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ABSTRACT. In this paper, we study the moments of semi-Markovian versions of classical birth-death
processes, focusing on the so-called Quadratic Asymptotically Symmetric (QAS) birth-death processes.
By means of Tauberian theorems, we provide a complete description of their asymptotic behavior. Our
results show a dichotomous pattern: when the birth rate dominates the death rate, the moments grow
exponentially, while if the death rate exceeds the birth rate, the moments decay slowly. This contrasts
with classical birth-death processes, where moment growth and decay are always exponential.

1. INTRODUCTION

The theory of birth-death processes is a basic framework for studying how the size of a population
changes as time evolves. Such processes are continuous-time Markov chains that count the number of
particles in a system as time elapses. More precisely, in a population with n individuals, each individual
could give birth to another at a rate b, > 0 or could die at a rate d,, > 0.

These processes have proven to be versatile and have been successfully applied in various fields, such as
demography, queuing theory, and epidemiology (see, e.g., [9, 14, 28] and the references therein). However,
the Markovian nature of these processes limits their applicability in analyzing phenomena that exhibit
long memory or are influenced by environmental conditions with random fluctuations. To address these
limitations, several researchers have proposed generalizations and extensions of birth-death processes,
see, e.g., [4, 6, 7, 10, 19, 21, 22, 23, 24, 30], and the references therein.

Since the probability of birth or death events depends not only on the current state but also on
the system’s history, the processes discussed above are known as nonlocal birth-death processes. A key
contribution in this field comes from Ascione, Leonenko, and Pirozzi [4], who studied a specific class
of nonlocal birth-death processes as discrete approximations of Pearson diffusions. Specifically, they
have considered a solvable birth-death process N(t) and a subordinator o associated with a Bernstein
function @, and they analyze th features of a nonlocal birth-death process induced by N and ® as a
compound process of the form:

No(t) := N(Eg(t)), t=0,

where Eg denotes the inverse subordinator of o, which is independent of A/. Among other results, they
have proved that these processes admit an invariant measure, which also serves as the limit measure for
any starting distribution. They also provide the correlation structure of the stochastic processes in terms
of the potential measure of the involved subordinator and the eigenfunctions of the nonlocal in-time
derivatives.

The primary goal of this paper is to deepen the understanding of the properties of this type of nonlocal
processes Ng(t). To this end, we will consider two main assumptions. First, we examine birth-death
processes with Quadratic asymptotically Symmetric (QAS) transition rates, that is, the birth and death
rates are given by

bn:6n2+6bn+’y and d, = fn®+d4n, neN,

where 3, dp, 04, and v are non-negative constants. Second, we consider a specific class of Bernstein
functions, defined by ®(\) = Ah()) for A > 0, where h is a function of type (PC)" and h represents the
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Laplace transform of h. The condition (PC)" means that h € Lj 1o.(R. ) is a nonnegative, non-increasing
function, and there exists ¢ € Ly 1oc(R4) such that ¢ ¢ L1(Ry) and h ¢ =1 on (0, 00).

While at first glance, this choice of Bernstein function may appear restrictive, it in fact encompasses
a remarkably broad class of nonlocal birth-death processes, including the fractional case, as shown in
Section 4 below. On the other hand, although birth-death processes with quadratic transition rates have
been studied in the local setting (see, e.g., [17, 28]), their nonlocal counterparts remain largely unexplored.
To the best of our knowledge, a systematic investigation of these processes within the nonlocal framework
has yet to be undertaken. This gap in the literature motivates our study and underscores the relevance
of our approach.

2. MAIN RESULTS

In order to present our main results, we need to introduce some notation and definitions that we use
throughout the text.

The Laplace transform of a function f : [0,00) — R defined on the half-line will be denoted by

2N =i = | TN f (o),

0
whenever the last integral is convergent. For readability, we will use the symbol . when the function f
has a lengthy expression, such as functions involving convolutions.

Definition 2.1. We say that a non-negative function h € L1 10c(R4) is of type (PC) if there is a non-
negative non-increasing ¢ € Lj joc(R4) such that h % ¢ = 1 on the interval (0,00). In those cases where
¢ ¢ Li(Ry), we will say that h is of type (PC)’. In order to emphasize the existence of the function /,
throughout the text we write (h,£) € (PC)".

We emphasize that the condition (PC) has been successfully applied in the study of subdiffusion
processes, as demonstrated in works such as [2, 15, 26], among others. Given that (PC)" C (PC), this
condition establishes a robust framework for analyzing this class of nonlocal processes.

Definition 2.2. A C>-function f: (0,00) — R is called completely monotonic if (—1)" ™ (\) > 0 for
all n € Ng and A > 0. Further, a C*°-function g: (0,00) — R is called Bernstein function if g(A) > 0 for
all A > 0, and ¢’ is completely monotonic. The class of completely monotonic functions and Bernstein
functions will be denoted by (CM) and (BF), respectively.

A detailed collection of the most important properties of the classes (CM) and (BF) can be found
n [29]. This reference provides a thorough analysis of their analytic characteristics, key theorems, and
applications. In particular, it discusses the interplay between these function classes and probability
theory.

Definition 2.3. Consider a birth-death process N (t) and a subordinator g associated with a Bernstein
function @, with inverse subordinator Eg (independent of N'). The time non-local birth-death process
induced by A and ® is a stochastic process of the form

Na(t) :=N(Es(t)), t>0.
For n € N, the n-th moment M2 (t) of the process N3 (t) is defined by

[ee]

Mg () =Y K'P(t), t>0,
k=0

where PZ(t) is the transition probability of Ng(t), given by

P2(t) = Pr{Na(t) = k | No(0) = N}, for t>0,
and
1, k=N,

P’?(O):{o k# N.

