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Abstract

We consider the elliptic equation −∆u + u = 0 in a bounded, smooth domain Ω in R2, subject to the
nonlinear Neumann boundary condition ∂u

∂ν = up. Here p > 1 is a large parameter. We prove that given any
integer m ≥ 1 there exist at least two families of solutions up developing exactly m peaks ξi ∈ ∂Ω, in the

sense that pup ⇀ 2eπ
m∑
i=1

δξi , as p→∞.
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1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. This paper deals with the construction
of solutions of the boundary value problem

−∆u+ u = 0 in Ω
∂u

∂ν
= up on ∂Ω,

(1)

where ν denotes the outer unit normal vector to ∂Ω and p is a large exponent. Some solutions to (1) can
be obtained as appropriately scaled extremals of

Sp = inf
u∈H1(Ω)\{0}

Ip(u) where Ip(u) =

∫
Ω
|∇u|2 + u2

(
∫
∂Ω
|u|p+1)

2
p+1

,

which are guaranteed to exist thanks to the compactness of the trace embedding H1(Ω) ↪→ Lp+1(∂Ω). They
are referred to as least energy solutions of (1).

A related nonlinear problem is: 
∆u+ up = 0 in Ω

u > 0 in Ω
u = 0 on ∂Ω.

(2)

Ren and Wei, [21, 22] studied least energy solutions up of (2), namely, the H1
0 (Ω) functions which minimize∫

Ω
|∇u|2

(
∫

Ω
|u|p+1)

2
p+1

.

Email address: hcastro@dim.uchile.cl (Hernán Castro)

Preprint submitted to Journal of Differential Equations February 4, 2009



In those works, the authors show that such solutions have an L∞-norm bounded and bounded away from
zero, uniformly in p as p→∞. Moreover, they show that both

p |∇up|2 and pup+1
p

behave as Dirac masses near a critical point of Robin’s function H(x, x), where H(x, y) = G(x, y)+log |x− y|
and G is the Green’s function of −∆ under Dirichlet boundary condition. Also in [1, 8] the authors describe
the behavior of up as p goes to infinity, by identifying the Liouville-type limit profile

∆u+ eu = 0 in R2,

∫
R2
eu <∞,

and showing that ‖up‖∞ →
√
e as p→∞.

But (2) may have a large number of solutions as shown recently by Esposito, Musso and Pistoia [10].
They proved, for instance, that if Ω is not simply connected, given any integer m ≥ 1 and a large enough
exponent p, a solution satisfying

pup(x)p+1 ⇀ 8πe
m∑
j=1

δξj as p→∞

does exist. As in [6, 9], the location of such concentration points is closely linked to a functional defined
from Green’s function for −∆ under Dirichlet boundary condition.

Going back to (1) the asymptotic behavior of least energy solutions up has not been studied yet, but we
conjecture that their L∞-norm must stay bounded and bounded away form zero, and moreover, as in [1],
after a suitable change of variables, we may identify the following limit profile for (1)

∆v = 0 in R2
+

∂v

∂ν
= ev on ∂R2

+∫
∂R2

+

ev <∞,

(3)

to show that ‖up‖∞ →
√
e as p→∞.

An important fact is that after [15, 20, 24], we know that any solution to (3) must be of the form

v(t,µ)(x1, x2) = log
2µ

(x1 − t)2 + (x2 + µ)2
, (4)

for suitable parameters t ∈ R and µ > 0.
For our problem we use v(0,1) as a building block to construct solutions of (1) that, after some transfor-

mations, look like a sum of solutions to (3), which concentrates at boundary points ξ1, . . . , ξm as p→∞.
Now, the Green’s function for the Neumann problem, given by

−∆xG(x, y) +G(x, y) = 0 in Ω
∂G

∂νx
(x, y) = 2πδy(x) at ∂Ω.

(5)

and H(x, y) = G(x, y) + log |x− y|2, its regular part, play a fundamental role in the location of such
concentration points. More precisely, if we define

ϕm(ξ) = −
m∑
i=1

H(ξi, ξi) +
∑
j 6=i

G(ξi, ξj)

 , (6)
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for ξ ∈ Ω̂m := (∂Ω)m \D and D denotes the diagonal set, and for ρ > 0 we set

Ω̃m =
{
ξ ∈ Ω̂m, |ξi − ξj | > 2ρ, for all i 6= j

}
,

we obtain the following theorem, which is the main result of this paper:

Theorem 1.1. Given any integer m ≥ 1 there exists pm > 1 such that for any p > pm equation (1) has at
least cat(Ω̃m) solutions up, each one satisfying

pup(x)p+1 ⇀ 2πe
m∑
j=1

δξj as p→∞,

where ξ = (ξ1, . . . , ξm) ∈ ∂Ωm is a critical point of ϕm. More precisely, there exists an m-tuple ξp =
(ξp1 , . . . , ξ

p
m) ∈ ∂Ωm converging to ξ, such that up → 0 uniformly in Ω \ ∪mj=1Bd(ξ

p
j ) and

sup
x∈Bd(ξpj )∩Ω

up(x) −→
p→∞

√
e,

for any d > 0.

In the above theorem cat(Ω̃m) refers to the Ljusternik-Schnirelmann category of Ω̃m, which in our case
we show it is at least 2.

We prove this results through a Variational Reduction procedure, which has become popular since the
work of Floer and Weinstein [11] about the one-dimensional Schrödinger equation

i~ψt = − ~2

2m
ψxx + V (x)ψ − γψ2ψ, in R× {t ≥ 0} .

In that paper, the authors show that if ~ is small, there exist standing wave solutions concentrating near
each nondegenerate critical point of the potential V (x). Using the same approach, this result was extended
by Oh to higher dimensions, building multi-peaks solutions ([18, 19]). Since Floer and Weinstein’s early
work, this technique has been developed and improved in the last two decades, and it is easy to find many
results related to concentrating solutions in differential equations ([2, 3, 4, 6, 5, 7, 9, 12, 13, 14, 17, 23]
among others).

In particular, in [6, 9] the authors investigated a Dirichlet boundary condition problem with exponential
nonlinearity and concluded that there exist solutions with multiple concentration points in the interior of Ω.
In [2] a nonlinear exponential Neumann boundary condition was analyzed, this time finding concentration
points on the boundary of Ω and, as we mentioned before, in [10] the authors analyzed a Dirichlet boundary
condition problem with polynomial nonlinearity. In all of those works, the crucial step was to understand
the invertibility of the linearized operator at approximated solutions. The same difficulty arises here.

The proof of Theorem 1.1 is divided in several parts. Section 2 is dedicated to an auxiliary problem
in the upper half plane. As we announced before, in Section 3 we use v(0,1) to construct an approximated
solution to (1) and then use the result of Section 2 to improve the order of the error term. Then we rewrite
our initial problem in terms of a linear operator L, and we perform solvability theory for this operator in
Section 4. We solve an auxiliary nonlinear problem in Section 5 and we reduce (1) to finding critical points
of a finite-dimensional function in Section 6. In Section 7.1 we give an asymptotic expansion for the function
obtained in Section 6 and finally we prove Theorem 1.1 in Section 8 by showing that the number of critical
points of our finite dimensional function is at least two.

2. An equation in the upper half-plane

To provide an appropriate approximation for a solution to our problem, we need to study the following
equation 

∆φ = 0 in R2
+

∂φ

∂ν
− evµφ = evµg on ∂R2

+,
(7)
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where g is a given function and

vµ(x) = v(0,µ) = log
2µ

x2
1 + (x2 + µ)2

.

In [2] it is shown that:

Lemma 2.1. Any bounded solution of the homogeneous problem
∆φ = 0 in R2

+

∂φ

∂ν
− evµφ = 0 on ∂R2

+,
(8)

is a linear combination of

z0µ(x) = − 1
µ

(x · ∇vµ(x) + 1) =
1
µ
− 2

x2 + µ

x2
1 + (x2 + µ)2

(9)

and
z1µ(x) =

∂vµ
∂x1

(x) = −2
x1

x2
1 + (x2 + µ)2

. (10)

Therefore, to find a solution of (7) it is natural to impose orthogonality conditions with respect to these
functions, as the following proposition shows

Proposition 2.2. Let g be a C1(∂R2
+) function satisfying for µ > 0, k ≥ 0

g(x) = O(logk(1 + |x|)) as |x| → ∞, (11)

and ∫
∂R2

+

evµz0µg = 0 =
∫
∂R2

+

evµz1µg. (12)

Then (7) has a solution φ ∈ Cα(R2
+). Moreover, for any 0 < α < 1 and |x| → ∞

|φ(x)| ≤ C 1
|x|α

, |∇φ(x)| ≤ C 1
|x|1+α y |∇2φ(x)| ≤ C 1

|x|2+α , (13)

where the constant C depends on ‖g‖Lp(∂R2
+), for some p = p(α) > 1.

Proof. Let D := B(0, 1
2µ ) ⊆ R2, and y0 = (0,− 1

2µ ). We can produce a solution of (7) using a solution of
∆ψ = 0 in D

∂ψ

∂ν
− 2µψ = g̃ on ∂D,

(14)

choosing g̃ appropriately. Indeed, let us consider Φ : R2
+ ∪ {+∞} → D and Ψ : D → R2

+ ∪ {+∞}, defined
as

Φ(x) =
x− x0

|x− x0|2
+ y0, Ψ(y) =

y − y0

|y − y0|2
+ x0.

The functions Φ and Ψ are just Kelvin’s maps about the point x0 (resp. y0) translated in y0 (resp. x0).
Suppose ψ is a solution to (14) with g̃(y) = 2µg(Ψ(y)), and define

φ(x) = ψ(Φ(x)).

4



Clearly ∆φ = 0 in R2
+, and a direct computation shows that

∂φk
∂νR2

+

(x) = evµ(x)(φk(x) + g(x)), for all x ∈ ∂R2
+.

Therefore φ is a solution to (7).
Let us analyze the existence problem for (14). In functional terms this equation can be rewritten as to

find ψ ∈ H1(D), such that
ψ +Kψ = G, (15)

where K is a self-adjoint operator. Indeed, the weak formulation of (14) is to find ψ ∈ H1(D) such that∫
D

∇ψ · ∇φ− 2µ
∫
∂D

ψφ =
∫
∂D

g̃φ ∀φ ∈ H, (16)

where g̃ ∈ L2(∂D). Set H = H1(D), then this last equation can be rewritten as

(ψ, φ)H − (ψ, φ)L2(D) − 2µ(ψ, φ)L2(∂D) = (g̃, φ)L2(∂D),

and (ψ, φ)H =
∫

Ω
(∇ψ∇ψ + ψφ) is the usual H1 inner product. Then we define L : H 7→ H∗, k : H 7→ H∗

and G̃ ∈ H∗ as

L(ψ)(φ) = (ψ, φ)H ,

k(ψ)(φ) = −
∫
D

ψφ− 2µ
∫
∂D

ψφ,

G̃(φ) =
∫
∂D

g̃φ,

and write our problem as to find ψ ∈ H such that

ψ + T ◦ k(ψ) = T (G̃).

where T : H∗ 7→ H denotes the inverse of L given by Riesz’ Theorem. Now, the Fredholm alternative tells
us that (15) has a solution if and only if

T (G̃) ∈ Ker(I +K)⊥.

As a consequence of Lemma 2.1 we have that Ker(I +K) = {z̃0µ, z̃1µ}, where

z̃0µ(y) = z0µ(Ψ(y)) = −2y2,

z̃1µ(y) = z1µ(Ψ(y)) = −2y1.

In addition, G ∈ Ker(I + K)⊥ if and only if G̃(z̃0µ) = G̃(z̃1µ) = 0, and therefore, to obtain a solution to
(14), we need ∫

∂D

g̃z̃0µ = 0 and
∫
∂D

g̃z̃1µ = 0. (17)

A useful consequence of (11) is that orthogonality conditions (17) are equivalent to those given by (12).
Now, since g ∈ Lp(∂Ω), for any p > 1, by Lp theory ([16]) we have that ψ ∈ W 1+s,p(D) for any 0 < s < 1

p ,
and by Morrey’s embedding theorem we obtain ψ ∈ Cα(D), for α = 1− 2

(1+s)p .
To prove (13) we add to ψ a constant times z̃0µ(y) such that ψ(y0) = 0, and then we may use a standard

scaling argument and Hölder estimates. We omit the details.

�
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Remark 2.1. If we have a better behavior from g in infinity, we can improve (13). More precisely, if we
suppose that g(x) = O((1 + |x|)−k), our estimate becomes

|φ(x)| ≤ C 1

|x|α+k
, |∇φ(x)| ≤ C 1

|x|1+k+α
and

∣∣∇2φ(x)
∣∣ ≤ C 1

|x|2+k+α
.

Remark 2.2. If g is a symmetric function respect to y, i.e.

g(x, 0) = g(−x, 0), ∀ x ∈ R,

and a solution φ to (7), we can always produce a symmetric solution φ̃ to (7) by taking

φ̃(x, y) =
φ(x, y) + φ(−x, y)

2
.

