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Abstract. In this paper, we study the moments of semi-Markovian versions of classical birth-death

processes, focusing on the so-called Quadratic Asymptotically Symmetric (QAS) birth-death processes.
By means of Tauberian theorems, we provide a complete description of their asymptotic behavior. Our

results show a dichotomous pattern: when the birth rate dominates the death rate, the moments grow

exponentially, while if the death rate exceeds the birth rate, the moments decay slowly. This contrasts
with classical birth-death processes, where moment growth and decay are always exponential.

1. Introduction

The theory of birth-death processes is a basic framework for studying how the size of a population
changes as time evolves. Such processes are continuous-time Markov chains that count the number of
particles in a system as time elapses. More precisely, in a population with n individuals, each individual
could give birth to another at a rate bn ≥ 0 or could die at a rate dn ≥ 0.

These processes have proven to be versatile and have been successfully applied in various fields, such as
demography, queuing theory, and epidemiology (see, e.g., [9, 14, 28] and the references therein). However,
the Markovian nature of these processes limits their applicability in analyzing phenomena that exhibit
long memory or are influenced by environmental conditions with random fluctuations. To address these
limitations, several researchers have proposed generalizations and extensions of birth-death processes,
see, e.g., [4, 6, 7, 10, 19, 21, 22, 23, 24, 30], and the references therein.

Since the probability of birth or death events depends not only on the current state but also on
the system’s history, the processes discussed above are known as nonlocal birth-death processes. A key
contribution in this field comes from Ascione, Leonenko, and Pirozzi [4], who studied a specific class
of nonlocal birth-death processes as discrete approximations of Pearson diffusions. Specifically, they
have considered a solvable birth-death process N (t) and a subordinator σΦ associated with a Bernstein
function Φ, and they analyze th features of a nonlocal birth-death process induced by N and Φ as a
compound process of the form:

NΦ(t) := N (EΦ(t)), t ≥ 0,

where EΦ denotes the inverse subordinator of σΦ, which is independent of N . Among other results, they
have proved that these processes admit an invariant measure, which also serves as the limit measure for
any starting distribution. They also provide the correlation structure of the stochastic processes in terms
of the potential measure of the involved subordinator and the eigenfunctions of the nonlocal in-time
derivatives.

The primary goal of this paper is to deepen the understanding of the properties of this type of nonlocal
processes NΦ(t). To this end, we will consider two main assumptions. First, we examine birth-death
processes with Quadratic asymptotically Symmetric (QAS) transition rates, that is, the birth and death
rates are given by

bn = βn2 + δbn+ γ and dn = βn2 + δdn, n ∈ N,
where β, δb, δd, and γ are non-negative constants. Second, we consider a specific class of Bernstein

functions, defined by Φ(λ) = λĥ(λ) for λ > 0, where h is a function of type (PC)′ and ĥ represents the
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Laplace transform of h. The condition (PC)′ means that h ∈ L1,loc(R+) is a nonnegative, non-increasing
function, and there exists ℓ ∈ L1,loc(R+) such that ℓ /∈ L1(R+) and h ∗ ℓ = 1 on (0,∞).

While at first glance, this choice of Bernstein function may appear restrictive, it in fact encompasses
a remarkably broad class of nonlocal birth-death processes, including the fractional case, as shown in
Section 4 below. On the other hand, although birth-death processes with quadratic transition rates have
been studied in the local setting (see, e.g., [17, 28]), their nonlocal counterparts remain largely unexplored.
To the best of our knowledge, a systematic investigation of these processes within the nonlocal framework
has yet to be undertaken. This gap in the literature motivates our study and underscores the relevance
of our approach.

2. Main Results

In order to present our main results, we need to introduce some notation and definitions that we use
throughout the text.

The Laplace transform of a function f : [0,∞) → R defined on the half-line will be denoted by

L (f ;λ) = f̂(λ) =

∫ ∞

0

e−λtf(t)dt,

whenever the last integral is convergent. For readability, we will use the symbol L when the function f
has a lengthy expression, such as functions involving convolutions.

Definition 2.1. We say that a non-negative function h ∈ L1,loc(R+) is of type (PC) if there is a non-
negative non-increasing ℓ ∈ L1,loc(R+) such that h ∗ ℓ = 1 on the interval (0,∞). In those cases where

ℓ /∈ L1(R+), we will say that h is of type (PC)′. In order to emphasize the existence of the function ℓ,
throughout the text we write (h, ℓ) ∈ (PC)′.

