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Abstract. In this article we study the quasi-linear equation{
divA(x, u,∇u) = B(x, u,∇u) in Ω,

u ∈ H1,p
loc (Ω;w dx)

where A and B are functions satisfying A(x, u,∇u) ∼ w1(|∇u|p−2∇u + |u|p−2 u) and B(x, u,∇u) ∼
w2(|∇u|p−2∇u + |u|p−2 u) for p > 1, a p-admissible weight function w1, and another weight function
w2 compatible with w1 in a suitable sense. We establish interior regularity results of weak solutions
and use those results to obtain point-wise asymptotic estimates at infinity for solutions to{

−div(w1 |∇u|p−2∇u) = w2 |u|q−2 u in Ω,

u ∈ D1,p,w1 (Ω)

for a critical exponent q > p > 1 in the sense of Sobolev.

1. Introduction

This article is a direct continuation of [5] where we studied qualitative and quantitative properties of
weak solutions to the following equation

(1)

−div
(
w1 |∇u|p−2∇u

)
= w2 |u|q−2

u in Ω

u ∈ D1,p,w1(Ω),

for equal weights w1 = w2 and q > p > 1 critical for the weighted Sobolev embedding from D1,p,w1(Ω)
into Lq,w2(Ω). In this continuation we generalize the results obtained in [5] for the case of different
weights w1 6= w2 but satisfying suitable compatibility conditions.

The main motivation behind studying this problem comes from the results in [4] where the existence
to extremals to a Sobolev inequality with monomial weights was analyzed (see also [2, 3]). It is known
that extremals to a weighted Sobolev inequality can be viewed as positive solutions to (1) for appropriate
weights w1, w2, and our goal is to obtain as much information as possible regarding said extremals and,
in general, of solutions to (1).

As in [5] the functions w1, w2 will be weight functions, meaning locally Lebesgue integrable non-
negative function over Ω ⊆ RN satisfying at least the following two conditions: if we abuse the notation
and we also write w as the measure induced by w, that is w(B) =

´
B
w dx, we require that w is a

doubling measure in Ω, meaning that there exists a doubling constant γ > 0 such that

(2) w(2B) ≤ γw(B)

holds for every (open) ball such that 2B ⊂ Ω, where ρB denotes the ball with the same center as B
but with its radius multiplied by ρ > 0. The smallest possible γ > 0 for which (2) holds for every ball
will be denoted by γw > 0 from now on. Additionally we will suppose that

(3) 0 < w <∞ λ− almost everywhere
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where λ denotes the N -dimensional Lebesgue measure. Observe that these two conditions ensure that
the measure w and the Lebesgue measure λ are absolutely continuous with respect to each other.

In addition to (2) and (3) we will suppose that the weight w1 satisfies the following local (1, p)
Poincaré inequality: if we write

ffl
B
fw dx = 1

w(B)

´
fw dx then

(PI) Local weighted (1, p)-Poincaré inequality : There exists ρ ≥ 1 such that if u ∈ C1(Ω) then for all
balls B ⊂ Ω of radius l(B) one has

(4)
 
B

|u− uB,w1
|w1 dx ≤ C1l(B)

( 
ρB

|∇u|p w1 dx

) 1
p

where
uB,w =

 
B

uw dx

is the weighted average of u over B.
As it can be seen in [7, Chapter 20], when a weight function w satisfies (2), (3) and (4) then w is

p-admissible, that is, it also satisfies the following properties
(PII) Uniqueness of the gradient : If (un)n∈N ⊆ C1(Ω) satisfyˆ

Ω

|un|p w1 dx −→
n→∞

0 and
ˆ

Ω

|∇un − v|p w1 dx −→
n→∞

0

for some v : Ω→ RN , then v = 0.
(PIII) Local Poincaré-Sobolev inequality : There exist constants C3 > 0 and χ1 > 1 such that for all

balls B ⊂ Ω one has

(5)
( 

B

|u− uB,w1 |
χ1p w1 dx

) 1
χ1p

≤ C2l(B)

( 
B

|∇u|p w dx

) 1
p

for bounded u ∈ C1(B).
(PIV) Local Sobolev inequality : There exist constants C2 > 0 and χ1 > 1 (same as above) such that

for all balls B ⊂ Ω one has

(6)
( 

B

|u|χ1p w1 dx

) 1
χ1p

≤ C2l(B)

( 
B

|∇u|p w1 dx

) 1
p

for u ∈ C1
c (B).

Remark 1.1. As we mentioned in [5] the value of χ1 comes from a dimensional constant associated to
the weight, namely, it can be seen that if w is a doubling weight then

(7)
w(BR(y))

w(Br(x))
≤ C

(
R

r

)Dw
, for all 0 < r ≤ R <∞ with Br(x) ⊆ BR(y) ⊆ Ω.

for Dw = log2 γw, and if we denote D1 := log2 γw1
then we can take χ1 = D1

D1−p in (5) and (6).

Regarding the weight w2, in addition to satisfy (2) and (3) (in particular w2 also satisfies (7) for
D2 := log2 γw2

), we require that the following compatibility condition with the weight w1 is met: there
exists q > p such that

(8)
r

R

(
w2(Br)

w2(BR)

) 1
q

≤ C
(
w1(Br)

w1(BR)

) 1
p

.

holds for all balls Br ⊂ BR ⊂ Ω. From [6] (see also [1, Theorem 7]) we know that if 1 ≤ p < q <∞,
w1 is p-admissible, w2 is doubling and (8) is satisfied, then the pair of weights (w1, w2) satisfy the
(q, p)-local Poincaré-Sobolev inequality

(9)
( 

BR

|u− uB,w2 |
q
w2 dx

) 1
q

≤ CR
( 

BR

|∇u|p w1 dx

) 1
p

, ∀u ∈ C1(BR),
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and the (q, p)-local Sobolev inequality

(10)
( 

BR

|u|q w2 dx

) 1
q

≤ CR
( 

BR

|∇u|p w1 dx

) 1
p

, ∀u ∈ C1
c (BR).

Remark 1.2. As it will be useful later we write D = qp
q−p and χ2 = D

D−p = q
p . Notice that this D comes

from (8) and in general it has nothing to do with D2 = log2 γw2 , the dimensional constant associated to
the doubling weight w2 mentioned before.

In order to establish the main results of this work we recall some definitions regarding weighted
spaces. For an admissible weight w we consider the weighted Lebesgue space

Lp,w(Ω) = {u : Ω→ R measurable :

ˆ
Ω

|u|p w dx <∞}

equipped with the norm

‖u‖pp,w =

ˆ
Ω

|u|p w dx.

The p-admissibility of w1 is useful to have a proper definition for weighted Sobolev spaces: for an
open set Ω ⊆ RN we define the weighted Sobolev space H1,p,w1(Ω)

H1,p,w1(Ω) = the completion of {u ∈ C1(Ω) : u,
∂u

∂xi
∈ Lp,w1(Ω) for all i }

equipped with the norm

‖u‖p1,p,w1
= ‖u‖pp,w1

+

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
p,w1

.