3. Ansatz for the solution

In this section we provide an ansatz for a solution to problem (1). A useful observation is that u satisfies
(1) if and only if v(y) = δ

1
p−1u(δy + ξ), y ∈ Ωδ,ξ satisfies

−∆v + δ2v = 0 in Ωδ,ξ
∂v

∂ν
= vp on ∂Ωδ,ξ,

where ξ is a given point of ∂Ω, δ > 0, and Ωδ,ξ is the expanding domain defined by δ−1(Ω− ξ).
As we pointed out in the introduction, the basic element to build an approximate solution to problem

(1) exhibiting one point of concentration is the function v(0,1), defined in (4).
For ξj ∈ ∂Ω and δj > 0, we define

uj(x) = log
2δj

|x− ξj − δjν(ξj)|2
, (18)

where ν(x) is the outer unit normal to Ω at the point x. As it will be important later, we notice that

uj(x) = v(Aj(δ−1
j (x− ξj)))− log δj ,

with v(y) = v(0,1)(y) and Aj : R2 7→ R2 a rotation map such that

AνΩ(ξ) = νR2
+

(0). (19)

Our first ansatz is given by

Uj(x) =
1

p
p
p−1 δ

1
p−1
j

(uj(x) +Hj(x)) ,

where Hj is a correction term defined as a solution of
−∆Hj +Hj = −uj in Ω

∂Hj

∂ν
= euj − ∂uj

∂ν
on ∂Ω.

(20)

Lemma 3.1. For any 0 < α < 1

Hj(x) = H(x, ξj)− log 2δj +O(δαj ),

uniformly in Ω, where H(x, y) is the regular part of the Green function defined in (5).
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Proof. The boundary condition satisfied by Hj is

∂Hj

∂ν
= euj − ∂uj

∂ν

=
2δj

|x− ξj − δjν(ξj)|2
+ 2

(x− ξj − δjν(ξj)) · ν(x)
|x− ξj − δjν(ξj)|2

=
2δj + 2(x− ξj − δjν(ξj)) · ν(x)

|x− ξj − δjν(ξj)|2

Thus, for x 6= ξ

lim
δj→0

∂Hj

∂ν
(x) = 2

(x− ξj) · ν(x)
|x− ξj |2

.

The regular part of Green’s function satisfies
−∆xH(x, y) +H(x, y) = − log

1
|x− y|2

x ∈ Ω

∂H

∂νx
(x, y) = 2

(x− y) · ν(x)
|x− y|2

x ∈ ∂Ω.

We set z(x) = Hξ(x) + log 2δ −H(x, ξ), which solves
−∆z + z = log

1
|x− ξj |2

− log
1

|x− ξj − δjν(ξj)|2
in Ω

∂z

∂ν
=
∂Hξj ,p

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj |2

on ∂Ω.

Following Lemma 3.1 from [2], we prove that for any q > 1∥∥∥∥∂z∂ν
∥∥∥∥
Lq(∂Ω)

≤ Cδ1/q,

and for 1 < q < 2
‖−∆z + z‖Lq(Ω) ≤ Cδ.

Now by Lq theory, it follows that for any 0 < s < 1
q

‖z‖W 1+s,q(Ω) ≤ Cδ
1/q,

and by the Morrey embedding we obtain

‖z‖Cγ(Ω) ≤ Cδ
1/q

for any 0 < γ < 1
2 + 1

q . This proves the result (with α = q−1).

�

Assume now that δj = µje
− p2 , 1

C ≤ µj ≤ C. Then our ansatz becomes

Uj(x) =
e

p
2(p−1)

p
p
p−1µ

1
p−1
j

(uj(x) +Hj(x)) ,

and for p→∞
Uj(ξj)→

√
e and Uj(x) = O(p−1) if x 6= ξj .
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Furthermore, under the extra assumption that the parameter µj satisfies

log 2µ2
j = H(ξj , ξj),

a direct computation shows that Uj defined above is a first approximation for a solution to problem (1)
exhibiting one point of concentration at ξj . Indeed, assume for simplicity that Aj = I. If we define
Vj(y) = δ

1/(p−1)
j Uj(δjy + ξj), where δjy = x− ξj then

1

p
p
p−1

(p+ v(y) +O(e
p
2 |y|+ e

p
2 )),

and hence
∂Vj
∂ν
− V pj ∼

1

p
p
p−1

(
ev −

(
1 +

v

p

)p)
,

which, roughly speaking, implies that the error for Uj to be a solution of (1) is of order p−2. However, as
we will see below, this is not enough to build an actual solution to (1) starting from Uj . We need to refine
this first approximation, by adding more terms to the expansion p+ v(y) + o(1).

To this end, let us consider the problem
∆φ1 = 0 in R2

+

∂φ1

∂ν
− evφ1 = evg1 on ∂R2

+,
(21)

where v(x) = log 2
x2
1+(x2+1)2

, g1 = α1(v − 1)− 1
2v

2, and α1 is a constant to be fixed.

Proposition 2.2, tell us that to obtain a solution to this problem, we first need that g1 = O(logk |x− x0|),
which is obvious from the definition, and on the other hand, we must check orthogonality conditions (12)
for µ = 1. Let us notice that g1 is a symmetric function for any choice of α1, hence∫

∂R2
+

evg1z1 = 0,

To obtain the other orthogonality condition, we only need to fix the value of α1. Indeed, we can write
z0(x) = x · ∇v(x) + 1, then an integration by parts shows that∫

∂R2
+

evg1z0 =
∫
∂R2

+

ev
(
α1(v − 1)− v2

2

)
(x · ∇v(x) + 1)dx

= (α1 + 1)
∫
∂R2

+

ev −
∫
∂R2

+

evv.

Choose α1 to verify

(α1 + 1)
∫
∂R2

+

ev =
∫
∂R2

+

evv,

or more precisely, since
∫
∂R2

+
ev = 2π and

∫
∂R2

+
evv = −2π log 2,

α1 = −(1 + log 2), (22)

Both orthogonality conditions are then satisfied, and therefore we can take φ1 as a solution of (21). Fur-
thermore, we have the asymptotic estimates for φ1 given by (13). In addition, Remark 2.2, allows us to
assume that φ1 is a symmetric function.

With this function φ1, we define w1(y) := φ1(y) + α1v(y) and look for a solution to
∆φ2 = 0 in R2

+

∂φ2

∂ν
− evφ2 = evg2 on ∂R2

+,
(23)
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where now g2 = α2(v − 1)− vw1 + 1
3v

3 + 1
2w

2
1 − 1

2w1v
2 + 1

8v
4.

Since w1 is also a symmetric function satisfying w1 = α1v(y) + O(|x|−α), g2 = O(log4 |x− x0|), g2 is a
symmetric function, and as before, with the proper choice of α2, both orthogonality conditions required by
Proposition (2.2) can be achieved, thus obtaining φ2 a symmetric solution of (23) which satisfies (13).

With these functions, we are able to improve our initial ansatz in the following way:
Given ξj ∈ ∂Ω, let ρ > 0 be a fixed small radius, depending only in the geometry of Ω, such that

Fj : Bρ(0) ∩Aj(Ω− ξj) −→M ∩ R2
+,

is a C2 diffeomorphism, and M an open neighborhood of the origin such that Fj(Bρ(0) ∩ Aj(∂Ω − ξj)) ⊆
M ∩ ∂R2

+, where Aj is the rotation map mentioned at the beginning of this section. We select Fj so that it
preserves area. Let η : R2 −→ R be a smooth cutoff function, such that η ≡ 1 for |x| ≤ ρ

2 , η ≡ 0 for |x| > ρ,
0 ≤ η ≤ 1. Finally, for k = 1, 2, define

φkj = φk(δ−1
j Fj(Aj(x− ξj)))η(Aj(x− ξj))

and
wkj(x) = φkj(x) + αkv(δ−1

j Aj(x− ξj)).

Our final ansatz for a solution of (1) concentrating at ξj ∈ ∂Ω, is

Uj(x) =
γ

µ
1
p−1
j

[
uj(x) +Hj(x) +

1
p

(w1j(x) +H1j(x)) +
1
p2

(w2j(x) +H2j(x))
]
,

where γ = p
p

1−p e
p

2(p−1) , uj is defined in (18), Hj is the solution of (20), and Hkj , k = 1, 2, is a new correction
term, given by the following

Lemma 3.2. Let Hkj be a solution of
−∆H̃kj + H̃kj = ∆wkj − wkj in Ω

∂H̃kj

∂ν
= αk

(
euj − ∂uj

∂ν

)
on ∂Ω,

then, for any 0 < α < 1,
Hkj(x) = αkH(x, ξj)− αk log 2δ2

j +O(δαj ).

We will prove this lemma at the end of the section.
As with our initial ansatz, we will assume that δj = µje

−p/2 and that C−1 ≤ µj ≤ C. We will seek a
solution u of (1) of the form u = Uj + φj . In terms of φ (we omit dependency on j), our problem can be
stated as to find a solution of 

−∆φ+ φ = 0 in Ω
∂φ

∂ν
= Wφ+N(φ) +R on ∂Ω,

(24)

where W = pUp−1, N(φ) = (U + φ)p − Up − pUp−1 and R = Up − ∂U
∂ν . To estimate the error term R, we

need to work in a weighted L∞ space, so we introduce the following norm in L∞(∂Ω): For any ξj ∈ ∂Ω and
h ∈ L∞(∂Ω), define

‖h‖∗,∂Ω = sup
x∈∂Ω

∣∣∣∣∣∣
( √

δj

(|x− ξj |+ δj)
3
2

)−1

h(x)

∣∣∣∣∣∣ . (25)

We have the following
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Proposition 3.3. Given ξj ∈ ∂Ω, let µj be a solution of

log 2µ2
j = H(ξj , ξj) + (H(ξj , ξj)− log 2δ2

j )
(
α1

p
+
α2

p2

)
, (26)

where H(x, y) denotes the regular part of the Green function (5). Then there exist C,D > 0 and p0 > 1,
such that for any p > p0

1. ‖R‖∗,∂Ω ≤ Cp−4,

2. |W (x)| ≤ Deuj(x), moreover, for |x− ξ| ≤ ρ
2

√
δ and δjy = Aj(x− ξj)

W (x) =
ev(y)

δj
(1 +

1
p

(w̃1j(y)− v(y)− v2(y)
2

) +O(
1
p2

log3(|y|+ 1))), (27)

where w̃kj(y) = φk(δ−1
j Fj(δjy)) + αkv(y).

To prove this proposition we need the following lemmas:

Lemma 3.4. Let φ be a solution of (7), with g ∈ C1(R2
+), satisfying both orthogonality conditions, (11)

and
|∇g(x)| = O(|x|−1 logk |x|) as |x| → ∞. (28)

Define
φ̃(x) = φ(δ−1

j Fj(Aj(x− ξj)))η(Aj(x− ξj)).

Then, for any x ∈ ∂Ω, |x− ξj | ≤ ρ
2 ,

δj
∂φ̃

∂ν
(x) = ev(y)

[
φ̃(δjy) + g(y)

]
+O(δαj ),

where δjy = Aj(x− ξj) and 0 < α < 1.

Lemma 3.5. Let a, b, c functions such that

a) −C1 log(|y|+ 1) ≤ a(y) ≤ C2,

b) |b(y)|+ |c(y)| ≤ C3 log(|y|+ 1),

then(
1 +

a

p
+

b

p2
+

c

p3

)p
= ea

[
1 +

1
p

(b− a2

2
) +

1
p2

(c− ab+
a3

3
+
b2

2
− a2b

2
+
v4

4
) +O

(
log6 (|y|+ 1)

p3

)]
.

The proof of Lemma 3.4 is at the end of this section, while Lemma 3.5 can be proved using Taylor’s
theorem.

Proof. (Proposition 3.3). To simplify notation we will work in the variable δjy = Aj(x − ξj). First, we
notice that, due the election of Hj and Hkj ,

∂Uj
∂ν

(x) =
1

p
p
p−1 δ

1
p−1
j

{
euj(x) +

1
p

(
∂φ1j

∂ν
(x) + α1e

uj(x)

)
+

1
p2

(
∂φ2j

∂ν
(x) + α2e

uj(x)

)}
.

On one hand, for k = 1, 2,

∂φkj
∂ν

(x) = δjφk(
1
δj
Fj(δjy))∇η(δjy)AjνΩ(δjy) +

1
δj
η(δjy)∇φk(

1
δj
Fj(δjy))DFj(δjy)AjνΩ(δjy),
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and if |x− ξj | > ρ
2 , we obtain that euj(x) = O(δj), φk(δ−1

j Fj(δjy)) = O(δαj ) and ∇φk(δ−1
j Fj(δjy)) =

O(δ1+α
j ), for any 0 < α < 1, hence∣∣∣∣∂Uj∂ν

(x)
∣∣∣∣ ≤ Cδj

p
p
p−1 δ

1
p−1
j

(
1 +

1
p

+
1
p2

)
≤ Cδj

p
.

In this region, we also have that Uj = O(p−1) uniformly, then

Uj(x)p ≤
(
C

p

)p
.

