THE ESSENTIAL SPECTRUM OF A SINGULAR STURM-LIOUVILLE OPERATOR

HERNÁN CASTRO

Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile

ABSTRACT. In this paper we study the essential spectrum of the operator

$$L_A u(x) = -(A(x)u'(x))' + u(x)$$

where A(x) is a positive absolutely continuous function on (0, 1) that resembles $x^{2\alpha}$ for some $\alpha \geq 1$. We prove that the essential spectrum of L_A coincides with the essential spectrum of the operator $L_{\alpha}u(x) := -(x^{2\alpha}u'(x))' + u(x)$.

1. INTRODUCTION

We consider the singular Sturm-Liouville differential operator

(1)
$$L_A u(x) := -(A(x)u'(x))' + u(x)$$

over the interval (0, 1), where $A(x) = A_{\alpha}(x)$ is an absolutely continuous function on [0, 1] such that A(x) > 0 for all $0 < x \le 1$. In addition we suppose that there exist constants $c_1, c_2 > 0$ and $\alpha > 0$ such that

(H1)
$$c_1 x^{2\alpha} \le A(x) \le c_2 x^{2\alpha}$$
, for all $x \in (0, 1]$, and

(H2)
$$\lim_{x \to 0} x^{-2\alpha} A(x) = 1$$

Associated with (1) one can define the following operator

$$\begin{array}{rcc} T_A: X_0^{\alpha} & \longrightarrow X_0^{\alpha} \\ f & \longmapsto T_A(f) = u, \end{array}$$

where u is the (unique) solution of

(2)
$$\int_0^1 A(x)u'(x)v'(x)\,\mathrm{d}x + \int_0^1 u(x)v(x)\,\mathrm{d}x = \int_0^1 f(x)v(x)\,\mathrm{d}x, \quad \forall \ v \in X_0^\alpha.$$

Here X_0^{α} is the space of real valued functions u in L^2 having a weak derivative satisfying $x^{\alpha}u' \in L^2$ such that u(1) = 0 (see [2, Appendix] for more details about these spaces). The fact that the operator T_A is a well defined bounded operator is a direct consequence of the

E-mail address: hcastro@inst-mat.utalca.cl.

Date: December 23, 2016.

²⁰¹⁰ Mathematics Subject Classification. 34L05, 34L40, 34B08.

Key words and phrases. singular Sturm-Liouville operator, essential espectrum.

This research has been partially funded by Fondecyt Iniciación 11140002.

Lax-Milgram theorem (see section 2 for some of the details). In addition, a straightforward computation tells us that if $u = T_A f$, then u is the unique weak solution of

(3)
$$\begin{cases} -(A(x)u'(x))' + u(x) = f(x) \quad \text{a.e. in } (0,1), \\ \lim_{x \to 0^+} A(x)u'(x) = 0, \\ u(1) = 0, \end{cases}$$

For the special case $A(x) = x^{2\alpha}$ a complete study of (3) has been developed in [2,3], exhibiting properties of existence, uniqueness, and regularity of solutions in terms of the L^2 norm of f, as well as a detailed description of the spectrum of the respective operator T_A , denoted by T_{α} in this particular case.

One important feature of the spectrum of T_{α} is that it changes from a spectrum consisting solely on isolated simple eigenvalues $\sigma(T_{\alpha}) = \{\lambda_i : i \in \mathbb{N}\}$ to a purely essential (continuum) spectrum when α crosses the $\alpha = 1$ barrier, namely $\sigma(T_1) = \sigma_e(T_1) = [0, \frac{4}{5}]$ (see [2, Theorem 1.17]). A study of the spectrum of T_A , and other relevant results regarding a non-linear problem, had been established by Stuart and Vuillaume in a more general setting. In the series of articles [6,8–13] the authors studied the bifurcation properties of a heavy tapered rod, and in this context with the aid of the Bernoulli-Euler bending law for beams, the differential operator $N_A u(x) = (L_A - I)u(x) = -(A(x)u'(x))'$ appears naturally (see [8, Section 1.1] for more details on how this kind of operators arise in this context). In particular, in [9] Stuart studied the spectral properties of the operator N_A under the boundary conditions

$$\lim_{x \to 0^+} A(x)u'(x) = 0 \quad \text{and} \quad u(1) = 0,$$

and also of the operator $T_A - I$ in the case $0 \le \alpha \le 1$, proving that

$$\sigma(T_A - I) = \left\{\frac{1}{\lambda} : \lambda \in \sigma(N_A)\right\} \cup \{0\}$$

and

$$\sigma_e(T_A - I) = \left\{ \frac{1}{\lambda} : \lambda \in \sigma_e(N_A) \right\} \cup \{0\}.$$

Stuart also established, using a compactness argument, that for $\alpha < 1$ the spectrum of $T_A - I$ consists solely of simple eigenvalues (in particular $\sigma_e(T_A - I) = \{0\}$), but as soon as $\alpha = 1$ the essential spectrum becomes non-trivial. He also gives conditions on A(x) for the existence/non-existence of eigenvalues when $\alpha = 1$.

The purpose of this work is to answer some questions raised in [2] regarding the spectrum of the operators L_A and T_A when $\alpha \ge 1$. In particular, for $\alpha = 1$ Stuart has shown that $\max \sigma_e(T_A) = \frac{4}{5}$, implying that $\sigma_e(T_A) \subseteq [0, \frac{4}{5}]$, but the question of whether $\sigma_e(T_A) = [0, \frac{4}{5}]$ remained open. For $\alpha > 1$ there is less information, as the existence/non-existence of eigenvalues in $\sigma(T_A)$ and estimates over $\sigma_e(T_A)$ or $\max \sigma_e(T_A)$ have not been discussed. The following result answers such questions.

Theorem 1. Let $\alpha \geq 1$ and T_A be as before.

(i) If $\alpha = 1$, then $\sigma_e(T_A) = [0, \frac{4}{5}] = \sigma_e(T_\alpha)$. (ii) If $\alpha > 1$, then $\sigma_e(T_A) = \sigma(T_A) = [0, 1] = \sigma(T_\alpha) = \sigma_e(T_\alpha)$.

In addition, we show that the analysis of the spectrum of T_A is equivalent to the analysis of the spectrum of L_A as an unbounded operator from $D(L_A) \subset L^2(0,1)$ to $L^2(0,1)$ (the domain $D(L_A)$ will be specified later in section 5), as the following theorem shows.

Theorem 2. Let $\alpha \geq 1$ and for $\delta \in \mathbb{R} \setminus \{0\}$ consider $\gamma = \delta^{-1}$. Then we have

(i) $L_A - \gamma I : D(L_A) \longrightarrow L^2$ is an isomorphism $\iff T_A - \delta I : X_0^{\alpha} \longrightarrow X_0^{\alpha}$ is an isomorphism. (ii) $L_A - \gamma I : D(L_A) \longrightarrow L^2$ is Fredholm $\iff T_A - \delta I : X_0^{\alpha} \longrightarrow X_0^{\alpha}$ is Fredholm. (iii)

$$\sigma(T_A) = \left\{ \lambda \in \mathbb{R} : \lambda^{-1} \in \sigma(L_A) \right\} \cup \{0\},\$$

and

$$\sigma_e(T_A) = \left\{ \lambda \in \mathbb{R} : \lambda^{-1} \in \sigma_e(L_A) \right\} \cup \{0\}.$$

(*iv*) $T_A = L_A^{-1}\Big|_{X_0^{\alpha}}$.

Remark 1. It is important to mention that there are several notions of essential spectra that can be defined, however for the particular case of a self-adjoint operator on a Hilbert space, most of these notions coincide (see for instance [4, Theorem IX.1.6]). As we will see later, both operators T_A and L_A are indeed self-adjoint.

The rest of this paper is organized as follows. We establish the notation and the definitions used throughout this work in section 2. In section 2 we prove a proposition that is key in the proof of Theorem 1. Then we separate the proof of Theorem 1 into the cases $\alpha = 1$ and $\alpha > 1$ in sections 3 and 4 respectively. Finally, in section 5 we establish the connection between T_A and L_A and prove Theorem 2.

