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Abstract. In this work we study the uniqueness of solutions to the following
singular non-linear Sturm-Liouville equation

−(x2αu′)′ = λu+ up in (0, 1),

u > 0 in (0, 1),

u(1) = 0,

where 0 < α < 1, p > 1 and λ ∈ R are parameters.
We show that when 0 < α ≤ 1

2
and p > 1, and when 1

2
< α < 1 and

1 < p ≤ 3−2α
2α−1

uniqueness of solutions is guaranteed to hold when one imposes
some appropriate behavior at the origin.

1. Introduction

We are interested in the problem of uniqueness a function u satisfying the non-
linear singular Sturm-Liouville equation

(1)


−(x2αu′)′ = λu+ up in (0, 1),

u > 0 in (0, 1),

u(1) = 0,

where 0 < α < 1, p > 1 and λ ∈ R. More precisely, we want to understand under
what condition at the origin equation (1) has at most one solution.

In [3] we proved existence of solutions to equation (1) that belong to C[0, 1], and
now we would like to show that those solutions are in fact unique in their respective
classes. One of the solutions obtained in [3], hereafter denoted by uD, was obtained
by imposing the Dirichlet condition lim

x→0+
uD(x) = 0, and the next result shows

that uD is in fact unique in this class.

Theorem 1 (Uniqueness of the Dirichlet problem). Let 0 < α < 1
2 , λ ∈ R and

p > 1, then equation

(2)


−(x2αu′)′ = λu+ up in (0, 1),

u(1) = 0,

lim
x→0+

u(x) = 0,

has at most one positive solution.
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The other solution obtained in [3] when 0 < α < 1
2 , denoted by uN , was obtained

by imposing the Neumann-type condition lim
x→0+

x2αu′N (x) = 0. It was established

in [3] that this solution has nicer regularity, namely x2α−1u′N ∈ C[0, 1], which for
0 < α < 1

2 implies that uN is in fact C1[0, 1] and that u′N (0) = 0. This second
solution is also unique, as the following theorem shows:

Theorem 2 (Uniqueness of the Neumann problem). Let 0 < α < 1
2 , λ ∈ R and

p > 1, then equation

(3)


−(x2αu′)′ = λu+ up in (0, 1),

u(1) = 0,

x2α−1u′ ∈ C[0, 1],

has at most one positive solution.

The case 1
2 ≤ α < 1 is a little more delicate, as uniqueness seems to depend

on the exponent p > 1. As seen in [3], the exponent p = 3−2α
2α−1 plays a role in the

existence question. This can be seen from the fact that the weighted Sobolev spaces
Xα, introduced in [4], are embedded into Lq+1(0, 1) if and only if 1 ≤ q ≤ 3−2α

2α−1 ,
and in this case a solution to equation (1) can be produced by minimizing a suitable
energy functional. This exponent turns out to be critical also for the uniqueness.

In [4] it was proved that for 1
2 ≤ α < 1 the operator −(x2αu′)′ has a natural

boundary condition that can be imposed at the origin, and this is what we called
the “Canonical” condition lim

x→0
x2αu′(x) = 0. We proved that for 1 < p ≤ 3−2α

2α−1 and
suitable λ, equation (1) has at least one solution under this boundary condition,
which we hereafter denote by uC . This solution has the same property as uN ,
namely x2α−1u′C ∈ C[0, 1], and when 1 < p ≤ 3−2α

2α−1 , this is enough to make uC
unique, as the following theorem shows.

Theorem 3 (Uniqueness of the “Canonical” Problem). Let 1
2 ≤ α < 1, λ ∈ R and

suppose 1 < p ≤ 3−2α
2α−1 , then equation

(4)


−(x2αu′)′ = λu+ up in (0, 1),

u(1) = 0,

x2α−1u′(x) ∈ C[0, 1],

has at most one positive solution.

When 1
2 < α < 1, p > 3−2α

2α−1 and λ > 0 is sufficiently close to the first eigenvalue
of the operator −(x2αu′)′ under the “Canonical” boundary condition, bifurcation
theory guarantees the existence of regular solutions to equation (1) (that is, a
solution satisfying u ∈ C[0, 1] and x2α−1u′ ∈ C[0, 1]), however such solutions are
not necessarily unique. This phenomenon had already been noticed in the study of
the equation

(5)


−∆u = λu+ up in B(0, 1) ⊂ RN ,

u = 0 on ∂B(0, 1),

u > 0 in B(0, 1),

for N > 2, p > N+2
N−2 and λ > 0 sufficiently close to the first eigenvalue of −∆. For

equation (5), existence is also guaranteed by bifurcation theory, but uniqueness is
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known to fail, as it can be seen in [2,7]. It was pointed out in [3] that equation (1)
and equation (5) are related through a change of variable, so when 1

2 < α < 1 and
p > 3−2α

2α−1 any attempt to prove uniqueness is guaranteed to fail.
The exposition of this paper is divided as follows. In section 2 we establish

some preliminary results. In section 3 we prove Theorems 2 and 3, and then prove
Theorem 1 in section 4.

2. Preliminaries

The following is an important proposition which will allow us to simplify the
proof of our theorems. In what follows, whenever we say “p > 1 is sub-critical” we
will mean that:

� p > 1, if 0 < α ≤ 1
2 , or

� 1 < p ≤ 3−2α
2α−1 , if

1
2 < α < 1.

Proposition 2.1. Let 0 < α < 1, λ ∈ R and p > 1 be sub-critical. Suppose
equation (1) has two distinct solutions u1, u2 ∈ C[0, 1]∩C2(0, 1], such that u′2(1) <
u′1(1) < 0. Then there exists a third solution u3 ∈ C[0, 1] ∩ C2(0, 1] such that
u′3(1) ≤ u′2(1) and u1 and u3 intersect at most once in (0, 1), i.e.

