 ≤ ‖f‖Xα ,
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and it asserts that the boundedness of Tα only requires f to be an L2 function, that is, the
operator Tα could be extended to L2 ⊃ Xα

0 as a bounded operator.
As we mentioned in the introduction, we will consider a function A : [0, 1] −→ [0,∞)

satisfying (H1) and (H2). Define the bilinear symmetric function a : Xα
0 ×Xα

0 −→ R by

a(u, v) =
ˆ 1

0
A(x)u′(x)v′(x) dx+

ˆ 1

0
u(x)v(x) dx,

and thanks to (H1) it is easy to find constants K1,K2 > 0 such that

(5) |a(u, v)| ≤ K1 ‖u‖Xα ‖v‖Xα and |a(u, u)| ≥ K2 ‖u‖2Xα ,

thus proving that a is a bounded, coercive bilinear function over Xα
0 , therefore the Lax-

Milgram theorem ([1, Corollary 5.8]) tells us that there exists a unique bounded linear operator
TA : Xα

0 −→ Xα
0 defined by the equation

(6) a(TAf, v) = 〈f, v〉 ∀v ∈ Xα
0 .

It is significant to observe that (5) and the symmetry of a tell us that a(·, ·) defines an inner
product over Xα

0 which gives an equivalent topology on Xα
0 . We will use both inner products,

a(·, ·) and 〈·, ·〉Xα , accordingly.
Observe that for each f ∈ L2 and if we call u = TAf , then it is straightforward to see that

u is the unique weak solution in Xα
0 to the equation

−(A(x)u′(x))′ + u(x) = f a.e. in (0, 1),
u(1) = 0,

lim
x→0

A(x)u′(x) = 0,

moreover, by the definition of TA we obtain immediately that TA is self adjoint with respect
to the inner product a(·, ·), and that

a(TAu, u) = 〈u, u〉 > 0 for all u ∈ Xα
0 \ {0}

showing that TA is a positive operator.
In this framework, the spectrum of the operator TA is the set

σ(TA) = {λ ∈ R : T − λI : Xα
0 → Xα

0 is not an isomorphism} ,

and that the essential spectrum of TA is defined as

σe(TA) = {λ ∈ σ(TA) : T − λI : Xα
0 → Xα

0 is not a Fredholm operator} ,

and to prove Theorem 1 we will use the following technical result which will allow us to
characterize the essential spectrum of the operator TA.

Proposition 1. For λ ∈ R suppose there exists a sequence {un} ∈ Xα
0 (0, 1) such that

(i) ‖un‖Xα = 1,
(ii) un −→

n→∞
0 in the weak topology of Xα

0 ,
(iii) ‖(Tα − λ)un‖Xα = o(1),
(iv) suppun ⊆ [0, 1

n ],
(v) 〈Tαun, un〉Xα = λ+ o(1),

where o(1) is a quantity that goes to 0 as n goes to infinity. Then λ belongs to σe(TA).
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Proof. To show that λ ∈ σe(TA), it is enough to find a singular sequence for TA and λ (see
[4, Theorems IX.1.3 and IX.1.6]), that is, a sequence un ∈ Xα

0 such that ‖un‖Xα = 1, un → 0
weakly in Xα, and that ‖(TA − λ)un‖Xα → 0 as n→∞.

Using the the sequence {un} given in the statement of this proposition, we only need to
prove ‖(TA − λ)un‖Xα → 0, as the other conditions are already established. Observe that by
the definition of TA and Tα we have for all v ∈ Xα

0 the identity
a(TAun, v) = 〈un, v〉 = 〈Tαun, v〉Xα ,

therefore
a(TAun, un) = λ+ o(1).

Also, since suppun ⊆ [0, 1
n ] we have

|a(un, v)− 〈un, v〉Xα | =
∣∣∣∣∣
ˆ 1

n

0
(A(x)− x2α)u′n(x)v′(x) dx

∣∣∣∣∣
≤
(ˆ 1

n

0

∣∣∣A(x)− x2α
∣∣∣ ∣∣u′n(x)

∣∣2 dx
) 1

2
(ˆ 1

n

0

∣∣∣A(x)− x2α
∣∣∣ ∣∣v′(x)

∣∣2 dx
) 1

2

,

but we are assuming (H2), therefore there exists a sequence δn −→ 0 such that∣∣∣A(x)− x2α
∣∣∣ ≤ δnx2α for all 0 < x ≤ 1

n
.

