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ABSTRACT. In this paper we study the essential spectrum of the operator
Lau(z) = (Ao (2))' +u(@)
where A(z) is a positive absolutely continuous function on (0, 1) that resembles 2>* for some

a > 1. We prove that the essential spectrum of L4 coincides with the essential spectrum of
the operator Lou(z) := —(z*u/(z))" + u(z).

1. INTRODUCTION
We consider the singular Sturm-Liouville differential operator
(1) Lau(z) = —(A(w) (x)) + u(2)

over the interval (0, 1), where A(z) = A, (z) is an absolutely continuous function on [0, 1] such
that A(xz) > 0 for all 0 < x < 1. In addition we suppose that there exist constants ¢1,co > 0
and a > 0 such that

(H1) c12?® < A(x) < cpx®®,  for all z € (0,1], and
: —2x _
(H2) glﬁli)l})l’ A(z) = 1.

Associated with one can define the following operator

Ta:X$ — X
f = Ta(f) = u,

where u is the (unique) solution of

@) /O " A ()0 () di + /0 ()o() d = /0 Cb@o(e)dr, Vo e XS

Here X§ is the space of real valued functions u in L? having a weak derivative satisfying
x®u’ € L? such that u(1) = 0 (see [2, Appendix] for more details about these spaces). The
fact that the operator T4 is a well defined bounded operator is a direct consequence of the
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Lax-Milgram theorem (see section [2| for some of the details). In addition, a straightforward
computation tells us that if w = T4 f, then w is the unique weak solution of

—(A(2)u'(x)) +u(x) = f(x) ae. in (0,1),
© i Al () = 0,
u(1) =0,

For the special case A(x) = 2% a complete study of (3] has been developed in [2,3], exhibiting
properties of existence, uniqueness, and regularity of solutions in terms of the L? norm of f,
as well as a detailed description of the spectrum of the respective operator T4, denoted by Ty,
in this particular case.

One important feature of the spectrum of Ty, is that it changes from a spectrum consisting
solely on isolated simple eigenvalues o(7T,) = {\; : ¢ € N} to a purely essential (continuum)
spectrum when a crosses the o = 1 barrier, namely o(T}) = 0c(T1) = [0, £] (see [2, Theorem
1.17]). A study of the spectrum of T4, and other relevant results regarding a non-linear
problem, had been established by Stuart and Vuillaume in a more general setting. In the
series of articles [6,8-13] the authors studied the bifurcation properties of a heavy tapered rod,
and in this context with the aid of the Bernoulli-Euler bending law for beams, the differential
operator Nau(z) = (La — Iu(z) = —(A(x)u/(z))" appears naturally (see [8, Section 1.1] for
more details on how this kind of operators arise in this context). In particular, in [9] Stuart
studied the spectral properties of the operator N4 under the boundary conditions

lim A(z)u'(z) =0 and wu(l)=0,
z—0t
and also of the operator T4 — I in the case 0 < a < 1, proving that
1
o(Ta—T) = {A Ae J(NA)} U {0}
and

A
Stuart also established, using a compactness argument, that for @ < 1 the spectrum of
T4 — I consists solely of simple eigenvalues (in particular o.(T4 — I) = {0}), but as soon as
a = 1 the essential spectrum becomes non-trivial. He also gives conditions on A(z) for the
existence/non-existence of eigenvalues when o = 1.

The purpose of this work is to answer some questions raised in [2| regarding the spectrum
of the operators Ly and Ty when a > 1. In particular, for @« = 1 Stuart has shown that
max o.(T4) = %, implying that o.(T4) C [0, %], but the question of whether o.(T4) = [0, 1]
remained open. For o > 1 there is less information, as the existence/non-existence of eigenval-
ues in o(7T4) and estimates over o.(T'4) or max o.(7'4) have not been discussed. The following

result answers such questions.

outa=1 = {5 :AeaVauio).

Theorem 1. Let o > 1 and T4 be as before.
(i) If o =1, then 0¢(Ta) = [0, 2] = 0e(T0).
(ii) If a > 1, then 0¢(Ta) = 0(Ta) = [0,1] = 0(Ty) = 0c(Tw).
In addition, we show that the analysis of the spectrum of T4 is equivalent to the analysis of

the spectrum of L4 as an unbounded operator from D(L4) C L?(0,1) to L?(0,1) (the domain
D(L,) will be specified later in section , as the following theorem shows.

