INTERIOR REGULARITY OF DOUBLY WEIGHTED QUASI-LINEAR
EQUATIONS

HERNAN CASTRO

ABsTRACT. In this article we study the quasi-linear equation
divA(z,u, Vu) = B(z,u, Vu) in Q,
u € H'P(Q;wdz)

loc

where A and B are functions satisfying A(z, u, Vu) ~ w1 (|Vul|P 2 Vu + [u|P~? u) and B(z,u, Vu) ~
wao(|VulP~2 Vu+ [uP~2 w) for p > 1, a p-admissible weight function w;, and another weight function
wsg compatible with wj in a suitable sense. We establish interior regularity results of weak solutions
and use those results to obtain point-wise asymptotic estimates at infinity for solutions to

—div(w1 [VulP 72 Vau) = ws [u|?™2u  in Q,
u € DLPw1(Q)

for a critical exponent ¢ > p > 1 in the sense of Sobolev.

1. INTRODUCTION

This article is a direct continuation of [5] where we studied qualitative and quantitative properties of
weak solutions to the following equation

—div (w1 |VulP~? Vu) =wsy [ulT%u  inQ

1) "
u € DPUL(Q),

for equal weights w; = wy and ¢ > p > 1 critical for the weighted Sobolev embedding from D:»*1(Q)
into L#%2(Q). In this continuation we generalize the results obtained in [5] for the case of different
weights wy # wy but satisfying suitable compatibility conditions.

The main motivation behind studying this problem comes from the results in [4] where the existence
to extremals to a Sobolev inequality with monomial weights was analyzed (see also [2}3]). It is known
that extremals to a weighted Sobolev inequality can be viewed as positive solutions to for appropriate
weights w1, w2, and our goal is to obtain as much information as possible regarding said extremals and,
in general, of solutions to .

As in [5] the functions wy, ws will be weight functions, meaning locally Lebesgue integrable non-
negative function over Q C R satisfying at least the following two conditions: if we abuse the notation
and we also write w as the measure induced by w, that is w(B) = f pwdz, we require that w is a
doubling measure in €2, meaning that there exists a doubling constant -y > 0 such that

(2) w(2B) < yw(B)

holds for every (open) ball such that 2B C Q, where pB denotes the ball with the same center as B
but with its radius multiplied by p > 0. The smallest possible v > 0 for which holds for every ball
will be denoted by 7, > 0 from now on. Additionally we will suppose that

(3) 0<w< oo A — almost everywhere
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2 HERNAN CASTRO

where A denotes the N-dimensional Lebesgue measure. Observe that these two conditions ensure that
the measure w and the Lebesgue measure \ are absolutely continuous with respect to each other.

In addition to and we will suppose that the weight w; satisfies the following local (1, p)
Poincaré inequality: if we write f, fwdz = w( 5 [ fwdx then

(P1) Local weighted (1, p)-Poincaré inequality: There exists p > 1 such that if u € C1(2) then for all
balls B C 2 of radius {(B) one has

(4) ][ [u — up | w1 de < C11(B) (7[ [Vul? w; dx) ’
B pB

where
UB,w :][ uw dx
B

is the weighted average of u over B.

As it can be seen in |7, Chapter 20], when a weight function w satisfies , and then w is
p-admissible, that is, it also satisfies the following properties

(P11) Uniqueness of the gradient: If (u,)nen € C1(Q) satisfy
/ |un|” wydz — 0 and / Vu, — v’ widz — 0
Q n—oo Q n— oo

for some v : Q@ — RY, then v = 0.

(Pm1) Local Poincaré-Sobolev inequality: There exist constants C3 > 0 and x; > 1 such that for all
balls B C €2 one has

(5) (][ |u—qu1|X1pw1dm> o < CyYl(B (][ |Vu|pwdm)

for bounded u € C*(B).
(P1v) Local Sobolev inequality: There exist constants Cy > 0 and x; > 1 (same as above) such that
for all balls B C €2 one has

6) (]i P 1w, dx>Xip < Cyl(B) (]é IVl wy dm)p

for u € C1(B).

Remark 1.1. As we mentioned in |5| the value of x1 comes from a dimensional constant associated to
the weight, namely, it can be seen that if w is a doubling weight then

w(Bn(y)) R\
(7) w(TR(xy)) <C <7“> , for all 0 < r < R < oo with B,(x) C Br(y) C Q.
for Dy, =logy Y, and if we denote Dy :=logy v, then we can take x1 = D?ip n and @

Regarding the weight wo, in addition to satisfy and (in particular wy also satisfies for
Dy :=log, Yu, ), we require that the following compatibility condition with the weight w; is met: there
exists ¢ > p such that

1 1
(8) T(“’Q(B“))q gc<w1(3’“)>p

R ’LUQ(BR) wl(BR)
holds for all balls B, C Br C Q. From [6] (see also |1, Theorem 7]) we know that if 1 <p < ¢ < o0,

wy is p-admissible, wy is doubling and is satisfied, then the pair of weights (w;,ws) satisfy the
(g, p)-local Poincaré-Sobolev inequality

(9) (][ |u—u37w2|qw2dx>q§0R(][ Vupwldx>p, Yu € C*(Bg),
Br Br
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and the (g, p)-local Sobolev inequality

(10) (7[ |u|? wo dx) ' <CR (7[ |Vu|” wy dx) ’ , Yue CYBg).
Br Br

Remark 1.2. As it will be useful later we write D = % and xo = #ﬁp = %. Notice that this D comes

from and in general it has nothing to do with Do = logy Yu,, the dimensional constant associated to
the doubling weight we mentioned before.