We emphasize that the condition (PC) has been successfully applied in the study of subdiffusion
processes, as demonstrated in works such as [2, 15, 26], among others. Given that (PC)′ ⊂ (PC), this
condition establishes a robust framework for analyzing this class of nonlocal processes.

Definition 2.2. A C∞-function f : (0,∞) → R is called completely monotonic if (−1)nf (n)(λ) ≥ 0 for
all n ∈ N0 and λ > 0. Further, a C∞-function g : (0,∞) → R is called Bernstein function if g(λ) ≥ 0 for
all λ > 0, and g′ is completely monotonic. The class of completely monotonic functions and Bernstein
functions will be denoted by (CM) and (BF), respectively.

A detailed collection of the most important properties of the classes (CM) and (BF) can be found
in [29]. This reference provides a thorough analysis of their analytic characteristics, key theorems, and
applications. In particular, it discusses the interplay between these function classes and probability
theory.

Definition 2.3. Consider a birth-death process N (t) and a subordinator σΦ associated with a Bernstein
function Φ, with inverse subordinator EΦ (independent of N ). The time non-local birth-death process
induced by N and Φ is a stochastic process of the form

NΦ(t) := N (EΦ(t)), t ≥ 0.

For n ∈ N, the n-th moment MΦ
n (t) of the process NΦ(t) is defined by

MΦ
n (t) =

∞∑
k=0

knPΦ
k (t), t ≥ 0,

where PΦ
k (t) is the transition probability of NΦ(t), given by

PΦ
k (t) = Pr{NΦ(t) = k | NΦ(0) = N}, for t > 0,

and

PΦ
k (0) =

{
1, k = N,

0, k ̸= N.

For further insights into these processes, we refer the reader to [4, Section 2], where the authors study
such processes as discrete approximations of the so-called Pearson diffusion.
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Theorem 2.1. Let Φ be a Bernstein function given by Φ(λ) = λĥ(λ) for some (h, ℓ) ∈ (PC)′. Consider
a classical birth-death process N (t) with birth rate bk = βk2 + δbk + γ and death rate dk = βk2 + δdk,
where β, δb, δd, and γ are non-negative constants. If the moments of N (t) are finite, then the moments
of NΦ(t) are also finite. Moreover, the following expressions hold:

MΦ
0 (t) = 1, MΦ

1 (t) = Nsc1(t) + γ(1 ∗ rc1)(t), t ≥ 0, (2.1)

and

MΦ
2 (t) = N2sc2(t) + (2γ + δb + δd)(rc2 ∗MΦ

1 )(t) + γ(1 ∗ rc2)(t), t ≥ 0, (2.2)

where

c1 = δb − δd, and c2 = 2(β + δb − δd).

Additionally, for n ≥ 3, we have the following recursive formula:

MΦ
n (t) = Nnscn(t) +

n−1∑
j=0

κn,j (rcn ∗MΦ
j )(t), t ≥ 0, (2.3)

where

cn = (δd − δb)n− βn(n− 1), and κ
n,j

=

{
2β
(

n
j+2

)
+ (δb − δd)

(
n

j+1

)
+ γ
(
n
j

)
, j even,

γ
(
n
j

)
+ (δb + δd)

(
n

j+1

)
, j odd.

Here, for n ∈ N, the functions scn and rcn correspond to the scalar resolvent functions associated with
the function ℓ defined in Appendix A below.

Notice that the Bernstein functions that we are considering constitute a subclass of special Bernstein

functions, in the sense that the conjugate of Φ is still a Bernstein function. Indeed, if Φ(λ) = λ ĥ(λ),
then the conjugate is given by

Φ⋆(λ) =
λ

Φ(λ)
=

1

ĥ(λ)
,

that is clearly a Bernstein function since ĥ is completely monotone. Nevertheless, for functions of this
form, the identification of h with the tail of the Lévy measure is immediate. Furthermore, the co-Sonine
kernel ℓ is the potential measure of the involved subordinator, i.e.

ℓ(t) =
d

dt
E[EΦ(t)].