Hence, for |x− ξj | > ρ
2 ,∣∣∣∣∣∣
( √

δj

(|x− ξj |+ δj)
3
2

)−1(
Uj(x)p − ∂Uj

∂ν
(x)
)∣∣∣∣∣∣ ≤ e p4

((
C

p

)p
+
Cδj
p

)

≤ C e
− p4

p
. (29)

One the other hand, the choice of parameter µj given by (26) allow us to expand our ansatz in the y variable
as

Uj(x) =
1

p
p
p−1 δ

1
p−1
j

[
p+ v(y) +

1
p
w̃1j(y) +

1
p2
w̃2j(y) +O(δαj + δj |y|)

]
, (30)

then, for |y| ≤ ρ

2
√
δj

, we can use Lemma 3.5 to obtain

Upj (x) =
1

p
p
p−1 δ

p
p−1
j

[
1 +

v(y)
p

+
w̃1j(y)
p2

+
w̃2j(y)
p3

+O

(
1
p

(δαj + δj |y|)
)]p

=
ev(y)

p
p
p−1 δ

p
p−1
j

[
1 +

1
p

(
w̃1j(y)− 1

2
v2(y)

)
+

1
p2

(w̃2j(y)− w̃1j(y)v(y)

+
1
3
v3(y) +

1
2
w̃2

1j(y)− 1
2
w̃1j(y)v2(y) +

1
8
v4(y)

)
+O

(
1
p3

log6(|y|+ 1) + p2δj |y|+ p2δαj

)]
.

In addition, Lemma 3.4 give us the following expansion

∂Uj
∂ν

(x) =
ev(y)

p
p
p−1 δ

p
p−1
j

[
1 +

1
p

(φ1j(δjy) + g1(y) + α1) +
1
p2

(φ2j(δjy) + g2(y)

+α2) +O(
δαj
p

)
]

=
ev(y)

p
p
p−1 δ

p
p−1
j

[
1 +

1
p

(
w̃1j(y)− v2(y)

2

)
+

1
p2

(w̃2j(y)− w1(y)v(y)

+
1
3
v3(y) +

1
2
w2

1(y)− 1
2
w1(y)v2(y) +

1
8
v4(y)

)
+O(

δαj
p

)
]
,

11



then,

Uj(x)p − ∂Uj
∂ν

(x) =
ev(y)

p
p
p−1 δ

p
p−1
j

[
1
p2

(
v(y) +

1
2
v2(y)− w1(y)− w̃1j(y)

)
(w1(y)

−w̃1j(y)) +O

(
1
p3

log6(1 + |y|) + p2δj |y|+ p2δαj

)]
.

To continue, we must estimate w1(y)− w̃1j(y). Suppose first that β = 1−α
2 , then for 0 ≤ |y| ≤ ρ

2δβj

|w̃1j(y)− w1(y)| = |φ1(
1
δj
Fj(δjy))− φ1(y)| = O(y − δ−1

j Fj(δjy))

= O(δj |y|2) = O(δαj ), (31)

Now, for ρ

2δβj
≤ |y| ≤ ρ

2
√
δj

, using (13), we obtain

|w̃1j(y)− w1(y)| = |φ1(
1
δj
Fj(δjy))− φ1(y)|

≤ Cδj |y|2 sup
ρ

2δβ
j

≤|y|≤ ρ

2
√
δj

1
|y|1+α

≤ Cδθj ,

for some 0 < θ < 1/2. Putting both estimates together, we obtain that for any 0 < θ < 1/2 and any
0 < |y| < ρ

2
√
δj (

v(y) +
1
2
v2(y)− w1(y)− w̃1j(y)

)
(w1(y)− w̃1j(y)) = O(p2δθj ),

since in this region v(y) = O(p) and φ1(y) = O(1). Hence

Uj(x)p − ∂Uj
∂ν

(x) =
ev(y)

p
p
p−1 δ

p
p−1

[
O

(
1
p3

log6(1 + |y|) + p2δj |y|+ p2δθj

)]
,

and ∣∣∣∣∣∣
( √

δj

(|x− ξj |+ δj)
3
2

)−1(
Uj(x)p − ∂Uj

∂ν
(x)
)∣∣∣∣∣∣ ≤ C(|y|2 + 1)

3
2

(
1
p4

log6(|y|+ 1)
(|y|+ 1)2

)

≤ C

p4
. (32)

To end this part of the proof, consider the region ρ

2
√
δj
< |y| < ρ

2δj
. Here, since

(
1 + a

p

)p
≤ ea, we obtain

Upj (x) = O

(
1

pδj(|y|+ 1)2

)
.

Noticing that (13) is still valid in this region, ∂Uj∂ν (x) = O
(

1
pδj(|y|+1)2 + δj

p

)
, so we conclude that

R(x) = O

(
1
pδj

1
(|y|+ 1)2

)
,
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and hence ∣∣∣∣∣∣
( √

δj

(|x− ξj |+ δj)
3
2

)−1(
Uj(x)p − ∂Uj

∂ν
(x)
)∣∣∣∣∣∣ = O

(
1

p(|y|+ 1)
1
2

)
= O

(
e−p/8

p

)
. (33)

We conclude by putting together estimates (32), (33) and (29).
To prove the estimate over W (x) = pUj(x)p−1, we first notice that a slight modification of Lemma 3.5,

tells us that (
1 +

a

p
+

b

p2
+

c

p3

)p−1

= ea
[
1 +

1
p

(
b− a− a2

2

)
+O

(
1
p2

log4(|y|+ 1)
)]

,

then, for |y| ≤ ρ

2
√
δj

W (x) = pUp−1
j (x)

=
1
δj
ev(y)

[
1 +

1
p

(
w̃1j(y)− v(y)− 1

2
v2(y)

)
+O

(
1
p2

log4(|y|+ 1)
)]

=
ev(y)

δj

[
1 +

1
p

(
w̃1j(y)− v(y)− 1

2
v2(y)

)
+O

(
1
p2

log4(|y|+ 1)
)]

.

In addition, for |y| > ρ
2δj

, we obtain that W (x) = O(p(Cp )p−1), and for ρ

2
√
δj
< |y| < ρ

2δj
, W (x) = O(euξ(x)).

This completes the proof.

�

To produce a solution with several concentration points, ξ1, . . . , ξm ∈ ∂Ω, we consider the natural
candidate

U(x) =
m∑
j=1

γ

µ
1
p−1
j

[
uj(x) +Hj(x) +

1
p

(w1j(x) +H1j(x)) +
1
p2

(w2j(x) +H2j(x))
]
, (34)

Define Ωj = Aj(δ−1(Ω−ξj)). To prove an analogous to Proposition 3.3, we need to redefine the weighted
norm in L∞ as

‖h‖∗,∂Ω = sup
x∈∂Ω

∣∣∣∣∣∣∣
 m∑
j=1

√
δj

(|x− ξj |+ δj)
3
2

−1

h(x)

∣∣∣∣∣∣∣ . (35)

Proposition 3.6. Given ξ1, . . . , ξm ∈ ∂Ω, such that |ξi − ξj | > 2ρ > 0 for i 6= j, let be µ1, . . . , µm a solution
to the system

log 2µ2
i = H(ξi, ξi)

(
1 +

α1

p
+
α2

p2

)
− log 2δ2

i

p

(
α1 +

α2

p

)
+
∑
j 6=i

(
µi
µj

) 1
p−1

G(ξi, ξj)
(

1 +
α1

p
+
α2

p2

)
, (36)

where H(x, y) and G(x, y) are given by (5). Then there exist C,D > 0 and p0 > 1, such that for any p > p0

1. ‖R‖∗,∂Ω ≤ Cp−4,
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2. |W (x)| ≤ D
∑
j=1

euξj (x), moreover, for |x− ξi| ≤ ρ
2

√
δi, we have that

W (x) =
ev(y)

δi
(1 +

1
p

(w̃1i(y)− v(y)− 1
2
v2(y)) +O(

1
p2

log4(|y|+ 1))) (37)

where y = Ai(δ−1
i (x− ξi)) ∈ Ωi.

Proof. To prove this proposition, we only need to show how to use computations from Proposition 3.3. First,
let us notice that (29) still follows in this case. To estimate R near ξi, (|x− ξi| < ρ, for some i), we use
Lemmas 3.1 and 3.2, to obtain, for vi(x) = v(Ai(δ−1

i (x− ξi))),

U =
m∑
j=1

γ

µ
1
p−1
j

(
uj +Hj +

1
p

(w1j +H1j) +
1
p2

(w2j +H2j)
)

+
γ

µ
1
p−1
i

(
ui +Hi +

1
p

(w1i +H1i) +
1
p2

(w2i +H2i)
)

=
∑
j 6=i

γ

µ
1
p−1
j

(
G(ξi, ξj)(1 +

α1

p
+
α2

p2
) +O(δαj + |x− ξj |)

)

+
γ

µ
1
p−1
i

(
H(ξi, ξi)(1 +

α1

p
+
α2

p2
)− log 2δ2

i

p
(α1 +

α2

p
)− log 2µ2

i

)

+
γ

µ
1
p−1
i

(
p+ vi(x) +

1
p
w1i(x) +

1
p2
w2i(x) +O(δαi + |x− ξi|)

)
,

then, thanks to the choice of parameters µj given by (36), we obtain that

U(x) =
1

p
p
p−1 δ

1
p−1
i

(
p+ vi(x) +

1
p
w1i(x) +

1
p2
w2i(x) +O(e−

pα
2 + |x− ξi|)

)
, (38)

which is identical to (30), therefore, estimates (32) and (33) can be repeated. Similarly, we can obtain the
same expansion (27) for W (x) = pUp−1(x).

�

Remark 3.1. From (36), we obtain

µj =
1

2
√
e

exp

1
2
H(ξj , ξj) +

1
2

∑
i 6=j

G(ξi, ξj)

(1 +O

(
1
p

))
, (39)

this estimate tells us that we can find such µj solution to (36), provided that p is large enough. Furthermore,
we have that 1

C ≤ µj ≤ C, for any j = 1, . . . ,m.
Remark 3.2. Since it will be useful in later computations, we provide a slightly more detailed analysis of
the linear term W . Notice first that if |x− ξj | ≤ ε for some j ∈ {1, . . . ,m}, we obtain

p

(
U(x) +O

(
1
p3

))p−2

≤ Cp

 1

p
1
p−1 δ

1
p−1
j

p−2

e
p−2
p vj(x) = O(euj(x)).

Since this estimate is still valid if |x− ξj | > ε, ∀j = 1, . . . ,m, we conclude that

p

(
U(x) +O

(
1
p3

))p−2

= O(
m∑
j=1

euj(x)). (40)
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The above computation and Proposition 3.6 tell us in a heuristic way that

W ∼
m∑
j=1

euj .

Proof. (Lemma 3.2). To simplify computations, we suppose, without lost of generality, that ξj = 0 and
Aj = I. As in the proof of Lemma 3.1, define z(x) = Hkj(x) + αk log 2δ2

j − αkH(x, ξj). Function z satisfies
−∆z + z = ∆wkj − wkj(x) + αk log

1
|x|2

+ αk log 2δ2
j in Ω

∂z

∂ν
= αk

(
euj − ∂uj

∂ν
− 2

x · ν(x)
|x|2

)
on ∂Ω.

Again, as in Lemma 3.1, we can prove that∥∥∥∥∂z∂ν
∥∥∥∥
Lq(∂Ω)

≤ Cδ1/q.

Let us recall that definition of wkj implies that

wkj(x) = φkj(x) + αk log 2δ2
j + αk log

1
|x− δjν(0)|2

,

then

‖−∆z(x) + z(x)‖Lq(Ω) =

∥∥∥∥∥∆φkj(x)− φkj(x) + αk

(
log

1
|x|2
− log

1
|x− δjν(0)|2

)∥∥∥∥∥
Lq(Ω)

.

For 1 < q < 2, we obtain ∥∥∥∥∥log
1
|x|2
− log

1
|x− δjν(0)|2

∥∥∥∥∥
Lq(Ω)

≤ Cδj .

Now the terms involving φkj . On one hand

I1 =
∫

Ω

|φkj(x)|q dx =
∫

Ω∩B(0,r)

. . .+
∫

Ω∩B(0,r)c
. . .

= J1 + J2,

where r is a small radius to be chosen. Since φkj is a bounded function, we have that J1 ≤ Cr2. For
|x| > ρ, φk,ξ = 0, so we are only interested in the region r < |x| < ρ. Let us notice that if δ−1

j r →∞, then
δ−1
j |x| → ∞, therefore we also have that δ−1

j Fj(x)→∞, which allow us to use (13). Under this assumption,
we have that

|φkj(x)| =
∣∣∣∣φk(

1
δj
Fj(x))η(x)

∣∣∣∣ ≤ C ( δj
|Fj(x)|

)α
≤ C

(
δj
r

)α
,

hence J2 ≤ C
(
δj
r

)qα
. On the other hand

I2 =
∫

Ω

|∆(φkj(x))|q dx =
∫

Ω∩B(0,r)

. . .+
∫

Ω∩B(0,r)c
. . .