2. Preliminaries

For $\alpha > 0$, recall the definition of the real vector spaces $X^{\alpha} = X^{\alpha}(0,1)$ given in [2]

$$X^{\alpha} = \left\{ u \in H^{1}_{loc}(0,1] : u \in L^{2}(0,1), \ x^{\alpha}u' \in L^{2}(0,1) \right\}$$

where $H^1_{loc}(0, 1]$ is the set of function belonging to the Sobolev space $H^1(K)$ for all K compact subset of (0, 1]. Additionally, since functions in X^{α} are continuous away from the origin, the subset

$$X_0^{\alpha} = \{ u \in X^{\alpha} : u(1) = 0 \},\$$

is a well defined closed subspace of X^{α} . In [2] we established that X_0^{α} is a Hilbert space for the inner product

$$\langle u, v \rangle_{X^{\alpha}} = \langle u, v \rangle + \langle x^{\alpha} u', x^{\alpha} v' \rangle,$$

where throughout this work

$$\langle u, v \rangle = \int_0^1 u(x) v(x) \, \mathrm{d}x$$

will denote the usual inner product in $L^2 = L^2(0, 1)$. Because of the Riesz representation theorem we know the existence of an operator $T_\alpha : X_0^\alpha \longrightarrow X_0^\alpha$ defined by the identity

(4)
$$\langle T_{\alpha}f,v\rangle_{X^{\alpha}} = \langle f,v\rangle \quad \forall v \in X_{0}^{\alpha}.$$

If we let $u = T_{\alpha}f$, we have shown that u is in fact the unique weak solution to the singular Sturm-Liouville equation (see [2,3])

$$\begin{cases} -(x^{2\alpha}u'(x))' + u(x) = f & \text{a.e. in } (0,1), \\ u(1) = 0, \\ \lim_{x \to 0} x^{2\alpha}u'(x) = 0. \end{cases}$$

The following estimate also follows from [2]

$$||T_{\alpha}f||_{X^{\alpha}} \le ||f||_{L^2} \le ||f||_{X^{\alpha}},$$

and it asserts that the boundedness of T_{α} only requires f to be an L^2 function, that is, the operator T_{α} could be extended to $L^2 \supset X_0^{\alpha}$ as a bounded operator.

As we mentioned in the introduction, we will consider a function $A : [0,1] \longrightarrow [0,\infty)$ satisfying (H1) and (H2). Define the bilinear symmetric function $a : X_0^{\alpha} \times X_0^{\alpha} \longrightarrow \mathbb{R}$ by

$$a(u,v) = \int_0^1 A(x)u'(x)v'(x) \,\mathrm{d}x + \int_0^1 u(x)v(x) \,\mathrm{d}x,$$

and thanks to (H1) it is easy to find constants $K_1, K_2 > 0$ such that

(5)
$$|a(u,v)| \le K_1 ||u||_{X^{\alpha}} ||v||_{X^{\alpha}} \text{ and } |a(u,u)| \ge K_2 ||u||_{X^{\alpha}}^2,$$

thus proving that a is a bounded, coercive bilinear function over X_0^{α} , therefore the Lax-Milgram theorem ([1, Corollary 5.8]) tells us that there exists a unique bounded linear operator $T_A: X_0^{\alpha} \longrightarrow X_0^{\alpha}$ defined by the equation

(6)
$$a(T_A f, v) = \langle f, v \rangle \quad \forall v \in X_0^{\alpha}$$

It is significant to observe that (5) and the symmetry of a tell us that $a(\cdot, \cdot)$ defines an inner product over X_0^{α} which gives an equivalent topology on X_0^{α} . We will use both inner products, $a(\cdot, \cdot)$ and $\langle \cdot, \cdot \rangle_{X^{\alpha}}$, accordingly.

Observe that for each $f \in L^2$ and if we call $u = T_A f$, then it is straightforward to see that u is the unique weak solution in X_0^{α} to the equation

$$\begin{cases} -(A(x)u'(x))' + u(x) = f & \text{a.e. in } (0,1), \\ u(1) = 0, \\ \lim_{x \to 0} A(x)u'(x) = 0, \end{cases}$$

moreover, by the definition of T_A we obtain immediately that T_A is self adjoint with respect to the inner product $a(\cdot, \cdot)$, and that

$$a(T_A u, u) = \langle u, u \rangle > 0$$
 for all $u \in X_0^{\alpha} \setminus \{0\}$

showing that T_A is a positive operator.

In this framework, the spectrum of the operator T_A is the set

$$\sigma(T_A) = \{\lambda \in \mathbb{R} : T - \lambda I : X_0^{\alpha} \to X_0^{\alpha} \text{ is not an isomorphism} \},\$$

and that the essential spectrum of T_A is defined as

 $\sigma_e(T_A) = \left\{ \lambda \in \sigma(T_A) \, : T - \lambda I : X_0^{\alpha} \to X_0^{\alpha} \text{ is not a Fredholm operator} \right\},\$

and to prove Theorem 1 we will use the following technical result which will allow us to characterize the essential spectrum of the operator T_A .

Proposition 1. For $\lambda \in \mathbb{R}$ suppose there exists a sequence $\{u_n\} \in X_0^{\alpha}(0,1)$ such that

(i) $\|u_n\|_{X^{\alpha}} = 1$, (ii) $u_n \xrightarrow[n \to \infty]{} 0$ in the weak topology of X_0^{α} , (iii) $\|(T_{\alpha} - \lambda)u_n\|_{X^{\alpha}} = o(1)$, (iv) $\sup u_n \subseteq [0, \frac{1}{n}]$, (v) $\langle T_{\alpha}u_n, u_n \rangle_{X^{\alpha}} = \lambda + o(1)$,

where o(1) is a quantity that goes to 0 as n goes to infinity. Then λ belongs to $\sigma_e(T_A)$.

Proof. To show that $\lambda \in \sigma_e(T_A)$, it is enough to find a singular sequence for T_A and λ (see [4, Theorems IX.1.3 and IX.1.6]), that is, a sequence $u_n \in X_0^{\alpha}$ such that $||u_n||_{X^{\alpha}} = 1$, $u_n \to 0$ weakly in X^{α} , and that $||(T_A - \lambda)u_n||_{X^{\alpha}} \to 0$ as $n \to \infty$.

Using the the sequence $\{u_n\}$ given in the statement of this proposition, we only need to prove $\|(T_A - \lambda)u_n\|_{X^{\alpha}} \to 0$, as the other conditions are already established. Observe that by the definition of T_A and T_{α} we have for all $v \in X_0^{\alpha}$ the identity

$$a(T_A u_n, v) = \langle u_n, v \rangle = \langle T_\alpha u_n, v \rangle_{X^\alpha},$$

therefore

$$a(T_A u_n, u_n) = \lambda + o(1).$$

Also, since supp $u_n \subseteq [0, \frac{1}{n}]$ we have

$$|a(u_n, v) - \langle u_n, v \rangle_{X^{\alpha}}| = \left| \int_0^{\frac{1}{n}} (A(x) - x^{2\alpha}) u'_n(x) v'(x) \, \mathrm{d}x \right|$$

$$\leq \left(\int_0^{\frac{1}{n}} \left| A(x) - x^{2\alpha} \right| \left| u'_n(x) \right|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_0^{\frac{1}{n}} \left| A(x) - x^{2\alpha} \right| \left| v'(x) \right|^2 \, \mathrm{d}x \right)^{\frac{1}{2}},$$

but we are assuming (H2), therefore there exists a sequence $\delta_n \longrightarrow 0$ such that

$$\left|A(x) - x^{2\alpha}\right| \le \delta_n x^{2\alpha} \quad \text{for all } 0 < x \le \frac{1}{n}.$$

Hence

$$|a(u_n, v) - \langle u_n, v \rangle_{X^{\alpha}}| \le \delta_n \, \|u_n\|_{X^{\alpha}} \, \|v\|_{X^{\alpha}} = \delta_n \, \|v\|_{X^{\alpha}},$$

and as a consequence we obtain

(7)
$$\begin{aligned} |a((T_A - \lambda)u_n, v)| &= |\langle (T_\alpha - \lambda)u_n, v \rangle_{X^\alpha} - \lambda \left(a(u_n, v) - \langle u_n, v \rangle_{X^\alpha} \right)| \\ &\leq \| (T_\alpha - \lambda)u_n \|_{X^\alpha} \|v\|_{X^\alpha} + \delta_n |\lambda| \|v\|_{X^\alpha}. \end{aligned}$$