To guarantee that (h, ℓ) satisfy (PC)′, one just needs to ensure that

lim
λ→+∞

Φ(λ)

λ
= lim

λ→+∞
ĥ(λ) = 0, lim

λ→0
Φ(λ) = 0, lim

t→0
h(t) = +∞, −

∫ +∞

0

t dh(t) = +∞.

For further details, check the relative section in [29].

Remark 2.1. It is important to note that κn,j is not defined for j = 0. However, we can extend the
definition, by setting κn,0 := cn = (δd − δb)n− βn(n− 1). To emphasize the significance of this term, we
will refer to it as cn.

Remark 2.2. Theorem 2.1 establishes that all the moments of the process NΦ(t) are well defined,
provided that N (t) satisfies the same property. This criterion is notably broad, imposing minimal re-
strictions. Indeed, [4, Section 2] provides a comprehensive set of results demonstrating conditions under
which all moments of N (t) are guaranteed to be finite.

In order to analyze the asymptotic behavior of MΦ
n (t) as t → ∞, we must to introduce an additional

concept.

Definition 2.4. Let L : (0,∞) → (0,∞) and ϱ ∈ R. We say that L is a regularly function at infinity of
index ϱ, if for all x > 0 we have that

lim
t→∞

L(tx)

L(t)
= xϱ.

We denote this class of functions by RV∞
ϱ . In the case that ϱ = 0, these functions are known as slowly

varying at infinity functions and they are denoted by SV∞.
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Theorem 2.2. Let Φ be a Bernstein function given by Φ(λ) = λĥ(λ) for some (h, ℓ) ∈ (PC)′. Consider
a classical birth-death process N (t) with birth rates bk = βk2 + δbk + γ and death rates dk = βk2 + δdk,
where β, δb, δd and γ are non-negative constants. Assume that MΦ

1 (t) is finite. The following assertions
hold.

(i) If δb > δd then
MΦ

1 (t) ∼ K1 · exp(ω1t), as t→ ∞,

where ω1 > 0 is the unique solution of the equation λĥ(λ) = δb − δd and

K1 =

(
N (δb − δd) + γ

)
ω1(ĥ(ω1) + ω1

˙̂
h(ω1))

.

where
˙̂
h corresponds to the derivative of the Laplace transform of h.

(ii) If δd > δb and the mapping t 7→ ℓ̂(t−1) is regularly varying of index ϱ < 1, then

MΦ
1 (t) ∼ N

1 + (δd − δb)ℓ̂(t−1)
+

γ

δd − δb
, as t→ ∞.

(iii) If δd = δb and the mapping t 7→ ℓ̂(t−1) is regularly varying of index −1 < ϱ, then

MΦ
1 (t) ∼ N + γℓ̂(t−1), as t→ ∞.

Here, the notation f(t) ∼ g(t) as t→ ∞ means that lim
t→∞

f(t)/g(t) = 1.

Remark 2.3. This remark has two key aspects. On one hand, the conditions in Theorem 2.2 are broad
and flexible, encompassing many standard examples of pairs (h, ℓ) ∈ (PC)′. On the other hand, it
highlights that the asymptotic behavior of MΦ

1 (t) as t→ ∞ can vary significantly and is not necessarily
exponential, as in the classical case. Specifically, when the birth rate asymptotically exceeds the death
rate, the moments exhibit exponential growth. Conversely, when the birth rate is asymptotically smaller
than the death rate, the moments decay at a slow rate. In Section 4, we present several examples that
illustrate the diverse range of asymptotic behaviors for these moments.

We point out that due to the recursive nature of the formula for the higher order moments MΦ
k (t) of

NΦ(t), the proof of the preceding result can be straightforwardly extended to compute the asymptotic
behavior of MΦ

k (t) for any k ≥ 2. For the sake of brevity, we will establish this result only for the
second-order moment.

Theorem 2.3. Let Φ be a Bernstein function given by Φ(λ) = λĥ(λ) for some (h, ℓ) ∈ (PC)′. Consider
a classical birth-death process N (t) with birth rates bk = βk2 + δbk + γ and death rates dk = βk2 + δdk,
where β, δb, δd and γ are non-negative constants. Assume that MΦ

2 (t) is finite. The following assertions
hold.

