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Abstract

We consider the elliptic equation —Au + v = 0 in a bounded, smooth domain € in RZ?, subject to the
nonlinear Neumann boundary condition % = uP. Here p > 1 is a large parameter. We prove that given any
integer m > 1 there exist at least two families of solutions u, developing exactly m peaks & € 012, in the
m
sense that puP — 2em )" J¢,, as p — oo.
i=1
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1. Introduction

Let © be a bounded domain in R? with smooth boundary 9€2. This paper deals with the construction
of solutions of the boundary value problem

—Au+u=0 1in(

1
@:up on 01}, W
ov

where v denotes the outer unit normal vector to 92 and p is a large exponent. Some solutions to can
be obtained as appropriately scaled extremals of

Vul? + u?
nf (u) where I,(u)= Jo Vul” +u

S,= i I JolVul 7w
P uent@\oy P (Joq lulP Ty 75T

which are guaranteed to exist thanks to the compactness of the trace embedding H'(Q2) — LP*1(9Q). They
are referred to as least energy solutions of .

A related nonlinear problem is:
Au+u? =0 inQ

u>0 inQ (2)
u=0 on JN.

Ren and Wei, [21], 22] studied least energy solutions u, of , namely, the H} () functions which minimize

fQ |Vul|?

(fo Pty 7T
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In those works, the authors show that such solutions have an L*°-norm bounded and bounded away from
zero, uniformly in p as p — co. Moreover, they show that both

D |Vup|2 and pu?"‘1

behave as Dirac masses near a critical point of Robin’s function H(x, x), where H(z,y) = G(x,y)+log |z — y|
and G is the Green’s function of —A under Dirichlet boundary condition. Also in [l 8] the authors describe
the behavior of u, as p goes to infinity, by identifying the Liouville-type limit profile

Au+e*=0 inR? / e < oo,
RQ

and showing that [[u,||  — /e as p — oo.

But may have a large number of solutions as shown recently by Esposito, Musso and Pistoia [10].
They proved, for instance, that if ) is not simply connected, given any integer m > 1 and a large enough
exponent p, a solution satisfying

m
puy ()Pt — 8me Y O, asp— oo
=1

does exist. As in [6 O], the location of such concentration points is closely linked to a functional defined
from Green’s function for —A under Dirichlet boundary condition.

Going back to the asymptotic behavior of least energy solutions u, has not been studied yet, but we
conjecture that their L>°-norm must stay bounded and bounded away form zero, and moreover, as in [I],
after a suitable change of variables, we may identify the following limit profile for

Av=0 in Ri

0
8—5 =¢e’ on 8R3_

/ e’ < 00,
OR?
to show that |lu,|| — /e as p — oo.
An important fact is that after [I5] 20, 24], we know that any solution to must be of the form

2u
v r1,T3) =lo , 4
(e (71 02) = o8 e T )2 W
for suitable parameters ¢t € R and p > 0.
For our problem we use v(g,1) as a building block to construct solutions of that, after some transfor-
mations, look like a sum of solutions to , which concentrates at boundary points &1, ...,&, as p — oo.
Now, the Green’s function for the Neumann problem, given by

—AG(z,y)+ G(z,y) =0 in Q

oG (5)
%(x, y) =2md,(z) at OQ.

and H(z,y) = G(z,y) + log |z — y|2, its regular part, play a fundamental role in the location of such
concentration points. More precisely, if we define

em(©) ==Y [H& &) +> G&.&) |, (6)
i=1 j#i
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for £ € Oy, := (8Q)™ \ D and D denotes the diagonal set, and for p > 0 we set

0y = {g € O, & — &1 > 2p, for all i # j} :
we obtain the following theorem, which is the main result of this paper:

Theorem 1.1. Given any integer m > 1 there exists p,, > 1 such that for any p > p,, equation has at

least cat(§y,) solutions u,, each one satisfying

m
puy,(z)PH — 271'62553. as p — 0o,
j=1

where & = (&1,...,&m) € OQ™ is a critical point of ¢.,. More precisely, there exists an m-tuple P =
(&5, &h,) € 0Q™ converging to &, such that u, — 0 uniformly in Q\ UJL, B4(£Y) and

sup  up(z) — Ve,
z€Ba(£5)NQ p—o0

for any d > 0.

In the above theorem cat(Qm) refers to the Ljusternik-Schnirelmann category of Qm, which in our case
we show it is at least 2.

We prove this results through a Variational Reduction procedure, which has become popular since the
work of Floer and Weinstein [II] about the one-dimensional Schrédinger equation

2
iy = —;—mwm +V(z)p —y¢*p, inRx {t>0}.

In that paper, the authors show that if & is small, there exist standing wave solutions concentrating near
each nondegenerate critical point of the potential V' (z). Using the same approach, this result was extended
by Oh to higher dimensions, building multi-peaks solutions ([I8| [19]). Since Floer and Weinstein’s early
work, this technique has been developed and improved in the last two decades, and it is easy to find many
results related to concentrating solutions in differential equations ([2, B, 4l 6, 5, [7, @, 12| 13} 14, 17, 23]
among others).

In particular, in [0, @] the authors investigated a Dirichlet boundary condition problem with exponential
nonlinearity and concluded that there exist solutions with multiple concentration points in the interior of €.
In [2] a nonlinear exponential Neumann boundary condition was analyzed, this time finding concentration
points on the boundary of 2 and, as we mentioned before, in [10] the authors analyzed a Dirichlet boundary
condition problem with polynomial nonlinearity. In all of those works, the crucial step was to understand
the invertibility of the linearized operator at approximated solutions. The same difficulty arises here.

The proof of Theorem is divided in several parts. Section [2] is dedicated to an auxiliary problem
in the upper half plane. As we announced before, in Section [3] we use v(g,1) to construct an approximated
solution to and then use the result of Section [2| to improve the order of the error term. Then we rewrite
our initial problem in terms of a linear operator L, and we perform solvability theory for this operator in
Section 4} We solve an auxiliary nonlinear problem in Section [5{and we reduce to finding critical points
of a finite-dimensional function in Section[6} In Section[7.1] we give an asymptotic expansion for the function
obtained in Section [f] and finally we prove Theorem in Section [§] by showing that the number of critical
points of our finite dimensional function is at least two.

2. An equation in the upper half-plane

To provide an appropriate approximation for a solution to our problem, we need to study the following
equation
_ T2
Ap=0 in R ™
b 7
—¢ —e"¢p=1¢e"g on 8R§_,
v 3



where g is a given function and

2u
) e = G G

In [2] it is shown that:

Lemma 2.1. Any bounded solution of the homogeneous problem

Ap=0 inR% 5
9¢
5_61}“(]5:0 0n8Ri,
is a linear combination of
1 1 To + b
=—(x-V +1)=—-2—5"F"——= 9
o) = (- V(o) +1) = -2 T 9

and 5
v
2’1”(1‘) = 875;1('7;) = -2

T1

HH ot 1o

Therefore, to find a solution of it is natural to impose orthogonality conditions with respect to these
functions, as the following proposition shows

Proposition 2.2. Let g be a C'(0R2) function satisfying for p >0, k > 0
g(x) = O(log"(1 + |z])) as [x| — oo, (11)

and

/ e zpug =0= / e z1,9. (12)
or? or?

Then has a solution ¢ € C*(R%). Moreover, for any 0 < o < 1 and |z| — oo

6(0)] < C e, |Vé()| < C

|:L.| — |I|1+O¢

y V()| < C (13)

‘x|2+0{ )
where the constant C' depends on Hg||L,,(8R2+), for some p = p(a) > 1.
Proof. Let D := B(0, i) C R?, and g = (0, fi) We can produce a solution of @ using a solution of

AYp=0 inD
o (14)

— —2up =g on 0D,
ov

choosing g appropriately. Indeed, let us consider ® : R2 U {400} — D and ¥ : D — R2 U {400}, defined
as
T — o Y—Yo
P(r) = —5+y, Yy =—"7"3
|z — o 1y — Yol
The functions ® and ¥ are just Kelvin’s maps about the point z (resp. yo) translated in yo (resp. xo).
Suppose 9 is a solution to with g(y) = 2ug(¥(y)), and define

+ xg.



Clearly A¢ =0 in Ri, and a direct computation shows that

Iy,

6V 2
R

() = e (pg(x) + g(z)), for all z € IRZ.

Therefore ¢ is a solution to (7).
Let us analyze the existence problem for . In functional terms this equation can be rewritten as to
find v € H'(D), such that

v+ K =G, (15)
where K is a self-adjoint operator. Indeed, the weak formulation of is to find ¢ € H'(D) such that
[vevo-z| vo=[ g0 wen. (16)
D aD aD

where g € L2(0D). Set H = H'(D), then this last equation can be rewritten as

(W, ) — (¥, ) 2Dy — 21(¥, @) 12(oD) = (G, ) L2 (D),

and (¢, 0)g = [o(Vi)V + 1¢) is the usual H' inner product. Then we define L : H — H* k: H — H*
and G € H* as

LW)(6) = (4, D)
K(0)(9) = —/Dw—zu/w 6,
G(g) = /a o

and write our problem as to find ¥ € H such that
Y+ Tok(®)=T(G).

where T': H* — H denotes the inverse of L given by Riesz’ Theorem. Now, the Fredholm alternative tells
us that has a solution if and only if

T(G) € Ker(I + K)*.
As a consequence of Lemma [2.1| we have that Ker(I + K) = {Zo, 21, }, where

Zop(y) = 20 (¥ (y)) = —2y2,
Z1u(y) = 21, (¥ (y)) = —2y1.