For further insights into these processes, we refer the reader to [4, Section 2], where the authors study
such processes as discrete approximations of the so-called Pearson diffusion.
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Theorem 2.1. Let ® be a Bernstein function given by ®(\) = /\TL(/\) for some (h,£) € (PC)". Consider
a classical birth-death process N (t) with birth rate by = Bk* + Sk + v and death rate dy, = Bk? + 04k,
where 8, &y, dq, and 7y are non-negative constants. If the moments of N'(t) are finite, then the moments
of N (t) are also finite. Moreover, the following expressions hold:

Mg(t) =1,  MP(t)=Nse,(t) +7(Lxre)(t), ¢20, (2.1)
and
MP(t) = N2se, (t) + (2 + 0y 4+ 64) (rey * ME)(t) +y(1 % 70,)(t), >0, (2.2)
where
c1 =0 — g4, and 0222(ﬁ+(5b—(5d).
Additionally, for n > 3, we have the following recursive formula:
n—1
MP(t) = N"so, (t) + Yk, (re, * MP)(t), >0, (2.3)
j=0
where

= - — — - 25( f&2) + (66 — 5d)(-zl) +7(%), J even,
Cn=(0g —0p)n — pn(n—1), and kK, = {7(25 6+ 5@(;5, j o

Here, for n € N, the functions s., and r., correspond to the scalar resolvent functions associated with
the function £ defined in Appendix A below.

Notice that the Bernstein functions that we are considering constitute a subclass of special Bernstein
functions, in the sense that the conjugate of ® is still a Bernstein function. Indeed, if ®(A) = Ah()),

then the conjugate is given by
A 1
P*N) = —— ==,
2(A) AN
that is clearly a Bernstein function since h is completely monotone. Nevertheless, for functions of this
form, the identification of h with the tail of the Lévy measure is immediate. Furthermore, the co-Sonine
kernel ¢ is the potential measure of the involved subordinator, i.e.

d
L(t) = — E[Eq(t)].
(1) = & E[Ea()
To guarantee that (h,¢) satisfy (PC)’, one just needs to ensure that
. DN L . . e
lim ——= = lim A(\) =0, lim ®(\) =0, lim h(t) = 400, — t dh(t) = +o0.
A—too A A—+o00 A—0 t—0 0

For further details, check the relative section in [29].

Remark 2.1. It is important to note that x,_ ; is not defined for j = 0. However, we can extend the
definition, by setting K, 0 := ¢, = (6q — dp)n — Bn(n — 1). To emphasize the significance of this term, we
will refer to it as c,.

Remark 2.2. Theorem 2.1 establishes that all the moments of the process Ng(t) are well defined,
provided that N (t) satisfies the same property. This criterion is notably broad, imposing minimal re-
strictions. Indeed, [4, Section 2] provides a comprehensive set of results demonstrating conditions under
which all moments of A/ (t) are guaranteed to be finite.

In order to analyze the asymptotic behavior of M2 (¢) as ¢t — oo, we must to introduce an additional
concept.

Definition 2.4. Let L: (0,00) — (0,00) and ¢ € R. We say that L is a regularly function at infinity of
index p, if for all x > 0 we have that
L(tz)
Pt L(t)
We denote this class of functions by RVZO. In the case that ¢ = 0, these functions are known as slowly
varying at infinity functions and they are denoted by SV=°.

4
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Theorem 2.2. Let ® be a Bernstein function given by ®(\) = /\TL(/\) for some (h,£) € (PC)". Consider
a classical birth-death process N (t) with birth rates by = 8k? + dpk + v and death rates dy = Bk? + 04k,
where 3, 8,04 and y are non-negative constants. Assume that M (t) is finite. The following assertions
hold.

(Z) If Op > 0q then
ME(t) ~ Ky -exp(wit), as t— oo,

where wy > 0 is the unique solution of the equation )\E()\) =0 — 04 and
(N (65 — ba) +7)
w1 (h(w1) + wih(w))

Ky =

where h corresponds to the derivative of the Laplace transform of h.
(ii) If 04 > Op and the mapping t — Z(t’l) is regularly varying of index o < 1, then
N
M (1) ~ o,
1+ (6d — (5b)£(t*1) dq — 0

as t— oo.

(7i1) If 64 = Oy and the mapping t — Z(t’l) is regularly varying of index —1 < o, then
MP(t) ~ N +~LtY), as t— oo.
Here, the notation f(t) ~ g(t) as t — oo means that tli}m f@)/g() = 1.

Remark 2.3. This remark has two key aspects. On one hand, the conditions in Theorem 2.2 are broad
and flexible, encompassing many standard examples of pairs (h,f) € (PC). On the other hand, it
highlights that the asymptotic behavior of M;?(t) as t — oo can vary significantly and is not necessarily
exponential, as in the classical case. Specifically, when the birth rate asymptotically exceeds the death
rate, the moments exhibit exponential growth. Conversely, when the birth rate is asymptotically smaller
than the death rate, the moments decay at a slow rate. In Section 4, we present several examples that
illustrate the diverse range of asymptotic behaviors for these moments.

We point out that due to the recursive nature of the formula for the higher order moments M7 (t) of
N (t), the proof of the preceding result can be straightforwardly extended to compute the asymptotic
behavior of MZ(t) for any k > 2. For the sake of brevity, we will establish this result only for the
second-order moment.

Theorem 2.3. Let ® be a Bernstein function given by ®(\) = /\ﬁ(x\) for some (h,£) € (PC)". Consider
a classical birth-death process N (t) with birth rates by = 8k? + dpk + v and death rates dy = Bk? + 04k,
where 3, 8,04 and y are non-negative constants. Assume that My (t) is finite. The following assertions
hold.

(i) If 64 < 6y + B, then
MP(t) ~ Ko - exp(wat), as t— oo,
where wy > 0 is the unique solution of the equation )\ﬁ()\) =2(0p — 4 + B) and

Ky = 1 NQE(QJQ) + ¢ + N"i2,1 KJ2,1(A/ —¢)
h(ws2) + wah(ws)) w2 w2 (28 + 0 = a)
(i) If 04 > 0p + B and the mapping t — ?(t_l) is reqularly varying of index o < 1, then
N? ¢, + K, , N K —c
Mg (t) ~ = + — — + 2 (7 = 1) as t— oo.

14+2(0q — 0 — B)L(tY)  2(0a— 0 —B)  2(0a — 0p)(0a — 6y — )
(#i1) If 64 = Op + B and the mapping t — Z(til) is reqularly varying of index —1 < o, then

(v

Mg’(t)wNQ—F<62+/€2>1N+M>?(t_1), as t— oo.
, o

Here, the constants c,,c, and K, , are given by ¢, = 6 — 064, ¢, = 2B8+2(0y —04), and K, , = 27+ (0p +04).