(i) If δd < δb + β, then
MΦ

2 (t) ∼ K2 · exp(ω2t), as t→ ∞,

where ω2 > 0 is the unique solution of the equation λĥ(λ) = 2(δb − δd + β) and

K2 =
1

ĥ(ω2) + ω2
˙̂
h(ω2))

[
N2ĥ(ω2) +

c
2
+Nκ

2,1

ω2
+

κ
2,1

(γ − c
1
)

ω2(2β + δb − δd)

]
.

(ii) If δd > δb + β and the mapping t 7→ ℓ̂(t−1) is regularly varying of index ϱ < 1, then

MΦ
2 (t) ∼ N2

1 + 2(δd − δb − β)ℓ̂(t−1)
+

c
2
+ κ

2,1
N

2(δd − δb − β)
+

κ
2,1

(γ − c1)

2(δd − δb)(δd − δb − β)
as t→ ∞.

(iii) If δd = δb + β and the mapping t 7→ ℓ̂(t−1) is regularly varying of index −1 < ϱ, then

MΦ
2 (t) ∼ N2 +

(
c
2
+ κ

2,1
N +

κ
2,1

(γ − c
1
)

c1

)
ℓ̂(t−1), as t→ ∞.

Here, the constants c1 , c2 and κ2,1 are given by c1 = δb−δd, c2 = 2β+2(δb−δd), and κ2,1 = 2γ+(δb+δd).

Remark 2.4. Note that the asymptotic behavior of MΦ
2 (t) is, up to multiplicative constants, similar the

asymptotic behavior of MΦ
1 , which again is markedly different to the classical case.
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3. Proof of main results

In order to prove our main results, we need to establish several previous technical results. We begin
establishing the following Lemma, whose proof is obtained from [4, Theorem 4.4 and Theorem 5.1], see
also [3].

Lemma 3.1. Let Φ be a Bernstein function given by Φ(λ) = λĥ(λ) for some (h, ℓ) ∈ (PC)′. Consider a
birth-death process N (t) with birth rates bk = βk2 + δbk + γ and death rates dk = βk2 + δdk, for some
non-negative constants β, δb, δd and γ. The transition probability PΦ

n of the time non-local birth-death
process NΦ(t) satisfies the following evolution equation

∂t(h ∗ (PΦ
n − PΦ

n (0))) = bn−1P
Φ
n−1(t)− (bn + dn)P

Φ
n (t) + dn+1P

Φ
n+1(t), t ≥ 0. (3.1)

Remark 3.1. Since h ∗ ℓ = 1 on (0,∞), the equation (3.1) can be rewritten as the following integral
Volterra equation

PΦ
n (t) = PΦ

n (0) + bn−1(P
Φ
n−1 ∗ ℓ)(t)− (bn + dn)(P

Φ
n ∗ ℓ)(t) + dn+1(P

Φ
n+1 ∗ ℓ)(t), t ≥ 0.

This framework provides several advantages in obtaining a formula for the moments of NΦ(t). For
instance, in the following result we exploit the theory of Volterra equations to represent PΦ

n (t) in terms
of the probability transitions of the classic birth-death process.

Lemma 3.2. Let Φ be a Bernstein function given by Φ(λ) = λĥ(λ) for some (h, ℓ) ∈ (PC)′. Consider a
birth-death process N (t) with birth rates bk = βk2 + δbk + γ and death rates dk = βk2 + δdk, for some
non-negative constants β, δb, δd and γ. Then the transition probability PΦ

n can be represented as follows

PΦ
n (t) = −

∫ ∞

0

Pn(τ)dτWΦ(t, τ), t ≥ 0, (3.2)

where Pn is the probability density transition of the classical birth-death process N (t) and WΦ is the
propagation function associated to the Bernstein function Φ, defined in Appendix B below.

Proof. It follows from Remark 3.1 that the Laplace transform of PΦ
n satisfies the following system of

infinite evolution equations

P̂Φ
n (λ)− PΦ

n (0)

λ
= bn−1 ℓ̂(λ) P̂Φ

n−1(λ)− (bn + dn) ℓ̂(λ) P̂Φ
n (λ) + dn+1ℓ̂(λ) P̂Φ

n+1(λ), λ > 0. (3.3)

On the other hand, it is well known (cf. [5, Section 8.3]) that the probability transitions of a classical
birth-death process satisfy the following differential equation

P ′
n(t) = bn−1Pn−1(t)− (bn + dn)Pn(t) + dn+1Pn+1(t), t > 0, n ≥ 1, Pn(0) = N δn,1, n ≥ 1.