In addition, G € Ker(I + K)* if and only if G(2,) = G(31,) = 0, and therefore, to obtain a solution to

, we need
/ GZou = 0 and / 9z, = 0. (17)
aD aD

A useful consequence of is that orthogonality conditions are equivalent to those given by .
Now, since g € LP(d2), for any p > 1, by LP theory ([16]) we have that ¢ € W1+$P(D) for any 0 < s < rh

and by Morrey’s embedding theorem we obtain ¢ € C%(D), for a« = 1 — ﬁ.

To prove we add to ¢ a constant times Zo,(y) such that 1) (yo) = 0, and then we may use a standard
scaling argument and Holder estimates. We omit the details.



Remark 2.1. If we have a better behavior from ¢ in infinity, we can improve . More precisely, if we
suppose that g(z) = O((1 + |z|)~*), our estimate becomes

1
W» [Vo(x)| < CW

lp(x)] < C and |V?¢(z)| < C L

= Wm
Remark 2.2. If g is a symmetric function respect to y, i.e.

g9(z,0) = g(—x,0), VzeR,
and a solution ¢ to (7)), we can always produce a symmetric solution ¢ to (7) by taking

3. Ansatz for the solution

In this section we provide an ansatz for a solution to problem . A useful observation is that u satisfies
if and only if v(y) = 5ﬁu(5y +&), y € Qs,¢ satisfies
~Av+6* =0 in Qs
v
— =vP on ¢,
v 8¢
where £ is a given point of 92, § > 0, and Qs ¢ is the expanding domain defined by 6—1(2 — &).
As we pointed out in the introduction, the basic element to build an approximate solution to problem

exhibiting one point of concentration is the function v(g 1), defined in .
For & € 02 and 6; > 0, we define

25,

uj(z) = log , (18)
| — & — 8,v(&)”
where v(z) is the outer unit normal to Q at the point z. As it will be important later, we notice that
uj(z) = v(A; (67 (x — &))) — log j,
with v(y) = v(o,1)(y) and A4; : R? — R? a rotation map such that
Ave(€) = ves (0). (19)
Our first ansatz is given by
1
Uj(x) = ———=— (u;(z) + Hj(2)),
pr-1 5]?71
where Hj is a correction term defined as a solution of
—AHj+Hj:—Uj in Q
W = e — E on 69

Lemma 3.1. Forany0<a <1
Hj(x) = H(x,&;) —log2d; + O(85),

uniformly in 0, where H(z,y) is the reqular part of the Green function defined in .
6



Proof. The boundary condition satisfied by Hj is

8Hj oy Ouj
v v
_ 20; n o (& =& — (&) - v(x)
2 2
|z — & — 0;0(85)] |z — & — 0;v(8)]

_ 205+ 2 = & — 6v(E)) - v(x)
o — & — (&)

Thus, for x # &

im O3 () = o= 8&) V(@)
5—0 Ov |z — &l
The regular part of Green’s function satisfies
1
A H(z,y) + H(z,y) = —log ———5 2€Q
|z —yl
oH (x —y)-v(z)
—(x,y) =2——F—F5—= 1z €00
V) o —y*
We set z(x) = He(z) + log 26 — H(z,£), which solves
1
—Az+ z=log — log in
& — & o — & — 3;v(&)I
OH,. — &) -
% _ §5p _ 2(35 f]) V2<.'L') on O9.
v v |z — &l
Following Lemma 3.1 from [2], we prove that for any ¢ > 1
‘ % < C(gl/q7
v L1(09)

and for 1 < ¢ < 2
I—Az + z||Lq(Q) < C.

Now by L4 theory, it follows that for any 0 < s < é
||Z||W1+SWQ(Q) S C&l/q’
and by the Morrey embedding we obtain
||Z||C’Y(Q) </

for any 0 <y < % + %. This proves the result (with a = ¢~ 1).

Assume now that §; = uje_g, % < p; < C. Then our ansatz becomes

62<Pp*1)
Uj(w) = ——— (u;(2) + H;(2)),
PPy
and for p — oo

Uj(&) — Veand Uj(z) = O(p~ ') ifx#&;.
7



Furthermore, under the extra assumption that the parameter y; satisfies

log 2115 = H(&;,&;),

a direct computation shows that U; defined above is a first approximation for a solution to problem
exhibiting one point of concentration at &;. Indeed, assume for simplicity that A; = I. If we define

Vily) = 6;/(p71)Uj(§jy + &), where ;y = x — §; then

1 P P
——(p+v(y) +O(e? |y| +e2)),
prT

g p
Wiy g(ev@ﬂ)),
aU pp*l p

which, roughly speaking, implies that the error for U; to be a solution of is of order p~2. However, as
we will see below, this is not enough to build an actual solution to (1)) starting from U;. We need to refine
this first approximation, by adding more terms to the expansion p + v(y) + o(1).

To this end, let us consider the problem

and hence

Ap1 =0 in R
961 2D

ov

_ 2 _ 1,2 :
where v(x) = log P 1 = ai(v—1) — 3v%, and oy is a constant to be fixed.

—e’¢p1 =e"g1 on BRi,

Proposition tell us that to obtain a solution to this problem, we first need that g; = O(logk |z — xo]),
which is obvious from the definition, and on the other hand, we must check orthogonality conditions ((12))
for 4 = 1. Let us notice that g; is a symmetric function for any choice of oy, hence

/ , €'g1z1 =0,
R
2

To obtain the other orthogonality condition, we only need to fix the value of a;. Indeed, we can write
zo0(x) = x - Vou(x) 4+ 1, then an integration by parts shows that

2

/ e’gizo = / e’ <a1(v —-1)— U2> (x - Vou(zr) 4+ 1)dx
OR2 OR2

= (a1 + 1)/ e’ —/ e'v.
ORZ ORZ

(a1 + 1)/ e’ = / e'v,
ORZ ORZ

or more precisely, since e’ = 2w and e’v = —2mlog?2
p Y, fami fan@i g2

Choose a; to verify

a1 = —(1+1log2), (22)

Both orthogonality conditions are then satisfied, and therefore we can take ¢; as a solution of . Fur-
thermore, we have the asymptotic estimates for ¢; given by . In addition, Remark allows us to
assume that ¢ is a symmetric function.

With this function ¢, we define wy(y) := ¢1(y) + @1v(y) and look for a solution to

Apy =0 in R

(23)

—= — "¢ =€e"g2 on aRi,
8



where now go = as(v — 1) — vw; + %v?’ + %w% — %wva + év‘l.

Since w is also a symmetric function satisfying w; = ajv(y) + O(|z|~%), g2 = O(log* |z — x0]), g2 is a
symmetric function, and as before, with the proper choice of as, both orthogonality conditions required by
Proposition can be achieved, thus obtaining ¢s a symmetric solution of which satisfies .

With these functions, we are able to improve our initial ansatz in the following way:

Given §; € 09, let p > 0 be a fixed small radius, depending only in the geometry of €2, such that

F;:B,(0)NA;(Q—¢) — MNR2,

is a C? diffeomorphism, and M an open neighborhood of the origin such that F;(B,(0) N A;(92 — &;)) C
MnN [“)R%H where A; is the rotation map mentioned at the beginning of this section. We select F; so that it
preserves area. Let 1 : R — R be a smooth cutoff function, such that n = 1 for |z| < £,m=0for |z| > p,
0 < n < 1. Finally, for kK = 1,2, define

Oy = k(65 Fi(Aj(x — &)))n(A;(x — &)
and
wij(x) = Gj(w) + arv(6; Az — &5)).
Our final ansatz for a solution of concentrating at &; € 01, is
1 1
Uj(w) = —— |us(@) + Hj() + 5(1%‘(56) + Hy;(z)) + p(ng(z) + Haj(z)) |,
pi™t

where v = pﬁez(;ﬂ) , uj is defined in , Hj is the solution of , and Hy;, k = 1,2, is a new correction
term, given by the following

Lemma 3.2. Let Hy; be a solution of

—Af[kj + ﬁkj = Awy; — W in Q
OH,j - Ouy
= w4 Q
5 Qg (e ey on 0f,

then, for any 0 < a < 1,
Hyj(z) = apH(x,&;) — oy log 25? + O(67).

We will prove this lemma at the end of the section.

As with our initial ansatz, we will assume that J; = ,uje*p/2 and that C~1 < i < C. We will seek a
solution u of of the form v = U; + ¢;. In terms of ¢ (we omit dependency on j), our problem can be
stated as to find a solution of

—Ap+¢p=0 in Q
24
%=W¢+N(¢)+R on 01, 24

where W = pUP~t, N(¢) = (U + ¢)? — UP — pUP~! and R = UP — %—g. To estimate the error term R, we
need to work in a weighted L> space, so we introduce the following norm in L>(0€2): For any &; € 0Q and

h € L>=(012), define

-1

5.