Remark 2.4. Note that the asymptotic behavior of My (¢) is, up to multiplicative constants, similar the
asymptotic behavior of M;?, which again is markedly different to the classical case.



3. PROOF OF MAIN RESULTS

In order to prove our main results, we need to establish several previous technical results. We begin
establishing the following Lemma, whose proof is obtained from [4, Theorem 4.4 and Theorem 5.1], see
also [3].

Lemma 3.1. Let ® be a Bernstein function given by ®(\) = Aa()\) for some (h,£) € (PC)'. Consider a
birth-death process N(t) with birth rates by, = Bk* + dyk + v and death rates dy = Bk® + Sqk, for some
non-negative constants 3, &, dq and . The transition probability P of the time non-local birth-death
process N (t) satisfies the following evolution equation

0e(h* (Py = P7(0)) = b1 Py_y(t) = (bn + du) Py (1) + dns1 Pryy (), ¢ >0. (3.1)

Remark 3.1. Since h £ = 1 on (0,00), the equation (3.1) can be rewritten as the following integral
Volterra equation

PE(t) = PY(0) + bt (PP, % 0)(t) = (b + da) (P? 5 0)(8) + dusa (P, < 0)(1), ¢ > 0.

This framework provides several advantages in obtaining a formula for the moments of Ng(t). For
instance, in the following result we exploit the theory of Volterra equations to represent PZ(¢) in terms
of the probability transitions of the classic birth-death process.

Lemma 3.2. Let ® be a Bernstein function given by ®(\) = Aa(\) for some (h,€) € (PC)'. Consider a
birth-death process N(t) with birth rates by, = Bk* + dpk + v and death rates dy = Bk® + dqk, for some
non-negative constants 3, 8, 84 and «y. Then the transition probability P® can be represented as follows

PO(t) = — /0 T P () WaltT), >0, (3.2)

where P, is the probability density transition of the classical birth-death process N(t) and Wg is the
propagation function associated to the Bernstein function ®, defined in Appendiz B below.

Proof. Tt follows from Remark 3.1 that the Laplace transform of P? satisfies the following system of
infinite evolution equations

— P‘i) 0 ~ — ~ —~ ~ —
PR~ 2 T B ) — (bt d) T PEO) - da ) PR (), A> 0. (33)
On the other hand, it is well known (cf. [5, Section 8.3]) that the probability transitions of a classical

birth-death process satisfy the following differential equation

PrlL(t) = bn—lpn—l(t) — (bn + dn)Pn(t) -+ dn+1Pn+1(t), t> 0, n Z ]., Pn(()) = N(Sn,la n 2 1.
Therefore, the Laplace transform of P, satisfies
= P,(0 P, P P,
Puo) - 2Oy Pumalo) g g Eale) o Paenle)
o o o o

Since the preceding relation is valid for all o > 0, and Ah()) > 0 for all A > 0, we can consider Ah())
instead of 0. Hence, we have that

Bodoy) - Oy PoaGRQ) o PUORR) L Paa BB
(X)) A(N) AR(N) AR(N)
or equivalently
R(A) Po(AR(N)) — P"A(O) =bn 1 LN Pa_1(AR(N)) = (b + dn) LA BN P (AR(N))
+ dp i 1 LVR(N) Pust (AR(N)), A > 0. (3.4)

Since the solution to this equation is unique, it follows from (3.3) and (3.4) that
P2(A) = h(\)P,(Ah(N), A > 0.
Now, for ® and n € N, we define

Ba(t) = — /OOO Pu(r)d, Wa(t,7), t>0, neN, (3.5)
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where P, (t) is the state probability function of the classical pure-birth process N (t), and Wg is the
propagation function associated to the Bernstein function ®. Taking Laplace transform into the both
sides of (3.5), we have that

o) ~
B,(A\) = h()\) / P, (1)e”™XNgr x> 0.
0

= h(NB,(AR(N), A >0.

The identity (3.2) follows directly from the uniqueness of the Laplace transform. [

Remark 3.2. As we have mentioned before, Lemma 3.2 allows us to represent P2 (¢) in terms of the
probability density transition of the classical birth-death process N(t). This type of representation is
known in the specialized literature as subordination formulas. We refer the interested reader to [1, 15,
25, 26] and the references therein to consult subordination formulas applied in another contexts.

Corollary 3.1. Let ® be a Bernstein function given by ®(\) = )\B()\) for some h € (PC)’. Consider a
birth-death process N (t) with birth rates b, = Bk* + Sk +~ and death rates dy = Bk® + Sqk, for some
non-negative constants 3, oy, 64 and . The n-th moment of No(t) can be represented as follows:

MP(t) = — /0 M () A Walt. 7). >0, (3.6)

where M, is the n-th moment of the classical birth-death process N (t) and Wg is the propagation function
associated to the Bernstein function ®, defined in Appendiz B below.

Proof. Let n € N. By definition M2® () is given by
M) =Y _k"PE(t), t>0.
k=0
Hence, the formula (3.6) follows directly from Lemma 3.2 and the Dominated Convergence Theorem. m

The formula (3.6) provides a helpful representation of the moments of Ng(t) in terms of the moments
of N(t). For this reason, we present a recursive representation of the moments of N (¢).

Lemma 3.3. Consider a classical birth-death process N (t) with birth rates by = Sk* + pk +~ and death
rates dy = Bk* + 04k, for some non-negative constants (3, &, 64 and . Assume that the N(t) admits
moments of any order. Then, My(t) =1,

t

M (t) = Ne® =00t 4 / e =0)3 g, (3.7)
0

and

t
My(t) =N2e2B+0 =00t 1 (2 4§, + §,) / 2 BH0e=30)s Ny (t — ) ds
0

t
+fy/ e2(BHos=da)s g, (3.8)
0
Additionally, for n > 3 we have that

n t
M, (t) = N" et + Z K, M,_;(s)e"*=9ds, neN, (3.9)
= 0

where, forn>2 and 1 <j<n-—1,

= — — — — 2B( jiz) + (6 — 6d>('$1) + 7(@), J even,
cn=(0a—dp)n—pBn(n—1), and &k, = {7(?5 65 (j11§7 j o

Proof. Let n € N. We have that

M, (t) =Y K"Pi(t), t=>0.
k=0
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It is a well known fact that the probability transitions P, satisfy the following system of differential
equations