In order to establish the main results of this work we recall some definitions regarding weighted
spaces. For an admissible weight w we consider the weighted Lebesgue space

LP¥(Q) = {u: Q — R measurable : / lul’ wdz < oo}
Q

equipped with the norm

Jull = [ Julwda.
Q

The p-admissibility of w; is useful to have a proper definition for weighted Sobolev spaces: for an
open set Q C RY we define the weighted Sobolev space HP:%1((Q)

ou
6(Ei

H'P*1(Q) = the completion of {u € C'(Q) : u, € LV (Q) for all i }

equipped with the norm
N

[ull? oy =l + >

=1

p

ou
6$i

p,w1

As we mentioned before the goal of this work is to generalize what was done in [5], that is to obtain
qualitative and quantitative properties of weak solutions to . To do so we first study the local
regularity of weak solutions the following quasi-linear problem

divA(z,u, Vu) = B(z,u, Vu), in Q CRY
uwe H:P(Q),

loc

(1)

where A: Q@ xRxRY — RY and B: Q xR x RY — R are functions verifying the Serrin-like conditions

(H1) Alz,u,2) - 2 > wi(z) (a2 — da [ul” — ),
(H2) A, u,2)| < wi(a) (alz"~ + bl +e),
(H3) ‘B(;U7u’ Z)| < UJQ(I) <C|Z|p_1 +dy |u|;0—1 T f) ’

for a constant a > 0 and measurable functions b, ¢,dy,ds, e, f,g: Q@ — RT U {0} satisfying

w2

Dy 17% Dy
bee Li-1""1(By), ¢ < > € LT="(By),

(He) wy

di,g € L= (By), d, f € L722"2(By).

for some 0 < e < 1.

With the above into consideration, throughout the rest of this article the functions w1y, ws will be a
non-negative locally integrable weight functions satisfying , , wy will satisfy the local weighted
(1, p)-Poincaré inequality and the pair (wy,ws) will verify the compatibility condition . We will
also suppose that 1 < p < min{ Dy, D }.

The first result of this work shows that weak solutions to are locally bounded.
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Theorem 1.1. Suppose that there exists 0 < € < 1 such that (H|) is satisfied, then there exists a
constant C' > 0 depending on the norms of a,b, c,dy,ds such that for any weak solution to i Bg
we have

[ull Lo 3,y < € ([ulp, B, +K),

where

1

P_€7] p—1

(12 k= [(][B |w) ; (]{9 17 )

and for s > 1 and B C Q we write

(13) [ul 5 = (fg |a|5w1>i 4 <]{9 |a|Swz)i

Remark 1.3. We have chosen to exhibit the local reqularity results only for the case By C Bs C Q as
the general case Br C Bag C Q can be easily obtained by a suitable scaling argument (see |5| where the
computations are done in detail).

Next we consider the case € = 0 and we show that weak solutions are in L*"i(By) for every s > p.

Theorem 1.2. Suppose that (H.)) is satisfied for e = 0, then there exists a constant C' > 0 depending
on the norms of a,b, c,dy,ds such that for any weak solution to in By satisfies

[u]&Bl < Cs ([U]Ith + k)
for every s > p and k as in .
Finally, we show that the Harnack inequality holds for non-negative weak solutions to (11)).

Theorem 1.3 (Harnack). Under the same hypotheses of Theorem with the additional assumption
that u is a non-negative weak solution of divA = B in B3 then

B B,

where C and k are as in Theorem [11l

maxu < C <minu—|—kz>

Finally we return to and we obtain a general result regarding the behavior at infinity of solutions.
To do that we will suppose that in addition to the above conditions, both weights wy, ws verify global
Sobolev inequalities, that is, there exists a constant C' > 0 such that

(14) (/ u| ™ wy dm) " <C (/ |Vu| wy dgc) ’
Q Q

for g1 = x1p and

(15) (/Q |u|qw2dx>}1 <C (/Q|Vu|w1 dx>;

for g as in (), and all u € C1(). Under these assumptions, and if we define D*7:*1(() as the closure
of C2°(£2) under the (semi) norm ||Vul| then D1P%1(Q)) embeds continuously into both L9:%1(Q)

and L?*2(Q) and we are able to prove

p,w1

Theorem 1.4 (Decay). Suppose u € D71 (Q) is a weak solution to (I)). Then there exists Ry > 1,
C >0 and A > 0 such that

()| < —=

B

for all |z| > Ry in Q.
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Remark 1.4. It is important to mention that this decay behavior is not optimal, but it can be used
as a starting point to obtain better results. This can be done with the aid of a comparison principle a
the construction of a suitable barrier function depending on the weights wy,ws. We refer the reader to
[5, Section 4] where power type weights and monomial weights are considered in the case wy = ws.

The rest of this article is dedicated to the proofs of the above results. In Section [2[ we study (11))
and obtain the proofs of Theorems [T.1] to [I.3] whereas in Section [3] we turn to the proof of Theorem
2. LOCAL ESTIMATES

Throughout the different proofs in this section we will use the dimensional constants of the weights
D; := D,,, as well as the local Sobolev exponents ¢; := D’? 1_pp and D = % for ¢ given by . With
these notations we also have

T BN QI
p  Di- p D-
Following [§] (and what we did in [5]) we define F': [k, 00) — R as

% ifk<z<l,
F(x) =F,
(@) k(@) = 1Yoz — (a—1I) ifz>1,
which is in C([k, 00)) with |F’(z)| < al®~!. We consider Z = |z| + k and G : R — R defined as

G(z) = Ga k() = sign(z) (F(j) |F'(z)[P~ — apflkﬂ)

where 8 =1+ p(a —1). Observe that G is a piecewise smooth function which is linear if |x| > 1 — &k
and that both F' and G satisfy

)i
z)
) -

G| < F(
TF'(z
F'(z) <

z)|F'(z
) < aF(
akF(z

and

g [F'(z)[" if |of <1k,

|F' (z)[" if |z| >1—k.