Hence
|a(un, v)− 〈un, v〉Xα | ≤ δn ‖un‖Xα ‖v‖Xα = δn ‖v‖Xα ,

and as a consequence we obtain
|a((TA − λ)un, v)| = |〈(Tα − λ)un, v〉Xα − λ (a(un, v)− 〈un, v〉Xα)|

≤ ‖(Tα − λ)un‖Xα ‖v‖Xα + δn |λ| ‖v‖Xα .(7)

From (5) we deduce that the norms

‖u‖Xα =
√
〈u, u〉Xα and ‖u‖a =

√
a(u, u)

are equivalent in Xα. From this equivalence and the dual representation of the norm ‖·‖a
(recall that a(u, v) defines an inner product over Xα

0 ) we obtain√
K2 ‖ϕ‖Xα ≤ ‖ϕ‖a = sup

v∈Xα\{0}

|a(ϕ, v)|
‖v‖a

≤ 1√
K2

sup
v∈Xα\{0}

|a(ϕ, v)|
‖v‖Xα

,

for all ϕ ∈ Xα. Therefore for C = K−1
2 we have

(8) ‖ϕ‖Xα ≤ C sup
v∈Xα\{0}

|a(ϕ, v)|
‖v‖Xα

.

Using (7) and (8) gives

‖(TA − λ)un‖Xα ≤ C sup
v∈Xα

0 \{0}

|a((TA − λ)un, v)|
‖v‖Xα

≤ C (‖(Tα − λ)un‖Xα + δn |λ|)
= o(1),

thus concluding the proof. �
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Remark 2. Observe that the first three conditions on the sequence {un} required by Proposi-
tion 1 say that {un} is a singular sequence for the pair (λ, Tα), and by [4, Theorem IX.1.3] such
sequence can be found for any λ in σe(Tα) = [0, 4

5 ]. However, finding a singular sequence for
(λ, Tα) satisfying in addition suppun ⊆ [0, 1

n ] and 〈Tαun, un〉Xα = λ+o(1) requires additional
work. We will do so in sections 3 and 4 to prove Theorem 1.

3. Proof of Theorem 1: case α = 1

For 0 < λ < 4
5 , let µ = 1

λ and γ =
√
µ− 5

4 . Given ε > 0 define

w̃ε(x) = xε−
1
2 sin(γ ln x),

and
g̃ε(x) = −2γεxε−

1
2 cos(γ ln x).

It is a simple exercise to see that both w̃ε and g̃ε belong to Xα for α = 1 and all ε > 0;
moreover, w̃ε satisfies

−(x2w̃′ε(x))′ + (1− µ+ ε2)w̃ε(x) = g̃ε(x).

Consider now a smooth cut-off function ρ : R −→ R+, satisfying

ρ(x) = 1 for x ≤ 1
2 ,(9)

ρ(x) = 0 for x ≥ 1,(10)
0 ≤ ρ(x) ≤ 1 ∀x(11) ∥∥ρ′∥∥∞ +

∥∥ρ′′∥∥∞ ≤ C0(12)

for some constant C0 > 0. For x ∈ [0, 1] define wε(x) = w̃ε
(
x
ε

)
, gε(x) = g̃ε

(
x
ε

)
, ρε(x) = ρ

(
x
ε

)
,

and let
ũε(x) := wε(x)ρε(x).

Observe that by definition supp ũε ⊆ [0, ε]. In addition, a direct computation shows that ũε
is a solution to the equation

(13)

−(x2ũ′ε(x))′ +
(
1− µ+ ε2

)
ũε(x) = fε(x) for x ∈ (0, 1),

ũε ∈ X1
0 ,

where
fε(x) = gε(x)ρε(x)− 2x2w′ε(x)ρ′ε(x)− wε(x)(x2ρ′ε(x))′.

In terms of the operator T1, equation (13) can be written as(
T1 −

λ

1− λε2

)
ũε = − λ

1− λε2T1fε,

and we have the following

Lemma 1. For 0 < λ < 4
5 let uε := ũε/ ‖ũε‖X1. As ε goes to zero one has

(i) 〈T1uε, uε〉X1 = λ+ o(1),
(ii) ‖(T1 − λ)uε‖X1 = o(1),
(iii) uε −→ 0 in the weak topology of X1

0 ,
where o(1) denotes a quantity that goes to 0 with ε.
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Proof. Observe that
T1uε = λ

1− λε2uε −
λ

(1− λε2) ‖ũε‖X1
T1fε,

therefore

〈T1uε, uε〉X1 = λ

1− λε2 −
λ

(1− λε2)‖ũε‖X1
〈T1fε, uε〉X1

= λ− λ

(1− λε2)‖ũε‖X1
〈T1fε, uε〉X1 + o(1).