From (5) we deduce that the norms

$$\|u\|_{X^{\alpha}} = \sqrt{\langle u, u \rangle_{X^{\alpha}}} \quad \text{and} \quad \|u\|_{a} = \sqrt{a(u, u)}$$

are equivalent in X^{α} . From this equivalence and the dual representation of the norm $\|\cdot\|_a$ (recall that a(u, v) defines an inner product over X_0^{α}) we obtain

$$\sqrt{K_2} \left\|\varphi\right\|_{X^{\alpha}} \le \left\|\varphi\right\|_a = \sup_{v \in X^{\alpha} \setminus \{0\}} \frac{\left|a(\varphi, v)\right|}{\left\|v\right\|_a} \le \frac{1}{\sqrt{K_2}} \sup_{v \in X^{\alpha} \setminus \{0\}} \frac{\left|a(\varphi, v)\right|}{\left\|v\right\|_{X^{\alpha}}},$$

for all $\varphi \in X^{\alpha}$. Therefore for $C = K_2^{-1}$ we have

(8)
$$\|\varphi\|_{X^{\alpha}} \le C \sup_{v \in X^{\alpha} \setminus \{0\}} \frac{|a(\varphi, v)|}{\|v\|_{X^{\alpha}}}.$$

Using (7) and (8) gives

$$\begin{aligned} \|(T_A - \lambda)u_n\|_{X^{\alpha}} &\leq C \sup_{v \in X_0^{\alpha} \setminus \{0\}} \frac{|a((T_A - \lambda)u_n, v)|}{\|v\|_{X^{\alpha}}} \\ &\leq C \left(\|(T_\alpha - \lambda)u_n\|_{X^{\alpha}} + \delta_n |\lambda| \right) \\ &= o(1), \end{aligned}$$

thus concluding the proof.

Remark 2. Observe that the first three conditions on the sequence $\{u_n\}$ required by Proposition 1 say that $\{u_n\}$ is a singular sequence for the pair (λ, T_α) , and by [4, Theorem IX.1.3] such sequence can be found for any λ in $\sigma_e(T_\alpha) = [0, \frac{4}{5}]$. However, finding a singular sequence for (λ, T_α) satisfying *in addition* supp $u_n \subseteq [0, \frac{1}{n}]$ and $\langle T_\alpha u_n, u_n \rangle_{X^\alpha} = \lambda + o(1)$ requires additional work. We will do so in sections 3 and 4 to prove Theorem 1.

3. PROOF OF THEOREM 1: CASE
$$\alpha = 1$$

For $0 < \lambda < \frac{4}{5}$, let $\mu = \frac{1}{\lambda}$ and $\gamma = \sqrt{\mu - \frac{5}{4}}$. Given $\varepsilon > 0$ define
 $\tilde{w}_{\varepsilon}(x) = x^{\varepsilon - \frac{1}{2}} \sin(\gamma \ln x)$,

and

$$\tilde{g}_{\varepsilon}(x) = -2\gamma \varepsilon x^{\varepsilon - \frac{1}{2}} \cos(\gamma \ln x).$$

It is a simple exercise to see that both \tilde{w}_{ε} and \tilde{g}_{ε} belong to X^{α} for $\alpha = 1$ and all $\varepsilon > 0$; moreover, \tilde{w}_{ε} satisfies

$$-(x^2 \tilde{w}_{\varepsilon}'(x))' + (1 - \mu + \varepsilon^2) \tilde{w}_{\varepsilon}(x) = \tilde{g}_{\varepsilon}(x).$$

Consider now a smooth cut-off function $\rho : \mathbb{R} \longrightarrow \mathbb{R}_+$, satisfying

(9)
$$\rho(x) = 1 \text{ for } x \le \frac{1}{2}$$

(10)
$$\rho(x) = 0 \text{ for } x \ge 1,$$

(11)
$$0 \le \rho(x) \le 1 \quad \forall x$$

(12)
$$\|\rho'\|_{\infty} + \|\rho''\|_{\infty} \le C_0$$

for some constant $C_0 > 0$. For $x \in [0,1]$ define $w_{\varepsilon}(x) = \tilde{w}_{\varepsilon}\left(\frac{x}{\varepsilon}\right), g_{\varepsilon}(x) = \tilde{g}_{\varepsilon}\left(\frac{x}{\varepsilon}\right), \rho_{\varepsilon}(x) = \rho\left(\frac{x}{\varepsilon}\right),$ and let

$$\tilde{u}_{\varepsilon}(x) := w_{\varepsilon}(x)\rho_{\varepsilon}(x)$$

Observe that by definition supp $\tilde{u}_{\varepsilon} \subseteq [0, \varepsilon]$. In addition, a direct computation shows that \tilde{u}_{ε} is a solution to the equation

(13)
$$\begin{cases} -(x^2 \tilde{u}_{\varepsilon}'(x))' + (1 - \mu + \varepsilon^2) \tilde{u}_{\varepsilon}(x) = f_{\varepsilon}(x) & \text{for } x \in (0, 1), \\ \tilde{u}_{\varepsilon} \in X_0^1, \end{cases}$$

where

$$f_{\varepsilon}(x) = g_{\varepsilon}(x)\rho_{\varepsilon}(x) - 2x^2 w_{\varepsilon}'(x)\rho_{\varepsilon}'(x) - w_{\varepsilon}(x)(x^2\rho_{\varepsilon}'(x))'.$$

In terms of the operator T_1 , equation (13) can be written as

$$\left(T_1 - \frac{\lambda}{1 - \lambda \varepsilon^2}\right) \tilde{u}_{\varepsilon} = -\frac{\lambda}{1 - \lambda \varepsilon^2} T_1 f_{\varepsilon},$$

and we have the following

Lemma 1. For $0 < \lambda < \frac{4}{5}$ let $u_{\varepsilon} := \tilde{u}_{\varepsilon} / \|\tilde{u}_{\varepsilon}\|_{X^1}$. As ε goes to zero one has

- (i) $\langle T_1 u_{\varepsilon}, u_{\varepsilon} \rangle_{X^1} = \lambda + o(1),$
- (*ii*) $||(T_1 \lambda)u_{\varepsilon}||_{X^1} = o(1),$
- (iii) $u_{\varepsilon} \longrightarrow 0$ in the weak topology of X_0^1 ,

where o(1) denotes a quantity that goes to 0 with ε .

Proof. Observe that

$$T_1 u_{\varepsilon} = \frac{\lambda}{1 - \lambda \varepsilon^2} u_{\varepsilon} - \frac{\lambda}{(1 - \lambda \varepsilon^2) \|\tilde{u}_{\varepsilon}\|_{X^1}} T_1 f_{\varepsilon},$$

therefore

$$\langle T_1 u_{\varepsilon}, u_{\varepsilon} \rangle_{X^1} = \frac{\lambda}{1 - \lambda \varepsilon^2} - \frac{\lambda}{(1 - \lambda \varepsilon^2) \|\tilde{u}_{\varepsilon}\|_{X^1}} \langle T_1 f_{\varepsilon}, u_{\varepsilon} \rangle_{X^1}$$
$$= \lambda - \frac{\lambda}{(1 - \lambda \varepsilon^2) \|\tilde{u}_{\varepsilon}\|_{X^1}} \langle T_1 f_{\varepsilon}, u_{\varepsilon} \rangle_{X^1} + o(1).$$