Theorem 2. Let a > 1 and for § € R\ {0} consider v = §-1. Then we have
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(i) La—~I : D(La) — L? is an isomorphism <= T4—61 : X§ — X§ is an isomorphism.
(i) La —~I : D(La) — L? is Fredholm <= T4 — 61 : X§ — X§ is Fredholm.
(iii)
o(Ta) = {A e R: A" € o(La)} U0},
and
0e(Ta) = {X € R: A" € 0e(La) } U{0}.

(iv) Ta =Ly

xg'
Remark 1. It is important to mention that there are several notions of essential spectra that
can be defined, however for the particular case of a self-adjoint operator on a Hilbert space,

most of these notions coincide (see for instance |4, Theorem IX.1.6]). As we will see later,
both operators T4 and L 4 are indeed self-adjoint.

The rest of this paper is organized as follows. We establish the notation and the definitions
used throughout this work in section [2| In section [2| we prove a proposition that is key in the
proof of Theorem [I Then we separate the proof of Theorem (1| into the cases « =1 and a > 1
in sections [3] and [ respectively. Finally, in section [5] we establish the connection between T4
and L4 and prove Theorem [2]

2. PRELIMINARIES
For a > 0, recall the definition of the real vector spaces X = X*(0,1) given in [2]
X ={ue HL(0,1] sue LX0,1), 2 € L*(0,1)},

where H}. (0, 1] is the set of function belonging to the Sobolev space H!(K) for all K compact
subset of (0,1]. Additionally, since functions in X are continuous away from the origin, the
subset
Xg ={ue X :u(l) =0},
is a well defined closed subspace of X“. In [2] we established that X§ is a Hilbert space for
the inner product
(U, v) ya = (u,v) + (z%u/, z%0")

where throughout this work
1
(u,v) :/ u(z)v(z) dz
0

will denote the usual inner product in L? = L?(0,1). Because of the Riesz representation
theorem we know the existence of an operator 7, : X§ — X' defined by the identity

(4) (Tof,v)xa = (f,v) Vv e X§.

If we let uw = T, f, we have shown that w is in fact the unique weak solution to the singular
Sturm-Liouville equation (see [2,[3])

—(z%/ (x)) +u(z) = f ae. in (0,1),
u(1)

lim 2%/ (z) =
z—0

Y

0
0.
The following estimate also follows from [2]

[Tafllxa < 1 Fllzz < 1]l xa
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and it asserts that the boundedness of T, only requires f to be an L? function, that is, the
operator T, could be extended to L? D X§ as a bounded operator.

As we mentioned in the introduction, we will consider a function A : [0,1] — [0, 00)
satisfying and . Define the bilinear symmetric function a : X§ x X§ — R by

1 1
a(u,v) = / A(z)d (z)v' (x) d —|—/ u(z)v(z) dz,
0 0
and thanks to (HI) it is easy to find constants K1, Ko > 0 such that
(5) ja(u, v)] < Killullxa [0llxa  and [a(u,u)| > K> 3,

thus proving that a is a bounded, coercive bilinear function over X§, therefore the Lax-
Milgram theorem ([1, Corollary 5.8]) tells us that there exists a unique bounded linear operator
Ty : X5 — X§ defined by the equation

(6) a(Taf,v) = (f,v) Ve Xg.

It is significant to observe that and the symmetry of a tell us that a(-,-) defines an inner
product over X§ which gives an equivalent topology on X§. We will use both inner products,
a(-,-) and (-, ) ya, accordingly.
Observe that for each f € L? and if we call u = T4 f, then it is straightforward to see that
u is the unique weak solution in X§ to the equation
—(A(x)d (z)) +u(z) = f a.e. in (0,1),
u(1l) =0,
lim A "(z) =
lim A(e)ul (x) = 0,
moreover, by the definition of T4 we obtain immediately that T4 is self adjoint with respect
to the inner product a(-,-), and that

a(Tau,u) = (u,u) >0 forall u e X§ \ {0}

showing that T4 is a positive operator.
In this framework, the spectrum of the operator T4 is the set

o(Ta)={NeR:T -\ : Xy — X{ is not an isomorphism},
and that the essential spectrum of T4 is defined as
0e(Ta) ={N€o(Ta) : T — A : Xg — X is not a Fredholm operator} ,

and to prove Theorem [I| we will use the following technical result which will allow us to
characterize the essential spectrum of the operator T4.