1Pl 00 = sup L} h(z)] - (25)
zeo | \ (|2 = & +65)°

We have the following



Proposition 3.3. Given §; € 09, let i be a solution of

log 202 = H(&;,&;) + (H(&;, &) — log 262) (O; + z;) ; (26)

where H(x,y) denotes the regular part of the Green function . Then there exist C, D > 0 and py > 1,
such that for any p > po

LB, g0 < CP7,
2. [W(z)| < De®s®) moreover, for |z —&| < £V/§ and §;y = Aj(zx — &)

ev() 1 v2(y)

W) = (14 () — o) —

>+0<;log3<\y| +1))), (27)

where Wy;(y) = (5, ' Fj(6;y)) + arxv(y).
To prove this proposition we need the following lemmas:

Lemma 3.4. Let ¢ be a solution of , with g € C1 (Ri), satisfying both orthogonality conditions,
and
Vg(x)| = O(|J| " log" |2]) as |z| — oc. (28)

Define ~
d(x) = ¢(6; ' Fi(Aj(z — &)))n(A;(z — &)).
Then, for any v € 08, |x — &;| < &,

5,22 () = " [35,9) + o(w)] + O57),

where 0;y = Aj(x — &) and 0 < ae < 1.
Lemma 3.5. Let a,b, ¢ functions such that
a) —Cylog(ly| +1) < a(y) < Co,

b) [b(y)| + |e(y)| < Cslog(ly| + 1),
then
a b ) 1 a? 1 at v ad?’h vt log® (Jy| + 1)
1+24 2408} cer 1 -y —e—abr 42 02 Y 08 W TN
( +p+p2+p3> e [ +p(b 2)+p2(c ab + 3 + 5 5 + 4)+O< = )]

The proof of Lemma [3.4] is at the end of this section, while Lemma [3.5| can be proved using Taylor’s
theorem.

Proof. (Proposition [3.3)). To simplify notation we will work in the variable §;y = A;(z — &;). First, we
notice that, due the election of H; and Hy;,

Uj v 1 w(@) 1 (991 wi(@)) . L (992 us (@)

£y (z) = g {e + >\ (z) + aze + 2=\ () + age .
pr 15j

On one hand, for k = 1,2,

o .
41 () = 55605 F3(639)) V(B39) AvalSsm) + 5-1(0,9)Von (5 Fy (539)) DE5 (019) AgvaGy0),
J J J

10



and if |z — & > £,
O((SJHO‘), for any 0 < o < 1, hence

we obtain that e%(*) = O(4;), ¢k(§;1Fj(§jy)) = 0(5%) and V(bk(é;le(éJy)) =
oU; Co;

. < .
i) = =22 (

1 1 Co;
pr-1 (5]?’
In this region, we also have that U; = O(p~!) uniformly, then

C p
Uj(z)P < (p) .
Hence, for |z —&;| > £,

—\/E >_1 U—xp—anx
((JL‘—EJ'|+5J‘)g ( @)

p
67%
<C 29
, (29)
One the other hand, the choice of parameter 1, given by allow us to expand our ansatz in the y variable
* 1 1 1
Ua) = — [+ o)+ 20 + a0+ 065 +55 ). (30)
pr-T 6]?71 p p
P .
then, for |y| < oW we can use Lemma to obtain
1 v W1, Wa; 1 P
UP(2) = ——— [1 L) Bul) | Tal) ((5; +35 |y|))]
pFETsT P P p p
J
v(y) 1 1 1
e - - -
- [ 2 (w000 - 5070)) + 5 )~ )
pr-1 6]?71 p p
1 1. 1.
+30 (W) + 501() — 5

1
L)+ 50
1
+0 (ol + 1)+ 578, 1l + 5705 )|
In addition, Lemma [3.4] give us the following expansion
oU; e’ ®) 1
Orit) = —o [+ 2 000 + ) + ) + = (00,530 + 200)
pﬁéfﬁl D
o
+az) + O(;)}

ev ()

2

1/ v? 1
=— {1+ - <w1j(y) - (y)> +
ppflajrl p

11



then,
V() [ 1 ( ; — wlj(y)> (w1(y)

Uj(z)? — W(Jf) = pP?(SP% 7 v(y) + =v*(y) — wi(y)

N 1 o
iy ) + O (51014 o) + 570 bl + 707 ).
To continue, we must estimate wy(y) — w1;(y). Suppose first that 3 = 152, then for 0 < |y| < o
. 1 _
(015 (y) = wi(y)| = [61(5-F;(09)) = d1(y)] = Oly = 55 F;(3;y))
j

= 0(3; |yl*) = 0(69), (31)

p p : ;
Now, for 207 <yl < 53, using (13)), we obtain

iy () — wn (y)] = |¢1<éFj<6jy>> — i)
1

< C§; \y|2 sup —Ta
L <ll<5- Y]
J

<cd,

for some 0 < 6 < 1/2. Putting both estimates together, we obtain that for any 0 < § < 1/2 and any

0<lyl <357
1 5 .
(0004 52200 = wa00) = 013 ) (w1 0) = i1, 0) = 0G24,
since in this region v(y) = O(p) and ¢1(y) = O(1). Hence
oU; ev) 1
. p_ 277 - - - 6 2 2 56
Uje = G2 =~ 0 (S5 tow Ly + 20 7 )|

and
1 log®(|yl + 1))

Vi ) (vtar - Gt@) | < ol + )% (5=

3
2

<(|x — &l +65)"
(32)

<

= Q

.

P
To end this part of the proof, consider the region S < |yl < 5. Here, since (1 + %) < €%, we obtain
3 J

1
UP(z) =0 () .
AV TSI
aU; (x) = (Péj(lylH‘l)z + %), so we conclude that

Noticing that is still valid in this region, -

0= (55 i)

12



and hence

(W%) 7 (Uj(m)p B aa(z]/j(”“")> =0 (M) =0 (6_;/8) - (33)

We conclude by putting together estimates and ( .
To prove the estimate over W (z) = pU;(z ) , we first notice that a slight modification of Lemma

tells us that
a b e\ 1 a? 1
1+++,) =e“{1+(b—a—>+O<log4y+1>},
( p p* p p 2 p? (Il +1)

wwwzpw%%m

= e [t (15000 = o)~ 50200 ) + 0 (o8l + 1) |

then, for

ev(¥)

- {1 +% (wlj(y) —o(y) - éqﬂ(y)) +0 (2912 log* (|y| + 1))] .

In addition, for |y| > we obtain that W(z) = O(p(%)p’l), and for <yl < %j, W(z) = O(e¥c(®)).

P
2:/5;

25 ’
This completes the proof.

|
To produce a solution with several concentration points, &1,...,&, € 0, we consider the natural
candidate
UL 1 1
=> o |wi(@) + Hj(x) + p(wlj($)+Hlj(5€))+?(wzj(x)Jerj(ﬂ?)) : (34)
Jj=1 /’Ljp

Define Q; = A4;(671(2—¢;)). To prove an analogous to Proposition we need to redefine the weighted

norm in L as
-1

3| k@) (35)

m

||h||*,ao = sup Z

z€dQ ]|+6)

Proposition 3.6. Given &y, ..., &y, € 09Q, such that |& — &;| > 2p > 0 fori # j, let be pu1, ..., pm a solution
to the system

log 202
log2u? = H(,&) <1+°;;+;‘§) — <a1+‘f>
+Z(’“) Gl&. ;) (1+°‘1+°‘§>, (36)
i p p

where H(z,y) and G(z,y) are given by (B). Then there exist C, D > 0 and py > 1, such that for any p > po
L Rl 50 < Cp~*,

13



2. [W(z)| <D Y e moreover, for |z — & < £/6;, we have that
j=1
() 1 1 1
e ~
W(z) = ——(1+ ];(wli(y) —o(y) — 50 (Y) + O(E log*(Jyl + 1)) (37)

where y = A;(0; 'z — &)) € Q

Proof. To prove this proposition, we only need to show how to use computations from Proposition First,
let us notice that (29)) still follows in this case. To estimate R near &;, (|Jz — &;| < p, for some i), we use
Lemmas and [3.2] to obtain, for v;(z) = v(A;(5; *(z — &))),

- 1 1
U=y (uj + Hj + —(wyj + Hij) + —(wa; + H2j))
1 1.771 p p
J=1 1y
¥ 1 1
+ —— | wi + Hy + —(w1; + Hyg) + *2(1021' + Hy)
H; P b
(6%
=3 2 (G 60+ 2+ %)+ 065 + - )
e /‘Lj
« log 262 o
l (H(fi,fi)(l + =+ *2) L(041 +2) - 10g2ﬂ§>
u p P p p
3
1 1 N
—— | p+ui(x) + ];wlz‘(ﬂf) + }gwm‘(ﬁﬂ) + 007 + |z = &l) ),
p—1
Mg

then, thanks to the choice of parameters u; given by , we obtain that

1 1 1 _pa
U@) = — - (p+0o) + Sun(o) + un(e) + 0 +la- ). (38)
25 T D p
p7Td]
which is identical to , therefore, estimates and can be repeated. Similarly, we can obtain the
same expansion for W(x) = pUP~!(z).

Remark 3.1. From 7 we obtain

) 1
Mj:T\/éeXp £j>£] ZG Eng (1+O(p>), (39)

175]
this estimate tells us that we can find such p; solution to , provided that p is large enough. Furthermore,
we have that % <p; <C,forany j=1,...,m.

Remark 3.2. Since it will be useful in later computations, we provide a slightly more detailed analysis of
the linear term W. Notice first that if |z — ;| < e for some j € {1,...,m}, we obtain

p—2
1 p—2 1 p=2 i(x) .
P\U@+O(5 <Op|——| €7 I=0("")
T
pr-t 5j
Since this estimate is still valid if |z — &;| > ¢, Vj = 1,...,m, we conclude that
1)\ ? U
p (U(x) +0 <p3)> =0() ey, (40)
j=1

14



The above computation and Proposition tell us in a heuristic way that
m
W ~ Z e,
j=1

Proof. (Lemma . To simplify computations, we suppose, without lost of generality, that £; = 0 and
Aj = 1. As in the proof of Lemma define z(x) = Hy;j(x) 4 oy, log 265 — ap H(x, ;). Function z satisfies

1

—Az + z = Awy; — wy;(z) + oy log W + ay log 26? in

x

0z o Ouy x-v(x)

Py v <4 9 on.