To prove the first part of this lemma we need to estimate the middle term and show that it goes to zero as ε goes to zero. Observe that for each $x \in (0, 1]$

$$|w_{\varepsilon}(x)| \leq \varepsilon^{\frac{1}{2}-\varepsilon} x^{\varepsilon-\frac{1}{2}},$$

$$|w'_{\varepsilon}(x)| \leq C \varepsilon^{\frac{1}{2}-\varepsilon} x^{\varepsilon-\frac{3}{2}},$$

and that since $\rho_{\varepsilon}(x) = 1$ for $0 \le x \le \frac{\varepsilon}{2}$ we have

$$\begin{split} \|\tilde{u}_{\varepsilon}\|_{X^{1}}^{2} &\geq \|w_{\varepsilon}\rho_{\varepsilon}\|_{L^{2}}^{2} \\ &\geq \int_{0}^{\frac{\varepsilon}{2}} |w_{\varepsilon}(x)|^{2} dx \\ &= \varepsilon \int_{0}^{\frac{1}{2}} x^{2\varepsilon-1} \sin^{2}(\gamma \ln x) dx \\ &= \frac{\varepsilon}{\gamma} \int_{\gamma \ln 2}^{\infty} e^{-\frac{2\varepsilon}{\gamma}t} \sin^{2}(t) dt \\ &= \frac{e^{-2\varepsilon \ln(2)}}{4} \left[1 + \frac{\varepsilon}{\varepsilon^{2} + \gamma^{2}} \left(\gamma \sin(2\gamma \ln 2) - \varepsilon \cos(2\gamma \ln 2)\right) \right] \\ &= \frac{e^{-2\varepsilon \ln(2)}}{4} (1 + o(1)) \\ &= \frac{1}{4} + o(1). \end{split}$$

Also, since $||T_1 f_{\varepsilon}||_{X^1} \leq ||f_{\varepsilon}||_{L^2}$, we only need to estimate the L^2 norm of f_{ε} . Recall that

$$f_{\varepsilon}(x) = g_{\varepsilon}(x)\rho_{\varepsilon}(x) - 2x^2 w_{\varepsilon}'(x)\rho_{\varepsilon}'(x) - w_{\varepsilon}(x)(x^2\rho_{\varepsilon}'(x))$$

and estimate each term in L^2 . Firstly, as $0 \le \rho_{\varepsilon}(x) \le 1$ with $\operatorname{supp} \rho_{\varepsilon} \subseteq [0, \varepsilon]$ we can write

$$\begin{split} \|g_{\varepsilon}\rho_{\varepsilon}\|_{L^{2}}^{2} &\leq \int_{0}^{\varepsilon} \tilde{g}_{\varepsilon} \left(\frac{x}{\varepsilon}\right)^{2} \mathrm{d}x \\ &\leq 4\gamma^{2}\varepsilon^{3} \int_{0}^{1} y^{2\varepsilon-1} \mathrm{d}y \\ &= 2\gamma^{2}\varepsilon^{2}. \end{split}$$

For the other terms in f_{ε} observe that by the boundedness of the derivatives of ρ we have for all $x \in [0, 1]$ the following estimates

$$\begin{aligned} \left| \rho_{\varepsilon}'(x) \right| &\leq \frac{C_0}{\varepsilon}, \\ \left| \rho_{\varepsilon}''(x) \right| &\leq \frac{C_0}{\varepsilon^2}, \end{aligned}$$

therefore, by observing that both ρ_ε' and ρ_ε'' are also supported on the interval $[0,\varepsilon]$ we can write

$$\begin{split} \left\| x^2 w_{\varepsilon}' \rho_{\varepsilon}' \right\|_{L^2}^2 &\leq C \int_0^{\varepsilon} \left| \varepsilon^{-\frac{1}{2} - \varepsilon} x^{\frac{1}{2} + \varepsilon} \right|^2 \, \mathrm{d}x \\ &= C \varepsilon^{-1 - 2\varepsilon} \int_0^{\varepsilon} x^{1 + 2\varepsilon} \, \mathrm{d}x \\ &\leq C \varepsilon. \end{split}$$

Similarly,

$$\begin{split} \left\| x^2 w_{\varepsilon} \rho_{\varepsilon}'' \right\|_{L^2}^2 &\leq C \int_0^{\varepsilon} \left| \varepsilon^{-\frac{3}{2} - \varepsilon} x^{\frac{3}{2} + \varepsilon} \right|^2 \, \mathrm{d}x \\ &= C \varepsilon^{-3 - 2\varepsilon} \int_0^{\varepsilon} x^{3 + 2\varepsilon} \, \mathrm{d}x \\ &\leq C \varepsilon. \end{split}$$

and

$$\begin{split} \|xw_{\varepsilon}\rho_{\varepsilon}'\|_{L^{2}}^{2} &\leq C\int_{0}^{\varepsilon} \left|\varepsilon^{-\frac{1}{2}-\varepsilon}x^{\frac{1}{2}+\varepsilon}\right|^{2} \mathrm{d}x\\ &= C\varepsilon^{-1-2\varepsilon}\int_{0}^{\varepsilon}x^{1+2\varepsilon} \mathrm{d}x\\ &\leq C\varepsilon. \end{split}$$

Hence

$$||T_1 f_{\varepsilon}||_{X^1} \le ||f||_{L^2} \le C\sqrt{\varepsilon},$$

and we deduce

$$\left|\frac{1}{\|u_{\varepsilon}\|_{X^{1}}} \left\langle T_{1}f_{\varepsilon}, u_{\varepsilon} \right\rangle_{X^{1}}\right| \leq \frac{\|T_{1}f_{\varepsilon}\|_{X_{1}}}{\|\tilde{u}_{\varepsilon}\|_{X^{1}}} \leq C\sqrt{\varepsilon} = o(1),$$

thus proving the first part of the lemma.

For the second part, observe that we have established $\langle T_1 u_{\varepsilon}, u_{\varepsilon} \rangle_{X^1} = \lambda + o(1)$, therefore we can write

$$\begin{aligned} \|(T_1 - \lambda)u_{\varepsilon}\|_{X^1}^2 &= \|T_1u_{\varepsilon}\|_{X^1}^2 + \lambda^2 - 2\lambda \, \langle T_1u_{\varepsilon}, u_{\varepsilon} \rangle_{X^1} \\ &= \|T_1u_{\varepsilon}\|_{X^1}^2 - \lambda^2 + o(1), \end{aligned}$$

but since $\|T_1 f_{\varepsilon}\|_{X^1} = o(1)$ and $\|\tilde{u}_{\varepsilon}\|_{X^1}^{-1} = O(1)$ we obtain

$$\begin{aligned} \|T_1 u_{\varepsilon}\|_{X^1}^2 &= \left\|\frac{\lambda}{1-\lambda\varepsilon^2} u_{\varepsilon} - \frac{\lambda}{(1-\lambda\varepsilon^2)} \|\tilde{u}_{\varepsilon}\|_{X^1} T_1 f_{\varepsilon}\right\|_{X^1}^2 \\ &= \frac{\lambda^2}{(1-\lambda\varepsilon^2)^2} + \frac{\lambda^2}{(1-\lambda\varepsilon^2)^2} \frac{\|T_1 f_{\varepsilon}\|_{X^1}^2}{\|\tilde{u}_{\varepsilon}\|_{X^1}^2} - \frac{2\lambda^2}{(1-\lambda\varepsilon^2)^2} \|\tilde{u}_{\varepsilon}\|_{X^1}} \langle T_1 f_{\varepsilon}, u_{\varepsilon} \rangle_{X^1} \\ &= \lambda^2 + o(1), \end{aligned}$$

thus

$$||(T_1 - \lambda u_{\varepsilon})||_{X^1}^2 = o(1),$$

and the second part is done.

Finally, observe that by the definition of T_1 one has for $v \in X_0^1$

$$\langle T_1 u_{\varepsilon}, v \rangle_{X^1} = \langle u_{\varepsilon}, v \rangle$$

= $\int_0^{\varepsilon} u_{\varepsilon}(x) v(x) \, \mathrm{d}x$
 $\leq \left(\int_0^{\varepsilon} |v(x)|^2 \, \mathrm{d}x \right)^{\frac{1}{2}},$

therefore

$$\begin{split} |\langle u_{\varepsilon}, v \rangle_{X^{1}}| &\leq \frac{1}{\lambda} \left| \langle T_{1}u_{\varepsilon}, v \rangle_{X^{1}} \right| + \frac{1}{\lambda} \left| \langle (T_{1} - \lambda)u_{\varepsilon}, v \rangle_{X^{1}} \right| \\ &\leq \frac{1}{\lambda} \left(\int_{0}^{\varepsilon} |v(x)|^{2} dx \right)^{\frac{1}{2}} + \frac{1}{\lambda} \left\| (T_{1} - \lambda)u_{\varepsilon} \right\|_{X^{1}} \|v\|_{X^{1}} \\ &= \frac{1}{\lambda} \left(\int_{0}^{\varepsilon} |v(x)|^{2} dx \right)^{\frac{1}{2}} + o(1) \\ \xrightarrow[\varepsilon \to 0]{} 0, \end{split}$$

hence u_{ε} converges weakly to 0 in X_0^1 .