To prove the first part of this lemma we need to estimate the middle term and show that it
goes to zero as ε goes to zero. Observe that for each x ∈ (0, 1]

|wε(x)| ≤ ε
1
2−εxε−

1
2 ,∣∣w′ε(x)

∣∣ ≤ Cε 1
2−εxε−

3
2 ,

and that since ρε(x) = 1 for 0 ≤ x ≤ ε
2 we have

‖ũε‖2X1 ≥ ‖wερε‖2L2

≥
ˆ ε

2

0
|wε(x)|2 dx

= ε

ˆ 1
2

0
x2ε−1 sin2(γ ln x) dx

= ε

γ

ˆ ∞
γ ln 2

e
− 2ε
γ
t sin2(t) dt

= e−2ε ln(2)

4

[
1 + ε

ε2 + γ2 (γ sin(2γ ln 2)− ε cos(2γ ln 2))
]

= e−2ε ln(2)

4 (1 + o(1))

= 1
4 + o(1).

Also, since ‖T1fε‖X1 ≤ ‖fε‖L2 , we only need to estimate the L2 norm of fε. Recall that
fε(x) = gε(x)ρε(x)− 2x2w′ε(x)ρ′ε(x)− wε(x)(x2ρ′ε(x))′

and estimate each term in L2. Firstly, as 0 ≤ ρε(x) ≤ 1 with supp ρε ⊆ [0, ε] we can write

‖gερε‖2L2 ≤
ˆ ε

0
g̃ε

(
x

ε

)2
dx

≤ 4γ2ε3
ˆ 1

0
y2ε−1 dy

= 2γ2ε2.

For the other terms in fε observe that by the boundedness of the derivatives of ρ we have for
all x ∈ [0, 1] the following estimates ∣∣ρ′ε(x)

∣∣ ≤ C0
ε
,∣∣ρ′′ε(x)

∣∣ ≤ C0
ε2 ,
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therefore, by observing that both ρ′ε and ρ′′ε are also supported on the interval [0, ε] we can
write ∥∥∥x2w′ερ

′
ε

∥∥∥2

L2
≤ C

ˆ ε

0

∣∣∣ε− 1
2−εx

1
2 +ε

∣∣∣2 dx

= Cε−1−2ε
ˆ ε

0
x1+2ε dx

≤ Cε.

Similarly, ∥∥∥x2wερ
′′
ε

∥∥∥2

L2
≤ C

ˆ ε

0

∣∣∣ε− 3
2−εx

3
2 +ε

∣∣∣2 dx

= Cε−3−2ε
ˆ ε

0
x3+2ε dx

≤ Cε.

and ∥∥xwερ′ε∥∥2
L2 ≤ C

ˆ ε

0

∣∣∣ε− 1
2−εx

1
2 +ε

∣∣∣2 dx

= Cε−1−2ε
ˆ ε

0
x1+2ε dx

≤ Cε.

Hence
‖T1fε‖X1 ≤ ‖f‖L2 ≤ C

√
ε,

and we deduce ∣∣∣∣∣ 1
‖uε‖X1

〈T1fε, uε〉X1

∣∣∣∣∣ ≤ ‖T1fε‖X1

‖ũε‖X1
≤ C
√
ε = o(1),

thus proving the first part of the lemma.
For the second part, observe that we have established 〈T1uε, uε〉X1 = λ+o(1), therefore we

can write

‖(T1 − λ)uε‖2X1 = ‖T1uε‖2X1 + λ2 − 2λ 〈T1uε, uε〉X1

= ‖T1uε‖2X1 − λ2 + o(1),

but since ‖T1fε‖X1 = o(1) and ‖ũε‖−1
X1 = O(1) we obtain

‖T1uε‖2X1 =
∥∥∥∥∥ λ

1− λε2uε −
λ

(1− λε2) ‖ũε‖X1
T1fε

∥∥∥∥∥
2

X1

= λ2

(1− λε2)2 + λ2

(1− λε2)2
‖T1fε‖2X1

‖ũε‖2X1
− 2λ2

(1− λε2)2 ‖ũε‖X1
〈T1fε, uε〉X1

= λ2 + o(1),

thus
‖(T1 − λuε‖2X1 = o(1),

and the second part is done.
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Finally, observe that by the definition of T1 one has for v ∈ X1
0