Proposition 1. For A € R suppose there exists a sequence {u,} € X§(0,1) such that
(i) ]l =1,

(i) up n:)>00 in the weak topology of X§,

(iii) ||(Ta = Munll xo = o(1),

(iv) suppu, C [0, 1],
(v) <Taun>un>xa = A+o(1),

where o(1) is a quantity that goes to 0 as n goes to infinity. Then A belongs to oc(T4).
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Proof. To show that A € o.(T4), it is enough to find a singular sequence for T4 and A (see
[4, Theorems IX.1.3 and IX.1.6]), that is, a sequence u,, € X§ such that ||u,|/yo« =1, up — 0
weakly in X%, and that ||[(T4 — A)un|| yo — 0 as n — oco.

Using the the sequence {uy} given in the statement of this proposition, we only need to
prove |[(T4 — A)up| yo — 0, as the other conditions are already established. Observe that by
the definition of Ty and 7T, we have for all v € X the identity

a(Tatn,v) = (Un, v) = (Tatn, V) ya ,
therefore
a(Tatn, un) = X+ o(1).
1

Also, since supp u, C [0, -] we have

|a(tn, ©) = (U, V) xa| = ‘ /O ;(A(x) — 2**)ul (z)0(z) dz

< (/ AGw) - 2| ul () cwc)é (/

but we are assuming (H2)), therefore there exists a sequence 6,, — 0 such that

Ax) — :1:20“ ‘v’(:v)|2 da;) ,

1
‘A(x) — xQO“ < 622 forall0 <z < =,
n

Hence
|a(tn, v) = (un, v) xa| < On [[unll xo V]l xa = 0n[[v]lxa
and as a consequence we obtain
[a((Ta = Nun, v)| = [{(Ta = M, v) xo = A(a(tn, v) = (Un, v) xa)|
(7) < (T = Munl| xo 0] xo + 0n [A[|0]] 5o -
From we deduce that the norms

HuHX‘X = <U7U>Xa and Hu”a = a(u7u)

are equivalent in X®. From this equivalence and the dual representation of the norm |||,
(recall that a(u,v) defines an inner product over X') we obtain

a(p,v)| 1 la(p,v)|
VE: |lollxa < llell, = sup | < sup A
X “ exavor vllg VE2 vexa\(oy vl xa

for all ¢ € X, Therefore for C' = K, ! we have

a(p,v
(8) lolxe <€ sup 1280

vexorfoy 1vllxa
Using @ and gives
a((Ty — Nup,v
(T4~ Nl yo <€ sup 1402 = Am,v)

vexe\{0} V]l xa

< C((Ta = Nunll xa + 0n |A])

=o(1),

thus concluding the proof. [ |
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Remark 2. Observe that the first three conditions on the sequence {u, } required by Proposi-
tion [l say that {u,} is a singular sequence for the pair (), T,), and by [4, Theorem IX.1.3] such
sequence can be found for any A in o.(7},) = [0, %] However, finding a singular sequence for
(X, To,) satisfying in addition suppu, C [0, 1] and (Tatin, un) ya = A+0(1) requires additional

work. We will do so in sections [3] and [4] to prove Theorem

3. PROOF OF THEOREM [1I} CASE aa =1

For()<)\<%,letu:%andfy: ,u—%. Given € > 0 define

We(x) = 272 sin(ylnx),
and
1
ge(x) = —2vex® 2 cos(yInx).

It is a simple exercise to see that both w. and g. belong to X* for « = 1 and all € > 0;
moreover, W, satisfies

—(?l(2)) + (1 = p + *)we(z) = ge(2).