Proof of Theorem 1 when $\alpha = 1$. On the one hand, by Proposition 1 and Lemma 1 we deduce that $(0, \frac{4}{5}) \subseteq \sigma_e(T_A)$. On the other hand, in [9] it is established that $\max \sigma_e(T_A) = \frac{4}{5}$, and since T_A is a positive operator we obtain $\sigma_e(T_A) \subseteq [0, \frac{4}{5}]$. Thus we have $(0, \frac{4}{5}) \subseteq \sigma_e(T_A) \subseteq [0, \frac{4}{5}]$, but the essential spectrum is closed, consequently we deduce that $\sigma_e(T_A) = [0, \frac{4}{5}]$ as stated in the theorem.

4. PROOF OF THEOREM 1: CASE $\alpha > 1$ For $\alpha > 1$ and $0 < \lambda < 1$, let $\mu = \frac{1}{\lambda}$ and $\beta = \frac{\sqrt{\mu-1}}{\alpha-1}$ and consider $w_{\varepsilon}(x) = \varepsilon^{\frac{\alpha}{2}} x^{-\frac{\alpha}{2}} \sin(\beta x^{1-\alpha}).$

A direct computation shows that w_ε is a solution of

$$-(x^{2\alpha}w'_{\varepsilon}(x))' + (1-\mu)w_{\varepsilon}(x) = g_{\varepsilon}(x) \quad \text{in } (0,1)$$

where

$$g_{\varepsilon}(x) = \frac{\alpha}{2} \left(\frac{3\alpha}{2} - 1\right) \varepsilon^{\frac{\alpha}{2}} x^{\frac{3\alpha}{2} - 2} \sin(\beta x^{1 - \alpha}).$$

Let ρ be a smooth cut-off function with the same properties described in (9)-(12), and let $\eta(x) = 1 - \rho(x)$. For $\varepsilon > 0$ small so that $\varepsilon^{\alpha - 1} < \frac{1}{2}$, define $\zeta_{\varepsilon}(x) = \rho\left(\frac{x}{\varepsilon}\right) \eta\left(\frac{x}{\varepsilon^{\alpha}}\right)$ and let

$$\tilde{u}_{\varepsilon}(x) = w_{\varepsilon}(x)\zeta_{\varepsilon}(x).$$

Observe that $\operatorname{supp} \tilde{u}_{\varepsilon} \subseteq \left[\frac{\varepsilon^{\alpha}}{2}, \varepsilon\right]$ and that \tilde{u}_{ε} is a solution to

(14)
$$\begin{cases} -(x^{2\alpha}\tilde{u}_{\varepsilon}')' + (1-\mu)\tilde{u}_{\varepsilon} = f_{\varepsilon} & \text{ in } (0,1) \\ \tilde{u}_{\varepsilon} \in X_{0}^{\alpha}, \end{cases}$$

where

$$f_{\varepsilon}(x) = g_{\varepsilon}(x)\zeta_{\varepsilon}(x) - 2x^{2\alpha}w_{\varepsilon}'(x)\zeta_{\varepsilon}'(x) - w_{\varepsilon}(x)(x^{2\alpha}\zeta_{\varepsilon}'(x))'.$$

If we write (14) in terms of the operator T_{α} we have

$$(T_{\alpha} - \lambda)\tilde{u}_{\varepsilon} = -\lambda T_{\alpha} f_{\varepsilon},$$

for $\lambda = \frac{1}{\mu}$.

Lemma 2. Let $0 < \lambda < 1$ let $u_{\varepsilon} := \tilde{u}_{\varepsilon} / \|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}$. As ε goes to zero we have

 $\begin{array}{ll} (i) \ \langle T_{\alpha}u_{\varepsilon}, u_{\varepsilon}\rangle_{X^{\alpha}} = \lambda + o(1). \\ (ii) \ \|(T_{\alpha} - \lambda)u_{\varepsilon}\|_{X^{\alpha}} = o(1). \\ (iii) \ u_{\varepsilon} \longrightarrow 0 \ in \ the \ weak \ topology \ of \ X_{0}^{\alpha}. \end{array}$

Proof. Observe that $T_{\alpha}\tilde{u}_{\varepsilon} = \lambda \tilde{u}_{\varepsilon} - \lambda T_{\alpha}f_{\varepsilon}$, hence

$$\langle T_{\alpha}u_{\varepsilon}, u_{\varepsilon}\rangle_{X^{\alpha}} = \lambda - \frac{\lambda}{\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}^{2}} \langle T_{\alpha}f_{\varepsilon}, \tilde{u}_{\varepsilon}\rangle_{X^{\alpha}}.$$

Following the same argument used in the case $\alpha = 1$, it is enough to find an appropriate upper bound for $\|f_{\varepsilon}\|_{L^2}$ and a lower bound for $\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}$ to show that the last term goes to zero as ε goes to zero. We begin by the lower bound on $\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}$: since $\zeta_{\varepsilon} \equiv 1$ on $[\varepsilon^{\alpha}, \frac{\varepsilon}{2}]$ we can write

$$\begin{split} \|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}^{2} &\geq \|w_{\varepsilon}\zeta_{\varepsilon}\|_{L^{2}}^{2} \\ &\geq \int_{\varepsilon^{\alpha}}^{\frac{\varepsilon}{2}} |w_{\varepsilon}(x)|^{2} dx \\ &= \varepsilon^{\alpha} \int_{\varepsilon^{\alpha}}^{\frac{\varepsilon}{2}} \left|x^{-\frac{\alpha}{2}} \sin\left(\beta x^{1-\alpha}\right)\right|^{2} dx \\ &= \frac{\varepsilon^{\alpha}}{\sqrt{\mu-1}} \int_{\beta\left(\frac{\varepsilon}{2}\right)^{1-\alpha}}^{\beta\varepsilon^{\alpha(1-\alpha)}} \sin^{2}(t) dt \\ &= \frac{\varepsilon^{\alpha}}{2\sqrt{\mu-1}} \left(t - \sin(t)\cos(t)\right) \Big|_{t=\beta\left(\frac{\varepsilon}{2}\right)^{1-\alpha}}^{t=\beta\varepsilon^{\alpha(1-\alpha)}} \\ &= \frac{\varepsilon^{\alpha(2-\alpha)}}{2(\alpha-1)} \left(1 + o(1)\right), \end{split}$$

because $\alpha(2-\alpha) < 1 < \alpha$.

We now estimate $||f_{\varepsilon}||_{L^2}$. To do this, observe the following obvious estimates on g_{ε} , w_{ε} , and ζ_{ε} on [0, 1]:

$$\begin{aligned} |g_{\varepsilon}(x)| &\leq C\varepsilon^{\frac{\alpha}{2}}x^{\frac{3\alpha}{2}-2} \\ |w_{\varepsilon}(x)| &\leq \varepsilon^{\frac{\alpha}{2}}x^{-\frac{\alpha}{2}} \\ |w'_{\varepsilon}(x)| &\leq C\varepsilon^{\frac{\alpha}{2}}x^{-\frac{3\alpha}{2}}. \end{aligned}$$

Additionally, recall that ρ and η are smooth functions with uniformly bounded derivatives up to the second order, consequently

$$\begin{aligned} \left|\zeta_{\varepsilon}'(x)\right| &\leq \frac{C}{\varepsilon^{\alpha}}\\ \left|\zeta_{\varepsilon}''(x)\right| &\leq \frac{C}{\varepsilon^{2\alpha}}, \end{aligned}$$