Finally, observe that if n € C2°(Q) and if u € H.P""(Q) then ¢ = 7?G(u) is a valid test function in

loc

G'(z) =

/ Az, u, Vu)Vo + B(z,u, Vu)p =
Q

thanks to the results in |7, Chapter 1| regarding weighted Sobolev spaces for p-admissible weights.
We can now prove the local boundedness of weak solutions.

Proof of Theorem[I.1} By using (HI)-(H3) we can write
z,u, 2)| <w;(alzlP™" + buP~
A, u,2)] < wr (a7 + b)),
(16) Az, u,z) 2 > wy (J2]" — di@?) |
zou,2)| <ws (c|z|P 4 douP ),
Bl u,2)| < wp (2" + dyi )

where
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and @ = |u| + k for k > 0 defined aﬂ

1

1 1
o \'Dr o\ ER
[ )™ ()T [ )T
Bs Bs Ba
Observe that (H.|) implies that
— P -, P - D
(a7) futwse fjaFuse f |afesc
Bs Bs B>

for some constant C' > 0 depending on the respective local norms of b, d;,ds, €, f, g.
For a local weak solution u and arbitrary n € CS°(B2) we use ¢ = nP?G(u) and with the aid of
one can obtain the estimate

A-Vo+ Bp =nPG (u)A - Vu+pnP 'G(u)A- Vi +n?G(u)B
> PG (wywn (|Val” = dya?) = pn? = [VnG(w)] wi (a T’ + b ")
= |G| ws (e |Vul”™" + dya )
so that if v = F'(a) one reaches
(18) A~V + By = [nVol” w1 — pa |[oVn| [nVol”™ " wy — pa?™ b [oVn] o]~ wy
— BaPrd, Invl? wy — env |77Vv|p_1 wy — aP " tdy [nul? we

We integrate over By and divide by wq(Bsz) to obtain

7[ InVl” w; Spa][ V| [nVoP~  wy +P04p_1][ bV lon|” ™" wy
B> Bsy Bs

p—1

_ 1 —-1 o 7
+ BaP~t ][ dy [on]” wy + 7/ cun [nVolP ™" ws + 7/ da [on[” ws,
By ’11)1(32) Bs w1<B2) B,

but since wy(Bz) = Cwq(Bs) for C = C(xg, wi,ws2) = :iggzg we can write

(19) ][ InVol” wy Spa][ oV [nVolP ™t wy +p0‘p71][ bloVn| [on|”™" w,
Bs Bs B>

+ BaP~t dy [on]” wy —|—O][ C1177|7IVU‘p_1w2 + CaP™! da |on|” wo,
B, By Be

and each term on the right hand side can be estimated using (6)), (10), and as follows:

1 1—1
(20) f 1wl |nw'”w1s<f Ivan”w1> (f InV'v”wl) ,
B2 B2 32

if Dy the dimensional constant associated to the weight w; then

) b \Bv 3 Y
][ b|vVn| |v77|p_1 wy < (][ brflw1> (][ loVn|? wl) (][ |om|X? wl)
Bs Bs Bs Bsy
: -3
<o(f wwra)” (£ veore) "
Bs B

Ife = f =g =0 we can take any k > 0 and at the very end we can pass to the limit k — 0.

(21)



INTERIOR REGULARITY OF DOUBLY WEIGHTED QUASI-LINEAR EQUATIONS

and

ay [onf? wn = f &y [onf® Jonl” =% wy
Bg B2
P

(22) S <][ J{?lswl) 1 (][ ’L}T]|pw1>p (][ v77|lew1) X1P
Bo Bo Bo
» 1-2
sc(f |v77|pw1> (f |v<vn>|Pw1) ,
Bs B

1—1
— p
whereas for D = % and ¢ =c (%) we have

fory

-1 loe e £ 1—e == p—1 1-%
f con [nVu]? wzz][ cwy™ Jonlf wh o'~ wy® (Ve ?
Bs B

(23)

£ 1—1
(][ Ivnlpw2> (][ vnlqwz> (f |nw|pwl>
Bo Bs B
e
sc(f Ivnlpw2> (f IV(vn)lpm) (f |an|Pw1> 7
Bo Bs B>

][ dy |v77|pw2:][ dy || [on]"™ % w,
B, By
e

(24) <(f 2 dw) (f 2 Ivnlpwz); (f 2 ol )

e 1—¢
<o woiru) (£ wonre) .
Bz BZ
Therefore , , , , and give
: -3
][ InVol? wy < pa (][ |UV77|pw1> <][ |an|pw1>
B, B, B,
+ Cpar? [(f Ivanpun) " ( / Ivanpwl)
Bso B
+ CBaP~t (][ vn|pw1> ’
B2
+C (][ lom|? w2>
B>
= -
x W worun) ([ wwire) T (f o) ]
Bs B, B,

£ 1—¢ 1-=£
+ CaP™? <][ lom|? w2> [(][ [vVn|? w1> + (][ InVo|? w1> 1 )
Bs Bs Bs

and

(£, wwly-jg
() ()]
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If one considers

<=

(f32 [nVul|P wl)

z = 1

(f32 [oVn|P wl) v

and )

1 1
(., ol w2) "+ (f, vl )"

1

(f32 [v¥nl” U’l) ’

then, because a > 1, becomes
2P < C (zp_l F P+ 2P P 2P+ (14 B)aP (1 + zp_e))
for some constant C' > 0 depending on a, b, ¢,d, e, f, g, w1, wy and p. With the aid of |8, Lemma 2| we
obtain
2 < Caf(1+()

which gives

e (4, 2 |an|pw1)‘l“ < Ca? <(]{3 2 vvmpwlf (£ 2 |nv|”w1)’l’ (£ 2 Invlpw2>;> .