〈T1uε, v〉X1 = 〈uε, v〉

=
ˆ ε

0
uε(x)v(x) dx

≤
(ˆ ε

0
|v(x)|2 dx

) 1
2
,

therefore

|〈uε, v〉X1 | ≤
1
λ
|〈T1uε, v〉X1 |+

1
λ
|〈(T1 − λ)uε, v〉X1 |

≤ 1
λ

(ˆ ε

0
|v(x)|2 dx

) 1
2

+ 1
λ
‖(T1 − λ)uε‖X1 ‖v‖X1

= 1
λ

(ˆ ε

0
|v(x)|2 dx

) 1
2

+ o(1)

−→
ε→0

0,

hence uε converges weakly to 0 in X1
0 . �

Proof of Theorem 1 when α = 1. On the one hand, by Proposition 1 and Lemma 1 we deduce
that (0, 4

5) ⊆ σe(TA). On the other hand, in [9] it is established that max σe(TA) = 4
5 , and since

TA is a positive operator we obtain σe(TA) ⊆ [0, 4
5 ]. Thus we have (0, 4

5) ⊆ σe(TA) ⊆ [0, 4
5 ],

but the essential spectrum is closed, consequently we deduce that σe(TA) = [0, 4
5 ] as stated in

the theorem. �

4. Proof of Theorem 1: case α > 1

For α > 1 and 0 < λ < 1, let µ = 1
λ and β =

√
µ−1
α−1 and consider

wε(x) = ε
α
2 x−

α
2 sin(βx1−α).

A direct computation shows that wε is a solution of
−(x2αw′ε(x))′ + (1− µ)wε(x) = gε(x) in (0, 1)

where
gε(x) = α

2

(3α
2 − 1

)
ε
α
2 x

3α
2 −2 sin(βx1−α).

Let ρ be a smooth cut-off function with the same properties described in (9)-(12), and let
η(x) = 1− ρ(x). For ε > 0 small so that εα−1 < 1

2 , define ζε(x) = ρ
(
x
ε

)
η
(
x
εα
)
and let

ũε(x) = wε(x)ζε(x).
Observe that supp ũε ⊆ [ εα2 , ε] and that ũε is a solution to

(14)
{
−(x2αũ′ε)′ + (1− µ)ũε = fε in (0, 1),

ũε ∈ Xα
0 ,

where
fε(x) = gε(x)ζε(x)− 2x2αw′ε(x)ζ ′ε(x)− wε(x)(x2αζ ′ε(x))′.

If we write (14) in terms of the operator Tα we have
(Tα − λ)ũε = −λTαfε,
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for λ = 1
µ .

Lemma 2. Let 0 < λ < 1 let uε := ũε/ ‖ũε‖Xα. As ε goes to zero we have

(i) 〈Tαuε, uε〉Xα = λ+ o(1).
(ii) ‖(Tα − λ)uε‖Xα = o(1).
(iii) uε −→ 0 in the weak topology of Xα

0 .

Proof. Observe that Tαũε = λũε − λTαfε, hence

〈Tαuε, uε〉Xα = λ− λ

‖ũε‖2Xα

〈Tαfε, ũε〉Xα .

Following the same argument used in the case α = 1, it is enough to find an appropriate upper
bound for ‖fε‖L2 and a lower bound for ‖ũε‖Xα to show that the last term goes to zero as ε
goes to zero. We begin by the lower bound on ‖ũε‖Xα : since ζε ≡ 1 on [εα, ε2 ] we can write

‖ũε‖2Xα ≥ ‖wεζε‖2L2

≥
ˆ ε

2

εα
|wε(x)|2 dx

= εα
ˆ ε

2

εα

∣∣∣x−α2 sin
(
βx1−α

)∣∣∣2 dx

= εα√
µ− 1

ˆ βεα(1−α)

β( ε2 )1−α
sin2(t) dt

= εα

2
√
µ− 1 (t− sin(t) cos(t))

∣∣∣t=βεα(1−α)

t=β( ε2 )1−α

= εα(2−α)

2(α− 1) (1 + o(1)) ,

because α(2− α) < 1 < α.
We now estimate ‖fε‖L2 . To do this, observe the following obvious estimates on gε, wε,

and ζε on [0, 1]:

|gε(x)| ≤ Cε
α
2 x

3α
2 −2

|wε(x)| ≤ ε
α
2 x−

α
2∣∣w′ε(x)

∣∣ ≤ Cεα2 x− 3α
2 .