Consider now a smooth cut-off function p : R — R, satisfying

() p(z) =1 for z < %
(10) p(x) =0 for z > 1,
(11) 0<p(xr)<1 Vz
(12) 1| o + 117"l o0 = Co

for some constant Cy > 0. For z € [0,1] define w.(x) = 0. (£), ge(x) = ge (2), pe(z) = p (2),
and let

e (x) == we(x)pe(z).
Observe that by definition supp@. C [0,¢]. In addition, a direct computation shows that .
is a solution to the equation

—(z?al(x)) — 2\ 5 () = f(z) for =
(13) { @) + (1 M+€~) a(1> folz) for z € (0,1),
e € X,

where
fe(@) = ge(2)pe(a) — 22wl (2)pl(x) — we () (2?pL(2))".
In terms of the operator 77, equation can be written as
A A
W ———= ). =————=T
( ! 1_)\€2>u€ 1— \e? 1fe

and we have the following

Lemma 1. For 0 < A < £ let u. == e/ ||ic| y1. As € goes to zero one has

(1) (Tvue,uc)x1 = A+o(1),
(i) [|(Ty = Mue|l x1 = o(1),
(iii) ue — 0 in the weak topology of X{,

where o(1) denotes a quantity that goes to 0 with .
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Proof. Observe that

A A
T = — T
therefore

A A
T ey Ue = - po T ey Ue
(Thue, ue) x1 1-x2 (1 —>\52)HU€HX1 (T1fe ue) x1

A
=\— (Th fe,ue) x1 +o(1).

(1 = Ae?)||ae x1
To prove the first part of this lemma we need to estimate the middle term and show that it
goes to zero as € goes to zero. Observe that for each x € (0, 1]

w.(z)] < 3752573,
|w(z)] < 05%_53:5_%,
and that since p.(z) =1 for 0 <z < § we have

~ 2 2
[tellr = llwepellz

£

> / * we(2)? da

0

Jun

[

/2 z* Lsin?(yInz) dz
0

oo L2y
/ e v sin®(t)dt
”

=21

In2
—2¢e1In(2)

[1 + =
4 €2 + 72
e—2¢ In(2)

= (14 o(1)

1
=- 1).
1 o)
Also, since ||T f-||x1 < ||f:]l;2, we only need to estimate the L? norm of f.. Recall that

fe(@) = ge(@)pe(x) = 20*w(x)pl(2) — we(a) (2 pL ()
and estimate each term in L2. Firstly, as 0 < p.(z) < 1 with supp p. C [0, €] we can write

e 2
2 ~ X
lgepel2 < / e () do
0 &
1
<4’72€3/ y25—1 dy
0

= 2’}/262.

@

(vsin(2yIn2) — ecos(2yIn2))

For the other terms in f. observe that by the boundedness of the derivatives of p we have for
all z € [0, 1] the following estimates

pe(z)] < —,

pE(2)] < =
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therefore, by observing that both p. and p[ are also supported on the interval [0, ] we can
write

2
eT3 epate

2 15
<C dx
L2

0

€
— 05_1_28/ $1+2€ dz
0
< Ce.

2
<C ‘62555
L2
— —3 25/ 3+25d£€
0

< (Ce.

2.1/
H:B We P

Similarly,

dx

2 /1
ot

and

dx

€ 2
A A

€
— 06126/ x1+2€ dz
0

< Ce.

Hence

1T fellxr < (I flle < OV,
and we deduce
1

e | 2

< H lfa

e[|

(T3 fovue | < Tl < o = o),

thus proving the first part of the lemma.
For the second part, observe that we have established (T u., us) y1 = A+ 0(1), therefore we
can write

(T — /\)ur:H%(I = ||T1u5\\§(1 + A% —2) <T1u€,u5>X1
= | Thuc|5: = A% + o(1),

but since ||T} fe| x1 = o(1) and HfLEH)_A = O(1) we obtain

2
A A
Tyu.||%, = — T
el = | 75 ~ T Tl 04|,
z2 2Tl 22
- — T
T2 T AR ot A falg ey
=2 +0(1),

thus
(T = Aue]3r = o(1),
and the second part is done.
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Finally, observe that by the definition of T} one has for v € X}

<T1u€’ U>X1 = <’LL5, U>

_ /0 we (2)0(x) dz

<([ o dx)é,

therefore
1 1
|<u87U>X1‘ < 2 ’<T1uévv>X1| + by ‘((Tl - )‘)US7U>X1‘
1/ (¢ , \? 1
<3 ([ p@r )+ 0 = Vel ol
0
1
1 c 2
_1 (/ ()2 dx) +o(1)
A \Jo
0
e—0
hence u. converges weakly to 0 in X{. |