# {x ∈ (0, 1) : u1(x) = u3(x)} ≤ 1.

To prove this proposition we need the following

Lemma 2.1. Let λ ∈ R, p > 1, B ≤ 0, Suppose V ∈ C1[0,∞) is such that both
‖V ‖L∞(0,∞) and ‖V ′‖L1(0,∞) are finite. Let w be the unique solution of the initial
value problem

(6)


w′′ + λw + |w|p−1

w = V (y)w +Bw′ in (0,∞),

w(0) = 0,

w′(0) = 1.

Then w ∈W 2,∞(0,∞) with

‖w‖W 2,∞ ≤ C(λ, p, ‖V ‖L∞ , ‖V
′‖L1).

Remark 2.1. Notice that the constant which bounds ‖w‖2,∞ does not depend on
the constant B ≤ 0.

Proof of Lemma 2.1. Let

E(w, y) =
w′(y)2

2
+
λ

2
w(y)2 +

1

p+ 1
|w(y)|p+1

.

By multiplying equation (6) by w′ we can easily see that

d

dy
E(w, y) =

1

2
V (y)

(
w(y)2

)′
+Bw′(y)2.

Now, let A =
{
y > 0 : maxs∈[0,y] w(s)2 = w(y)2

}
. Notice that since w′(0) = 1, we

have that (0, ε) ⊂ A for small enough ε > 0, so A is not empty. For y ∈ A we
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integrate the above identity over (0, y) to obtain

E(w, y)− E(w, 0) =

∫ y

0

(
1

2
V (s)

(
w(s)2

)′
+Bw′(s)2

)
ds,

≤ −1

2

∫ y

0

V ′(s)w(s)2ds+
1

2
V (y)w(y)2,(7)

≤ 1

2

(
‖V ′‖L1(0,∞) + ‖V ‖L∞(0,∞)

)
w(y)2,

from where we deduce that
w′(y)2

2
+

1

2

[
λ−

(
‖V ′‖L1(0,∞) + ‖V ‖L∞(0,∞)

)]
w(y)2 +

1

p+ 1
|w(y)|p+1 ≤ E(w, 0)

=
1

2
.

Since the level sets of the function h(x, y) = 1
2y

2 + 1
2Rx

2 + 1
p+1 |x|

p+1 are bounded
for all R ∈ R, we obtain that |w(y)| ≤ C for all y ∈ A, where C does not depend
on y. Therefore we deduce that

|w(y)| ≤ C = C(λ, p, ‖V ‖L∞ , ‖V
′‖L1)

for all y ≥ 0, because if this were not true, we could find a sequence such that
w(yn)2 → +∞ and, after maybe extracting a sub-sequence, that yn ∈ A, which we
have shown to be impossible.

Now that we know that w is bounded, we obtain from estimate (7) and equation
(6) that w′ and w′′ are also bounded. �

With lemma 2.1 in our pockets, we can now prove Proposition 2.1.

Proof of Proposition 2.1. To prove this result we will follow a proof by Kabeya and
Tanaka in [5, Appendix A]. Without lost of generality, we will assume that

# {x ∈ (0, 1) : u1(x) = u2(x)} ≥ 2,

because otherwise we can simply take u3 ≡ u2.
First of all notice that if u solves −(x2αu′)′ = λu+ |u|p−1

u in (0, 1), then if one
lets c = − 2−2α

p−1 < 0 and defines w(y) = ecyu(e−y), then w solves

−w′′ +Bw′ +Aw = λe−(2−2α)yw + |w|p−1
w in (0,∞),

where A = c(1− 2α− c) and B = 2α− 1 + 2c. Observe that B ≤ 0 whenever p > 1
is sub-critical. Now, for m > 0, define w(y,m) as the unique solution of the initial
value problem

(8)

{
−w′′ +Bw′ +Aw = λe−(2−2α)yw + |w|p−1

w in (0,∞),

w(0) = 0, w′(0) = m.

For i = 1, 2, letmi = −u′i(1). Then by the uniqueness of the initial value problem
one has that wi(y) := w(y,mi) = ecyui(e

−y) for i = 1, 2. Define σj(m) as the jth
intersection between w1(y) and w(y,m), i.e. if one lets σ0(m) = 0, then

σj+1(m) := inf {y > σj(m) : w1(y) = w(y,m)} .

We claim that
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(i) For m̄ > m2 large enough there exists y0 <∞ such that w(y, m̄) solves
−w′′ +Bw′ +Aw = λe−(2−2α)yw + wp in (0, y0),

w > 0 in (0, y0),

w(0) = 0, w(y0) = 0,

and # {y ∈ (0, y0) : w1(y) = w(y, m̄)} = 1.
(ii) There exists m3 ∈ (m2, m̄) such that σ2(m)→∞ as m→ m−3 .
(iii) If one lets w3(y) := w(y,m3), then w3 solves

−w′′ +Bw′ +Aw = λe−(2−2α)yw + wp in (0,∞),

w(0) = 0,

w > 0,

and # {y ∈ (0,∞) : w3(y) = w1(y)} ≤ 1.
Let us prove the claims:

Proof of (i). To prove this claim let w̃m(y) = maw(mby,m), where a = − 2
p−1

and b = −p−1
p+1 , then a direct computation shows that w̃m solves{
w̃′′m + λw̃m + |w̃m|p−1

w̃m = Vm(y)w̃m +Bmbw̃′m in (0,∞),

w̃m(0) = 0, w̃′m(0) = 1,

where Vm(y) = Am2b − λ
(
e−(2−2α)mby − 1

)
. Observe that for all m > 1 one has

‖Vm‖∞ ≤ |A| + 2 |λ| and that ‖V ′m‖L1(0,∞) = |λ|, hence, since B ≤ 0, we can use
lemma 2.1 to say that w̃m, w̃′m and w̃′′m are bounded independently of m > 1. By
means of Arzela-Ascoli theorem we are able to find a function w̃∞ ∈ C1[0,∞) such
that w̃m converges to w̃∞ in C1

loc[0,∞). Now, it is easy to see that Vm(y) −→
m→∞

0

uniformly over compact sets in [0,∞), hence we must have that w̃∞ is the unique
solution of {

w̃′′∞+λw̃∞ + |w̃∞|p−1
w̃∞ = 0 in (0,∞),

w̃∞(0) = 0, w̃′∞(0) = 1.