Therefore, the Laplace transform of Pn satisfies

P̂n(σ)−
Pn(0)

σ
= bn−1

P̂n−1(σ)

σ
− (bn + dn)

P̂n(σ)

σ
+ dn+1

P̂n+1(σ)

σ
, σ > 0.

Since the preceding relation is valid for all σ > 0, and λĥ(λ) > 0 for all λ > 0, we can consider λĥ(λ)
instead of σ. Hence, we have that

P̂n(λĥ(λ))−
Pn(0)

λĥ(λ))
= bn−1

P̂n−1(λĥ(λ))

λĥ(λ)
− (bn + dn)

P̂n(λĥ(λ))

λĥ(λ)
+ dn+1

P̂n+1(λĥ(λ))

λĥ(λ)
, λ > 0,

or equivalently

ĥ(λ)P̂n(λĥ(λ))−
Pn(0)

λ
=bn−1ℓ̂(λ)ĥ(λ)P̂n−1(λĥ(λ))− (bn + dn)ℓ̂(λ)ĥ(λ)P̂n(λĥ(λ))

+ dn+1ℓ̂(λ)ĥ(λ)P̂n+1(λĥ(λ)), λ > 0. (3.4)

Since the solution to this equation is unique, it follows from (3.3) and (3.4) that

P̂Φ
n (λ) = ĥ(λ)P̂n(λĥ(λ)), λ > 0.

Now, for Φ and n ∈ N, we define

Bn(t) = −
∫ ∞

0

Pn(τ)dτWΦ(t, τ), t ≥ 0, n ∈ N, (3.5)
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where Pn(t) is the state probability function of the classical pure-birth process N (t), and WΦ is the
propagation function associated to the Bernstein function Φ. Taking Laplace transform into the both
sides of (3.5), we have that

B̂n(λ) = ĥ(λ)

∫ ∞

0

Pn(τ)e
−τλĥ(λ)dτ, λ > 0.

= ĥ(λ)P̂n(λĥ(λ)), λ > 0.

The identity (3.2) follows directly from the uniqueness of the Laplace transform.

Remark 3.2. As we have mentioned before, Lemma 3.2 allows us to represent PΦ
n (t) in terms of the

probability density transition of the classical birth-death process N (t). This type of representation is
known in the specialized literature as subordination formulas. We refer the interested reader to [1, 15,
25, 26] and the references therein to consult subordination formulas applied in another contexts.

Corollary 3.1. Let Φ be a Bernstein function given by Φ(λ) = λĥ(λ) for some h ∈ (PC)′. Consider a
birth-death process N (t) with birth rates bk = βk2 + δbk + γ and death rates dk = βk2 + δdk, for some
non-negative constants β, δb, δd and γ. The n-th moment of NΦ(t) can be represented as follows:

MΦ
n (t) = −

∫ ∞

0

Mn(τ)dτWΦ(t, τ), t ≥ 0, (3.6)

where Mn is the n-th moment of the classical birth-death process N (t) and WΦ is the propagation function
associated to the Bernstein function Φ, defined in Appendix B below.

Proof. Let n ∈ N. By definition MΦ
n (t) is given by

MΦ
n (t) =

∞∑
k=0

knPΦ
k (t), t ≥ 0.

Hence, the formula (3.6) follows directly from Lemma 3.2 and the Dominated Convergence Theorem.

The formula (3.6) provides a helpful representation of the moments of NΦ(t) in terms of the moments
of N (t). For this reason, we present a recursive representation of the moments of N (t).

Lemma 3.3. Consider a classical birth-death process N (t) with birth rates bk = βk2 + δbk+ γ and death
rates dk = βk2 + δdk, for some non-negative constants β, δb, δd and γ. Assume that the N (t) admits
moments of any order. Then, M0(t) = 1,

M1(t) = Ne(δb−δd)t + γ

∫ t

0

e(δb−δd)sds, (3.7)

and

M2(t) =N
2e2(β+δb−δd)t + (2γ + δb + δd)

∫ t

0

e2(β+δb−δd)sM1(t− s)ds

+ γ

∫ t

0

e2(β+δb−δd)sds. (3.8)

Additionally, for n ≥ 3 we have that

Mn(t) = Nn ecnt +

n∑
j=1

κ
n,j

∫ t

0

Mn−j(s)e
cn(t−s)ds, n ∈ N, (3.9)

where, for n ≥ 2 and 1 ≤ j ≤ n− 1,

cn = (δd − δb)n− βn(n− 1), and κ
n,j

=

{
2β
(

n
j+2

)
+ (δb − δd)

(
n

j+1

)
+ γ
(
n
j

)
, j even,

γ
(
n
j

)
+ (δb + δd)

(
n

j+1

)
, j odd.