Proof of Theorem[1] when o = 1. On the one hand, by Proposition [I]and Lemma [I] we deduce
that (0, %) C 0¢(T4). On the other hand, in [9] it is established that max o.(T4) = %, and since
Ty is a positive operator we obtain o¢(T4) C [0, 2]. Thus we have (0,3) C 0c(Ta) C [0, 3],
but the essential spectrum is closed, consequently we deduce that o.(T4) = [0, %} as stated in
the theorem. |

4. PROOF OF THEOREM [I} CASE o > 1

Fora>1and 0 < X\ <1, letuz%andﬁz‘é@andconsider
we(x) = 2272 sin(Bz' ™).
A direct computation shows that w, is a solution of
—(a®wl(x)) + (1 = pws(x) = g-(z) in (0,1)

where

3 o] (o3
ge(z) = % <2a - 1> e5gs 2 sin(Bz!™%).

Let p be a smooth cut-off function with the same properties described in @D—, and let
n(z) =1 — p(z). For ¢ > 0 small so that €1 < £, define (.(z) = p (%) n (%) and let
te(z) = we () (e (7).
Observe that supp @, C [%, ¢] and that @, is a solution to
2001\ ~ .

— u.) + (1 —p)ae = in (0,1),

" (@) + (= )i = fe - in (0,1
Uge € XO s

where
fe(@) = ge(2)Ce (@) — 20wl ()¢ (2) — we () (2 (x))'.
If we write in terms of the operator T, we have

(Ta - )‘)ﬂa = _/\Tafaa



10 THE ESSENTIAL SPECTRUM OF A SINGULAR STURM-LIOUVILLE OPERATOR

for A= 1.
"

Lemma 2. Let 0 < A <1 let uz := U/ ||Uc|| yo. As € goes to zero we have

(1) (Tote, us) ya = A+ 0(1).

(it) [|(Ta — Muell xa = o(1).
(iii) ue — 0 in the weak topology of X§'.
Proof. Observe that T,t. = M. — M1, f-, hence

A

T = 12 <Taf57a€>Xa'
e [

<Taus> us>xa =

Following the same argument used in the case a = 1, it is enough to find an appropriate upper

bound for || fz||;2 and a lower bound for ||t.|| y« to show that the last term goes to zero as ¢

goes to zero. We begin by the lower bound on ||tc|| ya: since (¢ =1 on [¢%, §] we can write

-2 2
Hua”Xa > ||w£<a”L2

£

2 2
> [ |we(2)]” dz
E-a

£

o 2
=£

e

60&

VI T a5y

272 sin (ﬁxlf‘)‘) ‘2 dx

ﬂsa(l—a)
sin?(t) dt

. (t — sin(t) cos(t)) \tﬂsa(la)
= —— — Sin COS
21 =5(5)' "
804(27a)

= m(1+0(1))7

because a(2 — o) < 1 < a.
We now estimate ||f:||;2. To do this, observe the following obvious estimates on g., we,
and (. on [0, 1]:

a 3

|ge ()] < Ce2zs ~

_a
2

jwe ()] < %2

|wl(z)| < Cea%.

Additionally, recall that p and 5 are smooth functions with uniformly bounded derivatives up
to the second order, consequently

@< S
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for all z € (0,1]. With these estimates in mind it follows

£
ngCaH%Q < €a/o 2304 4 < 06404—37

[ETre

2 €
< Ce_o‘/ % dr < Ce,
L2 0

2 €
”xgo‘wgg’é’ I 05_30‘/ 23%dz < Ce,
0
and
2 £
Hchx—1w€<é . < CE—a/ 23072 4 < CEQa—l’
0
therefore