%Pn(t)zbn,lpn,l(t)—(b 4 dp)Pa(t) + dps1 P (), > 0. (3.10)

Therefore, we have that

%Mn(t) _ = ((k — 1)1 Pr_1(t) — knkak(t)) + i (k™ — (k — 1)")bg—1Ps_1(t)

k=0 k=0
+ Z ((k +1)"dg 11 Prya(t) — k”dkPk(t)) + Z (K™ = (k+1)")di41 Py (2),
k=0 k=0

which implies that

d

%Mn(t) =— lim k"bkpk(t> + lim (k‘ + 1)ndk+1pk+1(t>

+Z (k™ — 1)) bj—1Pr—1( +Z — (k+1)")dkt1Peya(t).
k=0

Since N (t) admits moments of any order, and both birth and death rates are quadratic polynomials
when [ # 0 or linear polynomials when g = 0, it follows that klim k"Py(t) =0forallt > 0 and n € N.
—00

Therefore, we have that
lim knbkpk(t) =0 and lim (k + 1)ndk+1Pk+1(t) =0.
k—o0 k—o0

This in turn implies that

oo

Z 1)™")br—1 Pr1 () +

NE

(K™ = (k+1)")di41 Py (t).

i
(=)

Since b_1 = 0 we have that

%Mn(t) = i ((™ = (k = 1)")br—1 Pr_1(t) + i (K" = (k+1)")dps1 P (t)
k=1 k=0
:i ((k+1)™ — k") by Py (t) + i — k") dy, P (t)
k‘O:oO o ) k=0
=> Y ( ,)k:j(bk + (=1)"9dy,) Pi(t). (3.11)
k=0 j=0 \J

The right hand side of (3.11) can be rewritten as follows

%Mn(t) :k:O <ni 1> k" by, — di,) Py(t) + kz:;) <n i 2) k"2 (be + dy,) Pi(t)
oo n—3
+Y > < )kﬂ br + (—=1)" T dy) Py(2).
k=0 7=0

Since by = Bk? + 6k + v and dy = Bk? + 64k, we have that
b +di, = 25](12 + ((51, + (5d)]€ +v and by —dg = ((5() — 5,1)]6 + 7.

Consequently

> (n , 1)k" Ybk — di) Pe(t) = (0 — 6a) M (t) + nyMo_1(t), >0,
k=0



and

Z <n i 2) k"2 (by + dy) P (t) =n(n — 1)BM,,(t) + @(& + 8a)My_1(t)
k=0
+ vam(t), t>0.
Therefore
%Mn(t) + CTLMYL(t) = Z K:n,jMn—j(t), t>0, (312)
j=1

where, forn >2and 1 <j<n—1,

o= 26(;‘12) + (b — da) <jzl) + ’y(?), J even,
" () A+ @G+ (1), j odd.

A straightforward computation shows that the solution of (3.12) is given by
n t
M, (t) = My (0) "0 +> "k / M,,_j(s)ef0t=9ds ¢ >0,
j=1 0

Since Py (0) = 0, n we have that
M, (0) = " k"Py(0) = N",
k=0
which proves our claim. n

Proof of Theorem 2.1. Let n € N. According to Corollary 3.1 we have that
M2 (t) = —/ M, (7)d, Wa(t,7), t>0.
0
Hence, it follows from Corollary 3.1 that the Laplace transform of M? is given by

20 = [ M RN ~ BT (R0), A2 0,
0

On the other hand, it follows from Lemma 3.3 that the Laplace transform of M,, is given by the following
recursive expression

Replacing z by )\B()\) and multiplying the preceding expression by E()\), we obtain that

A ML OR(O)) = Nt N zn: v Bs  RO)M(AR(N), A 0.

AR(N) +en S AR(A) +en

It follows from (A.5) and (A.6) that

h(A 1
(/S\CH ()\) == # and ?c”<>\) = = A>0.
AR(N) + ¢p AN + ¢n
Hence, by the uniqueness of the Laplace transform, we have that
MZ(t) = N"se, (t)+ Yk, (re, * MP)(t), >0, (3.13)

Jj=1

and the proof is complete. [



Proof of Theorem 2.2. Since M (t) = 1, it follows from Theorem 2.1 that
¢
MPE(t) = N s(t, 64 — 6) + 'y/ r(o,8q — dp)do, t>0.
0

Initially, we consider the case 6, > d4. In such a case, by Remark A.2 we have that the function
t — s(t,04 — 0p) is non-decreasing. Moreover, since the function ¢ is non-negative, we have that the
mapping t + 7(t,84 — 0p) in non-negative as well, which implies that M;? is a non-decreasing function.
On the other hand, it follows from (A.5) and (A.6) that the Laplace transform of M is given by

TPV I QREACCLICO Rk B B SN
A NN + 64— 8

where w; > 0 is the unique solution of the equation
AR(A) = 6, — 64. (3.14)

We recall that the condition (h, £) € (PC)" implies that the mapping A — )\ﬁ()\) is an unbounded Bernstein
function such that limy_,g Ah(A) = 0, which guarantees the existence and uniqueness of the solution to
the equation (3.14). Therefore, it follows from Wiener-Ikehara Theorem C.2 that

MPE(t) ~ Ky -exp(wit), as t— oo,

NAR(A)+y
)\ﬁ()\)ﬁ*(sd —d&

K, = lim A —wp AN/\h(AH—V _
Aowr A AR(A) + 0q — 8

where K is the residue of \ — % ( ) at A = wy. In other words,

Using L’Hopital rules, we have that
(N (65 — 6a) +7)
wi (h(w1) + wih(wr))

K =

)

where the h means the derivative of ﬁ, and the proof of the first assertion is complete.