As we mentioned before the goal of this work is to generalize what was done in [5], that is to obtain
qualitative and quantitative properties of weak solutions to (1). To do so we first study the local
regularity of weak solutions the following quasi-linear problem

(11)

{
divA(x, u,∇u) = B(x, u,∇u), in Ω ⊆ RN

u ∈ H1,p,w1

loc (Ω),

where A : Ω×R×RN → RN and B : Ω×R×RN → R are functions verifying the Serrin-like conditions

A(x, u, z) · z ≥ w1(x)
(
a−1 |z|p − d1 |u|p − g

)
,(H1)

|A(x, u, z)| ≤ w1(x)
(
a |z|p−1

+ b |u|p−1
+ e
)
,(H2)

|B(x, u, z)| ≤ w2(x)
(
c |z|p−1

+ d2 |u|p−1
+ f

)
,(H3)

for a constant a > 0 and measurable functions b, c, d1, d2, e, f, g : Ω→ R+ ∪ { 0 } satisfying

(Hε)
b, e ∈ L

D1
p−1 ,w1(B2), c

(
w2

w1

)1− 1
p

∈ L
D1
1−ε ,w2(B2),

d1, g ∈ L
D1
p−ε ,w1(B2), d2, f ∈ L

D
p−ε ,w2(B2).

for some 0 ≤ ε < 1.
With the above into consideration, throughout the rest of this article the functions w1, w2 will be a

non-negative locally integrable weight functions satisfying (2), (3), w1 will satisfy the local weighted
(1, p)-Poincaré inequality (4) and the pair (w1, w2) will verify the compatibility condition (8). We will
also suppose that 1 < p < min {D1, D }.

The first result of this work shows that weak solutions to (11) are locally bounded.
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Theorem 1.1. Suppose that there exists 0 < ε < 1 such that (Hε) is satisfied, then there exists a
constant C > 0 depending on the norms of a, b, c, d1, d2 such that for any weak solution to (11) in B2

we have
‖u‖L∞(B1) ≤ C ([u]p,B2

+ k) ,

where

(12) k =

[( 
B2

|e|
D1
p−1 w1

) p−1
D1

+

( 
B2

|f |
D
p−ε w2

) p−ε
D

] 1
p−1

+

[( 
B2

|g|
D1
p−ε w1

) p−ε
D1

] 1
p

and for s > 1 and B ⊆ Ω we write

(13) [u]s,B =

( 
B

|ū|s w1

) 1
s

+

( 
B

|ū|s w2

) 1
s

Remark 1.3. We have chosen to exhibit the local regularity results only for the case B1 ⊂ B2 ⊂ Ω as
the general case BR ⊆ B2R ⊆ Ω can be easily obtained by a suitable scaling argument (see [5] where the
computations are done in detail).

Next we consider the case ε = 0 and we show that weak solutions are in Ls,wi(B1) for every s > p.

Theorem 1.2. Suppose that (Hε) is satisfied for ε = 0, then there exists a constant C > 0 depending
on the norms of a, b, c, d1, d2 such that for any weak solution to (11) in B2 satisfies

[u]s,B1
≤ Cs ([u]p,B2

+ k)

for every s > p and k as in (12).

Finally, we show that the Harnack inequality holds for non-negative weak solutions to (11).

Theorem 1.3 (Harnack). Under the same hypotheses of Theorem 1.1 with the additional assumption
that u is a non-negative weak solution of divA = B in B3 then

max
B1

u ≤ C
(

min
B1

u+ k

)
where C and k are as in Theorem 1.1.

Finally we return to (1) and we obtain a general result regarding the behavior at infinity of solutions.
To do that we will suppose that in addition to the above conditions, both weights w1, w2 verify global
Sobolev inequalities, that is, there exists a constant C > 0 such that

(14)
(ˆ

Ω

|u|q1 w1 dx

) 1
q1

≤ C
(ˆ

Ω

|∇u|w1 dx

) 1
p

for q1 = χ1p and

(15)
(ˆ

Ω

|u|q w2 dx

) 1
q

≤ C
(ˆ

Ω

|∇u|w1 dx

) 1
p

for q as in (8), and all u ∈ C1
c (Ω). Under these assumptions, and if we define D1,p,w1(Ω) as the closure

of C∞c (Ω) under the (semi) norm ‖∇u‖p,w1
then D1,p,w1(Ω) embeds continuously into both Lq1,w1(Ω)

and Lq,w2(Ω) and we are able to prove

Theorem 1.4 (Decay). Suppose u ∈ D1,p,w1(Ω) is a weak solution to (1). Then there exists R0 > 1,
C > 0 and λ > 0 such that

|u(x)| ≤ C

|x|
p

q1−p
+λ
,

for all |x| > R0 in Ω.
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Remark 1.4. It is important to mention that this decay behavior is not optimal, but it can be used
as a starting point to obtain better results. This can be done with the aid of a comparison principle a
the construction of a suitable barrier function depending on the weights w1, w2. We refer the reader to
[5, Section 4] where power type weights and monomial weights are considered in the case w1 = w2.

The rest of this article is dedicated to the proofs of the above results. In Section 2 we study (11)
and obtain the proofs of Theorems 1.1 to 1.3 whereas in Section 3 we turn to the proof of Theorem 1.4.

2. Local estimates

Throughout the different proofs in this section we will use the dimensional constants of the weights
Di := Dwi as well as the local Sobolev exponents q1 := D1p

D1−p and D = qp
q−p for q given by (8). With

these notations we also have

χ1 =
q1

p
=

D1

D1 − p
and χ2 =

q

p
=

D

D − p
Following [8] (and what we did in [5]) we define F : [k,∞)→ R as

F (x) = Fα,k,l(x) =

{
xα if k ≤ x ≤ l,
lα−1 (αx− (α− 1)l) if x > l,

which is in C1([k,∞)) with |F ′(x)| ≤ αlα−1. We consider x̄ = |x|+ k and G : R→ R defined as

G(x) = Gα,k,l(x) = sign(x)
(
F (x̄) |F ′(x̄)|p−1 − αp−1kβ

)
where β = 1 + p(α− 1). Observe that G is a piecewise smooth function which is linear if |x| > l − k
and that both F and G satisfy

|G| ≤ F (x̄) |F ′(x̄)|p−1

x̄F ′(x̄) ≤ αF (x̄)

F ′(x̄) ≤ αF (x̄)1− 1
α

and

G′(x) =


β

α
|F ′(x̄)|p if |x| < l − k,

|F ′(x̄)|p if |x| > l − k.

Finally, observe that if η ∈ C∞c (Ω) and if u ∈ H1,p,w1

loc (Ω) then ϕ = ηpG(u) is a valid test function inˆ
Ω

A(x, u,∇u)∇ϕ+ B(x, u,∇u)ϕ = 0

thanks to the results in [7, Chapter 1] regarding weighted Sobolev spaces for p-admissible weights.
We can now prove the local boundedness of weak solutions.