5y = Ok (e 5 e on

Again, as in Lemma[3.I] we can prove that
‘ 9z < Cot/a,
ov L1(09)

Let us recall that definition of wy; implies that

1

wij(x) = ¢rj(x) + aylog 267 + ay log ——————,
|z — 6;1(0)]

then

1 1
|=Az(@) + 2(2)|| o) = HAqSkj(x) — ¢rj(x) + ag (log W —log |~T—5;V(0)|2>

L9(Q)
For 1 < ¢ < 2, we obtain

1 1
log —5 — 1o

[ — < (9.
P = om0 ’

Li1(Q)

Now the terms involving ¢p;. On one hand

n=[log@ita= [ L
Q QNB(0,r) QNB(0,r)¢

=Ji + Jo,

where 7 is a small radius to be chosen. Since ¢y; is a bounded function, we have that J; < Cr?. For
|z| > p, e =0, so we are only interested in the region r < |z| < p. Let us notice that if 5;17” — 00, then

6;1 |x| — oo, therefore we also have that 5;1Fj (z) — oo, which allow us to use . Under this assumption,

we have that

<o)
r

(03
hence Jo, < C <%)q . On the other hand

12:/ |A((/j)]€j(l’))|qd$:/ —|—/
Q QNB(0,r) QNB(0,r)c
= J3+ Jy,

15



As before, since A(¢y;()) is bounded, we obtain J; < Cr?. For Jy, using reduced notation, we have

2 1 1 9%y O(F)) 10¢i 1 O (F))s

This implies that

Aonl5-Fa)nte - &) < 3 [Foul 5 Fy(@)| IDF @) +

J

<5 Voul5F(o)| AR o)

1 1
S 06? <r2+a + T1+a) :

Then,
|Adr;(z)| = IA(m(éFj(JJ)))n(»’v) + An(z )¢k( Fj(x)) + 2V(¢k( 5; Fj(x))) - V()]
co(B) (1)
Now, if r < 1

6(1
Aol <0 ().

- 9@ 6 \ ¢
neo(me(2) ) mso(r () )
r r2to

If we choose r = 5ﬁ with 0 < 8 <

Putting all this together

2+a and p large enough, for 1 < ¢ < 2 we obtain

[AG1; () = $j ()| Loy < CF} = O(5}),
with 0 < A < 1. Finally, we conclude as in (3.1]), to obtain
||Z||C’Y(Q) < Cf;j)'\a

for 0 < <3+ ¢

Proof. (Lemma [3.4). As before we assume that A; = I and that & = 0. In addition, we will work in the
expanded variable y = 6 x, with domain Q; = 5 1Q. Let us write 9Q near 0 as the graph of a smooth
function G, more premsely, we set R = p/2, Such that 0Q N B(0, R) = {(x1,x2) : x2 = G(x1)}. We set also

that G(0) = G'(0) = 0, and use this function to write F;(z) = Fj(z1,22) = (21,22 — G(21)).
We must estimate, for y = (y1,y2) € 09,

) = 5,929 — e [3039) + 9(0)] ‘

= [Vo(-F;(0,9) - (D (650 - v, (1) — ") [&(am +a)

J

IN

V(

;ij(%‘y)) -(DF;(559) - va, (y) — V¢( 5; F(659)) - v (y)‘

+ VoL F6) v, () 0 [3650) + a0

< Ci(y )+02( )-
16



Consider 0 < r < R, a small number to be chosen, and let us analyze the case where r/d; < |y| < R/J;. To
estimate C4, first notice that DF};(0;y) = O(d; |y|) and that F;(d,;y) > Cd; |y|, hence, if §5~1r — oo,

1+a
Ci(y) < C6; |y|\V¢( Fj(3;9))] < Co;1y] <56| |)

5 51+a
<C—2L =0(< .
e = 00

Now, we write 0€; as the graph of the function G;(y;) = 5;1G(5jy1). First, the assumptions above implies
that G’ (y1) = G'(6y1) = O(9; |y|) for any |y| < R/d;. Thus, for y € 9Q; N B(0, R/§;), Ca(y) can be written
as

Caly) = \w Fi6) v, () = € [306) + 9
 Gily) 6(;5 1

/G/ +1 6.%’1 5,

1 96 1 _
e T (=Fj(6;y)) — W
‘ G;(yl)zﬂaxg(éj 5039)) [¢(y)+g(y)]

= C3(y) + Ca(y)-

i9))| +

To estimate C3(y), notice first that ’ﬁ‘ < |z| for all z € R, thus

o6 1 s\t
C3(y) < |G ()] ’ (b Fj(%‘y))‘ < Co; ly| (5|7y|)
J

51

— 0%,

TQ

Finally, for Cy(y)

! — % l (5. ' 2 % i s
| ((;3(;,1)2+1 1) Dyn (53‘ Fj(5jy)) < }G]( Yo (5], F]((Sjy))’
< CO b (=)

=03 [y]'™*) = 0(8;).
On the other hand, for B = Q; N (B(0, R/é;) \ B(0,7/;)),

(L F (8 1
e71(3,/) —e (aj FJ(‘SJQ))’ S |y _ (S*Fj(é‘]y” sup vev(z)
j zeB

53 62
<ClGiy)| 2 <02,

and

1 vz
;Fj@-yn sup [ V(e )g(2))|
J

v 'u Fj(6;
Wgly) GG L) <
J

< CG;(y) jlog 5,

2
<(C-ZL logk —
r

17



because G;(y) = O(J; ly|?). The above computations tell us, for r/d; < |yl < R/d; and any 0 < a < 1, that

gt
Cy)=0 ( ia +5}+°‘> . (41)

For 0 < |y| < r/d;, we only need the boundedness of functions involved. First we have that C(y) < Cr. As
for Oy, we see that Cs(y) < Cr and, for the terms relative to Cy(y),

8¢1€ 1
/G' +1 392

e'u(y) _ ev(éFJ(‘sjy))

Oor.

F((SJ ) — 8y2( _F]((Sjy)) <Cr?,

r2

< (O—
fC(Sj

and
2

v v( 3 F5(5; 1 r
Wgly) — FEOD gL )| < O
J J

Thus, Ca(y) = O(r +r% + g—j), and we conclude that for 0 < |y| < r/d;,
Cly) =0 +r*+ 5;11"2).

1ta
Choosing r = 4, , we obtain that C(y) = O(d%') for p large enough. Using the same choice of r at (A1),
the result follows.

4. Analysis of the linearized operator

We study the following linear problem: given h € L>(9f), we want to find ¢ and ¢y, ..., ¢, such that

-Ap+¢=0 in Q

99

5, ~Wo= h+;cj U7y on 99 (2)
/e“fleqﬁ:O Vj:l,...,m.

00

where W (z) = pU(z)P~! and Z;;(z) = 2;(4; (65 Y(z—¢;))) where z; are defined in (9) and respectively.
Since we need this functions explicitly, we erte

o;v(&;
Zoj(x )—17253( i =& = 0 (fg)Q))z
|z =& — ;v ()l
Aj(x—& = 6;v(§)h
|z — & — d;u(&))
Proposition 4.1. Consider p > 0 and m a positive integer. Then there exist pg > 1 and C' > 0 such

that for any p > po, any (&1,...,&m) € Q and any h € L>®(09), there exists a unique solution ¢ €
L>(Q),c1,...,cm € R to problem . Moreover, such solution satisfies

H¢||L<><>(Q) < Oth”*,[)Q' (43)
18
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To prove this proposition we need a further analysis of functions Z;;, when projected to 2.

Lemma 4.2. Let be PZ;; solution of

PZ;;
OPZ =e%Z;: on 0N.
v

Then for any 0 < a < 1, we have the following expansions in C(£2)
PZyj = Zoj =1+ 0(67), PZy; = Zy; + 0(67),

moreover,
PZOJ' :O(6J)7 PZU :O((Sj)
in ClOC(ﬁ\ {&h)

Proof. To simplify the notation, we suppose that A; is the identity map. Let us analyze first the case i = 0.
We define f1 = PZy; — Zp; + 1, solution to

~Afi+fi=—Zp; +1 in Q
6f1 _uy 8ZOJ‘
% e Zy; — e on Jf).