Multiply the above equation by w̃′∞ and integrate over [0, y] to obtain
1

2
w̃′∞(y)2 +

λ

2
w̃∞(y)2 +

1

p+ 1
|w̃∞(y)|p+1

=
1

2
,

hence w̃∞ is periodic and one has that for ỹ0 := inf {y > 0 : w̃∞(y) = 0} then
w̃∞(y) > 0 for y ∈ (0, ỹ0) and w̃∞(ỹ0) = 0.

Finally, since w̃m → w̃∞ uniformly over compact sets, we have that for m large
enough the claim holds.
Proof of (ii). Let m > m2 and denote w2(y) := w(y,m2). Notice that by
the uniqueness of the initial value problem at σj(m) one has that w′2(σj(m)) 6=
w′(σj(m),m). Hence, thanks to the implicit value theorem, one obtains that σj(m)
varies continuously when one varies m.

Now let [m2,m
∗) be the maximal interval where both σ1 and σ2 are finite. We

claim that if m ∈ [m2,m
∗) then w(x,m) > 0 in (0, σ2(m)). Indeed, if w(y′,m′) ≤ 0

for some m′ ∈ (m2,m
∗) and some y′ ∈ (0, σ2(m′)), we can define

m0 = inf

{
m ∈ [m2,m

∗) : min
y∈(0,σ2(m)]

w(y,m) ≤ 0

}
.
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Since for m = m2 we have w(y,m) > 0 we obtain that m0 ∈ (m2,m
′] and that

min
y∈(0,σ2(m0)]

w(y,m0) = 0.

The above implies that there is some ŷ ∈ (0,∞) such that w(ŷ,m0) = w′(ŷ,m0) = 0,
so by the uniqueness of the initial value problem at ŷ one obtains w(y,m0) ≡ 0,
which is impossible since 0 < m2 < m0.

Now, by claim (i), w(y, m̄) hits zero for some finite y, so we must have that
m∗ < m̄, so the only possibility is that σ2(m) → ∞ as m ↗ m∗. The claim is
proved with m3 = m∗.
Proof of (iii). Define w3(y) := w(y,m3). There are two cases to take into account:

• σ1(m) −→
m↗m∗

∞, and

• σ1(m) −→
m↗m∗

σ1 <∞.

Notice that by the definition of σ1(m) and the fact that m > m1 for all m ∈
[m2,m3), we have that w1(y) < w(y,m) if y ∈ (0, σ1(m)) and w1(y) > w(y,m) if
y > (σ1(m),∞).

If σ1(m) −→
m↗m∗

σ1 < ∞, we obtain by passing to the limit that w1(y) > w3(y)

for all y > σ1, hence w3 is dominated at infinity by w1, which decays exponentially
(recall that w1(y) = ecyu1(e−y) for c < 0 and that by assumption u1 ∈ C[0, 1]).
Therefore w3 must also decay exponentially and therefore by dominated conver-
gence we obtain that w3 is in fact the solution we are looking for (in this case there
is a unique intersection between w1 and w3).

On the other hand, if σ1(m) −→
m↗m∗

∞, we have that that for w1(y) < w(y,m)

when y ∈ (0, σ1(m)), then W (y) := w′1(y)w(y,m) − w1(y)w′(y,m) > 0 in y ∈
(0, σ1(m)). Indeed, notice that W satisfies

W ′(y) +BW (y) = −w1(y)w(y,m)
(
w1(y)p−1 − w(y,m)p−1

)
> 0 in (0, σ1(m)),

hence eByW is an increasing function, but W (0) = 0, so W (y) > 0 for all y ∈

(0, σ1(m)). This implies that
w1(y)

w(y,m)
is monotonically decreasing in (0, σ1(m)).

So 0 <
w(y,m)

w1(y,m)
< lim

y→0

w(y,m)

w1(y)
= m

m1
and we have that w(y,m) <

m

m1
w1(y),

therefore when we pass to the limit we obtain that

w3(y) <
m

m1
w1(y), for all y > 0.

The conclusion is the same as before, as the above implies that w3 decays exponen-
tially at infinity (in this case there is no intersection between w1 and w3). �

Next, we recall the Pohozaev type identity established in [3]. For each β ∈ R,
we have the “energy” functional

(9) Eλ,β(u)(x) =
1

2
x2α+1+βu′(x)2 +

1

p+ 1
xβ+1 |u(x)|p+1

+
λ

2
xβ+1u(x)2

− 1

2
(β + 1− 2α)x2α+βu′(x)u(x) +

β

4
(β + 1− 2α)x2α−1+βu(x)2,
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and the identity satisfied by all solutions to (1)

(10) Eλ,β(u)(x) =
1

2
u′(1)2 − λ(1− α+ β)

∫ 1

x

sβu(s)2ds

−
(

(β + 1)

(
1

2
+

1

p+ 1

)
− α

)∫ 1

x

sβ |u(s)|p+1

− β

4

(
β2 − (2α− 1)2

) ∫ 1

x

s2α−2+βu(s)2ds.

As it will be seen later it is convenient to choose β in the following way

(11) β :=
α− 1

2 −
1
p+1

1
2 + 1

p+1

.