Proof of Theorem 1.1. By using (H1)-(H3) we can write

(16)

|A(x, u, z)| ≤ w1

(
a |z|p−1

+ b̄ūp−1
)
,

A(x, u, z) · z ≥ w1

(
|z|p − d̄1ū

p
)
,

|B(x, u, z)| ≤ w2

(
c |z|p−1

+ d̄2ū
p−1
)
,

where

b̄ = b+ k1−pe,

d̄1 = d1 + k−pg,

d̄2 = d2 + k1−pf,
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and ū = |u|+ k for k ≥ 0 defined as1

k =

[( 
B2

|e|
D1
p−1 w1

) p−1
D1

+

( 
B2

|f |
D
p−ε w2

) p−ε
D

] 1
p−1

+

[( 
B2

|g|
D1
p−ε w1

) p−ε
D1

] 1
p

.

Observe that (Hε) implies that

(17)
 
B2

∣∣b̄∣∣ D1
p−1 w1 ≤ C,

 
B2

∣∣d̄1

∣∣ D1
p−ε w1 ≤ C,

 
B2

∣∣d̄2

∣∣ D
p−ε w2 ≤ C,

for some constant C > 0 depending on the respective local norms of b, d1, d2, e, f, g.
For a local weak solution u and arbitrary η ∈ C∞c (B2) we use ϕ = ηpG(u) and with the aid of (16)

one can obtain the estimate

A · ∇ϕ+ Bϕ = ηpG′(u)A · ∇u+ pηp−1G(u)A · ∇η + ηpG(u)B

≥ ηpG′(u)w1

(
|∇u|p − d̄1ū

p
)
− pηp−1 |∇ηG(u)|w1

(
a |∇u|p−1

+ b̄ūp−1
)

− ηp |G(u)|w2

(
c |∇u|p−1

+ d̄2ū
p−1
)

so that if v = F (ū) one reaches

(18) A · ∇ϕ+ Bϕ ≥ |η∇v|p w1 − pa |v∇η| |η∇v|p−1
w1 − pαp−1b̄ |v∇η| |ηv|p−1

w1

− βαp−1d̄1 |ηv|p w1 − cηv |η∇v|p−1
w2 − αp−1d̄2 |ηv|p w2

We integrate over B2 and divide by w1(B2) to obtain
 
B2

|η∇v|p w1 ≤ pa
 
B2

|v∇η| |η∇v|p−1
w1 + pαp−1

 
B2

b̄ |v∇η| |vη|p−1
w1

+ βαp−1

 
B2

d̄1 |vη|p w1 +
1

w1(B2)

ˆ
B2

cvη |η∇v|p−1
w2 +

αp−1

w1(B2)

ˆ
B2

d̄2 |vη|p w2,

but since w2(B2) = Cw1(B2) for C = C(x0, w1, w2) = w2(B2)
w1(B2) we can write

(19)
 
B2

|η∇v|p w1 ≤ pa
 
B2

|v∇η| |η∇v|p−1
w1 + pαp−1

 
B2

b̄ |v∇η| |vη|p−1
w1

+ βαp−1

 
B2

d̄1 |vη|p w1 + C

 
B2

cvη |η∇v|p−1
w2 + Cαp−1

 
B2

d̄2 |vη|p w2,

and each term on the right hand side can be estimated using (6), (10), and (17) as follows:

(20)
 
B2

|v∇η| |η∇v|p−1
w1 ≤

( 
B2

|v∇η|p w1

) 1
p
( 

B2

|η∇v|p w1

)1− 1
p

,

if D1 the dimensional constant associated to the weight w1 then

(21)

 
B2

b̄ |v∇η| |vη|p−1
w1 ≤

( 
B2

b̄
D1
p−1w1

) p−1
D1
( 

B2

|v∇η|p w1

) 1
p
( 

B2

|vη|χ1p w1

) p−1
χ1p

≤ C
( 

B2

|v∇η|p w1

) 1
p
( 

B2

|∇(vη)|p w1

)1− 1
p

,

1If e = f = g = 0 we can take any k > 0 and at the very end we can pass to the limit k → 0+.
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and

(22)

 
B2

d̄1 |vη|p w1 =

 
B2

d̄1 |vη|ε |vη|p−ε w1

≤
( 

B2

d̄
D1
p−ε
1 w1

) p−ε
D1
( 

B2

|vη|p w1

) ε
p
( 

B2

|vη|χ1p w1

) p−ε
χ1p

≤ C
( 

B2

|vη|p w1

) ε
p
( 

B2

|∇(vη)|p w1

)1− εp
,

whereas for D = pq
q−p and c̄ = c

(
w2

w1

)1− 1
p

we have

(23)

 
B2

cvη |η∇v|p−1
w2 =

 
B2

c̄w
1−ε
D

2 |vη|ε w
ε
p

2 |vη|
1−ε

w
1−ε
q

2 |η∇v|p−1
w

1− 1
p

1

≤
( 

B2

|c̄|
D

1−ε w2

) 1−ε
D

×
( 

B2

|vη|p w2

) ε
p
( 

B2

|vη|q w2

) 1−ε
q
( 

B2

|η∇v|p w1

)1− 1
p

≤ C
( 

B2

|vη|p w2

) ε
p
( 

B2

|∇(vη)|p w1

) 1−ε
p
( 

B2

|η∇v|p w1

)1− 1
p

,

and

(24)

 
B2

d̄2 |vη|p w2 =

 
B2

d̄2 |vη|ε |vη|p−ε w2

≤
( 

B2

d̄
D
p−ε
2 w2

) p−ε
D
( 

B2

|vη|p w2

) ε
p
( 

B2

|vη|q w2

) p−ε
q

≤ C
( 

B2

|vη|p w2

) ε
p
( 

B2

|∇(vη)|p w1

)1− εp
.

Therefore (19), (20), (21), (22), (23) and (24) give

(25)

 
B2

|η∇v|p w1 ≤ pa
( 

B2

|v∇η|p w1

) 1
p
( 

B2

|η∇v|p w1

)1− 1
p

+ Cpαp−1

[( 
B2

|v∇η|p w1

)
+

(ˆ
B2

|v∇η|p w1

) 1
p
( 

B2

|η∇v|p w1

)1− 1
p

]

+ Cβαp−1

( 
B2

|vη|p w1

) ε
p

[( 
B2

|v∇η|p w1

)1− εp
+

( 
B2

|η∇v|p w1

)1− εp
]

+ C

( 
B2

|vη|p w2

) ε
p

×

[( 
B2

|η∇v|p w1

)1− 1
p
(ˆ

B2

|v∇η|p w1

) 1−ε
p

+

( 
B2

|η∇v|p w1

)1− εp
]

+ Cαp−1

( 
B2

|vη|p w2

) ε
p

[( 
B2

|v∇η|p w1

)1− εp
+

( 
B2

|η∇v|p w1

)1− εp
]
.
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If one considers

z =

(ffl
B2
|η∇v|p w1

) 1
p

(ffl
B2
|v∇η|p w1

) 1
p

and

ζ =

(ffl
B2
|ηv|p w1

) 1
p

+
(ffl

B2
|ηv|p w2

) 1
p

(ffl
B2
|v∇η|p w1

) 1
p

then, because α ≥ 1, (25) becomes

zp ≤ C
(
zp−1 + αp−1(1 + zp−1) + ζε(zp−1 + zp−ε) + (1 + β)αp−1ζε(1 + zp−ε)

)
for some constant C > 0 depending on a, b, c, d, e, f, g, w1, w2 and p. With the aid of [8, Lemma 2] we
obtain

z ≤ Cα
p
ε (1 + ζ)

which gives

(26)
( 

B2

|η∇v|p w1

) 1
p

≤ Cα
p
ε

(( 
B2

|v∇η|p w1

) 1
p

+

( 
B2

|ηv|p w1

) 1
p

+

( 
B2

|ηv|p w2

) 1
p

)
.