10

for all $x \in (0, 1]$. With these estimates in mind it follows

$$\begin{aligned} \|g_{\varepsilon}\zeta_{\varepsilon}\|_{L^{2}}^{2} &\leq \varepsilon^{\alpha} \int_{0}^{\varepsilon} x^{3\alpha-4} \,\mathrm{d}x \leq C\varepsilon^{4\alpha-3}, \\ \|x^{2\alpha}w_{\varepsilon}'\zeta_{\varepsilon}'\|_{L^{2}}^{2} &\leq C\varepsilon^{-\alpha} \int_{0}^{\varepsilon} x^{\alpha} \,\mathrm{d}x \leq C\varepsilon, \\ \|x^{2\alpha}w_{\varepsilon}\zeta_{\varepsilon}''\|_{L^{2}}^{2} &\leq C\varepsilon^{-3\alpha} \int_{0}^{\varepsilon} x^{3\alpha} \,\mathrm{d}x \leq C\varepsilon, \end{aligned}$$

and

$$\left\|x^{2\alpha-1}w_{\varepsilon}\zeta_{\varepsilon}'\right\|_{L^{2}}^{2} \leq C\varepsilon^{-\alpha}\int_{0}^{\varepsilon}x^{3\alpha-2}\,\mathrm{d}x \leq C\varepsilon^{2\alpha-1},$$

therefore

$$\|f_{\varepsilon}\|_{L^2}^2 \le C\varepsilon,$$

because $2\alpha - 1 > 1$ and $4\alpha - 3 > 1$. Using once again that $\alpha > 1$ we see that

$$\left|\frac{1}{\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}} \langle T_{\alpha}f_{\varepsilon}, u_{\varepsilon} \rangle_{X^{\alpha}}\right|^{2} \leq C \frac{\|f_{\varepsilon}\|_{L^{2}}^{2}}{\|\tilde{u}_{\varepsilon}\|_{L^{2}}^{2}} \leq C \varepsilon^{1-\alpha(2-\alpha)} = C \varepsilon^{(\alpha-1)^{2}} = o(1)$$

as claimed.

For the second part of the lemma notice

$$\|(T_{\alpha} - \lambda)u_{\varepsilon}\|_{X^{\alpha}}^{2} = \|T_{\alpha}u_{\varepsilon}\|_{X^{\alpha}}^{2} + \lambda^{2} - 2\lambda \langle T_{\alpha}u_{\varepsilon}, u_{\varepsilon} \rangle_{X^{\alpha}}$$
$$= \|T_{\alpha}u_{\varepsilon}\|_{X^{\alpha}}^{2} - \lambda^{2} + o(1),$$

and since $||T_{\alpha}f_{\varepsilon}||_{X^{\alpha}} \cdot ||\tilde{u}_{\varepsilon}||_{X^{\alpha}}^{-1} = o(1)$ we deduce that

$$\begin{split} \|T_{\alpha}u_{\varepsilon}\|_{X^{\alpha}}^{2} &= \left\|\lambda u_{\varepsilon} - \lambda \frac{T_{\alpha}f_{\varepsilon}}{\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}}\right\|^{2} \\ &= \lambda^{2} + \frac{\lambda^{2}}{\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}^{2}} \left\|T_{\alpha}f_{\varepsilon}\right\|_{X^{\alpha}}^{2} - 2\frac{\lambda^{2}}{\|\tilde{u}_{\varepsilon}\|_{X^{\alpha}}} \left\langle T_{\alpha}f_{\varepsilon}, u_{\varepsilon} \right\rangle_{X^{\alpha}} \\ &= \lambda^{2} + o(1), \end{split}$$

therefore

$$\|(T_{\alpha} - \lambda)u_{\varepsilon}\|_{X^{\alpha}}^{2} = o(1)$$

and the second part is proved. Finally, observe that since $\mathrm{supp}\, u_\varepsilon\subseteq [0,\varepsilon],$ we can write for $v\in X_0^\alpha$

$$\begin{aligned} \langle T_{\alpha} u_{\varepsilon}, v \rangle_{X^{\alpha}} &= \langle u_{\varepsilon}, v \rangle \\ &= \int_{0}^{\varepsilon} u_{\varepsilon}(x) v(x) \, \mathrm{d}x \\ &\leq \| u_{\varepsilon} \|_{L^{2}} \left(\int_{0}^{\varepsilon} |v(x)|^{2} \, \mathrm{d}x \right)^{\frac{1}{2}} \\ &\leq \left(\int_{0}^{\varepsilon} |v(x)|^{2} \, \mathrm{d}x \right)^{\frac{1}{2}} \\ &= o(1), \end{aligned}$$

consequently

$$\begin{aligned} |\langle u_{\varepsilon}, v \rangle_{X^{\alpha}}| &\leq \frac{1}{\lambda} \left| \langle T_{\alpha} u_{\varepsilon}, v \rangle_{X^{\alpha}} \right| + \frac{1}{\lambda} \left| \langle (T_{\alpha} - \lambda) u_{\varepsilon}, v \rangle_{X^{\alpha}} \right| \\ &\leq \frac{1}{\lambda} \left(\int_{0}^{\varepsilon} |v(x)|^{2} \, \mathrm{d}x \right)^{\frac{1}{2}} + \frac{1}{\lambda} \left\| (T_{\alpha} - \lambda) \tilde{u}_{\varepsilon} \right\|_{X^{\alpha}} \|v\|_{X^{\alpha}} \\ &= \frac{1}{\lambda} \left(\int_{0}^{\varepsilon} |v(x)|^{2} \, \mathrm{d}x \right)^{\frac{1}{2}} + o(1) \\ &\xrightarrow{\to 0} 0, \end{aligned}$$

thus u_{ε} converges weakly to 0.

Proof of Theorem 1 when $\alpha > 1$. From Proposition 1 and Lemma 2 we deduce that the interval (0,1) is contained in $\sigma_e(T_A)$. On the other hand, since T_A is a positive self-adjoint operator for the inner product $a(\cdot, \cdot)$, and if we recall that $||u||_a^2 = a(u, u)$ we can write

$$\max \sigma(T_A) = \sup \left\{ \frac{a(T_A u, u)}{\|u\|_a^2} : u \in X_0^\alpha \setminus \{0\} \right\}$$
$$= \sup \left\{ \frac{\langle u, u \rangle}{\|u\|_a^2} : u \in X_0^\alpha \setminus \{0\} \right\}$$

but

$$\frac{\langle u, u \rangle}{\|u\|_a^2} = \frac{\int_0^1 u(x)^2 \,\mathrm{d}x}{\int_0^1 A(x) u'(x)^2 \,\mathrm{d}x + \int_0^1 u(x)^2 \,\mathrm{d}x} \le 1,$$

for all $u \in X_0^{\alpha} \setminus \{0\}$, thus max $\sigma(T_A) \leq 1$, and as a consequence $\sigma(T_A) \subseteq [0, 1]$. Summarizing, we have shown the following chain of inclusions

$$(0,1) \subseteq \sigma_e(T_A) \subseteq \sigma(T_A) \subseteq [0,1],$$

and since both $\sigma_e(T_A)$ and $\sigma(T_A)$ are closed, the result is proved.

5. The differential operator L_A

For $\alpha > 0$ we have defined the differential operator

$$L_A u(x) := -(A(x)u'(x))' + u(x)$$

over the interval (0, 1) for A satisfying (H1) and (H2). For this kind of operator it is natural to introduce the following L^2 -framework: define D as the set

$$D = \left\{ u \in H^2_{loc}(0,1) : u, \ (A(x)u')' \in L^2 \right\},\$$

and observe that the weight A(x) only introduces possible singularities near the origin, therefore it is straightforward to notice that for $u \in D$ one has, after possible modifying u on a set of measure zero, that

$$u \in C^{1}(0, 1]$$
 and $A(x)u' \in C[0, 1]$.

In order to relate L_A to T_A we will follow the work of Stuart in [9, Section 6] where the relationship between L_A and T_A has been established for $\alpha \leq 1$. To do this we need to add

boundary conditions to the differential operator, and the natural ones are the homogeneous boundary conditions

$$u(1) = A(x)u'(x)\Big|_{x=0} = 0.$$

With this in mind we consider the operator $L_A: D(L_A) \subset L^2 \longrightarrow L^2$, where

$$D(L_A) = \left\{ u \in D : u(1) = A(x)u'(x) \Big|_{x=0} = 0 \right\}$$

We begin the study of this operator by recalling a density result from [2]

Lemma 3 (Lemma A.4 in [2]). For each $\alpha \geq \frac{1}{2}$, the space $C_0^{\infty}(0,1)$ is dense in X_0^{α} .