1 f-]72 < Ce,

because 2 — 1 > 1 and 4o — 3 > 1. Using once again that o > 1 we see that

1

AT
- <C ellL2 < Cal—a(Z—a) _ Cg(a_1)2 _ 0(1)
([ Tel] xo

— ~ 12
e |72

<Tafaa U€>Xa

as claimed.
For the second part of the lemma notice

[(To — A)“i“%{ﬂ = ||TaU5H§(a + A% —2) (Tatie; te) xa
= | Taue o — A* +0(1),

and since || T fe|| o - lGc] xe = 0(1) we deduce that

2
T,
HTaus”,%(a = ||Aue — A ~af6
||U6HXQ
A2 \?
= N o [ Tafell ko — 20— (Tafe, ue) xa
el e fitell
=\ o(1),

therefore
(T = Nuel5a = o(1)

and the second part is proved. Finally, observe that since suppu. C [0,¢], we can write for
ve X

(Toue, U>Xa = (ue,v)

_ /0 v ()o(a) da

fqm¢p(47uwfdﬁé
s;(lswumzdx)%
~o(1),



12 THE ESSENTIAL SPECTRUM OF A SINGULAR STURM-LIOUVILLE OPERATOR

consequently

IN

1
(e, v) e < 5 [Ttz v) | + 3 H(Ta = AJue, v) xa

=

1 _
@F dz)” + 5 I(Ta = Nl o ol e

IA
A N
/7~
o
m
<

7 N\
o
)
=3
—~
8
T
o
8
N—
+
=N
—
~—

—0,
e—0

thus u. converges weakly to 0.
[ |

Proof of Theorem [1] when o > 1. From Proposition [1] and Lemma [2] we deduce that the in-
terval (0,1) is contained in o.(T4). On the other hand, since T4 is a positive self-adjoint
operator for the inner product a(-,-), and if we recall that HuHi = a(u,u) we can write

1) e xg (01

- {W GXO\{O}}

<u7u> fO 2d$
Wl ~ ST A @) de + ) u(@)?de

for all u € X§ \ {0}, thus max U(TA) S 1, and as a consequence o(T4) C [0, 1].
Summarizing, we have shown the following chain of inclusions

(0,1) € 0e(Ta) € o(Ta) € [0, 1],

max o(T4) = sup {

but

9

and since both o.(T4) and o(T4) are closed, the result is proved. |

5. THE DIFFERENTIAL OPERATOR L4
For a > 0 we have defined the differential operator
Lau(z) := —(A(z)u/(x))" + u(z)
over the interval (0,1) for A satisfying and . For this kind of operator it is natural
to introduce the following L?-framework: define D as the set

D ={ueH,(0,1) :u, (A@@)u) € L?},

and observe that the weight A(z) only introduces possible singularities near the origin, there-
fore it is straightforward to notice that for u € D one has, after possible modifying u on a set
of measure zero, that

u € C1(0,1] and A(z)u' € C[0,1].

In order to relate Ly to T4 we will follow the work of Stuart in |9, Section 6] where the
relationship between L4 and T4 has been established for o < 1. To do this we need to add
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boundary conditions to the differential operator, and the natural ones are the homogeneous
boundary conditions
=0.

=0

u(l) = A(x)u'(z)

With this in mind we consider the operator L4 : D(Ly4) C L? — L?, where

- o}.
x=0

We begin the study of this operator by recalling a density result from [2]

D(La) = {u €D :u(l) = A(x)u'(x)

Lemma 3 (Lemma A.4 in [2]). For each o > 5, the space C§°(0,1) is dense in X§.
Proposition 2. For o > 1, D(L4) C X§ and the inclusion is dense in the X*-topology.
To prove this proposition, we need the following

Lemma 4. Let o > 1, uw € D(La) and v € L> N C(0,1]. For each positive integer n, there
exists x, < L such that |A(zn ) (zn)v(2,)| < L

Proof. Indeed, take u € D(L4) and v € L?. Observe that we can write

Az) 1/36 VRN
= - A d
i) =+ [ Ay
thus by Hardy’s inequality

HA()UUH < C[(A@) @) | 12

This estimate implies that o=t A(z)u’(x)v(z) belongs to L'(0,1), indeed, by Holder’s in-
equality

“Mu,($)v($)

X

. < HAf)u’(x)

o]l 2
L2
< C[(A@)u' ()| 2 vl 2

We can now prove the lemma by contradiction: if the statement of the lemma were false, then
there would exist a number r > 0 such that for all z < r

|A(z)u (z)v(z)| >,

but such an inequality would contradict the fact that x~'A(z)u/(x)v(z) € L'(0,1). The
lemma is now proved. |