Now, by @ and , that is the local Sobolev inequalities for the pair (w1, w;) and the pair (wq, ws)
respectively we obtain

o
XiP xiv
P,

1 1 1
» P P P
(27) <][ [nv < Cas ((7[ [vVn|? w1> + (][ Inv|? w1> + (][ Inv|? w2> ) ,
Bs B> B2 B2
where we recall that y; = D?ip and yo = ]% = DL_p.

To continue we consider a sequence of cut-off functions as follows: we take 7, € C2°(By,, ) such that
N =1in By, and |Vn,| < C2" where h,, = 14 27", If one recalls that both weights are doubling
so that w;(Bp,,) < Yw,wi(Bh, ,) we deduce from that (after passing to the limit | — oco)

_1 _1 1
X1P X2P P
(28) ][ || w, +][ P, | < 02mat f @] w;
B,y B B,
1
p
+][ |ﬁ|apw2 9
Bh,,

which is valid for all & > 1. Recall the definition of [u]s g given by (L3), that is,

hng

1

[uls,p = (f; |u|5w1>; + (]{3 |u|sw2>s

and observe that if y = min{ x1, x2 } then
" x";ip
|,a‘X XiP wi) ,

1
- Xn+1p X7L+1p
lal*  Pw; <
Bh, B

for i = 1,2. Therefore, if we select a,,, = x™ > 1 in we are led to

h'n+1

n —n

_ "y B _
(@180, SCX 20 x=™ Ul B,

where s, = px". And because x > 1 then Ziio kx~* and Zzozo X~ are convergent series so we can
iterate the above inequality to obtain

['L_”]Snthn < C[mP,Bw
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for some constant C' independent of n. After passing to the limit n — oo we obtain

<][ u|pw1> ’ + <][ |upw2> ’ + k
BQ B2

and the result follows. [

[ull oo,y <C

)

Proof of Theorem[1.2 Thanks to the interpolation inequality in L®"i, it is enough to find a sequence
S, — +oo for which one has
n—roo

[a]sn,aBl <Cp [ﬂ}P,Bw

where @ = |u| + k. As in the proof of Theorem by using the test function ¢ = n?G(u) we reach to
the inequality

][ InVolP w; < ap][ loVn| [nVolP "t wy —i—pap_l][ blovn| [on|P ™ wy + BaP ! dy |on|? wy
B2 Bg B2 BZ

+ ][ con |77Vv|p_1 wy + a1 do [vn[? wa,
B2 BQ

but because ¢ = 0 we cannot repeat —. Instead we firstly estimate the term involving b as
follows

7 p—1 72 B P ’ X1p Sy
][ bV ol wy < br=Tw, f [wVnl” w ][ o7 wy
B> B> Bo B

1 1-1 1-1
SC(][ |vVn|”w1) l(][ Wnpwl) +(][ nwpwl) 1
B B> Bs

- 1-1
For the terms involving ¢ and d we consider ¢ = ¢ (%) " and for each M > 0 we define the set

Cy = {2 < M} and proceed as follows

_ 1 _
][ connVol™ wy = —— [/ con [nVol"~ w,
Bs U)Q(BQ) BaNCayr

1 1 _ 1—1
e[ el fonfud ver )
Bzﬁcg/l

S 1—1
SM<][ Ivnlpw) (][ |nw|pw1>
Bz BZ

1

7 o, 67) (o) (o)™
+ | ——— cl”w un|* w Voul" w
<w2(32) /Bng;M| 2) (32| il By ol
1 1—1
<at (f onrun)” (£ v
Bs Bs

1—1
s (f worw)” (£ voru)
32 B2

1

1 » \7
+C 7/ <][ Vol? )
<w2(B2) BaNCE, g w2> By Vol
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Similarly
7 P 1 7 P 7 P
dy jon|" wy = ——~ ) d |lvn|” wy + ) dy lon|” wy
By w1 (Ba) Bon{d,<M} Bon{di>M}
1 b, \ 7P %F
<MA o wr + 7/ i wi (][ Ivnl"”’wl)
B, w1(B2) Jpynfdy>my B,
<M lon|? wy + C <][ loVn|? w1>
32 BQ
P
1 by o1 »
+ 7/ d,? wy (][ [NVl wl),
wi(B2) Jp,ngaismy By
and

_ 1 _ _
][ da |vn|? wy = T/ ) da |vn|? wsy +/ ) da [vn|” ws
By wa(B2) Bon{d:<M} Ban{d>>M}

1 » \? v
<M on|? we + 7/ dJ wo (][ v w2>
B, | wa(Ba) Jpynidoonty B» |

<M |1}77|p wq + C <][ |UV77|p w1>
Bz B2

1 o \?
+ / dy w (][ nVolP w ) .
(wQ(Bz) Bon{da>M} 2 2) 32‘ P

— D —
Because ¢ € LP%2 d; € L7 ™ and do € L7¥2 then for any 6 > 0 we can find M > 0 such that

D

L D1
1 / b \? 1 o\
_— || w2> + 7/ d,? w;
(IUQ(BQ) BoNCy U/1(BQ> Bzﬁ{ J1>M} !