= J3 + J4,
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As before, since ∆(φkj(x)) is bounded, we obtain J3 ≤ Cr2. For J4, using reduced notation, we have

∂2

∂x2
i

φk(
1
δj
Fj(x)) =

1
δ2
j

∂2φk
∂xs∂xl

(
1
δj
Fj(x))

∂(Fj)s
∂xi

(x)
∂(Fj)l
∂xi

(x) +
1
δj

∂φk
∂xs

(
1
δj
Fj(x))

∂2(Fj)s
∂x2

i

(x).

This implies that∣∣∣∣∆(φk(
1
δj
Fj(x)))η(x− ξj)

∣∣∣∣ ≤ 1
δ2
j

∣∣∣∣∇2φk(
1
δj
Fj(x))

∣∣∣∣ |DFj(x)|2 +
C

δj

∣∣∣∣∇φk(
1
δj
Fj(x))

∣∣∣∣ |∆Fj(x)|

≤ Cδαj
(

1
r2+α

+
1

r1+α

)
.

Then,

|∆φkj(x)| = |∆(φk(
1
δj
Fj(x)))η(x) + ∆η(x)φk(

1
δj
Fj(x)) + 2∇(φk(

1
δj
Fj(x))) · ∇η(x)|

≤ C
(
δj
r

)α( 1
r2

+
1
r

+ 1
)
.

Now, if r < 1

|∆φkj(x)| ≤ C
(

δαj
r2+α

)
.

Putting all this together

I1 ≤ C
(
r2 +

(
δj
r

)qα)
, I2 ≤ C

(
r2 +

(
δαj
r2+α

)q)
.

If we choose r = δβj with 0 < β < α
2+α and p large enough, for 1 < q < 2 we obtain

‖∆φkj(x)− φkj(x)‖Lq(Ω) ≤ Cδ
λ
j = O(δλj ),

with 0 < λ < 1. Finally, we conclude as in (3.1), to obtain

‖z‖Cγ(Ω) ≤ Cδ
λ
j ,

for 0 < γ < 1
2 + 1

q .

�

Proof. (Lemma 3.4). As before, we assume that Aj = I and that ξj = 0. In addition, we will work in the
expanded variable y = δ−1

j x, with domain Ωj = δ−1
j Ω. Let us write ∂Ω near 0 as the graph of a smooth

function G, more precisely, we set R = ρ/2, such that ∂Ω ∩ B(0, R) = {(x1, x2) : x2 = G(x1)}. We set also
that G(0) = G′(0) = 0, and use this function to write Fj(x) = Fj(x1, x2) = (x1, x2 −G(x1)).

We must estimate, for y = (y1, y2) ∈ ∂Ωj ,

C(y) =

∣∣∣∣∣δj ∂φ̃∂ν (δjy)− ev(y)
[
φ̃(δjy) + g(y)

]∣∣∣∣∣
=
∣∣∣∣∇φ(

1
δj
Fj(δjy)) · (DFj(δjy) · νΩj (y))− ev(y)

[
φ̃(δjy) + g(y)

]∣∣∣∣
≤
∣∣∣∣∇φ(

1
δj
Fj(δjy)) · (DFj(δjy) · νΩj (y))−∇φ(

1
δj
Fj(δjy)) · νΩj (y)

∣∣∣∣
+
∣∣∣∣∇φ(

1
δj
Fj(δjy)) · νΩj (y)− ev(y)

[
φ̃(δjy) + g(y)

]∣∣∣∣
≤ C1(y) + C2(y).
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Consider 0 < r < R, a small number to be chosen, and let us analyze the case where r/δj < |y| < R/δj . To
estimate C1, first notice that DFj(δjy) = O(δj |y|) and that Fj(δjy) ≥ Cδj |y|, hence, if δ−1r →∞,

C1(y) ≤ Cδj |y| |∇φ(
1
δj
Fj(δjy))| ≤ Cδj |y|

(
δj
δj |y|

)1+α

≤ C δj
|y|α

= O(
δ1+α
j

rα
).

Now, we write ∂Ωj as the graph of the function Gj(y1) = δ−1
j G(δjy1). First, the assumptions above implies

that G′j(y1) = G′(δy1) = O(δj |y|) for any |y| ≤ R/δj . Thus, for y ∈ ∂Ωj ∩B(0, R/δj), C2(y) can be written
as

C2(y) =
∣∣∣∣∇φ(

1
δj
Fj(δjy)) · νΩj (y)− ev(y)

[
φ̃(y) + g(y)

]∣∣∣∣
≤

∣∣∣∣∣∣ G′j(y1)√
G′j(y1)2 + 1

∂φ

∂x1
(

1
δj
Fj(δjy))

∣∣∣∣∣∣+∣∣∣∣∣∣− 1√
G′j(y1)2 + 1

∂φ

∂x2
(

1
δj
Fj(δjy))− ev(y)

[
φ̃(y) + g(y)

]∣∣∣∣∣∣
= C3(y) + C4(y).

To estimate C3(y), notice first that
∣∣∣ x√

x2+1

∣∣∣ ≤ |x| for all x ∈ R, thus

C3(y) ≤
∣∣G′j(y1)

∣∣ ∣∣∣∣ ∂φ∂y1
(

1
δj
Fj(δjy))

∣∣∣∣ ≤ Cδj |y|( δj
δj |y|

)1+α

= O(
δ1+α
j

rα
).

Finally, for C4(y) ∣∣∣∣∣∣
 1√

G′j(y1)2 + 1
− 1

 ∂φ

∂y2
(

1
δj
Fj(δjy))

∣∣∣∣∣∣ ≤ ∣∣G′j(y1)
∣∣2 ∣∣∣∣ ∂φ∂y2

(
1
δj
Fj(δjy))

∣∣∣∣
≤ Cδ2

j |y|
2 (

1
|y|1+α )

= O(δ2
j |y|

1−α) = O(δ1+α
j ).

On the other hand, for B = Ωj ∩ (B(0, R/δj) \B(0, r/δj)),∣∣∣ev(y) − ev( 1
δj
Fj(δjy))

∣∣∣ ≤ |y − 1
δj
Fj(δjy)| sup

z∈B

∣∣∣∇ev(z)
∣∣∣

≤ C |Gj(y)|
δ3
j

r3
≤ C

δ2
j

r
,

and ∣∣∣∣ev(y)g(y)− ev( 1
δj
Fj(δjy))

g(
1
δj
Fj(δjy))

∣∣∣∣ ≤ |y − 1
δj
Fj(δjy)| sup

z∈B

∣∣∣∇(ev(z)g(z))
∣∣∣

≤ C |Gj(y)|
δ3
j

r3
logk

r

δj

≤ C
δ2
j

r
logk

r

δj
,
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because Gj(y) = O(δj |y|2). The above computations tell us, for r/δj < |y| < R/δj and any 0 < α < 1, that

C(y) = O

(
δ1+α
j

rα
+ δ1+α

j

)
. (41)

For 0 ≤ |y| ≤ r/δj , we only need the boundedness of functions involved. First we have that C1(y) ≤ Cr. As
for C2, we see that C3(y) ≤ Cr and, for the terms relative to C4(y),∣∣∣∣∣∣ 1√

G′j(y1)2 + 1

∂φk
∂y2

(
1
δj
Fj(δjy))− ∂φk

∂y2
(

1
δj
Fj(δjy))

∣∣∣∣∣∣ ≤ Cr2,

∣∣∣ev(y) − ev( 1
δj
Fj(δjy))

∣∣∣ ≤ C r2

δj

and ∣∣∣∣ev(y)g(y)− ev( 1
δj
Fj(δjy))

g(
1
δj
Fj(δjy))

∣∣∣∣ ≤ C r2

δj
.

Thus, C2(y) = O(r + r2 + r2

δj
), and we conclude that for 0 < |y| < r/δj ,

C(y) = O(r + r2 + δ−1
j r2).

Choosing r = δ
1+α

2
j , we obtain that C(y) = O(δαj ) for p large enough. Using the same choice of r at (41),

the result follows.

�

4. Analysis of the linearized operator

We study the following linear problem: given h ∈ L∞(∂Ω), we want to find φ and c1, . . . , cm such that

−∆φ+ φ = 0 in Ω

∂φ

∂ν
−Wφ = h+

m∑
j=1

cje
ujZ1j on ∂Ω∫

∂Ω

eujZ1jφ = 0 ∀j = 1, . . . ,m.

(42)

where W (x) = pU(x)p−1 and Zij(x) = zi(Aj(δ−1
j (x−ξj))) where zi are defined in (9) and (10) respectively.

Since we need this functions explicitly, we write

Z0j(x) = 1− 2δj
(Aj(x− ξj − δjν(ξj)))2

|x− ξj − δjν(ξj)|2

Z1j(x) = −2δj
(Aj(x− ξj − δjν(ξj)))1

|x− ξj − δjν(ξj)|2
.

Proposition 4.1. Consider ρ > 0 and m a positive integer. Then there exist p0 > 1 and C > 0 such
that for any p > p0, any (ξ1, . . . , ξm) ∈ Ω̃m and any h ∈ L∞(∂Ω), there exists a unique solution φ ∈
L∞(Ω), c1, . . . , cm ∈ R to problem (42). Moreover, such solution satisfies

‖φ‖L∞(Ω) ≤ Cp ‖h‖∗,∂Ω . (43)
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To prove this proposition we need a further analysis of functions Zij , when projected to Ω.

Lemma 4.2. Let be PZij solution of
−∆PZij + PZij = 0 in Ω

∂PZij
∂ν

= eujZij on ∂Ω.

Then for any 0 < α < 1, we have the following expansions in C(Ω)

PZ0j = Z0j − 1 +O(δαj ), PZ1j = Z1j +O(δαj ),

moreover,
PZ0j = O(δj), PZ1j = O(δj).

in Cloc(Ω \ {ξj})

Proof. To simplify the notation, we suppose that Aj is the identity map. Let us analyze first the case i = 0.
We define f1 = PZ0j − Z0j + 1, solution to

−∆f1 + f1 = −Z0j + 1 in Ω
∂f1

∂ν
= eujZ0j −

∂Z0j

∂ν
on ∂Ω.

As in Lemma 3.1, we estimate the right-hand side of this equation in Lq(Ω), 1 < q < 2. First,∫
Ω

|1− Z0j |q =
∫

Ω

∣∣∣∣∣2δj (x− ξj − δjν(ξj))2

|x− ξj − δjν(ξj)|2

∣∣∣∣∣
q

dx

=
∫

Ω∩B(ξj ,2δj)

+
∫

Ω∩B(ξj ,2δj)c
.

But ∫
Ω∩B(ξj ,2δj)

∣∣∣∣∣2δj (x− ξj − δjν(ξj))2

|x− ξj − δjν(ξj)|2

∣∣∣∣∣
q

dx ≤ Cδqj
∫

Ω∩B(ξj ,2δj)

∣∣∣∣ 1
|x− ξj − δjν(ξj)|

∣∣∣∣q dy
≤ Cδqj

∫ 2δj

0

s1−qds ≤ Cδ2
j ,

Noticing that for |x− ξj | > 2δj , |x− ξj | ≤ 2 |x− ξj − δjν(ξj)|, we obtain∫
Ω∩B(ξj ,2δj)c

∣∣∣∣∣2δj (x− ξj − δjν(ξj))2

|x− ξj − δjν(ξj)|2

∣∣∣∣∣
q

dx ≤ Cδqj
∫

Ω∩B(ξj ,2δj)c

1
|x− ξ|q

dx

≤ Cδqj
∫ D

2δj

s1−qds ≤ Cδqj ,

where D = diam(Ω). The estimates above tell us that

‖−∆f1 + f1‖Lq(Ω) = O(δj).

On the other hand, to estimate the boundary term, we use that for any x ∈ ∂Ω

|(x− ξj) · ν(x)| ≤ C |x− ξj |2 , |1− ν(x)ν(ξj)| ≤ C |x− ξj |2 ,
|1 + ν(x)2| ≤ C |x− ξj | , |ν(x)1| ≤ C |x− ξj | .

(44)
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Now,

∂Z0j

∂ν
= 4δj

(x− ξj − δjν(ξj))2

|x− ξj − δjν(ξj)|4
− 4δ2

j

(x− ξj − δjν(ξj))2ν(ξj) · ν(x)
|x− ξj − δjν(ξj)|4

− 2δj
ν(x)2

|x− ξj − δjν(ξj)|2
,

hence

eujZ0j −
∂Z0j

∂ν
= 2δj

1 + ν(x)2

|x− ξj − δjν(ξj)|2
− 4δj

(x− ξj − δjν(ξj))2(x− ξj) · ν(x)
|x− ξj − δjν(ξj)|4

− 4δ2
j

(1− ν(x) · ν(ξj))(x− ξj − δjν(ξj))2

|x− ξj − δjν(ξj)|4
,

using (44) and having in mind that |x−ξj |
|x−ξj−δjν(ξj)| ≤ C, uniformly on x and δj , we obtain∣∣∣∣eujZ0j −

∂Z0j

∂ν

∣∣∣∣ ≤ C δj
|x− ξ − δjν(ξj)|

.