Before explaining the reason why we select such β, let us make an observation.
Firstly, we notice that for every 0 < α < 1, every λ ∈ R, every p > 1, every
solution u of equation (1) satisfying u, x2α−1u′ ∈ C[0, 1], and for β as above, then
β ∈ (α− 1, 2α− 1) and

lim
x→0+

Eλ,β(u)(x) =


0 if β > 1− 2α,
(1−2α)2

2 u(0)2 if β = 1− 2α,

+∞ if β < 1− 2α,

Indeed, since β > −1, we obtain that terms of the form x1+βuq(x) = o(1) for all
q ≥ 1 (this follows since u ∈ C[0, 1]). Also

x2α+βu′(x)u(x) = o(1),

and
x2α+1+βu′(x)2 = o(1).

This means that the only term we need to worry about is the last one in the
definition of Eλ,β , that is

(12) Eλ,β(u)(x) =
β

4
(β + 1− 2α)x2α−1+βu(x)2 + o(1).

Now, since both u and x2α−1u′ are continuous in [0, 1], we have that u ∈
C0,2−2α[0, 1], hence

u(x)2 = u(0)2 +O(x2−2α),

so we can write

(13) Eλ,β(u)(x) =
β

4
(β + 1− 2α)x2α−1+βu(0)2 + o(1),

from where it is easily deduced that if β > 1− 2α, the limit is 0; when β = 1− 2α,
then the limit is (1−2α)2

2 u(0)2; and when β < 1− 2α, the limit is +∞.
When 0 < α < 1

2 and u solves equation (1) with u(0) = 0, we still have that the
terms of the form x1+β |u(x)|q = o(1), so we have

Eλ,β(u)(x) = x1−2α+β

[
1

2
x4αu′(x)2 +

1

2
(2α− 1− β)x4α−1u′(x)u(x)

+
β

4
(β + 1− 2α)x4α−2u(x)2

]
+ o(1).
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But now x2α−1u and x2αu′ belong to C1[0, 1] (this follows from the fact that u ∈
C[0, 1] and the regularity properties of the operator −(x2αu′)′ given by [4, Lemma
3.1]), thus we obtain

Eλ,β(u)(x) = x1−2α+β

[
1

2
x4αu′(x)2

∣∣∣
0

+
1

2
(2α− 1− β)x4α−1u′(x)u(x)

∣∣∣
0

+
β

4
(β + 1− 2α)x4α−2u(x)2

∣∣∣
0

]
+ o(1).

Notice that for all x > 0 small enough, one must have that u′(x) > 0, and since
β < 2α−1 < 0 we have that every term in parenthesis is positive, so for every such
u we have that

lim
x→0

Eλ(u)(x) = +∞.

The main motivation behind the choice of β comes from identity (10), as for β
chosen as above, we obtain that the derivative of Eλ,β(u)(x) with respect to x is a
multiple to u(x)2, that is

d

dx
(Eλ,β(u)(x)) = G(x)u(x)2,

where

(14) G(x) := λ (1− α+ β)xβ +
β

4

(
β2 − (2α− 1)2

)
x2α−2+β .

This is the key ingredient that will allow us to adapt a technique by Kwong and
Li [6] to prove our result. In [6], the authors proved the uniqueness of positive
solutions of an equation of the form{

u′′(x) + f(u(x)) + g(x)u(x) = 0 x ∈ (a, b),

u(a) = u(b) = 0,

by defining an energy function that had the property that its derivative is a multiple
of the square of the function, that is the main reason behind our choice of β.

As we will see in the proof, it is necessary to impose some hypotheses over the
function G in order to obtain the uniqueness: We suppose G ∈ C(0, 1) is either
identically 0 or that that there exists c ∈ [0, 1] such that

(15) G(x) > 0 for all x ∈ (0, c), and G(x) < 0 for all x ∈ (c, 1).

Let us find out when the functionG defined in (14) satisfies this hypothesis. Since
we are only concerned about the case p > 1 sub-critical, we will only consider β ≤ 0.
It is easy to see that when 1 − 2α < β < 0 (or equivalently 3−4α

2α−1 < p < 3−2α
2α−1 ),

then G(x) → +∞ as x → 0+, and that depending on λ, either G > 0 in (0, 1)
or G has exactly one zero in (0, 1]. When β = 0 (that is when p = 3−2α

2α−1 ), then
G(x) = λ (1− α+ β), so sign (G) = sign (λ).

When β ≤ 1 − 2α (or equivalently, 1 < p ≤ 3−4α
2α−1 , which only occurs when

1
2 < α < 2

3 ), there are two cases to take into account. When β = 1 − 2α, then
sign (G) = sign (λ). And when α− 1 < β < 1− 2α, then G(x)→ −∞ as x→ 0, so
the only way to obtain such c is that c = 1 and G ≤ 0 in (0, 1], which is satisfied
when

λ ≤ β((2α− 1)2 − β2)

4(1− α+ β)
.
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It is easy to see that

λα,β :=
β((2α− 1)2 − β2)

4(1− α+ β)

is always a positive number which satisfies λα,β ↘ 0 as p > 1 increases to the critical
exponent (that is, p ↗ ∞ when α ≤ 1

2 and p ↗ 3−2α
2α−1 when 1

2 < α < 1). Because
of this behavior is that we will only use this approach for λ ≤ 0. In summary we
have proved the following two lemmas.

Lemma 2.2. Suppose 0 < α < 1, λ ≤ 0 and that p > 1 is sub-critical. Let u
be a solution of (1) satisfying in addition that x2α−1u′ ∈ C[0, 1], then there exist
β = β(α, p) ∈ R and G ∈ C(0, 1) such that for Eλ,β(u)(x) defined in (9) we have

d

dx
(Eλ,β(u)(x)) = G(x)u(x)2,

and G satisfies (15) for some c ∈ [0, 1]. Moreover we have the following expansion
of Eλ,β

(16) Eλ,β(u)(x) =
β

4
(β + 1− 2α)x2α−1+βu(0)2 + o(1).