Proof. Let n ∈ N. We have that

Mn(t) =

∞∑
k=0

knPk(t), t ≥ 0.
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It is a well known fact that the probability transitions Pn satisfy the following system of differential
equations

d

dt
Pn(t) = bn−1Pn−1(t)− (bn + dn)Pn(t) + dn+1Pn+1(t), t ≥ 0. (3.10)

Therefore, we have that

d

dt
Mn(t) =

∞∑
k=0

(
(k − 1)nbk−1Pk−1(t)− knbkPk(t)

)
+

∞∑
k=0

(
kn − (k − 1)n

)
bk−1Pk−1(t)

+

∞∑
k=0

(
(k + 1)ndk+1Pk+1(t)− kndkPk(t)

)
+

∞∑
k=0

(
kn − (k + 1)n

)
dk+1Pk+1(t),

which implies that

d

dt
Mn(t) =− lim

k→∞
knbkPk(t) + lim

k→∞
(k + 1)ndk+1Pk+1(t)

+

∞∑
k=0

(
kn − (k − 1)n

)
bk−1Pk−1(t) +

∞∑
k=0

(
kn − (k + 1)n

)
dk+1Pk+1(t).

Since N (t) admits moments of any order, and both birth and death rates are quadratic polynomials
when β ̸= 0 or linear polynomials when β = 0, it follows that lim

k→∞
knPk(t) = 0 for all t ≥ 0 and n ∈ N.

Therefore, we have that

lim
k→∞

knbkPk(t) = 0 and lim
k→∞

(k + 1)ndk+1Pk+1(t) = 0.

This in turn implies that

d

dt
Mn(t) =

∞∑
k=0

(
kn − (k − 1)n

)
bk−1Pk−1(t) +

∞∑
k=0

(
kn − (k + 1)n

)
dk+1Pk+1(t).

Since b−1 = 0 we have that

d

dt
Mn(t) =

∞∑
k=1

(
(kn − (k − 1)n

)
bk−1Pk−1(t) +

∞∑
k=0

(
(kn − (k + 1)n

)
dk+1Pk+1(t)

=

∞∑
k=0

(
(k + 1)n − kn

)
bkPk(t) +

∞∑
k=0

(
(k − 1)n − kn

)
dkPk(t)

=

∞∑
k=0

n−1∑
j=0

(
n

j

)
kj
(
bk + (−1)n−jdk

)
Pk(t). (3.11)

The right hand side of (3.11) can be rewritten as follows

d

dt
Mn(t) =

∞∑
k=0

(
n

n− 1

)
kn−1(bk − dk)Pk(t) +

∞∑
k=0

(
n

n− 2

)
kn−2(bk + dk)Pk(t)

+

∞∑
k=0

n−3∑
j=0

(
n

j

)
kj(bk + (−1)n−jdk)Pk(t).

Since bk = βk2 + δbk + γ and dk = βk2 + δdk, we have that

bk + dk = 2βk2 + (δb + δd)k + γ and bk − dk = (δb − δd)k + γ.

Consequently

∞∑
k=0

(
n

n− 1

)
kn−1(bk − dk)Pk(t) = n(δb − δd)Mn(t) + nγMn−1(t), t ≥ 0,
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and
∞∑
k=0

(
n

n− 2

)
kn−2(bk + dk)Pk(t) =n(n− 1)βMn(t) +

n(n− 1)

2
(δb + δd)Mn−1(t)

+ γ
n(n− 1)

2
Mn−2(t), t ≥ 0.

Therefore

d

dt
Mn(t) + cnMn(t) =

n∑
j=1

κ
n,j
Mn−j(t), t ≥ 0, (3.12)

where, for n ≥ 2 and 1 ≤ j ≤ n− 1,

κn,j :=

{
2β
(

n
j+2

)
+ (δb − δd)

(
n

j+1

)
+ γ
(
n
j

)
, j even,

γ
(
n
j

)
+ (δb + δd)

(
n

j+1

)
, j odd.