Now, fixing a small r > 0, we have that, for |x− ξj | > r,∣∣∣∣euj − ∂Z0j

∂ν

∣∣∣∣ ≤ Cδj ,
and with the change of variable δjy = x− ξj , we obtain∫

∂Ω∩B(ξj ,r)

∣∣∣∣euj − ∂Z0j

∂ν

∣∣∣∣q = Cδj

∫
∂Ωj∩B(0,r/δj)

∣∣∣∣ 1
|y − ν(0)|

∣∣∣∣q dy
≤ Cδj

∫ r/δj

0

1
(1 + s)q

ds ≤ Cδj ,

therefore ∥∥∥∥∂f1

∂ν

∥∥∥∥
Lq(∂Ω)

= O(δ1/q
j ). (45)

Thus, for 1 < q < 2,

‖−∆f1 + f1‖Lq(Ω) +
∥∥∥∥∂f1

∂ν

∥∥∥∥
Lq(∂Ω)

= O(δ1/q
j ).

Now, for i = 1, as before, we define f2 = PZ1j − Z1j , which satisfies
−∆f2 + f2 = −Z1j in Ω

∂f2

∂ν
= eujZ1j −

∂Z1j

∂ν
on ∂Ω.

For |x− ξj | ≤ 2δj and 1 < q < 2∫
Ω∩B(ξj ,2δj)

|Z1j |q =
∫

Ω∩B(ξj ,2δj)

∣∣∣∣∣2δj (x− ξ − δjν(ξ))1

|x− ξ − δjν(ξ)|2

∣∣∣∣∣
q

≤ Cδqj
∫ 2δj

0

s1−qds ≤ Cδ2
j .

As for the case i = 0, we obtain∫
Ω∩B(ξj ,2δj)c

|Z1j |q ≤ C
∫

Ω∩B(ξj ,2δj)c

1
|x− ξj |q

≤ Cδqj
∫ D

2δj

s1−qds ≤ Cδqj .
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Thus, for 1 < q < 2
‖−∆f2 + f2‖Lq(Ω) = O(δj).

For the boundary term, we notice that

∂Z1j

∂ν
= −2δj

ν(x)1

|x− ξ − δjν(ξ)|2
+ 4δj

(x− ξ − δjν(ξ))1(x− ξj) · ν(x)
|x− ξ − δjν(ξ)|4

+ 4δ2
j

(x− ξ − δjν(ξ))1ν(x) · ν(ξj)
|x− ξ − δjν(ξ)|4

,

therefore

eujZ1j −
∂Z1j

∂ν
= 4δ2

j

(x− ξ − δjν(ξ))1(ν(x) · ν(ξj)− 1)
|x− ξ − δjν(ξ)|4

+ 2δj
v(x)1

|x− ξ − δjν(ξ)|2

− 4δj
(x− ξ − δjν(ξ))1(x− ξj) · ν(x)

|x− ξ − δjν(ξ)|4
,

using (44), we obtain that ∣∣∣∣eujZ1j −
∂Z1j

∂ν

∣∣∣∣ ≤ C δj
|x− ξ − δjν(ξ)|

.

Now, we can repeat the estimate (45), namely∥∥∥∥∂f2

∂ν

∥∥∥∥
Lq(∂Ω)

= O(δ1/q
j ).

Finally, for 1 < q < 2

‖−∆f2 + f2‖Lq(Ω) +
∥∥∥∥∂f2

∂ν

∥∥∥∥
Lq(∂Ω)

= O(δ1/q
j ).

The conclusion is analogous to the one in Lemma 3.1. Estimates in Cloc(Ω \ {ξj}) are a consequence of the
“size” of functions 1 − Z0j and Z1j far away from ξj : both of them are comparable with δj . We omit the
details.

�

To prove Proposition 4.1 we follow [2] and [10]. First we study the equation
−∆φ+ φ = f in Ω
∂φ

∂ν
−Wφ = h on ∂Ω,

(46)

where we still use ‖·‖∗,∂Ω to estimate h ∈ L∞(∂Ω), and we introduce, for f ∈ L∞(Ω), the norm

‖f‖∗∗,Ω = sup
x∈Ω

∣∣∣∣∣∣∣
 m∑
j=1

√
δj

(|x− ξj |+ δj)
5
2

−1

f(x)

∣∣∣∣∣∣∣ .
Proposition 4.3. There exists p0 > 1 such that for any p > p0 and any solution φ of (46) satisfying in
addition ∫

∂Ω

eujZijφ = 0, ∀i = 0, 1 j = 1, . . . ,m, (47)

we have
‖φ‖L∞(Ω) ≤ C(‖h‖∗,∂Ω + ‖f‖∗∗,Ω),

where C is independent of p.
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Lemma 4.4. For p > 1 large enough, and 0 < σ < 1, there exists R1 > 0 and a smooth function ψ :
Ω \ ∪mk=1B(ξk, R1δk) 7→ R such that

−∆ψ + ψ ≥ c

(
1 +

m∑
k=1

δσk
|x− ξk|2+σ

)
in Ω \ ∪mk=1B(ξk, R1δk)

∂ψ

∂ν
−Wψ ≥ c

(
1 +

m∑
k=1

δσk
|x− ξk|1+σ

)
on ∂Ω \ ∪mk=1B(ξk, R1δk)

ψ > 0 in Ω \ ∪mk=1B(ξk, R1δk)
ψ ≥ 1 in Ω ∩ (∪mk=1∂B(ξk, R1δk))

Where constants R1 > 0 and c > 0 can be chosen independently of p and 0 < ψ ≤ M uniformly in
Ω \ ∪mk=1B(ξk, R0δk).

Proof: (Proposition 4.3). Thanks to the barrier ψ of Lemma 4.4, we can deduce the following maximum
principle: If φ ∈ H1(Ω \ ∪mk=1B(ξk, R0δk)), satisfies

−∆φ+ φ ≥ 0 in Ω \ ∪mk=1B(ξk, R0δk)
∂φ

∂ν
−Wφ ≥ 0 on ∂Ω \ ∪mk=1B(ξk, R0δk)

φ ≥ 0 in Ω ∩ (∪mk=1∂B(ξk, R0δk)),

then φ ≥ 0 in Ω \ ∪mk=1B(ξk, R0δk). Let f, h be bounded and φ a solution to (46) satisfying (47). As in [2],
‖φ‖L∞(Ω) can be controlled in terms of ‖h‖∗,∂Ω, ‖f‖∗∗,Ω and the following inner norm of φ:

‖φ‖i = sup
Ω∩(∪mk=1B(ξk,R0δk))

|φ| .

Repeating computations from [2], we deduce that

‖φ‖L∞(Ω) ≤ C(‖h‖∗,∂Ω + ‖f‖∗∗,Ω + ‖φ‖i). (48)

Now suppose by contradiction that there exist pn → ∞ and (ξn1 , . . . , ξ
n
m) ∈ Ω̃m and functions φn, hn, fn

such that ‖φn‖L∞(Ω) = 1, ‖hn‖∗,∂Ω → 0, ‖f‖∗∗,Ω → 0, and for any n, φn is a solution to (46) and (47).
Thanks to (48) and the assumptions above, we have that ‖φn‖i ≥ d > 0 for any n. So we can assume that,
for some j,

sup
Ω∩B(ξj ,R0δj)

|φn| ≥ d > 0.

Let us define φ̂jn(y) = φn(δj,nA−1
j y + ξj,n). Standard elliptic estimates allow us to say that φ̂jn converges

uniformly over compact sets to φ̂j∞, a nontrivial solution to (8) with µ = 1, therefore, it must be a linear
combination of z0 and z1. On the other hand, we can take limit in the orthogonality conditions (47) to
obtain ∫

∂R2
+

evziφ̂
j
∞ = 0, i = 0, 1.

This contradicts the fact that φ̂j∞ 6= 0.

�

Proof: (Lemma 4.4). Following the proof of Lemma 4.3 from [2], we define

ψ1j(x) = δσj
(x− ξj) · ν(ξj)

r1+σ
,
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where r = |x− ξj − δjν(ξj)|. A direct computation shows that

∆ψ1j = O

(
δσj
r2+σ

)
in Ω.

Now, for ε > 0 small enough, and R1 > 1 large enough (but independent of p), we have that

∂ψ1j

∂ν
≥ c

δσj
r1+σ

if R1δj < r < ε.

We also define

ψ2j(x) = 1−
δσj
rσ
,

which satisfies

−∆ψ2j = σ2
δσj
r2+σ

,

∂ψ2j

∂ν
= O

(
δσj
r1+σ

)
if R1δj < r < ε.

Then, for Cj large enough, but independent of p,

ψ3j = ψ1j + Cjψ2j

satisfies

−∆ψ3j + ψ3j ≥ σ2
δσj
r2+σ

if R1δj < r < ε.

In addition, recalling that for |x− ξj | ≤ ρ, W (x) = O(euj ) = O(δjr−2), we obtain that

∂ψ3j

∂ν
−Wψ3j ≥ c′

δσj
r1+σ

if R1δj < r < ε.

To conclude, we define ηj ∈ C∞(Ω), such that 0 ≤ ηj ≤ 1, ηj ≡ 1 in Ω∩B(ξj , ε/2) and ηj ≡ 0 in Ω∩B(ξj , ε)c,
with |∇ηj | ≤ C and |∆ηj | ≤ C in Ω. Then, for ψ0 solution of

−∆ψ0 + ψ0 = 1 in Ω
∂ψ0

∂ν
= 1 on ∂Ω,

function ψ = Cψ0 +
m∑
j=1

ηjψ3j , with C, a sufficiently large constant, meets the requirements. The rest of

the proof is analogous to the proof Lemma 4.3 from [2], thus we omit it.

�

Proposition 4.5. For p large enough, if φ is a solution of (46) and satisfies∫
∂Ω

eujZ1jφ = 0, ∀j = 1, . . . ,m, (49)

then
‖φ‖L∞Ω ≤ Cp(‖h‖∗,∂Ω + ‖f‖∗∗,Ω),

where C is independent of p.
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Proof. Following [10], we will prove this proposition by contradiction. As in the proof of Proposition 4.3, we
suppose that pn ‖hn‖∗,∂Ω → 0, pn ‖fn‖∗∗,Ω → 0, but we only have (49), hence, the limit function φ̂j∞ must
be proportional to z0, more precisely

φjn(y)→ Cjz0(y) in C0
loc(R2

+).

To reach a contradiction, we must prove that Cj = 0 for all j = 1, . . . ,m. To this end, we will use functions
Z0j to build suitable test functions.

Define s, β1 as a solution to 
∆s = 0 in R2

+

∂s

∂ν
− evs = ev(z0 + β1(v − 1)) on ∂R2

+

(50)

Existence of the function s and the constant β1 is guaranteed by Proposition 2.2. Moreover, since we need
it below, we can give the exact value for β1,

β1 = −

∫
∂R2

+
evz2

0∫
∂R2

+
evz0(v − 1)

= − π

−2π
=

1
2
. (51)

We also define t as a solution to 
∆t = 0 en R2

+

∂t

∂ν
− evt = ev en ∂R2

+.
(52)

Proposition 2.2 also guarantees the existence of t, but for simplicity we use the explicit solution given by
t(y) = z0(y)− 1. With these functions and Z0j we define

gj(x) = sj(x)− β1 log 2δ2
jZ0j(x) + β1H(ξj , ξj)tj(x)

where

sj(x) = s(δ−1
j Fj(Aj(x− ξj)))η(Aj(x− ξj)) + β1vj(x)

tj(x) = t(Aj(δ−1
j (x− ξj)))− 1 = Z0j(x)− 1.

We define Psj(x) = sj(x) +Hsj(x), where Hsj is a correction term defined as a solution of
−∆Hsj +Hsj = ∆sj − sj in Ω

∂Hsj
∂ν

= β1

(
euj − ∂uj

∂ν

)
on ∂Ω

As in Lemma 3.2, we can say that Hsj(x) = β1H(x, ξ) − β1 log 2δ2
j + O(δαj ) for any 0 < α < 1. We also

define PZ0j(x) and Ptj(x) = PZ0j − 1, where PZ0j is defined in Lemma 4.2. Finally put

Pgj(x) = Psj(x)− β1 log 2δ2
jPZ0j(x) + β1H(ξj , ξj)Ptj(x)

The expansions above and Lemma 4.2 imply that

Pgj(x) = gj(x) + β1H(x, ξj) +O(δαj ) in C(Ω), (53)

Pgj(x) = β1G(x, ξj) +O(δαj ) in Cloc(Ω \ {ξj}). (54)

Now, Pgj satisfies 
−∆Pgj + Pgj = 0 in Ω

∂Pgj
∂ν

=
∂sj
∂ν

+ β1

(
euj − ∂uj

∂ν

)
− β1 log 2δ2

j e
ujZ0j on ∂Ω

+ β1H(ξj , ξj)euj (tj + 1).