As in Lemma we estimate the right-hand side of this equation in L9(2), 1 < ¢ < 2. First,
25(1’*&3 75]'1/( )

g.
1— Zo;|" = :
/Q| o /Q Mo — & — 8u(€))

T
QﬂB(é’j,25J‘) QﬂB(Ej,Z(‘)‘j)C

q
mgcg/
QNB(&;,26;)

< 05?/ s'7ds < 05?,
0

q
dz

)2
|2

But

1 q

26
! |z — & — 0;0(85)]

dy

/QﬂB(fj,Q(;]‘)

(=& —6v(&))2
|z — & — 6v(&)I

Noticing that for |z — ;| > 24;, |z — §| < 2|z — & — §;v(&;)], we obtain

| 05 (@ =& = 50(E))a [
J 2
onB(g.26) | T =& — 6v(8)]

dx < Cé;’/ ;qu
anB(e;.28,)° [T — &

D
< C(S;-Z/ stTids < Céjq-,

where D = diam(2). The estimates above tell us that
[=Af1+ f1||L«z(Q) = 0(;).
On the other hand, to estimate the boundary term, we use that for any x € 02

(z = &) v(@) < Clz—&*, 1-v(@w(&) < Clz— &,
1+ v(z)e] < Clz =&l " (ah| < Clz =&l



Now,

0Zy; o (=& —d;v(§;))2 2 (x =& —0v(§5))2v () - v(z) 4 v(z)2
= 49, T — 467 1 — 26, 55
v [z — & — 6;v(&)] [z — & — 6;v(&)] |z — & — 6;v(&)]
hence
ey~ i gy v (@ omE)ele —E) (@
o |z — & — 61 (&)] [z — & — ;v (&)]
(=) €)@ = & = 5w,
4 )
! [z =& — 6, (&)l
using and having in mind that m < C, uniformly on z and §;, we obtain
. 0Zy, 0;
Wi 7o I < J .
Yow [T = €= u(g)]
Now, fixing a small » > 0, we have that, for |z — &;| > r,
w,  0Zp;
e’ — TVJ S C(S],
and with the change of variable §;y = z — {;, we obtain
Zo; | 1 4
/ e%i — 920; " _ Cé; — | dy
2QNB(¢,,r) v 00,nB(0,r/5,) | [y — v(0)]
’I“/(s]‘ 1
< O6; —— ds< CO6;
_C’(SJ/O (1+8)qd5_05],
therefore 5
h = 0(5}). (45)
v La(0Q)
Thus, for 1 < ¢ < 2,
of1 1/q
I=Af + il +” _ oGV,
Li(Q) Ov La(o9) J
Now, for ¢ = 1, as before, we define fo = PZ;; — Z;;, which satisfies
—Afa+ fa = —Z4; in Q
0 fa ws 071
E =e le — 81/] n 89
For |z —§;| <2, and 1 < g <2
q

/ |Z1‘|q:/ 26‘(73_6_(2’”(0)1
0nB(;25,) anBe;25,) | |z — €&~ du(E))

26,
< C(Sg/ stT9ds < C(SJQ».
0

As for the case i = 0, we obtain
q 1

12" < C T
QNB(;,255)° QNB(§;,26;)° |z =&l

D
< 05?/ st—ids < 0531.

25;

20



Thus, for 1 < g <2
[=Af2 + fall Loy = O5;)-

For the boundary term, we notice that

0% _ g5 Va5 e GrOn &) v(a)
v |z — & — §;u(€)] |z — & — 8;u(€)]
L@ = €= 0 ©Ohw() 1)
’ |z — & — 8" ’

therefore

iz~ 005 @ E S ON@) ME) ~1) e e

v o — € = 51" Mo — &= ow(e)?
(== v@)h(r—¢&) v(z)
—46; i )
|z — & —0;v(8)]
using , we obtain that
, 074 6
ez — Ll <C J )
M TR (3
Now, we can repeat the estimate , namely
%] —ow
v L1(0%)
Finally, for 1 < ¢ < 2
of2 1/q
=8+ el + | 52 =0
La() W || Lagony J

The conclusion is analogous to the one in Lemma Estimates in Cj,.(Q \ {¢;}) are a consequence of the
“size” of functions 1 — Zy; and Z;; far away from &;: both of them are comparable with ;. We omit the
details.

|
To prove Proposition [4.1] we follow [2] and [I0]. First we study the equation
—Ap+¢=f inQ
¢ (46)

—W¢=h on 0,
v

where we still use |||, 5 to estimate h € L>(9€), and we introduce, for f € L*°(f2), the norm
-1

A+6ﬁ

Proposition 4.3. There exists pg > 1 such that for any p > py and any solution ¢ of satisfying in
addition

/ eujZij¢:07 Vi=0,1 j=1,...,m, (47)
o0

we have
[0l e ) < CUIRL 00 + 11 lln0)s

where C' is independent of p.
21



Lemma 4.4. For p > 1 large enough, and 0 < o < 1, there exists Ry > 0 and a smooth function 1 :
Q\ UL B(&k, R16k) — R such that

—AYp+1p>c (1 + Z x?ﬁ“’) in 0\ UL B(&k, R16x)
_ — Gk

a/l/} m -
&/—W¢>C<1—|—Z ‘x_g |1+0> on 8Q\Uk:13(§k,R15k)

P >0 imn Q \ Uzn:lB(fk, Rlék)
P >1 in QN (UpL,0B(&k, R10k))

Where constants Ry > 0 and ¢ > 0 can be chosen independently of p and 0 < ¢ < M wuniformly in
Q\ ULy B(&k, Rodi).-

Proof: (Proposition. Thanks to the barrier ¢ of Lemma we can deduce the following maximum
principle: If ¢ € H*(Q\ UL, B(&k, Rodk)), satisfies
—Ap+¢>0 inQ \ Uznle(fk, R()(sk)

09

EY —W¢p>0 on 8Q\Uk 1B(fk,Ro(5k)

$>0 in QN (U, 0B(&, Rody)),

then ¢ > 0in Q\ U, B(&k, Rodk). Let f, h be bounded and ¢ a solution to satisfying (7). As in [2],
.00 | fll.sq and the following inner norm of ¢:

181l o< 0
gl = sup |9l

QU B(&k,Rodk))
Repeating computations from [2], we deduce that

10l L) < CUIAIL a0 + [[f a0 + 115)- (48)

Now suppose by contradiction that there exist p, — oo and (£7,...,£%) € Q,, and functions Ons My [
such that [[¢n]l o) = 1 [1Anll, 00 = 05 [fll.eq — 0, and for any n, ¢, is a solution to and ([47).
Thanks to and the assumptions above, we have that |¢,]|, > d > 0 for any n. So we can assume that,

for some j,

sup |pn| > d > 0.
QﬂB(&j,Ro&j)

Let us define ¢/ (y) = Gn (05,0 AS Yy +¢.n). Standard elliptic estimates allow us to say that ¢ converges

J_, a nontrivial solution to (§) with p = 1, therefore, it must be a linear
combination of zp and z;. On the other hand, we can take limit in the orthogonality conditions to

obtain
/ 'zl =0, i=0,1.
oRr2

uniformly over compact sets to (bj

This contradicts the fact that ¢7_ # 0.

Proof: (Lemma [4.4). Following the proof of Lemma 4.3 from [2], we define

() = o7 LS V&)

22



where 7 = |z — &; — J;v(&;)|. A direct computation shows that

5;’ )
A =0 e in Q.

Now, for € > 0 small enough, and R; > 1 large enough (but independent of p), we have that

0y o7 .
81/] > 7ﬂ1]+0- lleéj <r<e.
We also define 5
Yoj(w) =1~ r%’
which satisfies
2 97
—Atpgj =07 51—,
0o

o7 ]
=0 <7“1+‘7> 1fR15j <r<e.

ov
Then, for C; large enough, but independent of p,

s = Y15 + Cjibe;

satisfies
(o

— A3 +h3j > o2 Tzia if Rid; <r<e.

In addition, recalling that for |z — &;| < p, W(z) = O(e%) = O(§;772), we obtain that

O , 07
oy W2

To conclude, we define n; € C*°(2), such that 0 < n; < 1,7, =1in QNB(;,¢/2) and n; = 0in QNB(E;,€)°,
with |Vn;| < C and |An;| < C in Q. Then, for ¢ solution of

ifR15j <r<e.

Aty +1p=1 in

My
W =1 on 89,

m
function ¢ = Cypo + > nj13;, with C, a sufficiently large constant, meets the requirements. The rest of
i=1

J=
the proof is analogous to the proof Lemma 4.3 from [2], thus we omit it.

|
Proposition 4.5. For p large enough, if ¢ is a solution of and satisfies
/ €ujZ1j¢:0, ijl,...,m, (49)
a0

then
(¢l Lq < CP([IRl. 50 + 1 flln0):

where C is independent of p.
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Proof. Following [10], we will prove this proposition by contradiction. As in the proof of Proposition we
suppose that py, [|hn|l, 50 — 0, Pn | fall.. o — 0, but we only have , hence, the limit function ¢  must
be proportional to zy, more precisely

#h(y) = Cizo(y) in Cpo(RY).

To reach a contradiction, we must prove that C; = 0 for all j = 1,...,m. To this end, we will use functions
Zy; to build suitable test functions.
Define s, 31 as a solution to

As=0 in R%
0s (50)

Existence of the function s and the constant 3; is guaranteed by Proposition Moreover, since we need
it below, we can give the exact value for 3y,

fBRi e’z m 1
oR2 © zo(v —1) —27

We also define t as a solution to
At=0 en Ri

ot . (52)
576 t=¢e" en 8R3_.

Proposition also guarantees the existence of ¢, but for simplicity we use the explicit solution given by
t(y) = z0(y) — 1. With these functions and Zy; we define

9;(x) = s;(x) — B110g 263 Zo;(x) + BLH (&5, &)t ()
where
sj(x) = s(0;  Fi(Aj(z — &))n(As(x — &) + Brv;(x)
tj(x) =t(A;(6; (x —&))) — 1 = Zoj(x) — 1.