1 gQ 5
_|_ 7/ P w S 9
wa(B2) Jpyn{dy>n} 2

therefore for any o« > 1 we can find ¢ > 0 sufficiently small and a constant C,, > 0 such that

1 1 1—1
(. 105 an )"+ (f, 1ol wa) ] (1o )
Bs B Bo
+ C, <][ [vVn|? w1> + C, <][ lom|P w1> + C, (][ lom|? w2> .
Bs B2 B

The above inequality allows us to we use |8, Lemma 2| once again and obtain an inequality analogous

to , namely
1 1 1
<][ [oVn|? w1> + (][ Invl? w1> + (f [nvl? wg) 1
Bs B B

ofs

f InVolP wy < C,
B

(29) (][ InVu|? wl) ’ < Cyu
B>

the main difference being that the constant C\, is no longer explicit. Nonetheless we can continue the
argument from the proof of Theorem by choosing appropriate cut-off functions 7 to reach

[a}anrl’Bthrl <Cy [a]snth,n7
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where s, = px”, h, =14 27" and [u];s p is defined in . Observe that while we do not obtain a
uniform estimate for C,, we can still iterate the above to conclude that

[a]sn,& < Cn[a]p,Bz

and the result is proved. |

Proof of Theorem[I.3 Theorem [I.1] says that u is bounded on any compact subset of Bs hence for
any 3 € R and any § > 0 the function ¢ = 7P@” is a valid test function provided @ = u + k + ¢ and
n € C(Bs). Here k is defined exactly as in Theorem

For 8 =1—p and v = log @ this is similar to what we did in [5], the main difference is the appearance
of the weight wo. We obtain

(30) (1) / Vol wr < pa / IVl [ 9u " wy +p / b=t Vg wy + / en Vo~  w
Bs Bs Bs

Bs

+(p—1)/ 02177pw1+/ danPwa,
Bs Bs

1
for any n € C°(B3). To continue denote by z = (fB3 InVol? wl) " and with the aid of Holder’s

inequality becomes
Zp S Clzpil + Cg,
1

17
— P
where for ¢ = ¢ (%‘) we have

_ ba P » 1 _p ’
(31) cl—p_l(/&wm wl) +p_1</33|c77| wz) ,

(32) Cy = P P! |Vn| wy +/
p—1 Bs Bs

which thanks to Young’s inequality imply

2P < CO(CY 4 Cy),
for some constant C. To continue we estimate C; and C5 using appropriate 1. For any 0 < h < 2 such
that By C By (not necessarily concentric) we have that B an C Bs and we consider 1) € C*(B an ) such
that n=11in By, 0<n <1 and |Vy| < Ch~ L

We use such 7 in — and we get the following estimates using Holder inequality and the
properties of 5

Jﬂ?pwl + Jzﬁpw%
p—1 B3

C
| vaPun < (B,

_ _ o\ By
/ bt [Vl wr < gwl(B%) - (/ |b1p711 wl) -
Bs h 2 Bs
(A-e)p

. ¢
/ |E’[7‘p Wao S C'LUQ(B%)l—% (/ |E| 1?5 'LUQ)
B B,
yd
7. p—e _ D1 D1
/ diwy < Cwy(By)' ™™ (/ |7 w> ,
2
Bs B
7. p—e _,_D D
donPwy < Cwoy(Bsn)' ™D EALR".
2
Bs B,
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Therefore one obtains

hP
hp][ VolP w <7/ VolP w
Bh| | 1_w1(Bh) B3|77 | 1
Chp
c? +C
wl(Bh)( 1 2)
1_E 1_]3*5
“c w1 (Ban) et (Ban) 71 +hpw1(B%) D1
- w(By,) w1 (Bn) w1 (Bp)
U_)Q(Bﬂ)liw WQ(B&)17PBE
+h? > + hP - ,
wi(By) wi(By)

— D1 _ D1 - D
where C' depends on fBa |b|‘”*1 wy, fBg |E\% Wa, fBa |d1‘ P=< wy, and st |d2|”*5 w. We claim that the
right hand side of the above inequality is bounded independently of 0 < h < 2, indeed because w; is
doubling we have

— 2 <,

and also because Bsn C Bz we deduce from (7)) that ChP1w(B3) < wl(B%), hence

1—p=1
hp—lwl(B%) = < lehp_Zil §C>
wi(Br) wy(Bap) 71
also
1—p==<
i By) P Tl ope,
wi(Bp) wi(Bsw )P
From we deduce
wQ(B&)lf(l—Ds)p ”U.)Q(B&)g-i_e(l_g)
hP 2 — hP 2
wl(Bh) wl(Bh)
(Bu)7 )
w: 3h )4q »
I il DL R
wl(Bh)p 2
: B\
S’Yf;zhp <w2 h 1) ’lUQ(Bg)E( —Z)
wl(Bh)P
1 p
P 3 B3)a P
< v, b (C () wal 3)1> ws(Bg)*(1=7)
h) wy(Bs)?
<C
and similarly
(By)'~7* (BT’
w 3h w: 3h )4 - P
B g 2721 we(Ba )7 (175) < ¢
w1 (Bp) wy(By)? 2