(55)
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From now on, we omit dependency on n, and define R = ρ/2.
Let be φ a solution to (46). Multiply (55) by φ and integrate by parts to obtain∫

∂Ω

(
∂Pgj
∂ν

−WPgj

)
φ =

∫
∂Ω

hPgj +
∫

Ω

fPgj . (56)

Let us estimate first
∫
∂Ω
hPgj :∫

∂Ω

hPgj ≤ ‖h‖∗,∂Ω

∫
∂Ω

(
m∑
k=1

√
δk

(|x− ξk|+ δk)
3
2

)
Pgj ,

but ∫
∂Ω

√
δj

(|x− ξj |+ δj)
3
2
Pgj =

∫
∂Ω∩B(ξj ,R)

+
∫
∂Ω∩B(ξj ,R)c

= I1 + I2.

To estimate I1, we make the change of variables δjy = Aj(x− ξj),

I1 =
∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
Pgj(δjA−1

j y + ξj)

=
∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
gj(δjA−1

j y + ξj) + β1

∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
v(y)

− β1 log 2δ2
j

∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
z0(y) + β1H(ξj , ξj)

∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
t(y)

+ β1

∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
H(δjA−1

j y + ξj , ξj) +O(δα−
1
2 )

= −β1 log 2δ2
j

∫
∂Ωj∩B(0,R/δj)

1
(|y|+ 1)

3
2
z0(y) +O(1)

= O(|log δj |) = O(p).

For I2, we only need to notice that far from ξj , function Pgj is uniformly bounded, and√
δj

(|x− ξj |+ δj)
3
2

= O(
√
δj),

then I2 = O(
√
δj), thus ∫

∂Ω

√
δj

(|x− ξj |+ δj)
3
2
Pgj = O(p).

Now, we need to consider, for k 6= j, terms of the form
∫
∂Ω

√
δk

(|x−ξk|+δk)
3
2
Pgj . As before, we split the integral

for |x− ξk| ≤ R and |x− ξk| > R. Again, Pgj is uniformly bounded in |x− ξk| ≤ R, so we have that∫
∂Ω∩B(ξk,R)

√
δk

(|x− ξk|+ δk)
3
2
Pgj(x) = O(1).

For the second term, we notice that Pgj = O(|log δj |), then, for 0 < α < 1
2 ,∫

∂Ω∩B(ξk,R)c

√
δk

(|x− ξk|+ δk)
3
2
Pgj(x) = O(

√
δk)
∫
∂Ω∩B(ξk,R)c

Pgj(x)

= O(e−
αp
2 ),
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we conclude that ∫
∂Ω

hPgj = O(p ‖h‖∗,∂Ω).

In an analogous way, we prove that
∫

Ω
fPgj = O(p ‖f‖∗∗,Ω). The left-hand side of (56) must be analyzed

more carefully. First we write∫
∂Ω

(
∂Pgj
∂ν

−WPgj

)
φ =

∫
∂Ω∩B(ξj ,R

√
δj)

+
∫
∂Ω∩B(ξj ,R)\B(ξj ,R

√
δj)

+
∫
∂Ω∩(

mS
k=1

B(ξk,R))c
+
∑
k 6=j

∫
∂Ω∩B(ξk,R)

= J1 + J2 + J3 +
∑
k 6=j

J4k.

Let us look first J3. We need to estimate ∂Pgj
∂ν in this region:

∂Pgj
∂ν

=
∂sj
∂ν

+ β1

(
euj − ∂uj

∂ν

)
− β1 log 2δ2

j e
ujZ0j + β1H(ξj , ξj)euj tj + β1H(ξj , ξj)euj

=
∂

∂ν

(
s(

1
δj
Fj(Aj(x− ξj)))η(Aj(x− ξj))

)
+ β1e

uj − β1 log 2δ2
j e
ujZ0j

+ β1H(ξj , ξj)euj (tj + 1)

Now, thanks to Lemma 3.4, more precisely to (41),

∂

∂ν

(
s(

1
δj
Fj(Aj(x− ξj)))η(Aj(x− ξj))

)
= O(δ1+α

j ), 0 < α < 1

and since eujZ0j = O(δ2
j ) and euj (tj + 1) = O(δ2

j ),

∂Pgj
∂ν

= β1e
uj +O(δ1+α

j ).

This last estimate, (54) and the fact that in this region euj = O(δj) and W (x) = O(p(Cp )p−1), allow us to
say that

J3 = O(δj).

To estimate J4k, we notice that we are still far away from ξj , so

Pgj = β1G(x, ξj) +O(δαj )
∂Pgj
∂ν

= β1e
uj +O(δ1+α

j ),

but we must separate cases to estimate W . First, for |x− ξk| ≤ R
√
δk, we have estimate (37), namely, for

δky = Ak(x− ξk)

W (x) =
ev(y)

δk

(
1 +

1
p

(w̃1k(y)− v(y)− v2(y)
2

) +O(
log4(|y|+ 1)

p2
)
)
.

For k 6= j∫
∂Ω∩B(ξk,R

√
δk)

(
∂Pgj
∂ν

−WPgj

)
φ = β1

∫
∂Ω∩B(ξk,R

√
δk)

eujφ

− β1

∫
∂Ω∩B(ξk,R

√
δk)

e
v(Ak(

x−ξk
δk

))

δk
G(x, ξj)φ+O(

1
p

)

= β1

∫
∂Ωk∩B(0,R/

√
δk)

evφ̂k − β1G(ξk, ξj)
∫
∂Ωk∩B(0,R/

√
δk)

evφ̂k + o(1)

= o(1),
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here we are using that ∫
∂Ωk∩B(0,R/

√
δk)

evφ̂k −→
p→∞

Ck

∫
∂R2

+

evz0 = 0.

Now, for R
√
δk ≤ |x− ξk| ≤ R, we only know that W (x) = O(euk), then, since in this region euj = O(δj)

and G(x, ξj) = O(1),∫
∂Ω∩B(ξk,R)\B(ξk,R

√
δk)

(
∂Pgj
∂ν

−WPgj

)
φ = β1

∫
∂Ω∩B(ξk,R)\B(ξk,R

√
δk)

(euj −W (x)G(x, ξj))φ+O(δαj )

= O(
√
δk + δαj ) = O(

√
δk).

Let us now look into J1. First of all, we notice that analogous estimates as those from Lemma 3.4, allow us
to say that for |x− ξj | ≤ R

√
δj

δj
∂Pgj
∂ν

= evjgj + evjZ0j + β1H(ξj , ξj)evj +O(δαj ),

thus
δj
∂Pgj
∂ν

− δjWPgj = evjZ0j + (evj − δjW )Pgj −Rj +O(δαj ),

where Rj is a correction term given by

Rj = evj (Pgj − gj − β1H(ξj , ξj)).

In the variable δjy = Aj(x− ξj), we have

J1 =
∫
∂Ωj∩B(0,R/

√
δj)

(
δj
∂Pgj
∂ν

− δjWPgj

)
φ̂j

=
∫
∂Ωj∩B(0,R/

√
δj)

ev(y)z0(y)φ̂j

+
∫
∂Ωj∩B(0,R/

√
δj)

(
ev(y) − δjW (δjA−1

j y + ξj)
)
Pgj(δjA−1

j y + ξj)φ̂j

−
∫
∂Ωj∩B(0,R/

√
δj)

Rj(δjA−1
j y + ξj))φ̂j +O(δθj ),

where 0 < θ < 1
2 . Now, since φ̂j → Cjz0 and ‖φ̂j‖∞ ≤ 1, we have that∫

∂Ωj∩B(0,R/
√
δj)

ev(y)z0(y)φ̂j = Cj

∫
∂R2

+

evz2
0 +O(δ2

j ).
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Using (37) and the expansion in this region for Pgj , we obtain∫
∂Ωj∩B(0,R/

√
δj)

(
ev(y) − δjW (δjA−1

j y + ξj)
)
Pgj(δjA−1

j y + ξj)φ̂j

= −1
p

∫
∂Ωj∩B(0,R/

√
δj)

ev
(
w̃1j − v −

v2

2

)
Pgj(δjy)φ̂j +O(p−2)

= −1
p

∫
∂Ωj∩B(0,R/

√
δj)

evgj(δjy)φ̂j
(
w̃1j − v −

v2

2

)
− β1

p

∫
∂Ωj∩B(0,R/

√
δj)

evφ̂jH(δjA−1
j y + ξj , ξj)

(
w̃1j − v −

v2

2

)
+O(p−2)

=
β1 log 2δ2

j

p

∫
∂Ωj∩B(0,R/

√
δj)

evz0φ̂
j

(
w̃1j − v −

v2

2

)
+ o(1)

= −β1Cj

∫
∂R2

+

ev(w1 − v −
v2

2
)z2

0 + o(1).

To estimate the term involving Rj , we use (53) and the fact that
∫
∂R2

+
evz0 = 0 to obtain∫

∂Ωj∩B(0,R/
√
δj)

Rj(δj(A−1
j y + ξj))φ̂j = o(1).

Putting all estimates together, it follows that

J1 = Cj

(∫
∂R2

+

evz2
0 − β1

∫
∂R2

+

ev(w1 − v −
v2

2
)z2

0

)
+ o(1)

Finally, for J2, (41) implies that

δj
∂Pgj
∂ν

= evjgj + evjZ0j + β1H(ξj , ξj)evj +O(δ1+α
j ),

then, for δjy = Aj(x− ξj)∫
∂Ω∩B(ξj ,R)\B(ξj ,R

√
δj)

(
∂Pgj
∂ν

−WPgj

)
=

=
∫
∂Ωj∩B(0,R/δj)\B(0,R/

√
δj)

(
δj
∂Pgj
∂ν

(x)− δjW (x)Pgj(x)
)
dy

=
∫
∂Ωj∩B(0,R/δj)\B(0,R/

√
δj)

evz0φ̂
j

+
∫
∂Ωj∩B(0,R/δj)\B(0,R/

√
δj)

(ev(y)

− δjW (x))Pgj(x)φ̂jdy −
∫
∂Ωj∩B(0,R/δj)\B(0,R/

√
δj)

Rj φ̂
j +O(δ1+α

j ).

But recalling that we are supposing that ‖φ‖∞ ≤ 1∫
∂Ωj∩B(0,R/δj)\B(0,R/

√
δj)

evz0φ̂
j = O(δ3/2

j ),
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and for 0 < θ < 1/2 ∫
∂Ωj∩B(0,R/δj)\B(0,R/

√
δj)

∣∣∣(ev(y) − δjW (x))Pgj(x)φ̂j
∣∣∣ dy

=
∫
∂Ω∩B(ξj ,R)\B(ξj ,R

√
δj)

(euj −W )gj

+ β1

∫
∂Ω∩B(ξj ,R)\B(ξj ,R

√
δj)

(euj − w)H(x, ξj) +O(δαj )

= −β1 log 2δ2
j

∫
∂Ω∩B(ξj ,R)\B(ξj ,R

√
δj)

(euj −W )Z0j +O(
√
δj)

= O(δθ).

Therefore
J2 = O(δθj ), 0 < θ <

1
2
.

So far we have that (56) can be rewritten as

Cj

(∫
∂R2

+

evz2
0 −

1
2

∫
∂R2

+

ev(w1 − v −
v2

2
)z2

0

)
= o(1).

To reach a contradiction is enough to prove that∣∣∣∣∣
∫
∂R2

+

evz2
0 −

1
2

∫
∂R2

+

ev(w1 − v −
v2

2
)z2

0

∣∣∣∣∣ ≥ c > 0.

Since we don’t know a explicit formula to w1, we must study a little bit more the term
∫
∂R2

+
evz2

0w1.
First, using (21) and the definition of w1, we have that w1 solves

∆w1 = 0 in R2
+

∂w1

∂ν
− evw1 = −ev v

2

2
on ∂R2

+.
(57)

Now, let be z̃ a solution to 
∆z̃ = 0 in R2

+

∂z̃

∂ν
− ev z̃ = evz2

0 on ∂R2
+.

(58)

Both orthogonality conditions are held, namely,∫
∂R2

+

evz2
0z1 = 0 =

∫
∂R2

+

evz3
0 ,

so existence of z̃ is guaranteed. Moreover, we can find an explicit solution to this equation. We recall that
z0µ is a solution to the homogeneous problem (8), now taking z̃ as

z̃(y) =
∂z0µ

∂µ
(y)
∣∣∣∣
µ=1

= −1− 2
y2

1 − (y2 + 1)2

(y2
1 + (y2 + 1)2)2

, (59)

we provide a solution to (58). Having this in mind, we multiply (57) by z̃ and integrate by parts to obtain∫
∂R2

+

evz2
0w1 = −1

2

∫
∂R2

+

ev z̃v2. (60)
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We can compute the value of this last integral to show that∫
∂R2

+

evz2
0 −

1
2

∫
∂R2

+

ev(w1 − v −
v2

2
)z2

0

=
1
4

∫
∂R2

+

evv2(z̃ + z2
0) +

∫
∂R2

+

evz2
0 +

1
2

∫
∂R2

+

evz2
0v 6= 0,

and end the proof.

�

Proposition 4.6. There exists p0 > 1 such that for any p > p0 and any solution φ of (42) we have that

‖φ‖L∞Ω ≤ Cp ‖h‖∗,∂Ω .