Assume now that §; > 0. In this case, the mapping t — s(¢,04 — &) is nonincreasing and the
mapping ¢ — fot (0,64 — 0p)(0)do is increasing. Thus, M} is the sum of a nonincreasing function and a
nondecreasing one. Therefore we can apply the Karamata-Feller Theorem separately in each summand,
and obtain the asymptotic behavior of M{¥. To this end, we rewrite ]\//.711’ as follows

-, 1 1 1 1
MEPN) = —Li (- | +=Ly [ =
TN =5 1<A)+A 2<A)’ =0
where L1, Ly: (0,00) — (0,00) are given by

~

Nte ot
_ — Lo(t) = )
1+ (64— 6)0(t1) 1+ (6q — 6)0(t1)
Let us assume that the mapping t +— l?(fl) is regularly varying of index ¢ < 1. In such a case, we have

that both L; and Ly are slowly varying at infinity functions. Thus, according Karamata-Feller Theorem
C.1 we have that

Ly (t)

~

N ot
ME(t) ~ —~ + 1] )A , as t— oo.
L+ (6a = Gp)l(t=1) 14 (0a — 6p)E(t™1)
Since ¢ ¢ Li(R,), we have that 1+(5WZ(§_)1Z)(75‘1) ~ 6;&, as t — oo, which in turn implies that
d—0b
N
ME(t) ~ — 7 as t— oo.

+ .
1+ (0g — dp)l(t™1) da — 0p

In the case d4 = d;, we have that

ME(N) =
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We can rewrite the preceding expression as follows
— N 1 1
Dy
where L: (0,00) — (0,00) is given by

~

L) =0(t""t"e, t>0.
Since the mapping t — Z(t_l) is regularly varying of index ¢ > —1, we have that L is a slowly varying
function, and by Karamata-Feller Theorem we have
ME(t) ~ N +~0(t"Y), as t— oo,
which finishes the proof.
Proof of Theorem 2.3. Recall that ¢; = 04 — & and ¢y = 2(dq — d) — 28 = 2¢; — 26. According to
Theorem 2.1 we have that
Mg (t) = N25c, (1) + (29 + 8 + 0a) (re, ¥ MT)(t) +v(1x70,)(1), 20,
which, by the expression of M}, is equivalent to
Mg () =N? s¢, () + 7 (1% 76, ) (8) + (29 + 8 + 8a)N (e, * 5¢,)(t)
+ (27 4 0p + 9q) (1 % 7oy %76y ) (E).
It follows from (A.3) that
S, () =1 = (157, (2).
Therefore, Mg (t) is given by
M3 () =N%se,(t) + v(1 % 76,) () + (27 + 0 + 0a) N (1 % 7¢,) (¢)
F (274 0+ 0a) (1 xrey k76, ) () — (29 4+ O + 0a)cr (1 % 7oy * 76y ) (E). (3.15)

The preceding expression shows that Mg is a finite sum of monotone functions. Thus, in order to
determine the asymptotic behavior of My we will analyze the asymptotic behavior of each term of
(3.15).

Initially, we first consider 64 < d, + 8. Since ¢; = dg — Jp, and co = 2¢; — 2 a straightforward

calculation shows that ¢ < ¢y provided that ¢; < 0, which precludes the case ¢; < ¢a < 0. Hence, we
initially consider the case co < 0.

By (A.5) and (A.6) we have that

1 AR
AXR(A) 4¢3

where ws is the unique solution to the equation

1

and Tre(\) = - ————
A(A) + ¢

s )\>W2,

> =

8ey (M)

~

AR(A) + ¢o = 0.
Since co < 0, both s., and 1 *r., are non-decreasing functions. Thus, Wiener-Ikehara Theorem implies
that
Se,(t) ~ Ry -e*?', and (1%7.,)(t) ~ R3-e“?", t — oo,

where

Ry = h(ws) lim [ — A—ws Coand Ry= - qim [ ATe .
A—bwy )\h(/\) + 2(5d — 0p — ﬁ) W2 A—ws )\h()\) + 2(5d — 0y — ﬂ)

On the other hand, by the non-negativeness of both 7., and r.,, we have that the function 1 r., *r., is
an increasing function, whose Laplace transform .Z is given by
1 1 1

LA xrey x5 A) = —— = , A wa,
AXA(A) + 2 AR(N) + 1
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where wy > 0 has been defined above. Since ¢ < ¢, we point out that /\E()\) + ¢1 # 0 in the complex
half-plane @ = {z € C: Re(z) > wa}, which implies that the function A\ — Z(1 1., *7¢,; A) is analytic
in this complex sector and it has a simple pole in z = wy with residue R; given by

1

=—— lim A= w
w284 8 — 04) Aowr \ AR(A) +2(64 — 6 + B) )

Ry

Therefore, we have that
M (t) ~ Kye¥?!,  t — oo,
where

Ky = N? Rs +~vR3 + N(2’7+(5b +§d)R3 +’y(27+6b + §d)R1 — (2’7-1-(517 +§d)clR1,

and the constants Ry, Ro and Rj3 are given above. Indeed, using L’Hopital rules they can be computed
explicitly to obtain

1 h 1
Rl = 5 R2 = (MQ). 5 and R3 =

~

wa(28 + 8 — 6) (A(w2) + wah(ws)) (h(wa) + wah(ws)) wa (h(wa) + wah(ws))
which proves our assertion.

)

Assume now that 64 > dp + 8 and the mapping ¢ — Z(t_l) is regularly varying of index ¢ < 1. We can

rewrite ME () as follows
= 1 1 1 1
MyN) = —L [~ ) +~Lo [ ~ A
2(>\) Al—e 1<>\>+)\ 2<>\>7 >0a

where Ly, Ly: (0,00) — (0,00) are given by

Li(t) = N
L+2(0q — 0 — B)L(t71)
and
B (e RN C R R L Gy
Lo(t) = 200 —a i | + N2y + 0y +64) + (v — c1) (Lt 5y — 0)0(-1))

Since § > 0 we have that d4 > dp. Due to the mapping ¢ — Z(t_l) is regularly varying of index ¢ < 1,
we have that both L; and Lo are slowly varying functions. Since £ ¢ L;(Ry), and according to the
Karamata-Feller Theorem C.1 we have that

N2 K, +rK, N Ky, — K, C
Mg(t) -~ _ + 2,0 2,1 + LZE 2,141 as - oo,

142065 — 0, — B)(t=1)  2(0a—0 —B)  2(da— ) (da — 6 — B)
Assume now that §; = §, + 5. Since 8 > 0 we have that §; > Jp, and

o~ ~

—. N2 (14 N)(2vy+ 6 + da)¢(A —c1)(27 + 0 + ) (L(N))?