Hence for any € > 0 each term on the right hand side is bounded independently of 0 < h < 2.
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Finally, the local Poincaré-Sobolev inequalities and (ED tell us that
1

a4
][ v —vp, |w; < <][ v —wvp, |" wz>
Bp, By,
1
-
< Ch (][ |Vol? wl)
By,

for any ball By, C By and both i = 1,2. We conclude that
(33) ][ o — v, |w; < C
Bh

where C' > 0 is a constant not depending on h, in other words, v € BMO(Bs, w; dz). If we denote
by ||vHBMO(B%wi) as the least possible C' > 0 in then the John-Nirenberg lemma for doubling

measures |7, Appendix II] tells us that there exist constants pg ;, C > 0 such that

][ epo,ilv—vs\wi <C
B

for all balls B C Bs. In particular this gives

(][ epo}ivwi) ' (][ e_pO)ivwi> S 027
BQ B2

and because v = log u we have obtained

-1
f uPoiw; < C <][ upoviwi) .
B2 B2

Denote by pg = min { po.1,po,2 } and observe that

—1
][ uPow; < C <f upowz) .
BQ B2

holds for both i = 1,2 because py < po,; and Holder inequality. Therefore if we denote by ¥(p, h) =
1 1

(fB} apwl) "4 (fB} apwz) " then the above implies

(34) ¥ (po,2) < CV¥(—po,2).

The rest of the proof consists in using ¢ = nPua” for B # 1 — p, 0 as test function and v = @® for «
given by p8 = p+ o — 1. This gives

al” (A- Vi + Bg) = wy (8n90]” = Blaf” di [nol”)
—wi (apla] [Vo| Vol +plal” blnel” ™ Vi)
—ws (lal cnel oo™ +Jaf” d o)

which after integrating over Bs becomes

0 2][ (B Vol = Bl dy [nu]”) wy
B3

4 (aplal (el 1o + plal? Blop™ Vel wn

3

— o (clal ol Vol + laf? & o) w

B3

where C' = :iggzg Depending on 8 we have
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e If 3 > 0 then we have

84 Vol wr < aplal ][ |an\|an|”*1w1+p|a|”f Blnol” ™ |V
Bs Bs Bs

+ |oz|p][ dy [nvlP wy + C |Oé|f c|nvl |77V1)|]”71 Wa
Bg BS

+C|Oz|p][ da [P wy
B3

and if we proceed as in the proof of Theorem [I.I] to estimate each integral on the right hand side we

obtain
o 1 1 1
S XiP » 101 » P p p p 4
X pwi> < Ca=(1+87")= [(][ |nv w1> + (][ [nv] wg) + (7[ N w1> 1 .
Bs Bs Bs

(f, e

If n € C2°(By,) is such that n =1 in By for 1 <A < h <2 with |Vn| < C(h —h')"! then

(f wmw>w<c(wwg>wQﬂuﬂlﬁ
B B

wi(Bh/) h—h
1 1 1
wl(Bh))”][ » <w2(3h)>”][ v |
X — VT wy + v w s
le(Bs) By, b e wa(Bs) By, s
but since 1 < A’ < h < 2 we have
wi(Bs) _ wi(Ban) _ 5 w;(Bp)
< <~Z and <1
wi(By) = wi(Bp) = w;i(Bs) —
hence for x = min { x1, x2 } we have
b 1
as(1+ 7Yz
(35) W) < T )
e Similarly, for 1 — p < 8 < 0 one has
1—471)=
(36) Y (xp, h/) < C%\P(n h).
e If 3 < 1— p then one obtains
1+ |a))¢
(37) w1 < O g,

If we observe that ¥(s,r) — 2H]13ax11 and U(s,r) — 2HE1;iI1’l] then we can repeat the iterative
s—00 - §——00 -
argument from the proof of [8, Theorem 5| to deduce that and imply
maxu < C¥(pj, 2)
B1

for some p{ < po chosen appropriately, whereas will give
mina > C~1W¥(—po,2).
B,
Finally we can use to obtain a constant C' > 0 depending on the structural parameters such that

maxu < Cminu
By Bq

and because @ = u + k + § we conclude by letting § — 0. |
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3. BEHAVIOR AT INFINITY
In this section we obtain a decay estimate for weak solutions to the equation
—div(w; [V’ ? Vu) = ws [u|"?u in Q
(38) { w € DEP Q)

where the set  C RV (bounded or not) is such that there exists a constant C' > 0 for which the global
weighted Sobolev inequalities and hold. With the aid of the results regarding the equation
divA = B we are able to prove that that weak solutions to are locally bounded.

Lemma 3.1. Let u € DY (Q) be a weak solution of
—div(wy [Vu|P "2 V) = wy [u|! u in Q.
Then for every R > 0 such that Byr(xg) C  then there exists Cr > 0 such that
”u”L‘X’(BR(xO)) < CrlUp,Bin(ao)-

Proof. Observe that equation can be written in the from divAd =Bfora=1,b=c=d; =e =
f=g=0and dy = —|u|""". We first use Theorem because from that result we know that if
do € L% "2 then for every s > 1 and R > 0 the weak solution u satisfies

1 1 1 1
s ] P P
][ lul>wy | + ][ lul”we | < Cprs ][ lulP wy |+ ][ [ul? wo ,
Bagr(zo) Bar(zo) Bar(zo) Byr(zo)

A
and Cg, s depends on s and on (me(xO) |d2|% wg) Y. But because u € Dl’p’wl(Q) and the weights

w1, we verify then the local Sobolev inequality holds and we have that u € L?*2(2), hence

de L%W(Bm(mo)) &q= DD—_’;. In particular, this shows that u € L®*2(Byg(x¢)) for every s and

_ D
as a consequence dy = — |u|T" € Lv==""2(Byg(xg)) for every 0 < & < p. Therefore we can now use

Theorem [[1] to conclude that
||u||L°°(BR(I())) < CR[“]Z?,BM?,(IO)?
where Cr depends on R > 0 and the norm of u in D'P%1(Q). |

Now we would like to estimate the decay of the L%:** norm of weak solutions as one leaves the set

Q.