Proof. Proposition 4.5 implies that

‖φ‖L∞Ω ≤ Cp(‖h‖∗,∂Ω +
m∑
j=1

|cj |),

since ‖eujZ1j‖∗,∂Ω ≤ 4. As before, arguing by contradiction, we suppose that ‖φn‖L∞(Ω) = 1 and that

pn ‖hn‖∗,∂Ω → 0, pn

m∑
j=1

∣∣cnj ∣∣ ≥ d > 0. (61)

Again, we omit dependency on n and define φ̂j(y) = φ(δjA−1
j y + ξj). Let be PZ1j as in Lemma 4.2.

Multiplying (42) by PZ1j and integrating by parts gives∫
∂Ω

hPZ1j +
m∑
k=1

ck

∫
∂Ω

eukZ1kPZ1j =
∫
∂Ω

(euj −W )PZ1jφ+
∫
∂Ω

(Z1j − PZ1j)eujφ.

First, since PZ1j is uniformly bounded in Ω,∫
∂Ω

hPZ1j ≤ C
∫
∂Ω

|h| ≤ C ‖h‖∗,∂Ω

m∑
k=1

∫
∂Ω

√
δk

(|x− ξk|+ δk)3/2

≤ C ‖h‖∗,∂Ω .

On the other hand, for 0 < β < 1/2∫
∂Ω

(euj −W )PZ1jφ =
∫
B(ξj ,R

√
δh)∩∂Ω

+
∫
B(ξj ,R

√
δh)c∩∂Ω

=
∫
B(ξj ,R

√
δh)∩∂Ω

(euj −W )Z1jφ

+ Cδαj

∫
B(ξj ,R

√
δh)∩∂Ω

(euj −W )Z1jφ+O(
√
δj ‖φ‖∞)

=
∫
B(ξj ,R

√
δh)∩∂Ω

(euj −W )Z1jφ+O(δβ ‖φ‖∞).
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Let us look with a little more detail the right hand side integral. Using (37) and the change of variables
δjy = Aj(x− ξj), we obtain∫

B(ξj ,R
√
δh)∩∂Ω

(euj −W )Z1jφ = −1
p

∫
B(0,R/

√
δj)∩∂Ωj

evz1φj(w1 − v −
1
2
v2) +O(

1
p2
‖φ‖∞)

= O(
1
p
‖φ‖∞). (62)

We also have that ∣∣∣∣∫
∂Ω

(Z1j − PZ1j)eujφ
∣∣∣∣ = O(δαj ‖φ‖∞)

Finally, we must estimate
∫
∂Ω
eukZ1kPZ1j . For k = j,∫
∂Ω

eujZ1jPZ1j =
∫
∂Ω∩B(ξj ,R)

+
∫
∂Ω∩B(ξj ,R)c

=
∫
∂Ω∩B(ξj ,R)

eujZ1jPZ1j +O(δ3
j )

=
∫
∂Ωj∩B(0,R/δj)

evz2
1 +O(δα+1

j )

=
∫
∂R2

+

evz2
1 +O(δα+1

j ). (63)

And for j 6= k∫
∂Ω

eukZ1kPZ1j =
∫
∂Ω∩B(ξk,R)

+
∫
∂Ω∩B(ξj ,R)

+
∫
∂Ω∩(B(ξk,R)∪B(ξj ,R))c

= O(δj
∫
∂Ω∩B(ξk,R)

eukZ1k) +O(δ2
k

∫
∂Ω∩B(ξj ,R)

PZ1j) +O(δ2
kδj)

= O(δjδk). (64)

So we obtain that
m∑
j=1

|cj | = O(p−1 ‖φ‖∞ + ‖h‖∗,∂Ω) = o(1). (65)

Then, as in Proposition 4.6, we have that

φ̂j −→ Cjz0, in Cloc(R2
+).

This last estimate, and the fact that we are supposing that ‖φ‖∞ = 1, allow us to improve estimate (62),
since ∫

B(0,R/
√
δj)∩∂Ωj

evz1φj(w1 − v −
1
2
v2)→ Cj

∫
∂R2

+

evz1z0(w1 − v −
1
2
v2) = 0.

Thus ∫
B(ξj ,R

√
δh)∩∂Ω

(euj −W )Z1jφ = o(p−1 ‖φ‖∞),

and
m∑
j=1

|cj | = o(p−1) +O(‖h‖∗,∂Ω),

which contradicts (61).
31



�

We end this section with the proof of the initial Proposition,

Proof: (Proposition 4.1). Following notation from [10], we consider

Kξ =


m∑
j=1

cjPZ1j : cj ∈ R, for j = 1, . . . ,m

 ,

and

K⊥ξ =
{
φ ∈ L2(∂Ω) :

∫
∂Ω

eujZ1jφ = 0,∀j = 1, . . . ,m
}
.

Let Πξ : L2(∂Ω)→ Kξ be defined as

Πξφ =
m∑
j=1

cjPZ1j ,

where c = (cj) is uniquely determined, thanks to (63) and (64), by the system

∫
∂Ω

eukZ1k

φ− m∑
j=1

cjPZ1j

 = 0, for all k = 1, . . . ,m.

Also define Π⊥ξ = Id − Πξ : L2(∂Ω) → K⊥ξ . Weak formulation of (42), can be written as: To find φ ∈
K⊥ξ ∩H1(Ω), such that

(φ, ψ)H1(Ω) −
∫
∂Ω

Wφψ =
∫
∂Ω

hψ, for all ψ ∈ K⊥ξ ∩H1(Ω).

Thanks to Riesz’ theorem, we can rewrite this equation in K⊥ξ ∩H1(Ω) as:

(Id +K)φ = H,

where in formal terms, H = Πξ(−∆ + Id)−1h and K = −Πξ(−∆ + Id)−1W is a compact operator in
K⊥ξ ∩H1(Ω).

Finally, Fredholm alternative guarantees existence of solution for H ∈ K⊥ξ , since the homogeneous
problem φ+K(φ) = 0 admits only the trivial solution, as shown in Proposition 4.6.

�

Remark 4.1. Given h ∈ L∞(Ω), let φ be the solution to (42) given by Proposition 4.1. Multiplying (42) by
φ and integrating by parts gives

‖φ‖2H1(Ω) =
∫
∂Ω

Wφ2 +
∫
∂Ω

hφ.

Moreover, using Proposition 3.6, we can prove that

|
∫
∂Ω

Wφ2| ≤ C ‖φ‖2∞ ,

and therefore
‖φ‖H1(Ω) ≤ C(‖h‖∗,∂Ω + ‖φ‖∞). (66)

32



5. An auxiliary nonlinear problem

We consider the following problem

−∆φ+ φ = 0 in Ω

∂φ

∂ν
−Wφ = R+N(φ) +

m∑
j=1

cje
ujZ1j on ∂Ω∫

∂Ω

eujZ1jφ = 0 ∀j = 1, . . . ,m.

(67)

We recall that, W = pUp−1, N(φ) = (U +φ)p−Up− pUp−1φ and R = Up− ∂U
∂ν , and U is our ansatz given

by (34).

Lemma 5.1. Let m be a positive integer, then there exists p0 > 1 such that for any p > p0, and for any
(ξ1, . . . , ξm) ∈ Ω̃m, equation (67) admits a unique solution φ, c1, . . . , cm such that

‖φ‖∞ ≤
C

p3
. (68)

Moreover,
m∑
j=1

|cj | ≤
C

p4
, ‖φ‖H1(Ω) ≤

C

p3
, (69)

Proof. The result of Proposition 4.1, implies that a unique solution φ = T (h) of (42) defines a continuous
linear map from the Banach space C∗ of functions h ∈ L∞(∂Ω) such that ‖h‖∗,∂Ω <∞ to L∞(Ω). Now, in
terms of T , problem (67) can be written as to find φ such that

φ = T (N(φ) +R) ≡ A(φ). (70)

For θ > 0, consider Fθ =
{
φ ∈ C(Ω) : ‖φ‖∞ ≤ θp−3

}
. Proposition 4.1 tells us that

‖A(φ)‖∞ ≤ Cp
(
‖R‖∗,∂Ω + ‖N(φ)‖∗,∂Ω

)
.

On one hand, Proposition 3.6 implies that ‖R‖∗,∂Ω = O(p−4). On the other hand, we have the following
estimates for φ, φ1, φ2 ∈ Fθ

• ‖N(φ)‖∗,∂Ω ≤ Cp ‖φ‖
2
∞,

• ‖N(φ1)−N(φ2)‖∗,∂Ω ≤ Cpmaxi=1,2 ‖φi‖∞ ‖φ1 − φ2‖∞.

In fact, Lagrange’s theorem implies that

|N(φ(x))| ≤ p(p− 1)
(
U(x) +O(p−3)

)p−2
φ(x)2,

|N(φ1(x))−N(φ2(x))| ≤ p(p− 1)
(
U(x) +O(p−3)

)p−2
max
i=1,2

|φi| |φ1(x)− φ2(x)| ,

for any x ∈ ∂Ω, hence, by (40) and ‖
m∑
j=1

euj‖∗,∂Ω ≤ 4, we obtain the estimates above. Therefore, for any

φ, φ1, φ2 ∈ Fθ
‖A(φ)‖∞ ≤ D

′p(‖N(φ)‖∗,∂Ω + ‖R‖∗,∂Ω) ≤ O(p2 ‖φ‖2∞) +
D

p3
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and

‖A(φ1)−A(φ2)‖∞ ≤ C
′p ‖N(φ1)−N(φ2)‖∗,∂Ω

≤ Cp2

(
max
i=1,2

‖φi‖∞

)
‖φ1 − φ2‖∞ ,

where D is independent of θ. Hence, if ‖φ‖∞ ≤ 2Dp−3, we obtain

‖A(φ)‖∞ = O(p−1 ‖φ‖∞) +
D

p3
≤ 2D

p3
.

Choosing θ = 2D, we have that A is a contraction map in Fθ, since

‖A(φ1)−A(φ2)‖∞ ≤
1
2
‖φ1 − φ2‖∞ .

Therefore, an unique fixed point φξ of A exists in Fθ. Now, (65) implies that

m∑
j=1

|cj | = O(‖R‖∗,∂Ω + ‖N(φ)‖∗,∂Ω +
1
p
‖φ‖∞) = O(p−4),

and by Remark 4.1, we deduce that

‖φ‖H1(Ω) = O(‖φ‖∞ + ‖N(φ)‖∗,∂Ω + ‖R‖∗,∂Ω) = O(p−3).

This ends the proof.

�

Using the fixed point characterization of the solution φ = φ(ξ) to (67) and the Implicit Function Theorem,
it is not difficult to verify that φ(ξ) is differentiable with respect to ξ, in L∞(Ω) and H1(Ω). We omit the
details.

6. Variational reduction

Now that we have a solution φ(ξ), c1(ξ), . . . , cm(ξ) of (67), we can provide a solution to (24), if there
exists ξ = (ξ1, . . . , ξm) ∈ Ω̃m such that

cj(ξ) = 0 ∀ j = 1, . . . ,m. (71)

First we identify the variational structure of (71) inherited from (1). Indeed, the energy functional associated
to a solution of (1) is given by

Jp(u) =
1
2

∫
Ω

|∇u|2 + u2 − 1
p+ 1

∫
∂Ω

up+1.

Then we define its finite-dimensional restriction

F(ξ) := Jp(U(ξ) + φ(ξ)). (72)

The following proposition tells us that critical points of F correspond to solutions of (71).

Proposition 6.1. F is a C1 function, and, for p large enough, if DξF(ξ) = 0, then ξ satisfies (71).
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Proof. The map ξ → φ(ξ) is a C1-map into H1(Ω), and then F(ξ) is a C1 function of ξ. Now if we suppose
that DξF(ξ) = 0, we will have that

0 =
∫

Ω

(∇(U(ξ) + φ(ξ))∇(Dξ(U(ξ) + φ(ξ))) + (U(ξ) + φ(ξ))(Dξ(U(ξ) + φ(ξ))

− 1
p+ 1

∫
∂Ω

(U(ξ) + φ(ξ))pDξ(U(ξ) + φ(ξ))

=
m∑
j=1

cj

∫
∂Ω

eujZ1j(DξU(ξ) +Dξφ(ξ))

=
m∑
j=1

cj

∫
∂Ω

eujZ1jDξU(ξ)−
m∑
j=1

cj

∫
∂Ω

Dξ(eujZ1j)φ(ξ),

because
∫
∂Ω
eujZ1jφ(ξ) = 0. From the definition of U(ξ), we obtain

∂(ξk)1U(ξ) =
m∑
j=1

γ

µ
1
p−1
j

{
∂(ξk)1

[
uj(x) +Hj(x) +

1
p

(w1j(x) +H1j(x)) +
1
p2

(w2j(x) +H2j(x))
]

− 1
p− 1

(uj(x) +Hj(x) +
1
p

(w1j(x) +H1j(x)) +
1
p2

(w2j(x) +H2j(x)))∂(ξk)1 logµj

}
,

but ∂(ξk)1(uj + Hj) = PZ0j∂(ξk)1 logµj − δ−1
j PZ1jδkj . In addition, we have that ∂(ξk)1(wij + Hij) =

O(1) +O(δ−1
j )δkj , hence, as γ = O(p−1),

∂(ξk)1U(ξ) =
γ

µ
1
p−1
k δk

(−PZ1k +O(
1
p

)) +
m∑
j=1

 γ

µ
1
p−1
j

[
PZ0j −

1
p− 1

(uj(x) +Hj(x) +
1
p

(w1j(x) +H1j(x))

+
1
p2

(w2j(x) +H2j(x)))
]
× ∂(ξk)1 logµj +O(

1
p

)
)

=
γ

µ
1
p−1
k δk

(−PZ1k +O(
1
p

)) +O(
1
p

)

=
γ

µ
1
p−1
k δk

(−PZ1k +O(
1
p

))

On the other hand

∂(ξk)1(eujZ1j) = euj (Z1jZ0j −∇z1(y) · y|y=Aj(δ
−1
j (x−ξj)))∂(ξk)1 logµj

− euj

δj
(Z2

ij + ∂1z1(Aj(δ−1
j (x− ξj))))δkj

= O(1).