We define Ps;(x) = sj(x) + Hsj(x), where Hs; is a correction term defined as a solution of

—AHSj—l-HSj:ASj—Sj in
8H5j X au]'
= wi . L Q
ov A <6 ov ) on 9

As in Lemma we can say that Hs;(x) = 81 H(x,&) — 81log 267 + O(69) for any 0 < o < 1. We also
define PZy;(x) and Pt;(x) = PZy; — 1, where PZy; is defined in Lemma Finally put

Pg;(x) = Ps;(x) — 1 1og 267 PZo;(x) + BLH (&5, &) Pt (x)

The expansions above and Lemma [£.2] imply that

Pg;(x) = gj(x) + B1H(x,&;) + O(65) in C(Q), (53)
Pgj(z) = SiG(z,§;) + O(65) in Cloc(2\ {§;})- (54)
Now, Pg; satisfies
—Ang—Fng:O in
OPg; _ 9s; a9 _ 25 7,
% — o + 61 (e 5 p1log 265" Zo;  on 9N (55)

+ B1H (&5,&5)e" (t; +1).
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From now on, we omit dependency on n, and define R = p/2.
Let be ¢ a solution to . Multiply by ¢ and integrate by parts to obtain

OPg; B
/89 ( (‘31/] — Wng> o= /aQ hPg; +/Qngj. (56)

Let us estimate first [, hPg;:

- Ve
| gy <l o | (30 LA Puy
o on \&; =&l +6.)%

5
/ L Pg, — / n /
o0 (lx — &5 +6;)2 00NB(&;,R)  JOONB(E; R)°

=1 + L.

but

To estimate 1, we make the change of variables §;y = A;(z — &),

1
n- | Py (,A7 'y + €
Y Joonpurss) (lyl+1)F T !
1 1
- (AT ) [ R )
/aﬂijm,R/éj) (Jyl+1)2 77 P Joa,nno.rss (Jyl+1)3
1 1
~ i log 267 () + BHE.S) [ L i)
P Joaunnomss) (lyl+1)F PSS Joqunpo.mss, (] + 1)F
1 B -
ey L HGAT 4 6,6) + 00 )
0Q;NB(0,R/4;) (‘y| +1)2
|
=—0 10g252/ —2(y) + O(1)
" Joasnmo.r/5,) (Jyl +1)%

= O([log ;) = O(p)-

For I, we only need to notice that far from ¢;, function Pg; is uniformly bounded, and

oy,

(lz = &1 +65)2
then Iy = O(4/0;), thus

V9
/89 (Jo — &1 +6;)%

Now, we need to consider, for k # j, terms of the form faﬂ W%ng. As before, we split the integral

Ek|+0k)2
for |z — &,| < R and |z — &| > R. Again, Pg; is uniformly bounded in |z — &| < R, so we have that

Vo
——— —Pgi(x) = 0(1).
/amB(gk,R) (o — |+ 0p)3 7 (z) =0(1)

Pgj = O(p).

For the second term, we notice that Pg; = O([logd;]), then, for 0 < a < 1,

Vo
/ — Y Pg;(z) = 0(v5k)/ Pg;(z)
00nB (& R)e (|7 — &kl + 0x)2 0QNB(&x,R)*

=0(e™ ),
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we conclude that

/ hPg; = O(p Al pe)-
o0

In an analogous way, we prove that [, fPg; = O(p| fll,. ). The left-hand side of must be analyzed
more carefully. First we write

Py
S G52 979) 0= o oY/
oo \ OV OONB(&;,R\/5;)  JOQNB(&;,R)\B(&;,R/5;) am(UBsk,R» 09N B(&x,R)

=J1+J2+J3+ZJ41<:~
oy

Let us look first J3. We need to estimate agygj in this region:

9Py,
v

=52 ﬁl( —;,j)—ﬁllogzéfe%zoj-+ﬁ1H<£j,§j)e 5+ PLH (€. 6)e

= % (S(éF ( ( 5]))) ( ({L‘ - fj))) +,61€uj — 51 10g25]2-e“j20j

+ BLH (&5, &5)e" (t; +1)

Now, thanks to Lemma more precisely to ,

o (1
o5 (5G-FAs e~ e - ) ) =06, 0<a <1
and since " Zo; = O(07) and €% (t; + 1) = O(67),
agygj — Bre" + 0(51+).

This last estimate, and the fact that in this region % = O(J;) and W(z) = O(p(%)”‘l)7 allow us to
say that
J3 = O(6;).
To estimate Jy1, we notice that we are still far away from &;, so
Pg; = p1G(x,&;) + O(55)
8Pg] Us; 1+a
o pre® +0(5;7),

but we must separate cases to estimate W. First, for |x — | < Rv/dk, we have estimate 7 namely, for
oy = Ar(x — &)

) 1, v2(y) log*(Jyl + 1)
_ <1+p - 5) O >)-
For k #£ j

P .
/ (8 9j _ngj>¢:51/ € b
AQNB (&, RV3E) ov AONB(Ex,RV/3E)

V(AR ()

1
_ .
. /ame(sk,Rm) 5 G &)e+ o)

= ﬁl/ e’k — 51G(§k7§j)/ e’k + o(1)
9Q,NB(0,R//5)) 0Q,NB(0,R//5))
= o(1),
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here we are using that

/ e”ék — C’k/ e’zg = 0.
0Q,NB(0,R//5%) p—=oo 2

Now, for R\/dx, < |z — &| < R, we only know that W (z) = O(e¥*), then, since in this region e“ = O(J,)
and G(z,&;) = O(1),
9Py,

/ ( Do ngj) 6= / (% — W(2)G(3,£;)) 6 + O(62)
QN B (&, R)\ B(&k, RV/5k) v QN B (£, R)\B(£x, R\/3r)

= O(V/éi +67) = O(V/31).

Let us now look into .J;. First of all, we notice that analogous estimates as those from Lemma [3.4] allow us
to say that for |z — &;| < R\/9;

0Py, s v, N .
§j 8yj =e’g;te JZoj +61H(£j7£j)€ i +O(5j )’
thus
O0Pg; " N X
6jW — 8;WPg; = €% Zo; + (¢ — §;W)Pg; — Rj + O(5%),

where R; is a correction term given by
Rj = e"(Pg; — g5 — B1H(5,5)).
In the variable §,y = A;(z — &;), we have

g = / <5j OPg; _ 5jWng> &
9Q;NB(0,R/+\/5;) ov

ev(y)zO (y)qga

/aszij(o,R/\/éj)

+/ W _ 5 W 5,Af1y_~_£, Pg; (5-Af1y+§- qASj
BQij((),R/\/(?j)( iW(0;4; J)> (645 5)

- Rj(6;A7 'y +&))¢" +0(87),
/annB(o,R/ﬁj) L5547y + )3 +0(8!)

where 0 < § < 1. Now, since ¢ — Cjzo and |¢7]]oc < 1, we have that

v(y) 9 . v, 2 2
"Wz (y)g’ =C e'z5 + 0(55).
/aﬂij(o,R/\/@) ! OR?. 0 !
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Using and the expansion in this region for Pg;, we obtain

/ (ev(y) _ §jW(5jAj_1y+§j)) ng(éjAj_lerfj)(ZBj
89,;NB(0,R/\/5;)

1 - V2 “ _
= —7/ e’ <w1j — U — 2) ng((sjy)ﬁﬁj +O(p 2)
P Joq,;nB(0,R/\/5;)

1 v 23 1 ’UQ
=_= €’gi(0;y)¢7 | Wiy —v — 2
P Jo,;nB(0,R/\/5;)
B v i -1 0 v
- = "¢ H(6; Ay +&5,8) Wy —v — 5
P Joao;nB(0,R/\/5;)
+0(p?)
log 262 24 °
= ng/ e’zo’ <U~J1j —v—= U) +o(1)
p 89,;NB(0,R//5;) 2
2
v
= —31C; e’(wy —v — E)Zg +o(1).
or?

To estimate the term involving R;, we use (53) and the fact that f ar2 €20 = 0 to obtain
+

R;(5;(A;  y+ &) = o(1).

/anij(o,R/,/aj) R !

Putting all estimates together, it follows that

02
J1=Cj (/ . ez} —ﬁl/ . e’(w; —v— 2)23) +0(1)
o2 oR2

Finally, for Js, implies that

O0Pg; . v Vi «
(SJ'TVQJ =eYgj+ e Zoj + B1H(E5,85)e" +O(531‘+ ),

then, for d,y = A;(z —&;)

/ <8ng
00NB(&;, R\B(&;,R\/5;) \ OV

5 85 9 () - 5jW(x)ng(x)> dy

/asyij(o,R/sj)\B(o,R/\/E) (

e’zo ngSj

- AQmB(&R/&»\B(&R/@)

n / (e*®
99;NB(0,R/5;)\B(0,R/\/5;)

~ 8, () Pos(a)idy - | Ry 1 0(81).
99,NB(0,R/6;)\B(0,R/\/5)
But recalling that we are supposing that [|¢| <1

20! = 0(87%),

/fmij(o,R/éj)\B(o,R/\/E)
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and for 0 < 6 < 1/2

/aﬂij(o,R/aj)\B(o,R/\/@ (€W — 6;W (x)) Py, ()¢ | dy

=/ (e =W)g;
9NB(E; B)\B(&;.R\/5)

+ﬁ/ e"s —w)H(x,&;) + O(45
' anB(&ij)\B(gj,R\/a)( ) ( g) (])

= —/81 log 25]2/ (e“j - W)Z()j + O(\/ 5J)
8QQB(5J7R)\B(€J7R\/E)
= 0(5%).

Therefore )
Jy=0(8]), 0<0< 5

So far we have that can be rewritten as

>c>0.