Lemma 3.2. Suppose u € DVP*1(Q) is a weak solution of , then there exists Ry > 0 and 7 > 0
such that if R > Ry then

Ro\’
full eronser < () Wollzncs @rmng -

Here Br denotes an arbitrary ball of radius R.

Proof. Because u € D7 (Q) then for n € W1 (R¥) the function ¢ = nPu is a valid test function in

/|Vu|p72Vqu0w1:/ |u|?™% wpw,.
Q Q

On the one hand, using Young’s inequality we can find C, > 0 such that

/ IVulP ™ VuVepw, = / [nVu|” wy er/ P [ VulP 7 V- uVnu,
Q Q Q

1
5/ [nVul? w —C’p/ [uVn? w.
Q Q

v
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On the other hand, since ¢ > p we can write

/|u\q_2u<pw2=/uqnpw2
Q Q

= ulTP Inul? we
n
Q

1—-2 r
< ( / |u|qw2) ( / |nqu2)
supp 7 Q

Hence
[V @ar e = [ 1n9u s
Q Q
< 21’*1/ |77Vu|pw1+2p*1/ [uVn|” wy
Q Q

< op-1 (2/ IVul’~? VuVow, +Cp/ luVn[? wl) +2”_1/ [uVn|” wy
Q Q @

1—-2 r
o fmmen ([ ] (L)
Q supp”n Q

and the global Sobolev inequality tells us that there exists a constant Cj, 4, w, > 0 such that

1—P
B9 [V <, [ Vil wn + ( / um) ( / V(W)I”wl)-
Q Q supp n Q

We now choose 7. First of all, because |[uf, ,,, is finite for any given ¢ > 0 we can find Ry = Ro(¢) > 0
such that if R > Ry then

/ || wy < e.
O\Br

With this in mind we choose Ry > 0 such that

lfg 1
Op7w17w2 / ‘u|q w2 < 55
Q\BRO

and we suppose that R > Ry from now on. We consider € W1>°(R¥), such that 0 <7 <1, n(z) =0
for x € Br, n(x) =1 for x ¢ Bag, and |[Vn| < CR™!. If we use such 7 in we obtain a constant
C' > 0 independent of R such that

/ IV ()P w1 < C, / Vil w;
Q Q

which after using gives

1

(40) ([mra)™ <c([ |an|”w1>’1’
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By the choice of n we also have

/ [uVn|P wy < CR_p/ [ul” wy
Q QQBQR\BR
-p -3 q N
<CR (’U.)l(Q N BQR)) X1 |u| wq
QOBQR\BR
2R Dl 17% ﬁ
<CR7P <w1(Q N BRO) (R) ) (/ |u‘q1 w1>
0 QOBQR\BR
Q s X
—o (W) g (| ul® wy
RO B QOBQR\BR

1
X1
< CRDl(l_%)_p / |u|Q1 wy
QOBQR\BR

1

(41) =C / Ju|™ wy
QNB2r\Br

where we have used and the fact that q% = ﬁl - %. From and we obtain
/ Inu|™ w, < C Ju|™ wr,
(9] QﬁBzR\BR

for some constant C' > 0 depending on p, g1, Ry but independent of R. To continue, observe that since
n =1 on B5, we can write

[ s [l o
Q\Bag Q
<c / fu wy
QOBQR\BR

=C'/ |u|™ wy —C’/ |u|™ wy,

thus, if § = =&~ € (0,1) then we obtain

C+1
/ [u|™ wy < 9/ [u|™ wy.
O\ Bar O\Br

Then just as in [5] one can find 7 > 0 such that

Lo mne (5 [, e
O\Bx R O\Br,

for 7 = —q1log, 0 > 0. |

Lemma 3.3. Suppose that u € DYP1 () is a weak solution of

(42) — div(wy [Vul’ > Vu) = wy [u]" in Q.

Then for each s > max{q1,q} there exists Ry > 0 (depending on s) such that if R > Ry then there
exists C = C(p,q1,q,w1,ws;s) > 0 for which

C

L*wi(Q\B2r) < W ”uHL‘HwM(Q\BR) )

[ul

for both i = 1,2, where o5(1) is a quantity that goes to 0 as s — 0.
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Proof. Firstly notice that thanks to the L®" interpolation inequality it is enough to exhibit a sequence
$n, — +oo for which one has

n—oo
< C
”U‘ Lnwi (Q\Bayg) = W HuHqu,wl(Q\BR).
Observe that in the context of we can view asdivAd =B wherea=1,b=c=d;=e=f =
g=0and dy = dy = — |u|??. The assumption u € DVP¥1(Q) tells us that ¢ = n?G(u) is valid test

function and we can follow the notation of the proof Theorem [I.1} in fact, since e = f = g = 0 we can
further suppose that k > 0 is arbitrary in the definition of both F' and G. Starting with we now
integrate over {2 to obtain