Spy = N7 G N0+ 8N | (0= e)(2y 48, + 8 ()
A A A1+ ¢, (),

for any A > 0. Proceeding in a similar way to the proof of statement (iii) in Theorem 2.2, we may use

Karamata-Feller Theorem C.1 to obtain

(Y, as t— oo,
C1

— 2 Oy +0q) — (2 Oy + 0 ~
MQ‘I’(lt)NNZ’Jr(v+(2«y+6b+5d)1\7+(7 1)y + 0 +0a) = (27 + 60 d)>

which finishes the proof. n

Remark 3.3. Note that the formula in equation (3.13) provides a recursive method for calculating the
moments of the process Ng(t). As a result, this means that the proofs of Theorem 2.2 and Theorem
2.3 can be adjusted to describe the asymptotic behavior of moments of any order, not just the first and
second moments. However, the resulting expressions are quite lengthy. For the sake of brevity of the
text, we have omitted them in this work.
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4. EXAMPLES

In this section, we demonstrate how Theorem 2.2 and Theorem 2.3 can be applied to various examples
of function pairs (h,£) € (PC)".

Example 4.1. Let a € (0,1) and consider the pair of functions (h,¢) = (¢1-a, 9o ), Where gz with 5> 0
is the standard notation for the function
A1

95(t) TG)
In this case, the term 0, (h*-) becomes the time-fractional derivative ¢ in the sense of Riemann- Liouville
of order « € (0, 1), and the equation (3.1) is an example of the so-called time-fractional evolution equation,
which have been successfully applied in the context of diffusion processes whose mean square displacement
grows like a multiple of ¢, see e.g. [11, 20].

Since a € (0,1), it is clear that (h,¢) € (PC)'. In order to agree with the standard notation of the
literature, we refer the corresponding process Ng(t) as N, (t). For the same reason, we denote M{(t)
its first moment. We have that Ak(A) = A® for A > 0. Therefore, it follows from the assertion (i) of
Theorem 2.2 that in the case d, > &4 the asymptotic behavior of M is given by
N(dp — 6a) +

Ck((5b — (5(1)

t>0. (4.1)

M (t) ~ exp (((51,—5(1)%25), as t— oo.

o~ ~

On the other hand, we have that £(\) = A~ for A\ > 0, which implies that the mapping t — £(¢~1) is
regularly varying of index « € (0, 1). Hence, by assertion (iz) of Theorem 2.2 we have that

My () ~ N +~t%, as t— oo,
when 0, = §;. Analogously, assertion (iii) of Theorem 2.2 implies that
N
+ 7 )
14+ (5d — )t g — O
when d§;5 > 6. |

M) ~ as t— oo.

Remark 4.1. Example 4.1 illustrates that when &, > 04, the behavior of M{(t) closely resembles the
results obtained by Orsingher and Polito [21] for the so-called fractional Yule-Furry process. This char-
acteristic feature of the process under investigation demonstrates its suitability for modeling explosively
expanding populations.

We point out that a key insight for identifying nonlocal birth-death Ng(t) processes where the first
moment grows exponentially when &, > &, is to find pairs (h,¢) € (PC)" such that the equation
AR(A) = & — 64 (4.2)

can be solved explicitly. Although this task can generally be quite challenging, in the following examples,
we present several cases where the equation (4.2) can be solved effectively.

—st

Example 4.2. Consider the pair of functions (hq,¢;) given by
e

hy(t) = /01 Jo(t)da, and {£i(t) = /OOO 1+s

In this case, the integrodifferential operator 9;(hy x-) is an example of the so-called operators of distributed
order and the equation (3.1) can be viewed as an example of the so-called ultraslow evolution equations.
Such equations appear in the study of diffusion processes with a logarithmic growth of the mean square
displacement, see e.g. [15, 16, 18, 31]. For instance, it has been proved in [31] that hy * ¢; = 1, and

Z1()\) = lj\)gf)\l)a

Therefore )\liI(I)lJr Zl(/\) = +00, which implies that ¢; ¢ L;(R,), and consequently (h1,¢;) € (PC)". By a
—

ds, t>0.

A>0.

direct computation, we have that
A—1

)\/EI(A) = log()\)’

A>0.
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Hence, when &, — d4 > 0, the unique solution w; > 0 of the equation )\711(/\) = 0y — Oq is given by

— (6 — 6a) W_1<— ﬁ exp (ﬁ)), (0p — 0q) > 1,

w1 =
7(6b75d)W0<7ﬁeXp(ﬁ)), 0<((5b7(5d)§1,

where Wy and W_; denote the two real branches of the so-called Lambert product function. Therefore,
Theorem 2.2 implies that in the case d, > d4 we have that

MP(t) ~ K -exp(wit), as t— oo,
where wy > 0 has been given above, and

log(wy)

Ky = (N (6 — da) -I-’Y)m-

On the other hand, we have that ¢, (t™1) = % for ¢t > 0. Therefore, the function ¢ — £, (t71) is
regularly varying of index ¢ = 0. Hence, by assertion (i) of Theorem 2.2 we have that
MP(t) ~ N +vlog(t), as t— oo,
when 0, = d4. Analogously, by the assertion (iii) of Theorem 2.2 we have that
N Y
1+ (5 — o) log(t) ' 34— 35’
when g > Jp. |

MPE(t) ~ as t— oo.

Example 4.3. Let € € (0,1). In [2, Example 3.10], the authors have proved the existence of a pair of
functions (he, £.) € (PC) such that

~ L/ A—-1)\° ~ log(A\)\ €
(M=~ (2"2) , and 0.(\)=
0= ()~ e = (33)
We note that limy_,q+ Ze()\) = 00, which implies that for all € € (0,1) the pair (he, ) belongs to (PC)’.