1 v?
/ evzd — = eV(wy — v — —)z8
oR? 2 Jor2 2

Since we don’t know a explicit formula to w;, we must study a little bit more the term |, OR2 e’ z3wy.
+
First, using (21]) and the definition of w, we have that w; solves

Aw; =0 in Rz_
2 (57)
— —e wlz—e”% on 8]1%1.

Now, let be Z a solution to
AZ =0 in R
9z (58)

vy v/ 2 2
5 €= on JR7 .

Both orthogonality conditions are held, namely,

v 2 _ _ v,/ 3
/262021—0—/2620,
ORZ OR?

so existence of Z is guaranteed. Moreover, we can find an explicit solution to this equation. We recall that
Zou is a solution to the homogeneous problem , now taking Z as

3 E v — (y2 +1)2
(y) o (y)

s RS (59)

we provide a solution to . Having this in mind, we multiply by z and integrate by parts to obtain

1
/ e’ ziw, = —5/ eV v, (60)
OR% OR%
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We can compute the value of this last integral to show that

and end the proof.
|

Proposition 4.6. There exists pg > 1 such that for any p > pg and any solution ¢ of we have that

[0/l e < CP IR 50 -

Proof. Proposition 4.5 implies that

16l g < CoIRl 00 + Y les]),

Jj=1

since [|e*9 Zyj|[, oo < 4. As before, arguing by contradiction, we suppose that [y« ) = 1 and that

m
Polllnll o0 =0, Do |c}| =d>0. (61)
j=1

Again, we omit dependency on n and define qASJ(y) = qS((SjA;ly +&;). Let be PZy; as in Lemma
Multiplying by PZ,; and integrating by parts gives

/ hPle + ZCk;/ eukzlkPle = / (euj — W)Ple(b—i-/ (le — Ple)e"j¢.
o0 k=1 o0 o0 o0

First, since PZy; is uniformly bounded in €2,

& Vo
hPZ-gC/thh* /
/m y<OJ MO0 | gy
< C|hll, 50 -

On the other hand, for 0 < g < 1/2

/ (e“" — W)Ple(b = +/
N B(&;,RV5,)NON B(&;,R\/81,)°NoN

=/ (" = W)Z1;¢
B(&;,RV6,)N0Q

ves [ (&% — W) 216+ O(V/5; 6]l)
B(&;,Rv/37)NoQ

- / (% — W)Z1;6+ O 6]lL).

B(&;,R\/37,)N0N
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Let us look with a little more detail the right hand side integral. Using and the change of variables
0y = Aj(x — &), we obtain

1 1
/ e —W)Zyo=— 21650 —v = 507) + O 16]..)
B(&;,RV5,)NON B(0,R/+/5;)N0Q; p

= 0(}; 19llo0)- (62)

We also have that

| @15 = Pzis)ee] = 065 ol
[219]

Finally, we must estimate fasz e Z1x,PZy ;. For k = j,

/ e“flePle :/ +/
o0 INNB(&;,R) IONB(&;,R)¢

= / e"flePle + 0(6?)
INNB(&;,R)

= eV 2?4 0(50‘“)
89,NB(0,R/5;)

_ / ¢"22 + O35+, (63)
BRQ
And for j # k

/ e“’*‘ZlkPle :/ +/ +/
N OQNB (&, R) QNB(&;,R) 00N(B (&, R)UB(¢;,R))°

- oG, [ " Zu) +000? | PZ4;) + 0(635;)
8QﬂB(§k, ) GQOB(gj’R)

= 0(0;0y). (64)
So we obtain that
> leil = 0 18]l + 1111l 50) = o(1). (65)
=1

Then, as in Proposition [£:6] we have that
¢’ — Cjzp, in Cloe(R2).

This last estimate, and the fact that we are supposing that ||¢[|,, = 1, allow us to improve estimate ,
since

/B(O,R/\/E)maﬂj ¢ —v = %”2) —Cj o2 e’z120(wy — v — 5112) = 0.
Thus
/B(ﬁj’R\/E)ﬂaQ( e =W)Z1j6 = o(p~" || éll.),
and

ZICJI =o(p™") + O]l 00);

which contradicts .
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We end this section with the proof of the initial Proposition,

Proof: (Proposition [4.1)). Following notation from [I0], we consider

ng ZCJ‘PZUZCjER,fOl"jzl,...,m R

=1
and

Kg = {¢ € L*(09) : /

e“jlegb:O,Vj:l,...,m}.
o0

Let Il : L?(0Q) — K¢ be defined as

e = Y ¢;PZy;,

J=1

where ¢ = (¢;) is uniquely determined, thanks to and , by the system

m
/ e"* Zip | ¢ — chPle =0, forallk=1,...,m.
o9 =
Also define 1'[5l =1d — I : L?(02) — Ké. Weak formulation of (42)), can be written as: To find ¢ €
K¢ N H'(), such that

(0, Y)H1 () —/ Woy = / hy, for all ¢ € Kg‘ NHY(Q).
a0 a0
Thanks to Riesz’ theorem, we can rewrite this equation in K é N HYQ) as:
(Id+ K)¢p =H,
where in formal terms, H = Il¢(—A + Id)~'h and K = —II¢(—A + Id)~'W is a compact operator in
K& NnH'Y(Q).

Finally, Fredholm alternative guarantees existence of solution for H € Kj, since the homogeneous
problem ¢ + K(¢) = 0 admits only the trivial solution, as shown in Propositionm

Remark 4.1. Given h € L>=(Q), let ¢ be the solution to given by Proposition Multiplying by

¢ and integrating by parts gives
ol = [ Wor+ [ ho.
aQ aQ

Moreover, using Proposition we can prove that

|/ W2l < Clll% .
oN

and therefore
91z 0y < CUIRIL 00 + 19]lo0)- (66)
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5. An auxiliary nonlinear problem

We consider the following problem

—Ap+¢=0 in Q
%—W(b R+ N( )—I—ic-eujZl» on 0f)
v = / / (67)
/ €ujZ1j(b:0 Vj:l,...,m.
o
We recall that, W = pUP~!, N(¢) = (U + ¢)? —UP —pUP~1¢p and R = UP — 2% and U is our ansatz given

by .

Lemma 5.1. Let m be a positive integer, then there exists po > 1 such that for any p > po, and for any
(&1, ,&m) € Qun, equation admits a unique solution ¢,c1,...,cy, such that

C
6]l < pE (68)
Moreover,
- C c
— 1oy < =, 69
z:: S i 161l 1 ) P (69)

Proof. The result of Proposition implies that a unique solution ¢ = T'(h) of . defines a continuous
linear map from the Banach space C of functions h € L*(9) such that Hh||* o0 < 00 to L*(€). Now, in
terms of T', problem (67)) can be written as to find ¢ such that

¢ =T(N(¢) + R) = A(¢). (70)
For 6§ > 0, consider Fyp = {¢ € C(Q) : [|¢]|, < Op~3}. Proposition tells us that

14@)llse < Cp (IRl 00+ IN@). 50)

On one hand, Proposition implies that ||R]|, 5 = O(p~*). On the other hand, we have the following
estimates for ¢, ¢1, P2 € Fy

o IN@),.90 < Cpl¢l2
o [[N(¢1) = N(#2)ll, 90 <

In fact, Lagrange’s theorem implies that

illoo 161 = P21l

IN(¢(2))] < plp — 1) (U(x) +O(p~)" " d(a)?,

[N (@1(2)) = N(ga(a))] < plp— 1) (U(@) + O(p*)" " max ] [61(x) — 62()].

m
for any x € 9%, hence, by and || 3 €¥|s,00 < 4, we obtain the estimates above. Therefore, for any
j=1

¢7 ¢17¢2 € FQ
1A < D'DUIN @)L, 00 + IR, 00) < O I8]12%) + —
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and
14(81) — Al62)l, < C'pINE1) = N(62)l. g
< 52 (mponl. ) 1on — 6l

where D is independent of §. Hence, if ||¢|| ., < 2Dp~3, we obtain

_ D _2D
[A@)l o =0~ #lls) + e

Choosing # = 2D, we have that A is a contraction map in Fy, since

1A(61) — A@62)l < » 161 — bl

Therefore, an unique fixed point ¢¢ of A exists in Fy. Now, implies that
o 1
Zlcjl = O([ Rl o0 + IN (o )II*,aQ+I;H¢>I|OO) =00,

and by Remark we deduce that

161l 1) = OUIBll oo + IN(D)Il, 00 + 1Rl 50) = O(~?).
This ends the proof.

Using the fixed point characterization of the solution ¢ = ¢(§) to @ and the Implicit Function Theorem,
it is not difficult to verify that ¢(€) is differentiable with respect to &, in L>(2) and H'(Q). We omit the
details.