Proof of Proposition[d. Our first claim is that D(L4) C X§. Indeed, notice that the function
(A(z)u'(x))u(x) belongs to L1(0,1), therefore we can write

1 1
/ (A(x)u'(z))u(z)dz = lim (A(x)u' () u(z) da,
0

n—o0
n

where ,, is the sequence from Lemma | for v = u. Since u € C*(0, 1] with u(1) = 0 we can
integrate by parts over the interval (z,,1) to obtain

1 1
/ (A(z)u (z)) u(z)dr = —/ A(x)u! (z)? dz — Az, (z0)u(zy),
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therefore

1 1
/ Al ()2 de = — / () (@) ulx) dz — Alza ) () u(zn)
1
= - | (4@ @) u(w) dz + o),

where o(1) is a quantity that goes to 0 as n — co. The monotone convergence theorem implies

that
1

1 1
/ A(x)u (z)? dx = nhﬁ\ngo A(x)u! (z)? do = / (A(2)d (z)) u(z) dz,
0 0

In
and we conclude v € X§. Finally, observe that C3°(0,1) is contained in D(Ly4), therefore
Lemma [3| tells us that D(L4) must be also dense in X§.
|

Remark 3. Observe that in the proof of Proposition [2] we have established the following
identity

! ! 2 — _ ' q;u/a: ’ux xz
/OA(x)u(x) dr = /O<A<> (x))'u(z)d

for all w € D(L4). Moreover, the same argument tells us that

1 1
/ A(x)u (z)v' (z) de = / (A(z)d (z))v(x) dz
0 0
holds for all w,v € D(L4).

The following proposition is a well-known result in Sturm-Liouville theory, but for the sake
of completeness we provide its proof.

Proposition 3. Let a > 1 and L4 be as before.
(i) D(La) is dense in L?.

(ii) L4 is positive and self-adjoint.

(iii) If w € D(La) and v € X, then

(Lau,v) = a(u,v)

Proof. The density result follows directly from the density of C§°(0,1) in L2. Observe that
thanks to Remark [3| one has that if u,v € D(Ly4) then

1

(Lau,v) = /0 (—(A)e! (@)Y + ux)) vlz) da
1

:/0 (A(z)u' (z)v'(z) + u(z)v(x)) dz

= a(u,v)

= [ @) @) e g
= <’L(Z,LAU> .
Recall that the adjoint operator is defined by L* : D(L?) C L? — L?, where
D(LY) = {v € L? : 3f € L? such that (Lu,v) = (u, f) for all u € D(LA)},
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in which case L% (v) = f. The above computation tells us that L4 C L%. To prove the reverse
inclusion, we only need to show that D(L%) C D(La). Indeed, let v € D(L%), then there
exists f € L? such that

(15) (Lau,v) = (u, f) forallu € D(Ly).

In particular, following the argument in [9, Theorem 6.2], for each w € C§°(0,1) we can
consider for s € (0, 1) the function

tw(t)
Ulul(s) = - | S
and show that Ulw] € D(L4) N CY0,1] with LaU[w] = —w’ + Ulw]. If we use u = Ulw] in
(15) we obtain

1 1
- [ ds = [ Ul f(s) - o) ds
0 0

= — 1 s)—v(s 1Kt) s
—— [ =oty [ G

1 1 t
- /O w(t) [A(t) /0 (o(s) —f<s>>ds] dar,
1

because fg(v(s) — f(s))ds € L} _(0,1). The above computations says that v has a weak

loc
derivative and that

v'(s) = Att)/o (v(s) — f(s))ds a.e. in (0,1).