Proposition 2. For $\alpha \geq 1$, $D(L_A) \subset X_0^{\alpha}$ and the inclusion is dense in the X^{α} -topology.

To prove this proposition, we need the following

Lemma 4. Let $\alpha \geq 1$, $u \in D(L_A)$ and $v \in L^2 \cap C(0,1]$. For each positive integer n, there exists $x_n < \frac{1}{n}$ such that $|A(x_n)u'(x_n)v(x_n)| \leq \frac{1}{n}$

Proof. Indeed, take $u \in D(L_A)$ and $v \in L^2$. Observe that we can write

$$\frac{A(x)}{x}u'(x) = \frac{1}{x} \int_0^x (A(s)u'(s))' \,\mathrm{d}s,$$

thus by Hardy's inequality

$$\left\|\frac{A(x)}{x}u'(x)\right\|_{L^2} \le C \left\| (A(x)u'(x))' \right\|_{L^2}.$$

This estimate implies that $x^{-1}A(x)u'(x)v(x)$ belongs to $L^1(0,1)$, indeed, by Hölder's inequality

$$\begin{aligned} \left\| \frac{A(x)}{x} u'(x) v(x) \right\|_{L^1} &\leq \left\| \frac{A(x)}{x} u'(x) \right\|_{L^2} \|v\|_{L^2} \\ &\leq C \left\| (A(x) u'(x))' \right\|_{L^2} \|v\|_{L^2} \end{aligned}$$

We can now prove the lemma by contradiction: if the statement of the lemma were false, then there would exist a number r > 0 such that for all x < r

$$|A(x)u'(x)v(x)| > r,$$

but such an inequality would contradict the fact that $x^{-1}A(x)u'(x)v(x) \in L^1(0,1)$. The lemma is now proved.

Proof of Proposition 2. Our first claim is that $D(L_A) \subset X_0^{\alpha}$. Indeed, notice that the function (A(x)u'(x))'u(x) belongs to $L^1(0,1)$, therefore we can write

$$\int_0^1 (A(x)u'(x))'u(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{x_n}^1 (A(x)u'(x))'u(x) \, \mathrm{d}x,$$

where x_n is the sequence from Lemma 4 for v = u. Since $u \in C^1(0, 1]$ with u(1) = 0 we can integrate by parts over the interval $(x_n, 1)$ to obtain

$$\int_{x_n}^1 (A(x)u'(x))'u(x) \, \mathrm{d}x = -\int_{x_n}^1 A(x)u'(x)^2 \, \mathrm{d}x - A(x_n)u'(x_n)u(x_n),$$

therefore

$$\int_{x_n}^1 A(x)u'(x)^2 \, \mathrm{d}x = -\int_{x_n}^1 (A(x)u'(x))'u(x) \, \mathrm{d}x - A(x_n)u'(x_n)u(x_n)$$
$$= -\int_0^1 (A(x)u'(x))'u(x) \, \mathrm{d}x + o(1),$$

where o(1) is a quantity that goes to 0 as $n \to \infty$. The monotone convergence theorem implies that

$$\int_0^1 A(x)u'(x)^2 \,\mathrm{d}x = \lim_{n \to \infty} \int_{x_n}^1 A(x)u'(x)^2 \,\mathrm{d}x = -\int_0^1 (A(x)u'(x))'u(x) \,\mathrm{d}x,$$

and we conclude $u \in X_0^{\alpha}$. Finally, observe that $C_0^{\infty}(0,1)$ is contained in $D(L_A)$, therefore Lemma 3 tells us that $D(L_A)$ must be also dense in X_0^{α} .

Remark 3. Observe that in the proof of Proposition 2 we have established the following identity

$$\int_0^1 A(x)u'(x)^2 \, \mathrm{d}x = -\int_0^1 (A(x)u'(x))'u(x) \, \mathrm{d}x$$

for all $u \in D(L_A)$. Moreover, the same argument tells us that

$$\int_0^1 A(x)u'(x)v'(x)\,\mathrm{d}x = -\int_0^1 (A(x)u'(x))'v(x)\,\mathrm{d}x$$

holds for all $u, v \in D(L_A)$.

The following proposition is a well-known result in Sturm-Liouville theory, but for the sake of completeness we provide its proof.

Proposition 3. Let $\alpha \geq 1$ and L_A be as before.

(i) $D(L_A)$ is dense in L^2 . (ii) L_A is positive and self-adjoint. (iii) If $u \in D(L_A)$ and $v \in X_{\alpha}^{\alpha}$, then

ii) If
$$u \in D(L_A)$$
 and $v \in X_0^{\sim}$, then

$$\langle L_A u, v \rangle = a(u, v)$$

Proof. The density result follows directly from the density of $C_0^{\infty}(0,1)$ in L^2 . Observe that thanks to Remark 3 one has that if $u, v \in D(L_A)$ then

$$\langle L_A u, v \rangle = \int_0^1 \left(-(A(x)u'(x))' + u(x) \right) v(x) \, \mathrm{d}x$$

= $\int_0^1 \left(A(x)u'(x)v'(x) + u(x)v(x) \right) \, \mathrm{d}x$
= $a(u, v)$
= $\int_0^1 \left(-(A(x)v'(x))' + v(x) \right) u(x) \, \mathrm{d}x$
= $\langle u, L_A v \rangle$.

Recall that the adjoint operator is defined by $L_a^*: D(L_a^*) \subset L^2 \longrightarrow L^2$, where

$$D(L_A^*) = \left\{ v \in L^2 : \exists f \in L^2 \text{ such that } \langle L_A u, v \rangle = \langle u, f \rangle \text{ for all } u \in D(L_A) \right\},$$

in which case $L_A^*(v) = f$. The above computation tells us that $L_A \subset L_A^*$. To prove the reverse inclusion, we only need to show that $D(L_A^*) \subset D(L_A)$. Indeed, let $v \in D(L_A^*)$, then there exists $f \in L^2$ such that

(15)
$$\langle L_A u, v \rangle = \langle u, f \rangle$$
 for all $u \in D(L_A)$.

In particular, following the argument in [9, Theorem 6.2], for each $w \in C_0^{\infty}(0,1)$ we can consider for $s \in (0,1)$ the function

$$U[w](s) = -\int_{s}^{1} \frac{w(t)}{A(t)} \,\mathrm{d}t,$$

and show that $U[w] \in D(L_A) \cap C^1[0,1]$ with $L_A U[w] = -w' + U[w]$. If we use u = U[w] in (15) we obtain

$$-\int_{0}^{1} w'(s)v(s) \,\mathrm{d}s = \int_{0}^{1} U[w](s)(f(s) - v(s)) \,\mathrm{d}s$$
$$= -\int_{0}^{1} (f(s) - v(s)) \int_{s}^{1} \frac{w(t)}{A(t)} \,\mathrm{d}t \,\mathrm{d}s$$
$$= \int_{0}^{1} w(t) \left[\frac{1}{A(t)} \int_{0}^{t} (v(s) - f(s)) \,\mathrm{d}s\right] \,\mathrm{d}t,$$

because $\frac{1}{A(t)} \int_0^t (v(s) - f(s)) ds \in L^1_{loc}(0, 1)$. The above computations says that v has a weak derivative and that

$$v'(s) = \frac{1}{A(t)} \int_0^t (v(s) - f(s)) \,\mathrm{d}s$$
 a.e. in (0,1).