Additionally, recall that ρ and η are smooth functions with uniformly bounded derivatives up
to the second order, consequently

∣∣ζ ′ε(x)
∣∣ ≤ C

εα∣∣ζ ′′ε (x)
∣∣ ≤ C

ε2α ,
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for all x ∈ (0, 1]. With these estimates in mind it follows

‖gεζε‖2L2 ≤ εα
ˆ ε

0
x3α−4 dx ≤ Cε4α−3,∥∥∥x2αw′εζ

′
ε

∥∥∥2

L2
≤ Cε−α

ˆ ε

0
xα dx ≤ Cε,∥∥∥x2αwεζ

′′
ε

∥∥∥2

L2
≤ Cε−3α

ˆ ε

0
x3α dx ≤ Cε,

and ∥∥∥x2α−1wεζ
′
ε

∥∥∥2

L2
≤ Cε−α

ˆ ε

0
x3α−2 dx ≤ Cε2α−1,

therefore
‖fε‖2L2 ≤ Cε,

because 2α− 1 > 1 and 4α− 3 > 1. Using once again that α > 1 we see that∣∣∣∣∣ 1
‖ũε‖Xα

〈Tαfε, uε〉Xα

∣∣∣∣∣
2

≤ C ‖fε‖
2
L2

‖ũε‖2L2
≤ Cε1−α(2−α) = Cε(α−1)2 = o(1)

as claimed.
For the second part of the lemma notice

‖(Tα − λ)uε‖2Xα = ‖Tαuε‖2Xα + λ2 − 2λ 〈Tαuε, uε〉Xα

= ‖Tαuε‖2Xα − λ2 + o(1),

and since ‖Tαfε‖Xα · ‖ũε‖−1
Xα = o(1) we deduce that

‖Tαuε‖2Xα =
∥∥∥∥∥λuε − λ Tαfε

‖ũε‖Xα

∥∥∥∥∥
2

= λ2 + λ2

‖ũε‖2Xα

‖Tαfε‖2Xα − 2 λ2

‖ũε‖Xα

〈Tαfε, uε〉Xα

= λ2 + o(1),

therefore
‖(Tα − λ)uε‖2Xα = o(1)

and the second part is proved. Finally, observe that since suppuε ⊆ [0, ε], we can write for
v ∈ Xα

0

〈Tαuε, v〉Xα = 〈uε, v〉

=
ˆ ε

0
uε(x)v(x) dx

≤ ‖uε‖L2

(ˆ ε

0
|v(x)|2 dx

) 1
2

≤
(ˆ ε

0
|v(x)|2 dx

) 1
2

= o(1),
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consequently

|〈uε, v〉Xα | ≤
1
λ
|〈Tαuε, v〉Xα |+

1
λ
|〈(Tα − λ)uε, v〉Xα |

≤ 1
λ

(ˆ ε

0
|v(x)|2 dx

) 1
2

+ 1
λ
‖(Tα − λ)ũε‖Xα ‖v‖Xα

= 1
λ

(ˆ ε

0
|v(x)|2 dx

) 1
2

+ o(1)

−→
ε→0

0,

thus uε converges weakly to 0.
�

Proof of Theorem 1 when α > 1. From Proposition 1 and Lemma 2 we deduce that the in-
terval (0, 1) is contained in σe(TA). On the other hand, since TA is a positive self-adjoint
operator for the inner product a(·, ·), and if we recall that ‖u‖2a = a(u, u) we can write

max σ(TA) = sup
{
a(TAu, u)
‖u‖2a

: u ∈ Xα
0 \ {0}

}

= sup
{
〈u, u〉
‖u‖2a

: u ∈ Xα
0 \ {0}

}
but

〈u, u〉
‖u‖2a

=
´ 1

0 u(x)2 dx´ 1
0 A(x)u′(x)2 dx+

´ 1
0 u(x)2 dx

≤ 1,

for all u ∈ Xα
0 \ {0}, thus max σ(TA) ≤ 1, and as a consequence σ(TA) ⊆ [0, 1].