Thus

0 = ∂(ξk)1F(ξ)

= − γ

δkµ
1
p−1
k

m∑
j=1

cj(ξ)
∫
∂Ω

eujZ1jPZ1k +O

(
γ

pδk
+ ‖φ‖∞

) m∑
j=1

|cj(ξ)| ,

using (63), (64) and (68), we obtain

0 = − γ

δkµ
1
p−1
k

ck(ξ)
∫

R2
+

evz2
1 +O(

γ

pδk

m∑
j=1

|cj(ξ)|).
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Since the estimate above is valid for p large enough, necessarily ck(ξ) = 0 for all k = 1, . . . ,m.

�

7. Expansion of the energy

Lemma 7.1. Let µj be given by (36) and γ = e
p

2(p−1)

p
p
p−1

. Then

F(ξ) = mpπγ2 + 4mπγ2 + πγ2ϕm(ξ) +m
γ2

2

∫
∂R2

+

ev(φ1 + g1) +O(p−3),

uniformly, for any ξ = (ξ1, . . . , ξm) ∈ Ω̃m.

Proof. We have that

F(ξ) =
1
2

∫
Ω

|∇(U(ξ) + φ(ξ))|2 + (U(ξ) + φ(ξ))2 − 1
p+ 1

∫
∂Ω

(U(ξ) + φ(ξ))p+1.

One one hand, multiply (67) by U(ξ) + φ(ξ), then integrate by parts and use (69) to obtain∫
∂Ω

(U(ξ) + φ(ξ))p+1 =
∫

Ω

|∇(U(ξ) + φ(ξ))|2 + (U(ξ) + φ(ξ))2 +O(p−4),

then

Jp(U(ξ) + φ(ξ)) = (
1
2
− 1
p+ 1

)
∫

Ω

|∇(U(ξ) + φ(ξ))|2 + (U(ξ) + φ(ξ))2 +O(p−4)

= (
1
2
− 1
p+ 1

)
[∫

Ω

(|∇U(ξ)|2 + U(ξ)2) +
∫

Ω

(|∇φ(ξ)|2 + φ(ξ)2)

+2
∫

Ω

(∇U(ξ)∇φ(ξ) + U(ξ)φ(ξ))
]

+O(p−4).

Let us look a little closer the integral I :=
∫

Ω
(|∇U(ξ)|2 + U(ξ)2)

I =
∫

Ω

(|∇U(ξ)|2 + U(ξ)2) =
m∑
i=1

∫
Ω

(|∇Ui|2 + U2
i ) + 2

∑
j 6=i

∫
Ω

(∇Uj∇Ui + UjUi).

On one hand∫
Ω

(|∇Ui|2 + U2
i ) =

∫
∂Ω

∂Ui
∂ν

Ui

=
γ2

µ
2
p−1
i

[∫
∂Ω

(
eui(x) +

1
p

(
∂φ1i

∂ν
(x) + α1e

ui(x)

)

+
1
p2

(
∂φ2i

∂ν
(x) + α2e

ui(x)

))
×
(
ui(x) +Hi(x) +

1
p

(w1i(x) +H1i(x))

+
1
p2

(w2i(x) +H2i(x))
)]

=
γ2

µ
2
p−1
i

[∫
∂Ω

eui(ui +Hi) +
1
p

∫
∂Ω

∂φ1i

∂ν
(ui +Hi) +O(p−1)

]
.
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For the first integral we have∫
∂Ω

eui(ui +Hi) =
∫
∂Ω

2δi
|x− ξi − δiν(ξi)|2

(
log

2δi
|x− ξi − δiν(ξi)|2

+Hi(x)

)
dx

=
∫
∂Ω

2δi
|x− ξi − δiν(ξi)|2

(
log

1
|x− ξi − δiν(ξi)|2

+H(x, ξi) +O(δαi )

)
dx

using the expanded variable δiy = Ai(x− ξi) gives∫
∂Ω

eui(ui +Hi) =
∫
∂Ωi

2
|y − ν(0)|2

(
log

1
|y − ν(0)|2

+H(δiA−1
i x+ ξi, ξi)− 2 log δi +O(δαi )

)
dx

but for 0 < α < 1, ∫
∂Ωi

2
|y − ν(0)|2

= 2π +O(δi),∫
∂Ωi

2
|y − ν(0)|2

log
1

|y − ν(0)|2
dy = −4π log 2 +O(δαi ),

and ∫
∂Ωi

2
|y − ν(0)|2

(H(δiA−1
i x+ ξi, ξi)−H(ξi, ξi)) = O(δα).

Then ∫
∂Ω

eui(ui +Hi) = −4π log 2− 4π log δi + 2πH(ξi, ξi) +O(δα). (73)

As for the second integral, we can say that∫
∂Ω

∂φ1i

∂ν
(ui +Hi) =

∫
∂Ω

∂φ1i

∂ν

(
log

1
|x− ξi − δiν(ξi)|2

+H(x, ξi)

)
dx

=
∫
∂Ωi

δi
∂φ1i

∂ν
(δiA−1

i y + ξi)×

(
log

1
|y − ν(0)|2

+H(δiA−1
i y + ξi, ξi)− 2 log δi

)
dx,

noticing that δi ∂φ1i
∂ν (δiA−1

i y + ξi) = O(1)∫
∂Ω

∂φ1i

∂ν
(ui +Hi) = −2 log δi

∫
∂Ω

∂φ1,i

∂ν
+O(1). (74)

Using (73) and (74), we obtain∫
Ω

(|∇Ui|2 + U2
i ) =

γ2

µ
2
p−1
i

[
−4π log 2− 4π log δi + 2πH(ξi, ξi) + 2 log δi

∫
∂Ω

∂φ1i

∂ν
+O(p−1)

]
,

and, because δi = µie
− p2 and µ

− 2
p−1

i = 1− 2
p logµi +O(p−2), we have that∫

Ω

(|∇Ui|2 + U2
i ) = 2pπγ2 − 4πγ2 log 2 + 2πH(ξi, ξi)− 8π logµi + γ2

∫
∂Ω

∂φ1i

∂ν
+O(p−3).

Similarly, for i 6= j, ∫
Ω

(∇Ui∇Uj + UiUj) =
∫
∂Ω

∂Ui
∂ν

Uj

=
γ2

µ
1
p−1
i µ

1
p−1
j

[∫
∂Ω

eui(uj +Hj) +O(p−1)
]
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but ∫
∂Ω

eui(uj +Hj) =
∫
∂Ω

2δi
|x− ξi − δiν(ξi)|2

×

(
log

1
|x− ξj − δjν(ξj)|2

+H(x, ξj)

)
dx

=
∫
∂Ωi

1
|y − ν(0)|2

×

(
log

1
|ξi − ξj |2

+H(ξi, ξj) +O(δj + δαi |y|
α)

)
dx

=
∫
∂Ωi

1
|y − ν(0)|2

(G(ξi, ξj) +O(δj + δαi |y|
α)) dx

= πG(ξi, ξj) +O(δj + δαi ).

and because (µiµj)−
1
p−1 = 1− 1

p (logµi + log µj) +O(p−1) = 1 +O(p−1),∫
Ω

(∇Ui∇Uj + UiUj) = γ2πG(ξi, ξj) +O(p−3).

Putting all this together∫
Ω

|∇U(ξ)|2 + U(ξ)2 =
m∑
i=1

[(
2pπγ2 − 4πγ2 log 2 + 2πH(ξi, ξi)− 8π logµi

+γ2

∫
∂Ω

∂φ1i

∂ν

)
+ 2

∑
j 6=i

γ2πG(ξi, ξj) +O(p−3)


= 2pmπγ2 − 4mπγ2 log 2 + γ2

m∑
i=1

∫
∂Ω

∂φ1i

∂ν

+ 2πγ2
m∑
i=1

−4 logµi +H(ξi, ξi) +
∑
j 6=i

G(ξi, ξj)


+O(p−3).

But (39) implies that 4 logµi = −2 log 2 + 4α1 + 2(H(ξi, ξi) +
∑
j 6=i

G(ξi, ξj)) + O(p−1), and then, recalling

that α1 = −1− log 2, we obtain∫
Ω

|∇U(ξ)|2 + U(ξ)2 = 2mpπγ2 + 8mπγ2 − 2πγ2(
m∑
i=1

H(ξi, ξi) +
∑
j 6=i

G(ξi, ξj)) + γ2
m∑
i=1

∫
∂Ω

∂φ1i

∂ν
+O(p−3).

Now Lemma 3.4, for 0 < β < 1
2 , gives that∫

∂Ω

∂φ1i

∂ν
=
∫
∂R2

+

ev(φ1 + g1) +O(δβj ),

hence ∫
Ω

|∇U(ξ)|2 + U(ξ)2 = 2mpπγ2 + 8mπγ2 − 2πγ2

 m∑
i=1

H(ξi, ξi) +
∑
j 6=i

G(ξi, ξj)


+mγ2

∫
∂R2

+

ev(φ1 + g1) +O(
1
p3

).

(75)
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Finally, (69) and (75) gives

2
∫

Ω

(∇U(ξ)∇φ(ξ) + U(ξ)φ(ξ)) +
∫

Ω

(|∇φ(ξ)|2 + φ(ξ)2) ≤ 2 ‖U(ξ)‖H1(Ω) ‖φ(ξ)‖H1(Ω) + ‖φ(ξ)‖2H1(Ω)

= O(
1
p7/2

).

The proof is now complete.

�

8. Proof of Theorem 1.1

We recall that Ω̂m = (∂Ω)m \D, where D denotes the diagonal. Namely

Ω̂m = {ξ ∈ (∂Ω)m : ξi 6= ξj if j 6= i} .

According Proposition 6.1, we can provide a solution to (1), if we can find ξ = (ξ1, . . . , ξm) a critical point
of F(ξ). This es equivalent to finding a critical point of

F̃(ξ) =
1
πγ2

(
F(ξ)−mpπγ2 − 4mπγ2 −mγ2

2

∫
∂R2

+

ev(φ1 + g1)

)
.

On the other hand, from Lemma 7.1, we have that for

ξ ∈ Ω̃m =
{
ξ ∈ Ω̂m, |ξi − ξj | > 2ρ, for all i 6= j

}
,

F̃(ξ) = ϕm(ξ) +O(p−1), (76)
where O( 1

p ) is in uniform norm as p→∞. Following [2], we will show that

ϕm(ξ) = −
m∑
i=1

(H(ξi, ξi) +
∑
j 6=i

G(ξi, ξj))

has at least 2 critical points in Ω̃m.
First of all, ϕm is a C1 function and bounded from above in Ω̂m (and hence in Ω̃m), in addition

ϕ(ξ1, . . . , ξm)→ −∞, as |ξi − ξj | → 0 for some i 6= j,

then, since ρ is arbitrarily small, ϕm has an absolute maximum M in Ω̃m.
On the other hand, the Ljusternik-Schnirelmann theory is applicable in our setting, so that the number

of critical points of ϕm can be estimate form below by cat(Ω̃m), the Ljusternik-Schnirelmann category of
Ω̃m relative to Ω̃m. Let us recall that cat(Ω̃m) is the minimal number of closed and contractible in Ω̃m sets
whose union covers Ω̃m.

Observe that cat(Ω̃m) > 1 (see [2] for more details). Hence, if we define

c = sup
C∈Ξ

inf
ξ∈C

ϕm(ξ) where Ξ =
{
C ⊆ Ω̃m : C closed and cat(C) ≥ 2

}
(77)

Ljusternik-Schnirelmann theory gives that c is a critical level. If c 6= M , we conclude that there are at
least two distinct critical points for ϕm in Ω̃m. If c = M , (77) implies tat there is at least one set C with
cat(C) ≥ 2, where ϕm reaches its absolute maximum. In this case we conclude that there are infinitely
many critical points for ϕm in Ω̃m. These kind of critical points persist under small C0-perturbations of the
function. For this reason, from (76), we can conclude also that function F̃(ξ), which is C0-close to ϕm in
Ω̃m, has at least two distinct critical points in Ω̃m, and hence, (1), has at least two distinct solutions.

�
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