Now, by (6) and (10), that is the local Sobolev inequalities for the pair (w1, w1) and the pair (w1, w2)
respectively we obtain

(27)
( 

B2

|ηv|χip wi
) 1
χip

≤ Cα
p
ε

(( 
B2

|v∇η|p w1

) 1
p

+

( 
B2

|ηv|p w1

) 1
p

+

( 
B2

|ηv|p w2

) 1
p

)
,

where we recall that χ1 = D1

D1−p and χ2 = q
p = D

D−p .
To continue we consider a sequence of cut-off functions as follows: we take ηn ∈ C∞c (Bhn) such that

ηn ≡ 1 in Bhn+1 and |∇ηn| ≤ C2n where hn = 1 + 2−n. If one recalls that both weights are doubling
so that wi(Bhn) ≤ γwiwi(Bhn+1

) we deduce from (27) that (after passing to the limit l→∞)

(28)

( 
Bhn+1

|ū|αχ1p w1

) 1
χ1p

+

( 
Bhn+1

|ū|αχ2p w2

) 1
χ2p

≤ C2nα
p
ε

( 
Bhn

|ū|αp w1

) 1
p

+

( 
Bhn

|ū|αp w2

) 1
p

 ,
which is valid for all α ≥ 1. Recall the definition of [u]s,B given by (13), that is,

[u]s,B =

( 
B

|ū|s w1

) 1
s

+

( 
B

|ū|s w2

) 1
s

and observe that if χ = min {χ1, χ2 } then( 
Bhn+1

|ū|χ
n+1p

wi

) 1

χn+1p

≤

( 
Bhn+1

|ū|χ
nχip wi

) 1
χnχip

,

for i = 1, 2. Therefore, if we select αn = χn > 1 in (28) we are led to

[ū]sn+1,Bhn+1
≤ Cχ

−n
2nχ

−n
χ
p
εnχ

−n
[ū]sn,Bhn

where sn = pχn. And because χ > 1 then
∑∞
k=0 kχ

−k and
∑∞
k=0 χ

−k are convergent series so we can
iterate the above inequality to obtain

[ū]sn,Bhn ≤ C[ū]p,B2 ,
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for some constant C independent of n. After passing to the limit n→∞ we obtain

‖u‖L∞(B1) ≤ C

[( 
B2

|u|p w1

) 1
p

+

( 
B2

|u|p w2

) 1
p

+ k

]
,

and the result follows. �

Proof of Theorem 1.2. Thanks to the interpolation inequality in Ls,wi , it is enough to find a sequence
sn −→

n→∞
+∞ for which one has

[ū]sn,B1
≤ Cn[ū]p,B2

,

where ū = |u|+ k. As in the proof of Theorem 1.1, by using the test function ϕ = ηpG(u) we reach to
the inequality

 
B2

|η∇v|p w1 ≤ ap
 
B2

|v∇η| |η∇v|p−1
w1 + pαp−1

 
B2

b̄ |v∇η| |vη|p−1
w1 + βαp−1

 
B2

d̄1 |vη|p w1

+

 
B2

cvη |η∇v|p−1
w2 + αp−1

 
B2

d̄2 |vη|p w2,

but because ε = 0 we cannot repeat (20)-(22). Instead we firstly estimate the term involving b̄ as
follows

 
B2

b̄ |v∇η| |vη|p−1
w1 ≤

( 
B2

b̄
D1
p−1w1

) p−1
D1
( 

B2

|v∇η|p w1

) 1
p
( 

B2

|vη|χ1p w1

) p−1
χ1p

≤ C
( 

B2

|v∇η|p w1

) 1
p

[( 
B2

|v∇η|p w1

)1− 1
p

+

( 
B2

|η∇v|p w1

)1− 1
p

]
.

For the terms involving c and d̄ we consider c̄ = c
(
w2

w1

)1− 1
p

and for each M > 0 we define the set
CM = { c̄ ≤M } and proceed as follows

 
B2

cvη |η∇v|p−1
w2 =

1

w2(B2)

[ˆ
B2∩CM

cvη |η∇v|p−1
w2

+

ˆ
B2∩CcM

c̄w
1
D
2 |vη|w

1
q

2 |η∇v|
p−1

w
1− 1

p

1

]

≤M
( 

B2

|vη|p w2

) 1
p
( 

B2

|η∇v|p w1

)1− 1
p

+

(
1

w2(B2)

ˆ
B2∩CcM

|c̄|D w2

) 1
D ( 

B2

|vη|q w2

) 1
q
( 

B2

|η∇v|p w1

)1− 1
p

≤M
( 

B2

|vη|p w2

) 1
p
( 

B2

|η∇v|p w1

)1− 1
p

+ C

( 
B2

|v∇η|p w1

) 1
p
( 

B2

|η∇v|p w1

)1− 1
p

+ C

(
1

w2(B2)

ˆ
B2∩CcM

|c̄|D w2

) 1
D ( 

B2

|η∇v|p w1

)
.
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Similarly
 
B2

d̄1 |vη|p w1 =
1

w1(B2)

[ˆ
B2∩{ d̄1≤M }

d̄ |vη|p w1 +

ˆ
B2∩{ d̄1>M }

d̄1 |vη|p w1

]

≤M
 
B2

|vη|p w1 +

(
1

w1(B2)

ˆ
B2∩{ d̄1>M }

d̄
D1
p

1 w1

) p
D1
( 

B2

|vη|χ1p w1

) 1
χ1p

≤M
 
B2

|vη|p w1 + C

( 
B2

|v∇η|p w1

)

+

(
1

w1(B2)

ˆ
B2∩{ d̄1>M }

d̄
D1
p

1 w1

) p
D1
( 

B2

|η∇v|p w1

)
,

and
 
B2

d̄2 |vη|p w2 =

[
1

w2(B2)

ˆ
B2∩{ d̄2≤M }

d̄2 |vη|p w2 +

ˆ
B2∩{ d̄2>M }

d̄2 |vη|p w2

]

≤M
 
B2

|vη|p w2 +

(
1

w2(B2)

ˆ
B2∩{ d̄2>M }

d̄
D
p

2 w2

) p
D ( 

B2

|vη|q w2

) 1
q

≤M
 
B2

|vη|p w2 + C

( 
B2

|v∇η|p w1

)

+

(
1

w2(B2)

ˆ
B2∩{ d̄2>M }

d̄
D
p

2 w2

) p
D ( 

B2

|η∇v|p w1

)
.