From here we deduce that v € C(0,1] with Av’|s—o = 0 and that (Av') = v — f belongs to L.
Therefore, to prove that v € D(L4) we only need to show that v(1) = 0, to do this observe
that for each u € D(L4) N CI0,1] we have

<u7 f> = <LAU7U>
= (Lau,v —v(1)) + (Lau,v(1))

— (u, La(v — v(1))) + 0(1) /01 Lau(s)ds
1
= /0 u(s) (—(A(s)v'(s))" +v(s) —v(1)) ds — A(1)u'(1)v(1)
1
—I-U(l)/o u(s)ds

1
- / u(s)f(s) ds — A1) (1)v(1).
0
Hence A(1)u/(1)v(1) = 0 for all w € D(Ly4) N C[0, 1], therefore v(1) = 0. This shows that L4
is self-adjoint. Also, from Remark [3] we deduce
(Lau,u) = a(u,u) > Ka Jula = Ko |ul?,
showing that L4 is positive. Finally, Remark (3| also tells us that for v € D(L4) and v € X§

we have
(Lau,v) = a(u,v).
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Proposition (3| tells us that L4 is a positive self-adjoint operator, therefore there exists
a unique positive square root operator (see for example [5, Theorem V.3.35]), denoted by

L114/2 satisfying: D(L4) C D(L114/2) and that (D(L114/2), (-,-);1/2) is a Hilbert space, where for
A
u,v € D(L}f) one has
(u,v) 172 = (u,v) + <L114/2u, Lz/2v> .
A
In addition, the inclusion D(L4) C D(L}L‘/ 2) is dense. We have the following result due to
Stuart |7] in the context of general self adjoint operators over real Hilbert spaces:

Proposition 4. Let le4/2 be as before, then

(i) There exists a unique operator By : D(LZ/Q) — D(LZ/Q) such that

<LAU,'U> = (Blu,v>L1/2 .
A

(ii) There exists a unique operator By : D(LZ/Q) — D(LZ/Q) such that

(u,v) = <BQU,U>L}4/2 .

(i) o(La) = {,u € R : By — uBy is not an isomorphism in D(LA/Q)},
(v) oe(La) = {u €R : By — uBy is not Fredholm in D(LZ/Z)}_

Remark 4. We have that the Hilbert spaces (D(LZ/Q), () ;1/2) and (X§, (-, '>Xg) are equiva-
A

lent. Indeed, for u,v € D(L,) we have ||u“il/2 = (u,u) + (Lqu,u), hence
A
a(u,u) = (Lau,u) < Hu||il/2 = (u,u) + (Lqu,u) < 2a(u,u).
A

The conclusion follows by recalling that D(L4) is dense in both D(Li/ 2) and X§.
In addition, we have that for u,v € D(L}f) = X§

(w,v) 172 = (u,v) + a(u,v) = a((Ta + Iu,v)
A
by the definition of T'4.
We can now prove Theorem [2]

Proof. We follow the proof of [9, Theorem 6.4]. Observe that thanks to Proposition 4| we can
write

(Biu,v) (Lau,v) = a(u,v)

Ly? =
for all u € D(L4) and v € X, but by density we conclude that this holds for all u,v € X§.
In addition, from Remark [4 we have

a(u,v) = (Biu,v) ;172 = a((Ta + I)Biu,v)  for all u,v € X¢,
A

hence (T4 + I)B1 =1 : X§ — X§. On the other hand

a((T4 + I)Bau,v) = (Bau,v) (u,v) = a(Tau,v) for all u,v € X,

12 =
Ly

thus (T4 +I)By = T4 : X§ — X§'. In particular we have that for every A € R\ {0}

1
Ta— N =-\NTa+1)(By— XBQ),
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and recall that T4 is a positive operator, in particular —1 € p(T4), thus T4 + I is an isomor-
phism, and the conclusion about the spectrum follows from Proposition [4]
For the last part, observe that 0 ¢ o(L4), indeed, observe that for each f € L? the equation

a(u,v) = (f,v) forall ve X§

has a unique solution in u € X§. Also, since this unique solution u = Taf € X§ C L?
satisfies equation (3)), we see that (A(z)u'(z)) € L?, therefore uw € D(L,). This shows that
the equation Lsu = f has a unique solution in D(L4), and as a consequence the inverse
operator LZl : L? — D(L,) is well defined. Finally, using Proposition [3| we see that for
u € L? and for v € X§ we can write

a(LZlu, v) = <LA(L21U),’U> = (u,v).
Similarly, for u € X§ and v € X§ we have
a(Tqu,v) = (u,v),

therefore a(Tqu,v) = a(LZlu, v) for all u,v € X, thus Ty = LZI‘ . [ |

o
0
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