Lemma 2.3. Suppose 0 < α < 1
2 , λ ≤ 0 and that p > 1. Let u be a solution of

equation (1) such that u(0) = 0, then there exist β = β(α, p) ∈ R and G ∈ C(0, 1)
such that for Eλ,β(u)(x) defined in (9) we have

d

dx
(Eλ,β(u)(x)) = G(x)u(x)2,

and G satisfies (15) for some c ∈ [0, 1]. Moreover we have the following expansion
of Eλ,β

Eλ,β(u)(x) = x1−2α+β

[
1

2
x4αu′(x)2

∣∣∣
0

+
1

2
(2α− 1− β)x4α−1u′(x)u(x)

∣∣∣
0

+
β

4
(β + 1− 2α)x4α−2u(x)2

∣∣∣
0

]
+ o(1).

For λ > 0, we will adapt a method by Adimurthi and Yadava [1] used in the
study of the uniqueness of radial solutions to the equation

−div(|∇u|m−2∇u) = λ |u|m−2
u+ up.

The idea used in [1] resembles the technique of Kwong and Li as they both use
a Pohozaev type identity to prove that a single intersection between two positive
solutions cannot occur.

With the above in mind, we define the new energy functional

(17) Ẽλ(u)(x) :=
1

2
x2α+1u′(x)2+

1

p+ 1
x |u(x)|p+1

+
λ

2
xu(x)2+

1

p+ 1
x2αu′(x)u(x),

then a direct computation shows that for every solution u of equation (1) we have
the following identity

(18)
d

dx
Ẽλ(u)(x) =

(
1

p+ 1
+

1

2
− α

)
x2αu′(x)2 + λ

(
1

2
− 1

p+ 1

)
u(x)2,

so in the derivative of this new energy functional instead of having only a term
involving u(x)2, there is a second term involving u′(x)2. Observe that for every
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0 < α < 1, λ > 0, and every p > 1 sub-critical we have that both 1
p+1 + 1

2 − α and

λ
(

1
2 −

1
p+1

)
are non-negative constants which cannot be simultaneously 0.

It is easy to see that for u solving equation (1), with the additional assumption
that x2α−1u′ ∈ C[0, 1], we can write

Ẽλ(u)(x) :=
1

2
x2α+1u′(x)2 +

1

p+ 1
x2αu′(x)u(x) + o(1),

and since both u and x2α−1u′ belong to C[0, 1] we deduce

Ẽλ(u)(x) =
1

2
x4α−2u′(x)2x3−2α +

1

p+ 1
x2α−1u′(x)u(x)x+ o(1) = o(1).

In summary, we have proved

Lemma 2.4. Suppose 0 < α < 1, λ > 0 and that p > 1 is sub-critical. Let
Ẽλ(u)(x) be defined as in (17), then for every u solution of equation (1) satisfying
x2α−1u′ ∈ C[0, 1], there exists constants C1, C2 ≥ 0 not both simultaneously 0 such
that for all 0 < ε < 1

(19) Ẽλ(u)(1)− Ẽλ(u)(ε) = C1

∫ 1

ε

x2αu′(x)2 + C2

∫ 1

ε

u(x)2,

and that Eλ(u)(ε) = o(1) as ε approaches 0.

3. Proof of Theorems 2 and 3

Proof. We will argue by contradiction and assume that u1 and u2 are two distinct
solutions of equation (1) satisfying x2α−1u′ ∈ C[0, 1]. We begin the proof with an
observation: Suppose u1 < u2 (respectively u1 > u2) in (a, b) ⊂ (0, 1), then the
function

w(x) = x2α (u′1(x)u2(x)− u1(x)u′2(x))

is increasing (respectively decreasing) in (a, b). Indeed, for x ∈ (a, b) we have

(20)

w′ = (x2αu′1)′u2 + x2αu′1u
′
2 − (x2αu′2)′u1 − x2αu′1u

′
2

= − (λu1 + up1)u2 + (λu2 + up2)u1

= u1u2

(
up−1

2 − up−1
1

)
> 0 (respectively < 0).

Having said that, notice that by proposition 2.1 we can assume that u1 and u2

intersect at most once in (0, 1). Let us rule out first the case of no intersection,
that is we can assume that u1 and u2 are ordered, say u1 < u2 in (0, 1). Multiply
the equation of u1 by u2 and integrate by parts over (0, 1) to obtain∫ 1

0

x2αu′1(x)u′2(x)dx = λ

∫ 1

0

u1(x)u2(x)dx+

∫ 1

0

u1(x)pu2(x)dx,

where we have used that x2αu′1(x)u2(x) → 0 as x → 0. The same identity holds
when u1 and u2 are interchanged. By subtracting the two identities we obtain

0 =

∫ 1

0

u1(x)u2(x)
(
u2(x)p−1 − u1(x)p−1

)
dx > 0,

impossible.
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Finally we only need to rule out the case of a unique intersection, so suppose
that there is σ ∈ (0, 1) such that u1 < u2 in (0, σ) and u1 > u2 in (σ, 1). For

i = 1, 2, define ri(x) =
u′i(x)

ui(x)
.

We claim that r1 and r2 do not intersect in (0, 1). Suppose the contrary, then
there exists ρ ∈ (0, 1) such that r1(ρ) = r2(ρ). If ρ ≥ σ, then for x ∈ (ρ, 1)
we have u1 > u2, so by (20) we obtain that w is decreasing in (ρ, 1), but by
assumption w(ρ) = ρ2αu1(ρ)u2(ρ) (r1(ρ)− r1(ρ)) = 0. On the other hand since
u1(1) = u2(1) = 0, we obtain that w(1) = 0, impossible. Similarly, if ρ ≤ σ, we
obtain that w is increasing; by assumption w(ρ) = 0 and since x2αu′i(x)uj(x)→ 0
for i, j = 1, 2, we obtain that w(0) = 0, also impossible. Hence r1 never intersects
r2, but since r1(σ) > r2(σ), we must have r1(x) > r2(x) for all x ∈ (0, 1). From

here we deduce that the function
u1

u2
is increasing, indeed, notice that

(
u1(x)

u2(x)

)′
=

u1(x)

u2(x)
(r1(x)− r2(x)) > 0.