Because c̄ ∈ LD,w2 , d̄1 ∈ L
D1
p ,w1 and d̄2 ∈ L

D
p ,w2 then for any δ > 0 we can find M > 0 such that

(
1

w2(B2)

ˆ
B2∩CM

|c̄|D w2

) 1
D

+

(
1

w1(B2)

ˆ
B2∩{ d̄1>M }

d̄
D1
p

1 w1

) p
D1

+

(
1

w2(B2)

ˆ
B2∩{ d̄2>M }

d̄
D
p

2 w2

) p
D

≤ δ,

therefore for any α ≥ 1 we can find δ > 0 sufficiently small and a constant Cα > 0 such that

 
B2

|η∇v|p w1 ≤ Cα

[( 
B2

|v∇η|p w1

) 1
p

+

( 
B2

|vη|p w2

) 1
p

]( 
B2

|η∇v|p w1

)1− 1
p

+ Cα

( 
B2

|v∇η|p w1

)
+ Cα

( 
B2

|vη|p w1

)
+ Cα

( 
B2

|vη|p w2

)
.

The above inequality allows us to we use [8, Lemma 2] once again and obtain an inequality analogous
to (26), namely

(29)
( 

B2

|η∇v|p w1

) 1
p

≤ Cα

[( 
B2

|v∇η|p w1

) 1
p

+

( 
B2

|ηv|p w1

) 1
p

+

( 
B2

|ηv|p w2

) 1
p

]
the main difference being that the constant Cα is no longer explicit. Nonetheless we can continue the
argument from the proof of Theorem 1.1 by choosing appropriate cut-off functions η to reach

[ū]sn+1,Bhn+1
≤ Cn[ū]sn,Bhn ,
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where sn = pχn, hn = 1 + 2−n and [u]s,B is defined in (13). Observe that while we do not obtain a
uniform estimate for Cn we can still iterate the above to conclude that

[ū]sn,B1 ≤ Cn[ū]p,B2

and the result is proved. �

Proof of Theorem 1.3. Theorem 1.1 says that u is bounded on any compact subset of B3 hence for
any β ∈ R and any δ > 0 the function ϕ = ηpūβ is a valid test function provided ū = u+ k + δ and
η ∈ C∞c (B3). Here k is defined exactly as in Theorem 1.1.

For β = 1−p and v = log ū this is similar to what we did in [5], the main difference is the appearance
of the weight w2. We obtain

(30) (p− 1)

ˆ
B3

|η∇v|p w1 ≤ pa
ˆ
B3

|∇η| |η∇v|p−1
w1 + p

ˆ
B3

b̄ηp−1 |∇η|w1 +

ˆ
B3

cη |η∇v|p−1
w2

+ (p− 1)

ˆ
B3

d̄1η
pw1 +

ˆ
B3

d̄2η
pw2,

for any η ∈ C∞c (B3). To continue denote by z =
(´

B3
|η∇v|p w1

) 1
p

and with the aid of Hölder’s
inequality (30) becomes

zp ≤ C1z
p−1 + C2,

where for c̄ = c
(
w2

w1

)1− 1
p

we have

C1 =
pa

p− 1

(ˆ
B3

|∇η|p w1

) 1
p

+
1

p− 1

(ˆ
B3

|c̄η|p w2

) 1
p

,(31)

C2 =
p

p− 1

ˆ
B3

b̄ηp−1 |∇η|w1 +

ˆ
B3

d̄1η
pw1 +

1

p− 1

ˆ
B3

d̄2η
pw2,(32)

which thanks to Young’s inequality imply

zp ≤ C(Cp1 + C2),

for some constant C. To continue we estimate C1 and C2 using appropriate η. For any 0 < h < 2 such
that Bh ⊂ B2 (not necessarily concentric) we have that B 3h

2
⊂ B3 and we consider η ∈ C∞c (B 3h

2
) such

that η ≡ 1 in Bh, 0 ≤ η ≤ 1 and |∇η| ≤ Ch−1.
We use such η in (31)-(32) and we get the following estimates using Hölder inequality and the

properties of η ˆ
B3

|∇η|p w1 ≤
C

hp
w1(B 3h

2
),

ˆ
B3

b̄ηp−1 |∇η|w1 ≤
C

h
w1(B 3h

2
)1− p−1

D1

(ˆ
B3

∣∣b̄∣∣ D1
p−1 w1

) p−1
D1

,

ˆ
B3

|c̄η|p w2 ≤ Cw2(B 3h
2

)1− (1−ε)p
D

(ˆ
B3

|c̄|
D

1−ε w2

) (1−ε)p
D

,

ˆ
B3

d̄1η
pw1 ≤ Cw1(B 3h

2
)1− p−εD1

(ˆ
B3

∣∣d̄1

∣∣ D1
p−ε w

) p−ε
D1

,

ˆ
B3

d̄2η
pw2 ≤ Cw2(B 3h

2
)1− p−εD

(ˆ
B3

∣∣d̄2

∣∣ D
p−ε w

) p−ε
D

.
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Therefore one obtains

hp
 
Bh

|∇v|p w1 ≤
hp

w1(Bh)

ˆ
B3

|η∇v|p w1

≤ Chp

w1(Bh)
(Cp1 + C2)

≤ C

w1(B 3h
2

)

w1(Bh)
+ hp−1

w1(B 3h
2

)1− p−1
D1

w1(Bh)
+ hp

w1(B 3h
2

)1− p−εD1

w1(Bh)

+hp
w2(B 3h

2
)1− (1−ε)p

D

w1(Bh)
+ hp

w2(B 3h
2

)1− p−εD

w1(Bh)

 ,

where C depends on
´
B3

∣∣b̄∣∣ D1
p−1 w1,

´
B3
|c̄|

D
1−ε w2,

´
B3

∣∣d̄1

∣∣ D1
p−ε w1, and

´
B3

∣∣d̄2

∣∣ D
p−ε w. We claim that the

right hand side of the above inequality is bounded independently of 0 < h ≤ 2, indeed because w1 is
doubling we have

w1(B 3h
2

)

w1(Bh)
≤ C,

and also because B 3h
2
⊂ B3 we deduce from (7) that ChD1w1(B3) ≤ w1(B 3h

2
), hence

hp−1
w1(B 3h

2
)1− p−1

D1

w1(Bh)
≤ γw1

hp−1

w1(B 3h
2

)
p−1
D1

≤ C,

also

hp
w1(B 3h

2
)1− p−εD1

w1(Bh)
≤ γw1

hp

w1(B 3h
2

)
p−ε
D1

≤ Chε.

From (8) we deduce

hp
w2(B 3h

2
)1− (1−ε)p

D

w1(Bh)
= hp

w2(B 3h
2

)
p
q+ε(1− pq )

w1(Bh)

= hp

w2(B 3h
2

)
1
q

w1(Bh)
1
p

p

w2(B 3h
2

)ε(1− pq )

≤ γ
p
q
w2h

p

(
w2(Bh)

1
q

w1(Bh)
1
p

)p
w2(B3)ε(1− pq )

≤ γ
p
q
w2h

p

(
C

(
3

h

)
w2(B3)

1
q

w1(B3)
1
p

)p
w2(B3)ε(1− pq )

≤ C

and similarly

hp
w2(B 3h

2
)1− p−εD

w1(Bh)
= hp

w2(B 3h
2

)
1
q

w1(Bh)
1
p

p

w2(B 3h
2

)
ε
p (1− pq ) ≤ C.