6. Variational reduction

Now that we have a solution ¢(&),c1(§),...,cm(&) of @, we can provide a solution to , if there
exists £ = (&1,.-.,&m) € Oy, such that

¢(€)=0 Vj=1,...,m. (71)

First we identify the variational structure of inherited from . Indeed, the energy functional associated
to a solution of is given by

/|Vu| + u? f? up“.
p

Then we define its finite-dimensional restriction

F(&) = Jp(U(&) + 6(£))- (72)
The following proposition tells us that critical points of F correspond to solutions of .
Proposition 6.1. F is a C! function, and, for p large enough, if D¢F(€) = 0, then £ satisfies .
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Proof. The map £ — ¢(€) is a C'-map into H!(Q2), and then F(§) is a C! function of £&. Now if we suppose
that D:F(§) = 0, we will have that

0= /Q (VU(E) + HE)V(De(U(E) + $(€))) + (U(€) + () (De(U(€) + 6(£))
L[ W) + e@)rDue) + o))

zzcj/a " Z1;(DeU(€) + Deg(€))

:ch/me“quDgU cj/ D¢(e% Z1;)¢

because [, € Z1;¢(£) = 0. From the definition of U(&), we obtain

m

e U(§) = Z ; {a(ék)l |:UJ(‘T) + Hj(z) + ;];(wlj(x) + Hij(x)) + %(ng(x) + Hzg(l’))}
J=1 Hy

1
e+ Hy o) g0 + )+ i) + oy (000, s

but O¢,), (uj + Hj) = PZy;j0e,), log pj — (5;1PZ1j6kj. In addition, we have that O,), (wi; + Hyj) =
0(1) + O(6; 1)ékj, hence, as v = O(p~1),

1 - v 1 1
e UE) = u;ﬁil . (—PZy, + O(;)) + ; ('u]pll [PZOj - E(Uj(l‘) + Hj(z) + E(wu(ﬂf) + Hyj(x))

1 1
=L (-PZy+0() +0(%)
pp ="y, p p
1
— L (-PZu+0(>))
it Ok p

On the other hand
Oen) (€% 21;) = 6“j(leZOj = V) Yly—a, 571 w-g5))) e 108 1

= G2+ (A7 - )
= 0(1).
Thus
0= 060, F (O
S - . R/ =3/ 0(7 )m ,
M,a;%(f>/me 5PZic+0 (o 10l ) 3 (6

using , and 7 we obtain

0=~ ’YLCk(f)/ ezl+0l2|cj
6k/~l¢]s71 R2 J=1
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Since the estimate above is valid for p large enough, necessarily cx(§) =0 for all k =1,...,m

7. Expansion of the energy
Lemma 7.1. Let p; be given by . ) and v = Lﬁ” Then
e

2
F(&) = mpry? + Amay? + 172 om(€) + m L

9 e’(d1+g1) +O(p~?),
OR2.

uniformly, for any € = (&1,...,&m) € Q.
Proof. We have that

_ 1 2 21 Pl
5 [ WO+ + )+ - — [ W©+or.

One one hand, multiply by U(&) 4 ¢(€), then integrate by parts and use to obtain

/ (U(€) + (€)1 = / IV (U(E) + ()2 + (U©) + 3(€)) + 0,
o0 Q

then
TU©)+0(6) = (5= =) [ VWO + o) + U16) + 6(6))* + 0™
(- ) | LOV0@F + v+ [ (960 +ote)

2 /Q (VU(©)V(E) + U(£)¢(£))] Lo,

Let us look a little closer the integral I := fQ(|VU(£)\2 +U(€)?)
I=/(IVU( OF +U(¢ Z/ VU +U2+2Z/ (VU;VU; + U;U;).
@ JAi

On one hand
oU;
VU;|° + U?) = LU;
Jovor+vn = [

2
- ui () 1 % wi(z)
= (e (G v

plt
- (8;’51' () + azewx))) % (ui<x> +Hila) + > (wni(o) + Hus(a)

(i) + Haia) )|

2 1 Op1;
= 72 [/ e“ (u; + H;) + */ o1 (u; + H;) + O(p_l)} .
,ui”’l f19) P Joo Ov

+
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For the first integral we have

20; 20;
Ui (uy + Hy) = : 1 : Hi(z) | d
/89 ‘ (u - ) /BQ |.%‘ - 52 - 6ZV(€1)|2 (Og |I - gi - 61’1/(51’)'2 * (x)> v

26; .
- ; ! H(x,&)+0(07) | d
/89 @ — & — (&) (Og |z — & — (&) Hma ol )> '

using the expanded variable §;y = A;(z — §;) gives

/ e (u;, + H;) = /
o9 99

but for 0 < v < 1,

2 1
= |log ———5 + H(8: A7 2 + &,&) — 2log §; + O(6%) | da
y = v(0)’ ( ly = v(0)|”

2
—_— =2 0(6;),
/897; y—y(0)|2 7+ O( )
2 1
I dy = —4mwlog 2 + O(6¢
/am = OF Ty P = T irlee ol
and 5
/ 2 (HGA w66 — H(E,E)) = O().
o9 |y —v(0)]
Then

/ e“(u; + H;) = —4mlog?2 — 4mlog é; + 2 H(&;, &) + O(89). (73)
o0

As for the second integral, we can say that

O¢1i N 1 1 ‘
/zm oy (u; + H;) /{m ey <log & — o (E)] + H(%&)) dx

991
o, 61/

1
((5Z-A;1y +&) % <log W + H(éiA;ly +&,&) —2log 6Z-> dx,

y—v

noticing that 8; 221 (5, A; 'y + &) = O(1)

/ 01 (u; + H;) = —2log 6; 0914 | o(1). (74)
[019]

8V a0 81/
Using and , we obtain

2

01

/ (VU >+ U?) = v {zm log 2 — 47 log &; + 2mH (&;,&;) + 2log 6 +0(p™H|,
Q urt aq Ov
_ 2
and, because §; = ,uie*% and p; "' =1-— %log wi + O(p~?2), we have that
01
/(|VU¢\2 + Uf) = 2pmy? — 41y log 2 + 2w H (&,&;) — 8mlogu; + 2 / % + O(p*3).
Q a0

Similarly, for ¢ # j,

/(VUZ-VUJ- +U,U;) = %Uj
Q an OV
2

Y — Um e (uj + Hj) + O(pl)]

p—1

i
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but

20, 1
Wil 4+ H.) = L 1 H i d
/aae (g + ) /m o & — s @) <°g oG o) Mﬁ)) !

1 1
= _ log —— 1+ H i & O($. 51a a d
oo, =" <°g|5i§j|” (€. €) + 0085 + 37 Iy >> :

1 (o3 [e3 T
- /asz o (Gt T O o) d

=7G(§,&5) + 065 + 67).

and because (,ui,uj)fﬁ =1- %(log,ui +logu;)+O0(p ) =1+0(p"),
/ (VU,VU; + U;U;) = ’VQWG(fi,fj) + O(p_3).
Q
Putting all this together

[ IVU@F + U2 =3 [(20my? — 4wy o2 + 20 H 65 €) — Srlog
Q i=1

2 3(;511 -3
+y /GQ 8y)+2§727@(&,€j)+0(1) )

a(blz

= 2pmmy? — dmny?log2 + 2 Z /

+2my ) (—410g,ui +H(&, &)+ G(fi,fj))

i=1 j#i
+0(p™?).
But implies that 4logu; = —2log2 + 4oy + 2(H(&, &) + Y G(&,&5)) + O(p™!), and then, recalling

J#i
that a3 = —1 — log 2, we obtain

/Q ‘VU(§)|2 + U(€)? = 2mpry? + 8may? — 27rfy2(z H(&,6) + Z G(&,€))) 2 Z/ 5‘¢1z O3

i=1 J#i

Now Lemma, for 0 < B < %, gives that

O ,
| G| g+ o).
an oV OR2

hence

|VU(€)‘2 +U(£)2 _ 2mp7rry2 _|_8m7rry? _ 27T,>/2 (ZH &iL,&) —|—ZG & &5 )
Q VD)

(75)
1
P

wm? [t + OG5
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Finally, and gives

2 /Q (VU(©)V(E) + U(E)$(©)) + /Q (VO + 6(6)2) < 21U 11 ey 16 s ey + 16 2rs e
1

The proof is now complete.

8. Proof of Theorem [1.1]
We recall that 2, = (9Q)™ \ D, where D denotes the diagonal. Namely
QnL = {f € (8Q)m : gi #gj lf] # Z}

According Proposition we can provide a solution to , if we can find £ = (&1,...,&y,) a critical point
of F(&). This es equivalent to finding a critical point of

~ 2
P == (f(ﬁ) — g —dmmy? = [ e+ gl>> .

On the other hand, from Lemma we have that for
€€ Q= {€€ 0.l — &1 > 2, foralli £},

F(&) = em(©) + 06, (76)
where O(%) is in uniform norm as p — oco. Following [2], we will show that
om(€) == (H(&, &)+ G(&.&))
i=1 J#i
has at least 2 critical points in Qi . ~
First of all, ¢,, is a C! function and bounded from above in €2, (and hence in €2,,), in addition

©(&1,. .., &m) — —00, as |& — &;| — 0 for some i # j,

then, since p is arbitrarily small, ¢,, has an absolute maximum M in Qo

On the other hand, the Ljusternik-Schnirelmann theory is applicable in our setting, so that the number
of critical points of ¢, can be estimate form below by cat(Q ), the Ljusternik-Schnirelmann category of
Q,,, relative to ,,. Let us recall that cat(Qm) is the minimal number of closed and contractible in Q,, sets
whose union covers Qm

Observe that cat(€,,) > 1 (see [2] for more details). Hence, if we define

¢ = sup 61gf Pm(§) where == {C C Q, : C closed and cat(C) > 2} (77)
CexE

Ljusternik-Schnirelmann theory gives that ¢ is a critical level. If ¢ # M, we conclude that there are at
least two distinct critical points for ¢, in Q,. If ¢ = M, implies tat there is at least one set C' with
cat(C) > 2, where ¢,, reaches its absolute maximum. In this case we conclude that there are infinitely
many critical points for ¢,, in Q These kind of critical points persist under small C*-perturbations of the
function. For this reason, from (76]), we can conclude also that function F (&), which is COclose to ¢y, in
Qum, has at least two distinct crltlcal points in Q.. and hence, . has at least two distinct solutions.

|
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