The corresponding Bernstein function will be denoted by ®.. Assume that J, > d4. In this case, the

equation (4.2) takes the form
A—1\°
—— | =& —da
<1og<A>> C

Analogously to Example (4.2) this equation can solved by means of the Product Lambert Function.
Indeed, it follows from the assertion (¢) of Theorem 2.2 that when d;, > 64 we have that

Mf’(t)NKyexp(wEt), as t— oo,

where
s 1 _ 1 -1 _ >
w. — (9 = 0a) W1 ( (5b—6d)% P ((5b—5d)z)> » (G —da) 21,
‘ — (8 — 64)F - = —8) <1
((51) 5d) Wo ( (51,75(1)% exp ((61,76(1)% )) s 0< (517 (Sd) <1,
and

(we — 1) log(we)

€(0g — dp)(we — 1 — we log(we))

On the other hand, we have that Ze(t_l) = (%)6 for ¢ > 0. Therefore, the function ¢ — £ (t71) is
regularly varying of index ¢ = 0. According to Theorem 2.2 we have that

MPe(t) ~ N + v(log(t))", as t— oo,
when J§, = d4. Analogously, by the assertion (ii7) of Theorem 2.2 we have that
N v

T+ (50— ) (1og(D) | 940y

when 64 > 6. ]

Ky = (N (0p — 0q) + )

MPe(t) ~ as t— oo.

In order to present the following example, we first recall the result established in [2, Lemma 3.9].
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Lemma 4.1. Let ¢, p € (CM). Then, there exists a unique ¢ € (CM) such that
BN = o(NB(6(N), A>0.

This result provides a method for constructing infinitely many pairs (k,£) € (PC)’. Consequently, it
enables the definition of infinitely many nonlocal birth-death processes Ng(t), each exhibiting interesting
properties, as we will illustrate through the following example.

Proposition 4.1. There exists a pair of functions (hy,{3) € (PC)" such that

~ W -1
M) = s

where (hi,¢1) € (PC) is defined in Example 4.2.

>0, (4.3)

Proof. Let § € (0,1), and consider ¢ = ¢; and ¢ = g;_s5. It well known that both ¢ and ¢ are
completely monotonic. According to Lemma 4.1 there exists fs € (CM) such that

=~ ~ 5
fs(\) = (51()\)) , A>0.
Since f5 € (CM) it follows from [13, Theorem 5.4] that there is ks € (CM) such that

Consider the function hs: (0,00) — (0,00) defined by

ha(t) = /0 1 ks(t)ds, ¢ > 0.

Since the class of functions (CM) is closed under sums and pointwise limits, we conclude that he € (CM).
Therefore, applying again [13, Theorem 5.4] there exists ¢35 € (CM) such that hg % €5 = 1. Moreover, we
have that

1 7 —
ha(\) :/ Lo Cas = — G-
0 A M1 (A) log (€1 (A))
which implies that )\ﬁg()\) _ bt and the proof is complete. ]

T G\ log(Br (M)’

Example 4.4. Let (hy,f5) € (PC) be the pair of functions defined in Proposition 4.1. Consider the
Bernstein function ®5: (0,00) — (0, 00) given by
Dy(A) = Aha(A), A >0,

and the process N, (t) induced by a time non-local birth-death process A and the function ®3. As
mentioned above, in order to describe the asymptotic behavior of M{I) 2(t) when 8, > 4, we need solve
the equation (4.2). In this case, this is equivalent to find ps > 0 such that

_ 01 (pa) —1
01 (p2) log(f1(p2))

Analogously to the examples (4.2) and (4.3), this equation can be solved using the properties of Lambert
product function. More concretely, it can be solved by an iterative procedure. Indeed, if we make the
change of variable £1(u2) = p1 we have that

=0p — 4.

pr—1
— =0y — 0y,
pilog(um) 01
which implies that
~1 - A |
— —5 5 b d = 1,
PN ST =iy
(% —0q) 0<dp—0qg<1,

"~ Wo((8p—da)e Co—5a))°
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where Wy and W_; are the real branches of the Lambert product function. Since u; = ?1(/12) = I(ng(%i),

by using again the properties of the Lambert function, it follows that

*Wo(;ﬁ1€7”1)7 > 1,
M2 = —W_1(—pie™H1)
—Woilzme ") 0< 1 < 1’

254 ’
where 1 has been defined above. Therefore, according to Theorem (2.2) we have that
ME(t) ~ K exp (pat), t— oo,
where K is given by
(N (65 — 64) +7)

K = — = .
po(h(p2) + pah(pz2))

On the other hand, we have that

1
_ tlog(t)log (%)

G = t>0.
2(t7) tlog(t) —t+1 |’ >0

By a straighforward computation, we conclude that the function ¢ @(t’l) is a regularly varying
function at infinity of index o = 0.

MP2(t) ~ N + ylog(log(t)), as t— oo,
when J§, = §4. Analogously, by the assertion (iii) of Theorem 2.2 we have that
N Y
1+ (3 — o) log(log(t)) o4 — 0’

MP2(t) ~ as t— oo.

when 64 > 6.

Remark 4.2. The process to define the pair (hg,f2) can be slightly modified to define recursively a
family of pairs (hn,£,) € (PC)" such that
- 0\ — 1
Ahpp1(N) = %7 A >0, (4.4)
n(A) log(n (X))

where (hi,£1) € (PC) has been defined in Example 4.2. This allows us to consider a process Ny, (t)
induced by a time non-local birth-death process A/ and the Bernstein function ®,,(A) = A, ()). Following
the same procedure described in Example 4.4, the corresponding equation (4.2) can be solved by a
recursive manner. For the sake of the brevity of the text, we omit the computations.

Although in the previously developed examples, the equation (4.2) has been difficult to solve, there are
instances where this is not the case. In such a context we present the following example.

Example 4.5. Let (hy,£;) the pair of functions in (PC)" defined in Example 4.2. Consider the function
he: (0,00) — (0,00) given by

he(t) =e "y (t), t>0.
We recall that the multiplication of two completely monotonic functions is completely monotonic, which
implies that h. € (CM). Moreover, it follows from [13, Theroem 5.4] that there exists £, € (CM) such

that he * £, =1 on Ry. Since Zl()\) = % we have that

log(A+1) ~ 1
=BTV and (N =,
o wd LN =on T

Clearly we have that )\lir(r)1+ ?.(\) = +00, which implies that ¢, ¢ L; (R, ), and the pair (he, ) € (PC)’.
—

he(N) A > 0.