Hence for any ε ≥ 0 each term on the right hand side is bounded independently of 0 < h ≤ 2.
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Finally, the local Poincaré-Sobolev inequalities (5) and (9) tell us that
 
Bh

|v − vBh |wi ≤
( 

Bh

|v − vBh |
qi wi

) 1
qi

≤ Ch
( 

Bh

|∇v|p w1

) 1
p

≤ C,

for any ball Bh ⊆ B2 and both i = 1, 2. We conclude that

(33)
 
Bh

|v − vBh |wi ≤ C

where C > 0 is a constant not depending on h, in other words, v ∈ BMO(B2, wi dx). If we denote
by ‖v‖BMO(B2,wi)

as the least possible C > 0 in (33) then the John-Nirenberg lemma for doubling
measures [7, Appendix II] tells us that there exist constants p0,i, C > 0 such that 

B

ep0,i|v−vB |wi ≤ C

for all balls B ⊆ B2. In particular this gives( 
B2

ep0,ivwi

)
·
( 

B2

e−p0,ivwi

)
≤ C2,

and because v = log ū we have obtained
 
B2

ūp0,iwi ≤ C
( 

B2

ū−p0,iwi

)−1

.

Denote by p0 = min { p0,1, p0,2 } and observe that
 
B2

ūp0wi ≤ C
( 

B2

ū−p0wi

)−1

.

holds for both i = 1, 2 because p0 ≤ p0,i and Hölder inequality. Therefore if we denote by Ψ(p, h) =(ffl
Bh
ūpw1

) 1
p

+
(ffl

Bh
ūpw2

) 1
p

then the above implies

(34) Ψ(p0, 2) ≤ CΨ(−p0, 2).

The rest of the proof consists in using ϕ = ηpūβ for β 6= 1− p, 0 as test function and v = ūα for α
given by pβ = p+ α− 1. This gives

|α|p (A · ∇ϕ+ Bϕ) ≥ w1

(
β |η∇v|p − β |α|p d̄1 |ηv|p

)
− w1

(
ap |α| |∇ηv| |η∇v|p−1

+ p |α|p b̄ |ηv|p−1 |∇ηv|
)

− w2

(
|α| c |ηv| |η∇v|p−1

+ |α|p d̄2 |ηv|p−1
)

which after integrating over B3 becomes

0 ≥
 
B3

(
β |η∇v|p − β |α|p d̄1 |ηv|p

)
w1

−
 
B3

(
ap |α| |∇ηv| |η∇v|p−1

+ p |α|p b̄ |ηv|p−1 |∇ηv|
)
w1

− C
 
B3

(
c |α| |ηv| |η∇v|p−1

+ |α|p d̄2 |ηv|p−1
)
w2

where C = w2(B3)
w1(B3) . Depending on β we have
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• If β > 0 then we have

β

 
B3

|η∇v|p w1 ≤ ap |α|
 
B3

|∇ηv| |η∇v|p−1
w1 + p |α|p

 
B3

b̄ |ηv|p−1 |∇ηv|w1

+ β |α|p
 
B3

d̄1 |ηv|p w1 + C |α|
 
B3

c |ηv| |η∇v|p−1
w2

+ C |α|p
 
B3

d̄2 |ηv|p−1
w2

and if we proceed as in the proof of Theorem 1.1 to estimate each integral on the right hand side we
obtain( 
B3

|η∇v|χip wi
) 1
χip

≤ Cα
p
ε (1+β−1)

1
ε

[( 
B3

|ηv|p w1

) 1
p

+

( 
B3

|ηv|p w2

) 1
p

+

( 
B3

|∇ηv|p w1

) 1
p

]
.

If η ∈ C∞c (Bh) is such that η ≡ 1 in Bh′ for 1 ≤ h′ < h ≤ 2 with |∇η| ≤ C(h− h′)−1 then( 
Bh′

|v|χip wi

) 1
χip

≤ C
(
wi(B3)

wi(Bh′)

) 1
χip α

p
ε (1 + β−1)

1
ε

h− h′

×

[(
w1(Bh)

w1(B3)

) 1
p
 
Bh

|v|p w1 +

(
w2(Bh)

w2(B3)

) 1
p
 
Bh

|v|p w2

] 1
p

,

but since 1 ≤ h′ < h ≤ 2 we have

wi(B3)

wi(Bh′)
≤ wi(B4h′)

wi(Bh′)
≤ γ2

wi and
wi(Bh)

wi(B3)
≤ 1

hence for χ = min {χ1, χ2 } we have

(35) Ψ(χp, h′) ≤ Cα
p
ε (1 + β−1)

1
ε

h− h′
Ψ(p, h).

• Similarly, for 1− p < β < 0 one has

(36) Ψ(χp, h′) ≤ C (1− β−1)
1
ε

h− h′
Ψ(p, h).

• If β < 1− p then one obtains

(37) Ψ(χp′, h′) ≤ C (1 + |α|)
p
ε

h− h′
Ψ(p, h).

If we observe that Ψ(s, r) −→
s→∞

2 max
Br

ū and Ψ(s, r) −→
s→−∞

2 min
Br

ū then we can repeat the iterative

argument from the proof of [8, Theorem 5] to deduce that (35) and (36) imply

max
B1

ū ≤ CΨ(p′0, 2)

for some p′0 ≤ p0 chosen appropriately, whereas (37) will give

min
B1

ū ≥ C−1Ψ(−p0, 2).

Finally we can use (34) to obtain a constant C > 0 depending on the structural parameters such that

max
B1

ū ≤ C min
B1

ū

and because ū = u+ k + δ we conclude by letting δ → 0+. �
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3. Behavior at infinity

In this section we obtain a decay estimate for weak solutions to the equation

(38)

{
−div(w1 |∇u|p−2∇u) = w2 |u|q−2

u in Ω

u ∈ D1,p,w1(Ω)

where the set Ω ⊆ RN (bounded or not) is such that there exists a constant C > 0 for which the global
weighted Sobolev inequalities (14) and (15) hold. With the aid of the results regarding the equation
divA = B we are able to prove that that weak solutions to (38) are locally bounded.

Lemma 3.1. Let u ∈ D1,p,w(Ω) be a weak solution of

−div(w1 |∇u|p−2∇u) = w2 |u|q−2
u in Ω.

Then for every R > 0 such that B4R(x0) ⊆ Ω then there exists CR > 0 such that

‖u‖L∞(BR(x0)) ≤ CR[u]p,B4R(x0).