Summarizing, we have shown the following chain of inclusions

(0, 1) ⊆ σe(TA) ⊆ σ(TA) ⊆ [0, 1],

and since both σe(TA) and σ(TA) are closed, the result is proved. �

5. The differential operator LA

For α > 0 we have defined the differential operator

LAu(x) := −(A(x)u′(x))′ + u(x)

over the interval (0, 1) for A satisfying (H1) and (H2). For this kind of operator it is natural
to introduce the following L2-framework: define D as the set

D =
{
u ∈ H2

loc(0, 1) : u, (A(x)u′)′ ∈ L2
}
,

and observe that the weight A(x) only introduces possible singularities near the origin, there-
fore it is straightforward to notice that for u ∈ D one has, after possible modifying u on a set
of measure zero, that

u ∈ C1(0, 1] and A(x)u′ ∈ C[0, 1].
In order to relate LA to TA we will follow the work of Stuart in [9, Section 6] where the
relationship between LA and TA has been established for α ≤ 1. To do this we need to add
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boundary conditions to the differential operator, and the natural ones are the homogeneous
boundary conditions

u(1) = A(x)u′(x)
∣∣∣
x=0

= 0.

With this in mind we consider the operator LA : D(LA) ⊂ L2 −→ L2, where

D(LA) =
{
u ∈ D : u(1) = A(x)u′(x)

∣∣∣
x=0

= 0
}
.

We begin the study of this operator by recalling a density result from [2]

Lemma 3 (Lemma A.4 in [2]). For each α ≥ 1
2 , the space C∞0 (0, 1) is dense in Xα

0 .

Proposition 2. For α ≥ 1, D(LA) ⊂ Xα
0 and the inclusion is dense in the Xα-topology.

To prove this proposition, we need the following

Lemma 4. Let α ≥ 1, u ∈ D(LA) and v ∈ L2 ∩ C(0, 1]. For each positive integer n, there
exists xn < 1

n such that |A(xn)u′(xn)v(xn)| ≤ 1
n

Proof. Indeed, take u ∈ D(LA) and v ∈ L2. Observe that we can write
A(x)
x

u′(x) = 1
x

ˆ x

0
(A(s)u′(s))′ ds,

thus by Hardy’s inequality ∥∥∥∥A(x)
x

u′(x)
∥∥∥∥
L2
≤ C

∥∥(A(x)u′(x))′
∥∥
L2 .

This estimate implies that x−1A(x)u′(x)v(x) belongs to L1(0, 1), indeed, by Hölder’s in-
equality ∥∥∥∥A(x)

x
u′(x)v(x)

∥∥∥∥
L1
≤
∥∥∥∥A(x)

x
u′(x)

∥∥∥∥
L2
‖v‖L2

≤ C
∥∥(A(x)u′(x))′

∥∥
L2 ‖v‖L2 .

We can now prove the lemma by contradiction: if the statement of the lemma were false, then
there would exist a number r > 0 such that for all x < r∣∣A(x)u′(x)v(x)

∣∣ > r,

but such an inequality would contradict the fact that x−1A(x)u′(x)v(x) ∈ L1(0, 1). The
lemma is now proved. �

Proof of Proposition 2. Our first claim is that D(LA) ⊂ Xα
0 . Indeed, notice that the function

(A(x)u′(x))′u(x) belongs to L1(0, 1), therefore we can write
ˆ 1

0
(A(x)u′(x))′u(x) dx = lim

n→∞

ˆ 1

xn

(A(x)u′(x))′u(x) dx,

where xn is the sequence from Lemma 4 for v = u. Since u ∈ C1(0, 1] with u(1) = 0 we can
integrate by parts over the interval (xn, 1) to obtain

ˆ 1

xn

(A(x)u′(x))′u(x) dx = −
ˆ 1

xn

A(x)u′(x)2 dx−A(xn)u′(xn)u(xn),
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therefore ˆ 1

xn

A(x)u′(x)2 dx = −
ˆ 1

xn

(A(x)u′(x))′u(x) dx−A(xn)u′(xn)u(xn)

= −
ˆ 1

0
(A(x)u′(x))′u(x) dx+ o(1),

where o(1) is a quantity that goes to 0 as n→∞. The monotone convergence theorem implies
that ˆ 1

0
A(x)u′(x)2 dx = lim

n→∞

ˆ 1

xn

A(x)u′(x)2 dx = −
ˆ 1

0
(A(x)u′(x))′u(x) dx,

and we conclude u ∈ Xα
0 . Finally, observe that C∞0 (0, 1) is contained in D(LA), therefore

Lemma 3 tells us that D(LA) must be also dense in Xα
0 .