Counsider the process Ng, where ®.()\) = /\Ee(/\). In this case the equation (4.2) takes the form
10g(>\ + 1) = (Sb - 5d~
Therefore, when 8, > §, the unique solution w, > 0 of the equation )\iAze()\) = 0 — 0q is given by

we = %70 _ 1,
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Therefore, by assertion (i) of Theorem 2.2 when d, > d4, we have that
ME(t) ~ R, - exp(wet), as t— o0,
where w, > 0 has been given above, and

(N (65 — 0a) +7)e™ %

R =
© efv—da — 1

5. APPENDIX

A. Scalar Volterra equations. By scalar Volterra equation we mean any scalar integral equation of
the form

o(t) + p(lxv)(t) = f(t), t=0,
where v is the unknown function, p € C, and the functions f: Ry — C and ¢: Ry — R are given.
Over the years, this type of equations has been widely studied, see, e.g. [8, 13, 27]. In particular, the

following two scalar Volterra equations have played an crucial role in the treatment of many nonlocal in
time evolution equations.

Definition A.1. Let p € C and ¢ € L1 1,c(R). The scalar resolvent function s,: Ry — C is defined
as the unique solution of the Volterra equation

su(t) +p(spx0)(t) =1, t>0. (A1)
The integrated scalar resolvent function r, is defined as the unique solution of the equation
ru(t) + plry = 0)(t) = £(t), t>0. (A.2)

It is well known from [13, Chapter 2, Theorem 3.1] that if £ € Ly 1oc(R+ ), then for every p € C there
exists a unique locally integrable scalar resolvent function r, € L1 10c(R4). Furthermore, it follows from
[13, Chapter 2, Theorem 3.5] that the solution of the scalar Volterra equation is given by

u(t) = f(t) = plry = f)(E), t>0.
This shows in particular that if ¢ € Lq j,c(R4) then there exists a unique scalar resolvent function s,
and it satisfies that
p(lsr,)(t) =1—s,(t), t>0. (A.3)
A direct consequence of (A.3) is that for all © € R, the function s, is differentiable. Further, for all x> 0
we have that

e 1
/ ra(t)dt < E. (A1)
0 H
Remark A.1l. Both s, and r, are nonnegative functions for all © € R. For u > 0, this is a consequence
of the complete positivity of £, see, e.g. [8, Theorem 2.1]. If yu < 0, this can be seen, e.g., by a simple fixed
point argument in the space of nonnegative Ly ((0, T))-functions with arbitrary T' > 0 and an appropriate

norm, see [32] for more details.

Remark A.2. In Definition A.1, we will denote the corresponding scalar resolvent functions by s(, )
and r(t, ). With this notation, it follows from (A.3) that if g > 0, then the function s(-, ) is a decreasing
function. Meanwhile, if © < 0 then s(-, 1) is increasing.

Let (h,¢) € (PC) and p € C. Consider the functions s(-, 1) and r(-, 1) associated to £. Then the Laplace
transform of both s(-, u) and r(-, u) exist, and they are respectively given by
_ ey

(N 4 AL+ pl(N)

3O\ ) A > Ao, (A.5)

and

NS TR 1 0)
T()\,,LL)— )\//{()\)—I—,u - 1—}-/,62(/\)’ )‘>)‘Oa (AG)

for some Ay > 0.
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B. Propagation function associated to a Bernstein function. Let (h,¢) € (PC). In this section

we introduce the so-called propagation function associated to the function ®(A) = Ar(A). It follows from

[27, Proposition 4.5] that the completely positivity of £ implies that ®(A) := Ah(X), A > 0, is a Bernstein
function. This in turn implies that, for each fixed 7 > 0, the function ¢, : (0,00) — (0, 00) defined by
exp(—17®(A

(1) - ST

is completely monotonic. Therefore, it follows from Bernstein’s theorem ([29, Theorem 1.4]) that for

every 7 > 0 there is a unique nondecreasing function Wg (-, 7) € BV (R4), normalized by Wg(0,7) = 0

and left-continuous, whose Laplace transform (with respect to ¢) is given by

exp(—=7®(}))

A I

The function Wg(+,+) is known as the propagation function associated to a Bernstein function ®.

We refer the reader to [27, Section 4.5] for several results and applications of this function to more general

frameworks. For instance, the propagation function is strongly related to the scalar resolvent function
s(t, p). Indeed, for all g > 0 and ¢ > 0 we have that

st 1) = — / T, W (t, 7).
0

This implies that the mapping pu — —s(t, 1) is completely monotonic with respect to the parameter p.

A >0,

Wa(\, 1) = A > 0. (A7)

Remark B.1. Under the assumption ®(\) = Ah(\) with h in (PC)’ the inverse subordinator Eg is such
that, for all ¢ > 0, Es(t) admits a density fg(s;t). Such a density can be recognized in terms of the
propagator as follows:

fo(s;t)ds = —dsWs(t, s).

Nevertheless, s(t, 1) is the Laplace transform of the inverse subordinator Eg ().

C. Tauberian theorems. This type of theorem is a powerful tool for determining the asymptotic
behavior of certain functions, provided that some information about an integral transformation of the
function, such as the Laplace transform, is known. In this work, we apply two such theorems.

Theorem C.1. (Karamata-Feller) Let L: (0,00) — (0,00) be a slowly varying function and ¢ > 0. If
g: (0,00) = R be a monotone function whose Laplace transform §(z) exists for all z € C; :={z € C :
Re(z) > 0}, then

e
L'(e)

The approach here is considered on the positive real axis and the notation f(t) ~ h(t) as t — t. means
that tlil? f(@)/h(t) =1.
—t.

1 1
9(z) ~ —L(7>, as z— 0, if and only if g(t) ~
z

L(t), ast — oc.
20

Karamata-Feller Theorem establishes that the asymptotic behavior of a function g(t) as t — oo can be
determined, under suitable conditions, by looking at the behavior of its Laplace transform g(z) and vice
versa. See the monograph [12, Section 5, Chapter XIII] for a more general version and proofs.

Theorem C.2. (Wiener-Ikehara) Let f: R, — Ry be a non-decreasing function. Assume that there
exist a,c > 0 such that the Laplace transform f is well-defined in the set {z € C : Re(z) > c}, and the

function F defined by
a

FE) =) - =,

has a continuous extension to {z € C: Re(z) > c¢}. Then

f(t) ~ae, as t— oo.

Wiener-Ikehara’s theorem can be rephrased as follows. If the Laplace transform fof a non-decreasing
function f is analytic in the complex half-plane {z € C : Re(z) > ¢} having a simple pole in z = ¢ with
residue a, then

f(t) ~a-exp(ct), as t— oo.
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