Proof. Observe that equation (38) can be written in the from divA = B for a = 1, b = c = d1 = e =

f = g = 0 and d2 = − |u|q−p. We first use Theorem 1.2 because from that result we know that if
d2 ∈ L

D
p ,w2 then for every s ≥ 1 and R > 0 the weak solution u satisfies( 

B2R(x0)

|u|s w1

) 1
s

+

( 
B2R(x0)

|u|s w2

) 1
s

≤ CR,s

( 
B4R(x0)

|u|p w1

) 1
p

+

( 
B4R(x0)

|u|p w2

) 1
p

 ,
and CR,s depends on s and on

(ffl
B4R(x0)

|d2|
D
p w2

) p
D

. But because u ∈ D1,p,w1(Ω) and the weights
w1, w2 verify (8) then the local Sobolev inequality (10) holds and we have that u ∈ Lq,w2(Ω), hence
d ∈ L

D
p ,w2(B4R(x0)) ⇔ q = Dp

D−p . In particular, this shows that u ∈ Ls,w2(B2R(x0)) for every s and

as a consequence d2 = − |u|q−p ∈ L
D
p−ε ,w2(B2R(x0)) for every 0 < ε < p. Therefore we can now use

Theorem 1.1 to conclude that
‖u‖L∞(BR(x0)) ≤ CR[u]p,B4R(x0),

where CR depends on R > 0 and the norm of u in D1,p,w1(Ω). �

Now we would like to estimate the decay of the Lq1,w1 norm of weak solutions as one leaves the set
Ω.

Lemma 3.2. Suppose u ∈ D1,p,w1(Ω) is a weak solution of (38), then there exists R0 > 0 and τ > 0
such that if R ≥ R0 then

‖u‖Lq1,w1 (Ω\BR) ≤
(
R0

R

)τ
‖u‖Lq1,w1 (Ω\BR0

) .

Here BR denotes an arbitrary ball of radius R.

Proof. Because u ∈ D1,p,w(Ω) then for η ∈W 1,∞(RN ) the function ϕ = ηpu is a valid test function inˆ
Ω

|∇u|p−2∇u∇ϕw1 =

ˆ
Ω

|u|q−2
uϕw2.

On the one hand, using Young’s inequality we can find Cp > 0 such thatˆ
Ω

|∇u|p−2∇u∇ϕw1 =

ˆ
Ω

|η∇u|p w1 + p

ˆ
Ω

ηp−1 |∇u|p−2∇u · u∇ηw1

≥ 1

2

ˆ
Ω

|η∇u|p w1 − Cp
ˆ

Ω

|u∇η|p w1.
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On the other hand, since q > p we can write

ˆ
Ω

|u|q−2
uϕw2 =

ˆ
Ω

uqηpw2

=

ˆ
Ω

|u|q−p |ηu|p w2

≤
(ˆ

supp η

|u|q w2

)1− pq (ˆ
Ω

|ηu|q w2

) p
q

.

Hence
ˆ

Ω

|∇(ηu)|p w1 =

ˆ
Ω

|η∇u+ u∇η|p w1

≤ 2p−1

ˆ
Ω

|η∇u|p w1 + 2p−1

ˆ
Ω

|u∇η|p w1

≤ 2p−1

(
2

ˆ
Ω

|∇u|p−2∇u∇ϕw1 + Cp

ˆ
Ω

|u∇η|p w1

)
+ 2p−1

ˆ
Ω

|u∇η|p w1

≤ Cp
ˆ

Ω

|u∇η|p w1 + 2p
(ˆ

supp η

|u|q w2

)1− pq (ˆ
Ω

|ηu|q w2

) p
q

,

and the global Sobolev inequality (15) tells us that there exists a constant Cp,w1,w2 > 0 such that

(39)
ˆ

Ω

|∇(ηu)|p w1 ≤ Cp
ˆ

Ω

|u∇η|p w1 + Cp,w1,w2

(ˆ
supp η

|u|q w2

)1− pq (ˆ
Ω

|∇(ηu)|p w1

)
.

We now choose η. First of all, because ‖u‖q,w2
is finite for any given ε > 0 we can find R0 = R0(ε) > 0

such that if R ≥ R0 then
ˆ

Ω\BR
|u|q w2 ≤ ε.

With this in mind we choose R0 > 0 such that

Cp,w1,w2

(ˆ
Ω\BR0

|u|q w2

)1− pq

≤ 1

2
,

and we suppose that R ≥ R0 from now on. We consider η ∈W 1,∞(RN ), such that 0 ≤ η ≤ 1, η(x) = 0
for x ∈ BR, η(x) = 1 for x /∈ B2R, and |∇η| ≤ CR−1. If we use such η in (39) we obtain a constant
C > 0 independent of R such that

ˆ
Ω

|∇(ηu)|p w1 ≤ Cp
ˆ

Ω

|u∇η|p w1

which after using (14) gives

(40)
(ˆ

Ω

|ηu|q1 w1

) 1
q1

≤ C
(ˆ

Ω

|u∇η|p w1

) 1
p

.
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By the choice of η we also haveˆ
Ω

|u∇η|p w1 ≤ CR−p
ˆ

Ω∩B2R\BR
|u|p w1

≤ CR−p (w1(Ω ∩B2R))
1− 1

χ1

(ˆ
Ω∩B2R\BR

|u|q1 w1

) 1
χ1

≤ CR−p
(
w1(Ω ∩BR0

)

(
2R

R0

)D1
)1− 1

χ1
(ˆ

Ω∩B2R\BR
|u|q1 w1

) 1
χ1

= C

(
w1(Ω ∩BR0

)

RD1
0

)1− 1
χ1

RD1(1− 1
χ1

)−p

(ˆ
Ω∩B2R\BR

|u|q1 w1

) 1
χ1

≤ CRD1(1− 1
χ1

)−p

(ˆ
Ω∩B2R\BR

|u|q1 w1

) 1
χ1

= C

(ˆ
Ω∩B2R\BR

|u|q1 w1

) 1
χ1

(41)

where we have used (7) and the fact that 1
q1

= 1
D1
− 1

p . From (40) and (41) we obtainˆ
Ω

|ηu|q1 w1 ≤ C
ˆ

Ω∩B2R\BR
|u|q1 w1,

for some constant C > 0 depending on p, q1, R0 but independent of R. To continue, observe that since
η ≡ 1 on Bc2R we can writeˆ

Ω\B2R

|u|q1 w1 ≤
ˆ

Ω

|ηu|q1 w1

≤ C
ˆ

Ω∩B2R\BR
|u|q1 w1

= C

ˆ
Ω\BR

|u|q1 w1 − C
ˆ

Ω\B2R

|u|q1 w1,

thus, if θ = C
C+1 ∈ (0, 1) then we obtainˆ

Ω\B2R

|u|q1 w1 ≤ θ
ˆ

Ω\BR
|u|q1 w1.

Then just as in [5] one can find τ > 0 such thatˆ
Ω\BR

|u|q1 w1 ≤
(
R0

R

)τ ˆ
Ω\BR0

|u|q1 w1

for τ = −q1 log2 θ > 0. �

Lemma 3.3. Suppose that u ∈ D1,p,w1(Ω) is a weak solution of

(42) − div(w1 |∇u|p−2∇u) = w2 |u|q−2
u in Ω.

Then for each s > max { q1, q } there exists R0 > 0 (depending on s) such that if R ≥ R0 then there
exists C = C(p, q1, q, w1, w2; s) > 0 for which

‖u‖Ls,wi (Ω\B2R) ≤
C

R
p

q1−p
−os(1)

‖u‖Lq1,w1 (Ω\BR) ,

for both i = 1, 2, where os(1) is a quantity that goes to 0 as s→∞.
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Proof. Firstly notice that thanks to the Ls,w interpolation inequality it is enough to exhibit a sequence
sn −→

n→∞
+∞ for which one has

‖u‖Lsn,wi (Ω\B2R) ≤
C

R
p

q1−p
−on(1)

‖u‖Lq1,w1 (Ω\BR) .