�

Remark 3. Observe that in the proof of Proposition 2 we have established the following
identity ˆ 1

0
A(x)u′(x)2 dx = −

ˆ 1

0
(A(x)u′(x))′u(x) dx

for all u ∈ D(LA). Moreover, the same argument tells us thatˆ 1

0
A(x)u′(x)v′(x) dx = −

ˆ 1

0
(A(x)u′(x))′v(x) dx

holds for all u, v ∈ D(LA).

The following proposition is a well-known result in Sturm-Liouville theory, but for the sake
of completeness we provide its proof.

Proposition 3. Let α ≥ 1 and LA be as before.
(i) D(LA) is dense in L2.
(ii) LA is positive and self-adjoint.
(iii) If u ∈ D(LA) and v ∈ Xα

0 , then
〈LAu, v〉 = a(u, v)

Proof. The density result follows directly from the density of C∞0 (0, 1) in L2. Observe that
thanks to Remark 3 one has that if u, v ∈ D(LA) then

〈LAu, v〉 =
ˆ 1

0

(
−(A(x)u′(x))′ + u(x)

)
v(x) dx

=
ˆ 1

0

(
A(x)u′(x)v′(x) + u(x)v(x)

)
dx

= a(u, v)

=
ˆ 1

0

(
−(A(x)v′(x))′ + v(x)

)
u(x) dx

= 〈u, LAv〉 .

Recall that the adjoint operator is defined by L∗a : D(L∗a) ⊂ L2 −→ L2, where

D(L∗A) =
{
v ∈ L2 : ∃f ∈ L2 such that 〈LAu, v〉 = 〈u, f〉 for all u ∈ D(LA)

}
,
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in which case L∗A(v) = f . The above computation tells us that LA ⊂ L∗A. To prove the reverse
inclusion, we only need to show that D(L∗A) ⊂ D(LA). Indeed, let v ∈ D(L∗A), then there
exists f ∈ L2 such that
(15) 〈LAu, v〉 = 〈u, f〉 for all u ∈ D(LA).
In particular, following the argument in [9, Theorem 6.2], for each w ∈ C∞0 (0, 1) we can
consider for s ∈ (0, 1) the function

U [w](s) = −
ˆ 1

s

w(t)
A(t) dt,

and show that U [w] ∈ D(LA) ∩ C1[0, 1] with LAU [w] = −w′ + U [w]. If we use u = U [w] in
(15) we obtain

−
ˆ 1

0
w′(s)v(s) ds =

ˆ 1

0
U [w](s)(f(s)− v(s)) ds

= −
ˆ 1

0
(f(s)− v(s))

ˆ 1

s

w(t)
A(t) dtds

=
ˆ 1

0
w(t)

[
1

A(t)

ˆ t

0
(v(s)− f(s)) ds

]
dt,

because 1
A(t)
´ t

0 (v(s)− f(s)) ds ∈ L1
loc(0, 1). The above computations says that v has a weak

derivative and that

v′(s) = 1
A(t)

ˆ t

0
(v(s)− f(s)) ds a.e. in (0, 1).

From here we deduce that v ∈ C(0, 1] with Av′|s=0 = 0 and that (Av′)′ = v−f belongs to L2.
Therefore, to prove that v ∈ D(LA) we only need to show that v(1) = 0, to do this observe
that for each u ∈ D(LA) ∩ C[0, 1] we have

〈u, f〉 = 〈LAu, v〉
= 〈LAu, v − v(1)〉+ 〈LAu, v(1)〉

= 〈u, LA(v − v(1))〉+ v(1)
ˆ 1

0
LAu(s) ds

=
ˆ 1

0
u(s)

(
−(A(s)v′(s))′ + v(s)− v(1)

)
ds−A(1)u′(1)v(1)

+ v(1)
ˆ 1

0
u(s) ds

=
ˆ 1

0
u(s)f(s) ds−A(1)u′(1)v(1).

Hence A(1)u′(1)v(1) = 0 for all u ∈ D(LA) ∩ C[0, 1], therefore v(1) = 0. This shows that LA
is self-adjoint. Also, from Remark 3 we deduce

〈LAu, u〉 = a(u, u) ≥ K2 ‖u‖2Xα ≥ K2 ‖u‖2 ,
showing that LA is positive. Finally, Remark 3 also tells us that for u ∈ D(LA) and v ∈ Xα

0
we have

〈LAu, v〉 = a(u, v).
�
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Proposition 3 tells us that LA is a positive self-adjoint operator, therefore there exists
a unique positive square root operator (see for example [5, Theorem V.3.35]), denoted by
L

1/2
A satisfying: D(LA) ⊂ D(L1/2

A ) and that (D(L1/2
A ), 〈·, ·〉

L
1/2
A

) is a Hilbert space, where for

u, v ∈ D(L1/2
A ) one has

〈u, v〉
L

1/2
A

= 〈u, v〉+
〈
L

1/2
A u, L

1/2
A v

〉
.