Now we distinguish two cases: λ ≤ 0 and λ > 0.
The case λ ≤ 0: From lemma 2.2 there exist β ∈ R and a function G ∈ C(0, 1)

such that for any solution u of equation (1) satisfying x2α−1u′ ∈ C[0, 1] we have

(21)
d

dx
(Eλ,β(u)(x)) = G(x)u(x)2,

and G satisfies (15) for some c ∈ [0, 1]. Define

(22) γ =


u1(c)

u2(c)
if 0 ≤ c < 1,

u′1(1)

u′2(1)
if c = 1,

1 if G ≡ 0.

By the monotonicity of
u1

u2
we deduce that

u1(x) < γu2(x) for 0 < x < c and u1(x) > γu2(x) for c < x < 1.

Now, let 0 < ε < 1 and integrate equation (21) over (ε, 1) where u is replaced by
u1, to obtain

1

2
u′1(1)2 − Eλ,β(u1)(ε) =

∫ 1

ε

G(x)u1(x)2dx.

Do the same for u2, and multiply the result by γ2 to obtain

γ2

2
u′2(1)2 − γ2Eλ,β(u2)(ε) = γ2

∫ 1

ε

G(x)u2(x)2dx.

Subtracting the two identities above yields∫ 1

ε

G(x)
(
u1(x)2 − γ2u2(x)2

)
dx =

1

2

(
u′1(1)2 − γ2u′2(1)2

)
−
(
Eλ,β(u1)(ε)− γ2Eλ,β(u2)(ε)

)
.

Notice that by the definition of γ and (15), the integrand on the left hand side
is always non-positive (it is zero if and only if G ≡ 0). Also notice that since
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u1(x) > γu2(x) for all c < x < 1, we obtain that

γ ≤ lim
x→1−

u1(x)

u2(x)
=
u′1(1)

u′2(1)
,

hence u′1(1)2 − γ2u′2(1)2 ≥ 0. Also with the aid of (13) we have that

Eλ,β(u1)(ε)− γ2Eλ,β(u2)(ε) =
β

2
(β + 1− 2α) ε2α−1+β

(
u1(0)2 − γ2u2(0)2

)
+ o(1),

but since u1(x) < γu2(x) for all 0 < x < c, we obtain that u1(0)2 ≤ γ2u2(0)2, and
since for all p > 1 sub-critical, β(β + 1− 2α) ≥ 0, we can deduce that

1

2

(
u′1(1)2 − γ2u′2(1)2

)
+ o(1) ≤

∫ 1

ε

G(x)
(
u1(x)2 − γ2u2(x)2

)
dx,

which by letting ε go to 0 gives

0 ≤ 1

2

(
u′1(1)2 − γ2u′2(1)2

)
≤
∫ 1

0

G(x)
(
u1(x)2 − γ2u2(x)2

)
dx ≤ 0,

since the last inequality is strict when G 6≡ 0 we obtain a contradiction. When
G ≡ 0, then by definition γ = 1, and we obtain that u′1(1) = u′2(1), so u1 ≡ u2,
also a contradiction.

The case λ > 0: To handle this case we first notice that if u > 0 solves

−(x2αu′)′ = λu+ up,

and lim
x→0+

x2αu′(x) ≤ 0, then u′(x) < 0 for all x ∈ (0, 1). Indeed, since λ > 0

and u > 0, from the equation we obtain that x2αu′ is strictly decreasing, hence for
0 < x < 1 we have x2αu′(x) < lim

x→0+
x2αu′(x) ≤ 0.

Recall that we already established that
u1

u2
is increasing, so we have that u′1u2 >

u1u
′
2, and since u′2 < 0 for λ > 0 we obtain that

u′1(x)

u′2(x)
<
u1(x)

u2(x)
for all 0 < x < 1.

Let γ̃ = lim
x→1−

u1(x)

u2(x)
=
u′1(1)

u′2(1)
, then the above implies that u1(x)2 < γ̃2u2(x)2 and

u′1(x)2 < γ̃2u′2(x)2. Now, for given 0 < ε < 1, subtract γ̃2 times identity (19) for
u2 from identity (19) for u1, and with the aid of lemma 2.4 we get, after sending ε
to 0,

1

2

(
u′1(1)2 − γ̃2u′2(1)2

)
= C1

∫ 1

0

x2α
(
u′1(x)2 − γ̃2u′2(x)2

)
dx

+ C2

∫ 1

0

(
u1(x)2 − γ̃u2(x)2

)
dx.

By definition of γ̃, the left hand side is identically 0. For the right hand side
notice that both integrands are negative functions, and since C1, C2 ≥ 0 with one
of them strictly positive, we conclude that the right hand side must be negative,
impossible. �
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4. Proof of Theorem 1

We divide the proof into two cases: λ ≤ 0 and λ > 0

Proof of Theorem 1 when λ ≤ 0. The proof is by contradiction, that is we assume
that we have two distinct solutions u1, u2 of equation (1) satisfying ui(0) = 0,
i = 1, 2. Proposition 2.1 still applies, so we can assume that u1 and u2 intersect at
most once in (0, 1). The case of no intersection is immediately ruled out as before
because we still have x2αu′1(x)u2(x) = o(1) = x2αu′2(x)u1(x) when x → 0+, so we
only need to take care of the case of a unique intersection. Suppose that there is
σ ∈ (0, 1) such that u1 < u2 in (0, σ) and u1 > u2 in (σ, 1). Also, a line by line copy
of our previous argument allows us to show that the function

u1

u2
is increasing.