/ Vol wy < p/ [0V [nVolP~ wy + (- 1)O‘p_1/ dy [vn]” wa,
Q Q Q

where v = F(4). From the above we obtain

[ <c. ( [vnr s | |u”|vn"w2),
Q Q Q

and with the help of we can write

1—2 P
q q
L tonron < ([ purtun) ([ ool a)
Q supp n

_P

q
< Cpuons ([ |qu2> ([ 1venrw).

supp 7
therefore we have

1-2
/ [V (no) [P wy < C’a/ V" w1 + Cpawy s (/ |u|qw2) (/ [V (vn)] w1>
Q Q supp 7

We now select . Because u € D'Pw1(Q) and that holds then we know that u € L?%2(Q),
therefore for any given v > 0 we can find Ry = Ry(v) > 0 such that

/ [ul|? we < v, VR > Rg.
O\Br

With this in mind we choose Ry = Ry(a) > 0 such that

1_p
¢ 1
Cp,a,whwz / |u‘q w2 < bR
Q\BR

and we suppose that R > Ry to obtain that if suppn C B, then

/ IV ()P wn < C / [Vl s,
Q Q

and using (14)), and passing to the limits [ — +oo, k — 07 give

(43) ([mero)” <o ([ |u°fww1)p,
(44) ([ 1m wz)l <a(f uavmpw1>

We now select n: for n > 0 we consider R, = R(2 —27™) and a smooth function n such that
0<n<1,n(x)=0for |z| < R,, n(x) =1 for |z| > R,+1 and satisfies |Vn| < C]% ,
suppn € Q\ B,
supp Vnn C QN B, \ Br

n+1"°
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Therefore if for n > 1 we take a,, = (‘“) in then we obtain

P
Pnl p" Pnzl
ait! a ™t Cp\ _af g
u| 7wy =\ 7 ul»" =T wy ,
N\Bnr, ., B,
n
or equivalently, if s,, = pg—l_l and Up = [[ull pen.wr (o Bp, )
Ch
un+1 S o u’ru
R

. 2 )"
for C,, = Sql) , which after iterating gives

and since

—(p) P q p\" p

1
> () - -2 (2) - e,
o \41 @—P G—P\Q qir —Pp

because ¢; > p we obtain that for any s > ¢1

Cs

Lo (Q\Bag) = ko [wll orwr @\ Br) »

[[ul

because U < ||U||ch1«w1(Q\BR)v Un = |uf L1 (Bag)*
With the same choice of  and « in we have

n n—1

/ ) 5w, | < ( n
Q\BR

n+1

and just as before we deduce that

Cs
Loz (\Bag) = ) [ull par s (0 B )

[l
for s > gq.

Now we are in position to prove Theorem

19

Proof of Theorem|[I.7] Consider the value of Ry > 0 given in Lemma[3.2] and suppose that z € Q\ Bag,.

Fix0<r< % so that B,.(z) C  and use Lemma to obtain

u(z)] < ||U||Loc(B,,($)) < Crlulp,B,, < Cp

(o) = (f, o) |

for any s > p. If we consider R = %, then by geometric considerations we deduce that By, (x) C Q\ Bag

hence
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Now we fix s large enough so that os(1) < 7 in Lemma where 7 > 0 is taken from Lemma
by doing that we obtain
C

l[all s, (@\Bzr) T ||uHLS’w1(Q\B2R) < W Hu”qu,m(Q\BR)

C

g —— ||u||L01vW1(Q\BR)

Ra-

C Ro\”
S———= 5| lul
T Ruw z \ R Laver(Q\Bro) ?

therefore, by putting all together we obtain

fu(z)] < —<I8 ¢

||u||qu,w(Q\BRU) = W7

P T
Ra-»"2

for some constant C' > 0 independent of |z| > 2Ry, and the result is proved for R = 2R,. |

REFERENCES

[1] J. Bjorn, Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Math. 26 (2001),
no. 1, 175-188. MR 1816566

[2] X. Cabré and X. Ros-Oton, Sobolev and isoperimetric inequalities with monomial weights, J. Differential Equations
255 (2013), no. 11, 4312-4336. MR3097258

[3] H. Castro, Hardy-Sobolev-type inequalities with monomial weights, Ann. Mat. Pura Appl. (4) 196 (2017), no. 2,
579-598. MR3624966

[4] H. Castro, Extremals for Hardy-Sobolev type inequalities with monomial weights, J. Math. Anal. Appl. 494 (2021),
no. 2, 124645, 31. MR4158747

[5] H. Castro, Interior regularity of some weighted quasi-linear equations (2024), https://arxiv.org/abs/2412.07866

[6] B. Franchi, C. E. Gutiérrez, and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators,
Comm. Partial Differential Equations 19 (1994), no. 3-4, 523-604. MR1265808

[7] J. Heinonen, T. Kilpeldinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover
Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR2305115

[8] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. MR 170096

Email address: hcastro@utalca.cl

INsTITUTO DE MATEMATICAS, UNIVERSIDAD DE TALca, CasiLLa 747, Tavca, CHILE


http://www.ams.org/mathscinet-getitem?mr=1816566
http://www.ams.org/mathscinet-getitem?mr=3097258
http://www.ams.org/mathscinet-getitem?mr=3624966
http://www.ams.org/mathscinet-getitem?mr=4158747
https://arxiv.org/abs/2412.07866
http://www.ams.org/mathscinet-getitem?mr=1265808
http://www.ams.org/mathscinet-getitem?mr=2305115
http://www.ams.org/mathscinet-getitem?mr=170096

	1. Introduction
	2. Local estimates
	3. Behavior at infinity
	References