Observe that in the context of (11) we can view (42) as divA = B where a = 1, b = c = d1 = e = f =

g = 0 and d2 = d̄2 = − |u|q−p. The assumption u ∈ D1,p,w1(Ω) tells us that ϕ = ηpG(u) is valid test
function and we can follow the notation of the proof Theorem 1.1, in fact, since e = f = g = 0 we can
further suppose that k > 0 is arbitrary in the definition of both F and G. Starting with (18) we now
integrate over Ω to obtainˆ

Ω

|η∇v|p w1 ≤ p
ˆ

Ω

|v∇η| |η∇v|p−1
w1 + (α− 1)αp−1

ˆ
Ω

d2 |vη|p w2,

where v = F (ū). From the above we obtainˆ
Ω

|∇(ηv)|p w1 ≤ Cα
(ˆ

Ω

|v∇η|p w1 +

ˆ
Ω

|u|q−p |vη|p w2

)
,

and with the help of (15) we can write
ˆ

Ω

|u|q−p |vη|p w2 ≤
(ˆ

supp η

|u|q w2

)1− pq (ˆ
Ω

|vη|q w2

) p
q

≤ Cp,w1,w2

(ˆ
supp η

|u|q w2

)1− pq (ˆ
Ω

|∇(vη)|p w1

)
,

therefore we haveˆ
Ω

|∇(ηv)|p w1 ≤ Cα
ˆ

Ω

|v∇η|p w1 + Cp,α,w1,w2

(ˆ
supp η

|u|q w2

)1− pq (ˆ
Ω

|∇(vη)|p w1

)
.

We now select η. Because u ∈ D1,p,w1(Ω) and that (15) holds then we know that u ∈ Lq,w2(Ω),
therefore for any given ν > 0 we can find R0 = R0(ν) > 0 such thatˆ

Ω\BR
|u|q w2 ≤ ν, ∀R ≥ R0.

With this in mind we choose R0 = R0(α) > 0 such that

Cp,α,w1,w2

(ˆ
Ω\BR

|u|q w2

)1− pq

≤ 1

2
,

and we suppose that R ≥ R0 to obtain that if supp η ⊂ BcR thenˆ
Ω

|∇(ηv)|p w1 ≤ Cα
ˆ

Ω

|v∇η|p w1,

and using (14), (15) and passing to the limits l→ +∞, k → 0+ give(ˆ
Ω

|ηuα|q1 w1

) 1
q1

≤ Cα
(ˆ

Ω

|uα∇η|p w1

) 1
p

,(43) (ˆ
Ω

|ηuα|q w2

) 1
q

≤ Cα
(ˆ

Ω

|uα∇η|p w1

) 1
p

.(44)

We now select η: for n ≥ 0 we consider Rn = R(2 − 2−n) and a smooth function η such that
0 ≤ η ≤ 1, η(x) = 0 for |x| ≤ Rn, η(x) = 1 for |x| ≥ Rn+1 and satisfies |∇η| ≤ C2n

R ,

supp η ⊆ Ω \BRn
supp∇η ⊆ Ω ∩BRn \BRn+1

.
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Therefore if for n ≥ 1 we take αn =
(
q1
p

)n
in (43) then we obtain

(ˆ
Ω\BRn+1

|u|
q
n+1
1
pn w1

) pn

q
n+1
1

≤
(
Cn
R

) pn

qn1

(ˆ
Ω\BRn

|u|
qn1
pn−1 w1

) pn−1

qn1

,

or equivalently, if sn =
qn1
pn−1 and Un = ‖u‖Lsn,w1 (Ω\BRn ),

Un+1 ≤
C̃n

R
pn

qn1

Un,

for C̃n = C

(
p
q1

)n
n , which after iterating gives

Un ≤

( ∏n−1
i=1 C̃i

R
∑n−1
i=1

(
p
q1

)i
)
U1,

and since
n−1∑
i=1

(
p

q1

)i
=

p

q1 − p
− q1

q1 − p

(
p

q1

)n
=

p

q1 − p
− on(1),

because q1 > p we obtain that for any s > q1

‖u‖Ls,w1 (Ω\B2R) ≤
Cs

R
p

q1−p
−os(1)

‖u‖Lq1,w1 (Ω\BR) ,

because U1 ≤ ‖u‖Lq1,w1 (Ω\BR), Un ≥ ‖u‖Lsn,w1 (B2R).
With the same choice of η and α in (44) we have(ˆ

Ω\BRn+1

|u|
qn1 q

pn w2

) pn

qn1 q

≤
(
Cn
R

) pn

qn1

(ˆ
Ω\BRn

|u|
qn1
pn−1 w1

) pn−1

qn1

=

(
Cn
R

) pn

qn1

Un

≤

( ∏n
i=1 C̃i

R
∑n
i=1

(
p
q1

)i
)
U1,

and just as before we deduce that

‖u‖Ls,w2 (Ω\B2R) ≤
Cs

R
p

q1−p
−os(1)

‖u‖Lq1,w1 (Ω\BR)

for s > q. �

Now we are in position to prove Theorem 1.4:

Proof of Theorem 1.4. Consider the value of R0 > 0 given in Lemma 3.2, and suppose that x ∈ Ω\B2R0
.

Fix 0 < r < R0

4 so that Br(x) ⊆ Ω and use Lemma 3.1 to obtain

|u(x)| ≤ ‖u‖L∞(Br(x)) ≤ Cr[u]p,B2r
≤ Cr

[(ˆ
B2r

|u|s w1

) 1
s

+

(ˆ
B2r

|u|s w2

) 1
s

]
,

for any s > p. If we consider R = |x|
4 , then by geometric considerations we deduce that B2r(x) ⊆ Ω\B2R

hence (ˆ
B2r

|u|s wi
) 1
s

≤

(ˆ
Ω\B2R

|u|s wi

) 1
s

.
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Now we fix s large enough so that os(1) ≤ τ
2 in Lemma 3.3, where τ > 0 is taken from Lemma 3.2,

by doing that we obtain

‖u‖Ls,w2 (Ω\B2R) + ‖u‖Ls,w1 (Ω\B2R) ≤
C

R
p

q1−p
−os(1)

‖u‖Lq1,w1 (Ω\BR)

≤ C

R
p

q1−p
− τ2
‖u‖Lq1,w1 (Ω\BR)

≤ C

R
p

q1−p
− τ2

(
R0

R

)τ
‖u‖Lq1,w1 (Ω\BR0

) ,

therefore, by putting all together we obtain

|u(x)| ≤ CRτ0

R
p

q1−p
+ τ

2

‖u‖Lq1,w(Ω\BR0
) =

C

|x|
p

q1−p
+λ
,

for some constant C > 0 independent of |x| ≥ 2R0, and the result is proved for R̃ = 2R0. �
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