We continue as in the proof of the uniqueness of Theorems 2 and 3, but instead
of using lemma 2.2, we will use lemma 2.3. So after defining γ as in 22 and using
lemma 2.3 in the same way as we used lemma 2.2 before, gives∫ 1

ε

G(x)
(
u1(x)2 − γ2u2(x)2

)
dx =

1

2

(
u′1(1)2 − γ2u′2(1)2

)
−
(
Eλ,β(u1)(ε)− γ2Eλ,β(u2)(ε)

)
.

The main difference in the argument is the expansion of Eλ,β(u)(ε) for ε > 0 small,
in this case from lemma 2.3 we obtain that

Eλ,β(u1)(ε)− γ2Eλ,β(u2)(ε) = ε1−2α+β

[
1

2

(
ε4αu′1(ε)2

∣∣∣
0
− γ2ε4αu′2(ε)2

∣∣∣
0

)
+

1

2
(2α− 1− β)

(
ε4α−1u′1(ε)u1(ε)

∣∣∣
0
− γ2ε4α−1u′2(ε)u2(ε)

∣∣∣
0

)
+
β

4
(β + 1− 2α)

(
ε4α−2u(ε)2

∣∣∣
0
− γ2ε4α−2u(ε)2

∣∣∣
0

)]
+ o(1),

but u1(x) < γu2(x) for all 0 < x < c so by L’Hôspital’s rule we have that

lim
x→0+

x2αu′1(x)

x2αu′2(x)
< γ.

Also, since u′2(x) > 0 for x > 0 small, we deduce that

lim
x→0+

x2αu′1(x) < γ lim
x→0+

x2αu′2(x).

From these observations we obtain that

ε4αu′1(ε)2
∣∣∣
0
≤ γ2ε4αu′2(ε)2

∣∣∣
0
,

ε4α−1u′1(ε)u1(ε)
∣∣∣
0
≤ γ2ε4α−1u′2(ε)u2(ε)

∣∣∣
0

and that
ε4α−2u(ε)2

∣∣∣
0
≤ γ2ε4α−2u(ε)2

∣∣∣
0
,

which, since β < 2α− 1 < 0, imply that

Eλ,β(u1)(ε)− γ2Eλ,β(u2)(ε) ≤ o(1).

Therefore after sending ε to 0, we obtain

1

2

(
u′1(1)2 − γ2u′2(1)2

)
≤
∫ 1

0

G(x)
(
u1(x)2 − γ2u2(x)2

)
dx,
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and we reach the same contradiction obtained in proof of the uniqueness in Theo-
rems 2 and 3. �

For the case λ > 0 our previous ideas do not work. Instead we will use a
shooting argument together with an idea of Yadava [8] where the uniqueness of
positive solutions to

−∆u = uq ± up

in an annulus is studied.
Recall that we are interested in the uniqueness of a solution to equation

−(x2αu′)′ = λu+ up in (0, 1),

u > 0 in (0, 1),

u(0) = u(1) = 0,

where 0 < α < 1
2 , p > 1 and λ > 0. To simplify the exposition, we will use the

following change of variables: let v(y) = u(y
1

1−2α ), then a direct computation shows
that v is a solution to

(23)


−v′′ = h(y)f(v) in (0, 1),

v > 0 in (0, 1),

v(0) = v(1) = 0,

where h(y) = 1
(1−2α)2 y

2α
1−2α and f(v) = λv + |v|p−1

v. Following [8], we introduce
some notation and some properties of solutions to the equation

(24) − v′′ = h(y)f(v).

Let F (v) =
∫ v

0
f(s)ds = λ

2 v
2 + 1

p+1 |v|
p+1 and define

E(y) :=
1

2
yv′(y)2 + yh(y)F (v(y))− 1

2
v′(y)v(y).

A direct computation shows that if v solves equation (24), then

(25) E′(y) := h(y) (F (v(y)) + f(v(y))v(y)) + yh′(y)F (v(y)).

Also, for A ∈ R to be fixed, we let

(26) gA(y) := yv′(y) +Av(y).

A straightforward computation gives that gA satisfies

g′A = (1 +A)v′ − yh(y)f(v)

and

(27) − g′′A = h(y)f ′(v)g + I(A, v),

where
I(A, v) = ((2 +A)h(y) + yh′(y)) f(v)−Ah(y)f ′(v)v.

We also need to introduce the linearized equation

(28) − w′′ = h(y)f ′(v)w.

A useful identity obtained from equations (27) and (28) is that for any a < b,

(29)
∫ b

a

I(A, v(y))w(y)dy = [yw′v′ −Aw′v − (1 +A)v′w + yh(y)f(v)w]
∣∣∣b
a
.
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We also need the following identity satisfied by all solutions of equation (24):
Let a < y, then

(30) v2

(
yv′(y)

v(y)

)′
=
[
(v′(y)− yh(y)f(v(y)))v(y)− yv′(y)2

] ∣∣∣
a

+ yh(y) [2F (v(y))− f(v(y))v(y)]
∣∣∣y
a

−
∫ y

a

[h(s) (2F (v(s)) + f(v(s))v(s)) + 2sh′(s)F (v(s))] ds.

Now, let v(y,m) be the unique solution of the initial value problem

(31)


−v′′ = h(y)f(v),

v(0) = 0,

v′(0) = m,

and define r(m) as the first zero of v(y,m), i.e. r(m) := inf {y > 0 : v(y,m) = 0}.
Notice that the uniqueness of the solution to equation (23) is guaranteed if we can
prove r(m) = 1 has at most one solution. To do this we will show that r(m) is
monotone for all m > 0, and this is the content of the following

Proposition 4.1. Given m > 0, then ṙ(m) 6= 0.