From here we deduce that $v \in C(0, 1]$ with $Av'|_{s=0} = 0$ and that (Av')' = v - f belongs to L^2 . Therefore, to prove that $v \in D(L_A)$ we only need to show that v(1) = 0, to do this observe that for each $u \in D(L_A) \cap C[0, 1]$ we have

$$\begin{aligned} \langle u, f \rangle &= \langle L_A u, v \rangle \\ &= \langle L_A u, v - v(1) \rangle + \langle L_A u, v(1) \rangle \\ &= \langle u, L_A (v - v(1)) \rangle + v(1) \int_0^1 L_A u(s) \, \mathrm{d}s \\ &= \int_0^1 u(s) \left(-(A(s)v'(s))' + v(s) - v(1) \right) \, \mathrm{d}s - A(1)u'(1)v(1) \\ &+ v(1) \int_0^1 u(s) \, \mathrm{d}s \\ &= \int_0^1 u(s) f(s) \, \mathrm{d}s - A(1)u'(1)v(1). \end{aligned}$$

Hence A(1)u'(1)v(1) = 0 for all $u \in D(L_A) \cap C[0, 1]$, therefore v(1) = 0. This shows that L_A is self-adjoint. Also, from Remark 3 we deduce

$$\langle L_A u, u \rangle = a(u, u) \ge K_2 ||u||_{X^{\alpha}}^2 \ge K_2 ||u||^2,$$

showing that L_A is positive. Finally, Remark 3 also tells us that for $u \in D(L_A)$ and $v \in X_0^{\alpha}$ we have

$$\langle L_A u, v \rangle = a(u, v).$$

Proposition 3 tells us that L_A is a positive self-adjoint operator, therefore there exists a unique positive square root operator (see for example [5, Theorem V.3.35]), denoted by $L_A^{1/2}$ satisfying: $D(L_A) \subset D(L_A^{1/2})$ and that $(D(L_A^{1/2}), \langle \cdot, \cdot \rangle_{L_A^{1/2}})$ is a Hilbert space, where for $u, v \in D(L_A^{1/2})$ one has

$$\left\langle u,v\right\rangle _{L_{A}^{1/2}}=\left\langle u,v\right\rangle +\left\langle L_{A}^{1/2}u,L_{A}^{1/2}v\right\rangle .$$

In addition, the inclusion $D(L_A) \subset D(L_A^{1/2})$ is dense. We have the following result due to Stuart [7] in the context of general self adjoint operators over real Hilbert spaces:

Proposition 4. Let $L_A^{1/2}$ be as before, then

(i) There exists a unique operator $B_1: D(L_A^{1/2}) \to D(L_A^{1/2})$ such that $\langle L_A u, v \rangle = \langle B_1 u, v \rangle_{L_A^{1/2}}.$

(ii) There exists a unique operator $B_2: D(L_A^{1/2}) \to D(L_A^{1/2})$ such that $\langle u, v \rangle = \langle B_2 u, v \rangle_{L_A^{1/2}}.$

(iii) $\sigma(L_A) = \left\{ \mu \in \mathbb{R} : B_1 - \mu B_2 \text{ is not an isomorphism in } D(L_A^{1/2}) \right\}.$ (iv) $\sigma_e(L_A) = \left\{ \mu \in \mathbb{R} : B_1 - \mu B_2 \text{ is not Fredholm in } D(L_A^{1/2}) \right\}.$

Remark 4. We have that the Hilbert spaces $(D(L_A^{1/2}), \langle \cdot, \cdot \rangle_{L_A^{1/2}})$ and $(X_0^{\alpha}, \langle \cdot, \cdot \rangle_{X_0^{\alpha}})$ are equivalent. Indeed, for $u, v \in D(L_a)$ we have $\|u\|_{L_A^{1/2}}^2 = \langle u, u \rangle + \langle L_a u, u \rangle$, hence

$$a(u,u) = \langle L_A u, u \rangle \le \|u\|_{L_A^{1/2}}^2 = \langle u, u \rangle + \langle L_a u, u \rangle \le 2a(u,u).$$

The conclusion follows by recalling that $D(L_A)$ is dense in both $D(L_A^{1/2})$ and X_0^{α} .

In addition, we have that for $u, v \in D(L_A^{1/2}) = X_0^{\alpha}$

$$\langle u, v \rangle_{L^{1/2}_A} = \langle u, v \rangle + a(u, v) = a((T_A + I)u, v)$$

by the definition of T_A .

We can now prove Theorem 2.

Proof. We follow the proof of [9, Theorem 6.4]. Observe that thanks to Proposition 4 we can write

$$\langle B_1 u, v \rangle_{L_A^{1/2}} = \langle L_A u, v \rangle = a(u, v)$$

for all $u \in D(L_A)$ and $v \in X_0^{\alpha}$, but by density we conclude that this holds for all $u, v \in X_0^{\alpha}$. In addition, from Remark 4 we have

$$a(u,v) = \langle B_1 u, v \rangle_{L_A^{1/2}} = a((T_A + I)B_1 u, v) \text{ for all } u, v \in X_0^{\alpha},$$

hence $(T_A + I)B_1 = I : X_0^{\alpha} \longrightarrow X_0^{\alpha}$. On the other hand

$$a((T_A+I)B_2u,v) = \langle B_2u,v\rangle_{L_A^{1/2}} = \langle u,v\rangle = a(T_Au,v) \quad \text{ for all } u,v \in X_0^{\alpha},$$

thus $(T_A + I)B_2 = T_A : X_0^{\alpha} \longrightarrow X_0^{\alpha}$. In particular we have that for every $\lambda \in \mathbb{R} \setminus \{0\}$

$$T_A - \lambda I = -\lambda (T_A + I)(B_1 - \frac{1}{\lambda}B_2),$$

and recall that T_A is a positive operator, in particular $-1 \in \rho(T_A)$, thus $T_A + I$ is an isomorphism, and the conclusion about the spectrum follows from Proposition 4.

For the last part, observe that $0 \notin \sigma(L_A)$, indeed, observe that for each $f \in L^2$ the equation

$$a(u,v) = \langle f, v \rangle$$
 for all $v \in X_0^{\alpha}$

has a unique solution in $u \in X_0^{\alpha}$. Also, since this unique solution $u = T_A f \in X_0^{\alpha} \subset L^2$ satisfies equation (3), we see that $(A(x)u'(x))' \in L^2$, therefore $u \in D(L_A)$. This shows that the equation $L_A u = f$ has a unique solution in $D(L_A)$, and as a consequence the inverse operator $L_A^{-1} : L^2 \longrightarrow D(L_A)$ is well defined. Finally, using Proposition 3 we see that for $u \in L^2$ and for $v \in X_0^{\alpha}$ we can write

$$a(L_A^{-1}u, v) = \left\langle L_A(L_A^{-1}u), v \right\rangle = \left\langle u, v \right\rangle$$

Similarly, for $u \in X_0^{\alpha}$ and $v \in X_0^{\alpha}$ we have

$$a(T_A u, v) = \langle u, v \rangle,$$

therefore $a(T_A u, v) = a(L_A^{-1}u, v)$ for all $u, v \in X_0^{\alpha}$, thus $T_A = L_A^{-1}\Big|_{X_0^{\alpha}}$.

References

- H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR2759829 (2012a:35002)
- H. Castro and H. Wang, A singular Sturm-Liouville equation under homogeneous boundary conditions, J. Functional Analysis 261 (2011), no. 6, 1542–1590. MR2813481 (2012f:34056)
- [3] _____, A singular Sturm-Liouville equation under non-homogeneous boundary conditions, Differential Integral Equations 25 (2012), no. 1-2, 85–92. MR2906548 (2012m:34042)
- [4] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1987. Oxford Science Publications. MR929030 (89b:47001)
- [5] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR1335452 (96a:47025)
- [6] C. A. Stuart, Buckling of a tapered elastica, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 5, 417–421. MR1784925 (2001h:74024)
- [7] _____, Spectrum of a self-adjoint operator and Palais-Smale conditions, J. London Math. Soc. (2) 61 (2000), no. 2, 581–592. MR1760681 (2001c:47007)
- [8] _____, Buckling of a heavy tapered rod, J. Math. Pures Appl. (9) 80 (2001), no. 3, 281–337. MR1826347 (2002b:74023)
- [9] _____, On the spectral theory of a tapered rod, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 3, 729–764. MR1912424 (2003i:34035)
- [10] C. A. Stuart and G. Vuillaume, Buckling of a critically tapered rod: global bifurcation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2036, 1863–1889. MR1993662 (2004e:47108)
- [11] _____, Buckling of a critically tapered rod: properties of some global branches of solutions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2051, 3261–3282. MR2098717 (2005g:34046)
- [12] G. Vuillaume, A singular nonlinear eigenvalue problem: Bifurcation in non-differentiable cases, Ph.D. Thesis, 2003.
- [13] _____, Study of the buckling of a tapered rod with the genus of a set, SIAM J. Math. Anal. 34 (2003), no. 5, 1128–1151 (electronic). MR2001662 (2004i:47131)