In addition, the inclusion D(LA) ⊂ D(L1/2
A ) is dense. We have the following result due to

Stuart [7] in the context of general self adjoint operators over real Hilbert spaces:

Proposition 4. Let L1/2
A be as before, then

(i) There exists a unique operator B1 : D(L1/2
A )→ D(L1/2

A ) such that
〈LAu, v〉 = 〈B1u, v〉L1/2

A

.

(ii) There exists a unique operator B2 : D(L1/2
A )→ D(L1/2

A ) such that
〈u, v〉 = 〈B2u, v〉L1/2

A

.

(iii) σ(LA) =
{
µ ∈ R : B1 − µB2 is not an isomorphism in D(L1/2

A )
}
.

(iv) σe(LA) =
{
µ ∈ R : B1 − µB2 is not Fredholm in D(L1/2

A )
}
.

Remark 4. We have that the Hilbert spaces (D(L1/2
A ), 〈·, ·〉

L
1/2
A

) and (Xα
0 , 〈·, ·〉Xα

0
) are equiva-

lent. Indeed, for u, v ∈ D(La) we have ‖u‖2
L

1/2
A

= 〈u, u〉+ 〈Lau, u〉, hence

a(u, u) = 〈LAu, u〉 ≤ ‖u‖2L1/2
A

= 〈u, u〉+ 〈Lau, u〉 ≤ 2a(u, u).

The conclusion follows by recalling that D(LA) is dense in both D(L1/2
A ) and Xα

0 .
In addition, we have that for u, v ∈ D(L1/2

A ) = Xα
0

〈u, v〉
L

1/2
A

= 〈u, v〉+ a(u, v) = a((TA + I)u, v)

by the definition of TA.

We can now prove Theorem 2.

Proof. We follow the proof of [9, Theorem 6.4]. Observe that thanks to Proposition 4 we can
write

〈B1u, v〉L1/2
A

= 〈LAu, v〉 = a(u, v)

for all u ∈ D(LA) and v ∈ Xα
0 , but by density we conclude that this holds for all u, v ∈ Xα

0 .
In addition, from Remark 4 we have

a(u, v) = 〈B1u, v〉L1/2
A

= a((TA + I)B1u, v) for all u, v ∈ Xα
0 ,

hence (TA + I)B1 = I : Xα
0 −→ Xα

0 . On the other hand
a((TA + I)B2u, v) = 〈B2u, v〉L1/2

A

= 〈u, v〉 = a(TAu, v) for all u, v ∈ Xα
0 ,

thus (TA + I)B2 = TA : Xα
0 −→ Xα

0 . In particular we have that for every λ ∈ R \ {0}

TA − λI = −λ(TA + I)(B1 −
1
λ
B2),
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and recall that TA is a positive operator, in particular −1 ∈ ρ(TA), thus TA + I is an isomor-
phism, and the conclusion about the spectrum follows from Proposition 4.

For the last part, observe that 0 /∈ σ(LA), indeed, observe that for each f ∈ L2 the equation
a(u, v) = 〈f, v〉 for all v ∈ Xα

0

has a unique solution in u ∈ Xα
0 . Also, since this unique solution u = TAf ∈ Xα

0 ⊂ L2

satisfies equation (3), we see that (A(x)u′(x))′ ∈ L2, therefore u ∈ D(LA). This shows that
the equation LAu = f has a unique solution in D(LA), and as a consequence the inverse
operator L−1

A : L2 −→ D(LA) is well defined. Finally, using Proposition 3 we see that for
u ∈ L2 and for v ∈ Xα

0 we can write

a(L−1
A u, v) =

〈
LA(L−1

A u), v
〉

= 〈u, v〉 .

Similarly, for u ∈ Xα
0 and v ∈ Xα

0 we have
a(TAu, v) = 〈u, v〉 ,

therefore a(TAu, v) = a(L−1
A u, v) for all u, v ∈ Xα

0 , thus TA = L−1
A

∣∣∣
Xα

0
. �
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