Remark. The ṙ(m) notation means derivative with respect to m.

The proof of this proposition requires the following

Lemma 4.1. For given m > 0, let v(y,m) be the unique solution of equation (24),

and let r(m) be as above. Then
yv′

v
< 0 for all y < r(m).

Proof. We have that v(s) > 0 for all s < r(m). From identity (30) we have that for
a = 0 and 0 < y < r(m)

v2

(
yv′

v

)′
=
[
(v′ − yh(y)f(v))v − yv′2

] ∣∣∣
0

+ yh(y) [2F (v)− f(v)v]
∣∣∣y
0

−
y∫

0

[h(y) (2F (v) + f(v)v) + 2yh′(y)F (v)]

= yh(y) [2F (v(y))− f(v(y))v(y)]−
y∫

0

[h(y) (2F (v) + f(v)v) + 2yh′(y)F (v)]

= − p− 1

(1− 2α)2(p+ 1)
y

1
1−2α v(y)p+1

− 1

(1− 2α)2

y∫
0

s
2α

1−2α

[
λ

(
2− 2α

1− 2α
v(s)2 +

(
2

(p+ 1)(1− 2α)
+ 1

)
v(s)p+1

)]
ds

< 0,

for all p > 1, 0 < α < 1
2 and λ > 0. �
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Proof of Proposition 4.1. Suppose the contrary and assume m0 > 0 is such that
ṙ(m0) = 0. By the definition of r(m) we have that v(r(m),m) = 0. Differentiate
this equation with respect to m to obtain

w(r(m)) + v′(r(m),m)ṙ(m) = 0,

where w(y) := w(y,m) is the unique solution of
−w′′ = h(y)f ′(v(y,m))w,

w(0) = 0,

w′(0) = 1.

Since ṙ(m0) = 0 we have that w(r(m0)) = 0. Let y0 be the largest zero of w that
is less that r(m0), i.e. y0 = sup {y ∈ (0, r(m0)) : w(y) = 0}. A constant multiple of
w (which we denote the same) must solve

−w′′ = h(y)f ′(v(y,m))w,

w(0) = 0,

w(r(m0)) = 0,

w′(r(m0)) = v′(r(m0),m0) < 0.

Now for A := 2−2α
(p−1)(1−2α) , consider gA defined in (26). We claim that gA has

exactly one zero in (0, r(m)) for all m > 0. Indeed, notice that solving gA(y) = 0
is equivalent to solving

(32)
yv′(y)

v(y)
= −A.

From lemma 4.1, the quantity
yv′(y)

v(y)
is monotonically decreasing, and it satisfies

lim
y→0+

yv′

v
= 1 and lim

y→r(m)−

yv′

v
= −∞. Since −A = − 2−2α

(p−1)(1−2α) < 0, we have a

unique solution to equation (32), and hence gA(s) = 0 has exactly one zero. Let
s0 ∈ (0, r(m0)) be that unique zero.

Claim: y0 < s0.

Notice that
w

v
is increasing in (y0, r(m0)), indeed, let z = w′v − v′w, so it is

enough to prove that z(y) > 0. Suppose that z(ȳ) = 0 for some ȳ ∈ (y0, r(m0)).
Since z(r(m0)) = 0 we obtain that

0 = z(r(m0))− z(ȳ)

=

∫ r(m0)

ȳ

z′

=

∫ r(m0)

ȳ

w′′v − v′′w

=

∫ r(m0)

ȳ

h(y) (f(v)− f ′(v)v)w.
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Since w > 0 in (y0, r(m0)), h(y) > 0 and since f(v) > f ′(v)v for all v > 0 we obtain
a contradiction. Hence z(y) does not change sign, but since z(y0) = w′(y0)v(y0) > 0
we obtain that z(y) > 0 for all y ∈ (y0, r(m0)).

Now since w′(r(m0)) < 0, w > 0 in (y0, r(m0)) and the fact that
w

v
is increasing

we deduce that w < v in (y0, r(m0)). From identity (29) we obtain that∫ r(m0)

y0

I(A, v)w = r(m0)w′(r(m0))2 − gA(y0)v′(y0),

but from the choice of A we have that, since h(y) > 0,∫ r(m0)

y0

I(A, v)w = λ

(
2− 2α

1− 2α

)∫ r(m0)

y0

h(y)vw

< λ

(
2− 2α

1− 2α

)∫ r(m0)

y0

h(y)v2

< λ

(
2− 2α

1− 2α

)∫ r(m0)

0

h(y)v2,

but from (25) we deduce that

λ

(
2− 2α

1− 2α

)∫ r(m0)

0

h(y)v2 < r(m0)v′(r(m0))2,

hence
gA(y0)v′(y0) > 0,

and since v′(y0) > 0, we deduce that gA(y0) > 0. But

g′A(0) = (1 +A)u′(0,m) = (1 +A)m > 0,

so gA(y) > 0 if and only if y < s0, hence y0 < s0.
Now, let y1 = sup {y < y0 : v(y) = 0}. By definition, v < 0 in (y1, y0), but from

identity (29) we obtain∫ y0

y1

I(A, v)w = [w′gA − wg′A]
∣∣∣y0
y1

= w′(y0)gA(y0),

so

0 < w′(y0)gA(y0) = λ

(
2− 2α

1− 2α

)∫ y0

y1

h(y)vw < 0,

hence we conclude that v(0) 6= 0, a contradiction. Therefore ṙ(m) 6= 0. �

Proof of Theorem 1 when λ > 0.
From Proposition 4.1, we deduce that r(m) is either monotonically increasing or

monotonically decreasing, hence r(m) = 1 has at most one solution. This proves
the theorem. �
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