A straightforward computation shows that the solution of (3.12) is given by

Mn(t) =Mn(0) e
κn,0t +

n∑
j=1

κ
n,j

∫ t

0

Mn−j(s)e
κn,0(t−s)ds, t ≥ 0,

Since Pk(0) = δk,N we have that

Mn(0) =

∞∑
k=0

knPk(0) = Nn,

which proves our claim.

Proof of Theorem 2.1. Let n ∈ N. According to Corollary 3.1 we have that

MΦ
n (t) = −

∫ ∞

0

Mn(τ)dτWΦ(t, τ), t ≥ 0.

Hence, it follows from Corollary 3.1 that the Laplace transform of MΦ
n is given by

M̂Φ
n (λ) =

∫ ∞

0

Mn(τ)ĥ(λ)e
−τλĥ(λ) = ĥ(λ)M̂n(λĥ(λ)), λ ≥ 0.

On the other hand, it follows from Lemma 3.3 that the Laplace transform of Mn is given by the following
recursive expression

M̂n(z) =
Nn

z + cn
+

n∑
j=|

κ
n,j

z + cn
M̂j(z), z ≥ 0.

Replacing z by λĥ(λ) and multiplying the preceding expression by ĥ(λ), we obtain that

ĥ(λ) M̂n(λĥ(λ)) = Nn ĥ(λ)

λĥ(λ) + cn
+

n∑
j=1

κ
n,j

λĥ(λ) + cn
ĥ(λ)M̂j(λĥ(λ)), λ ≥ 0.

It follows from (A.5) and (A.6) that

ŝcn(λ) =
ĥ(λ)

λĥ(λ) + cn
and r̂cn(λ) =

1

λĥ(λ) + cn
, λ > 0.

Hence, by the uniqueness of the Laplace transform, we have that

MΦ
n (t) = Nn scn(t) +

n∑
j=1

κn,j

(
rcn ∗MΦ

j

)
(t), t ≥ 0, (3.13)

and the proof is complete.
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Proof of Theorem 2.2. Since MΦ
0 (t) = 1, it follows from Theorem 2.1 that

MΦ
1 (t) = N s(t, δd − δb) + γ

∫ t

0

r(σ, δd − δb)dσ, t ≥ 0.

Initially, we consider the case δb > δd. In such a case, by Remark A.2 we have that the function
t 7→ s(t, δd − δb) is non-decreasing. Moreover, since the function ℓ is non-negative, we have that the
mapping t 7→ r(t, δd − δb) in non-negative as well, which implies that MΦ

1 is a non-decreasing function.
On the other hand, it follows from (A.5) and (A.6) that the Laplace transform of MΦ

1 is given by

M̂Φ
1 (λ) =

1

λ

(
Nλĥ(λ) + γ

λĥ(λ) + δd − δb

)
, λ > ω1,

where ω1 > 0 is the unique solution of the equation

λĥ(λ) = δb − δd. (3.14)

We recall that the condition (h, ℓ) ∈ (PC)′ implies that the mapping λ 7→ λĥ(λ) is an unbounded Bernstein

function such that limλ→0 λĥ(λ) = 0, which guarantees the existence and uniqueness of the solution to
the equation (3.14). Therefore, it follows from Wiener-Ikehara Theorem C.2 that

MΦ
1 (t) ∼ K1 · exp(ω1t), as t→ ∞,

where K1 is the residue of λ 7→ 1
λ

(
Nλĥ(λ)+γ

λĥ(λ)+δd−δb

)
at λ = ω1. In other words,

K1 = lim
λ→ω1

λ− ω1

λ

(
Nλĥ(λ) + γ

λĥ(λ) + δd − δb

)
.

Using L’Hôpital rules, we have that

K1 =

(
N (δb − δd) + γ

)
ω1(ĥ(ω1) + ω1

˙̂
h(ω1))

,

where the
˙̂
h means the derivative of ĥ, and the proof of the first assertion is complete.

Assume now that δd > δb. In this case, the mapping t 7→ s(t, δd − δb) is nonincreasing and the

mapping t 7→
∫ t

0
r(σ, δd − δb)(σ)dσ is increasing. Thus, MΦ

1 is the sum of a nonincreasing function and a
nondecreasing one. Therefore we can apply the Karamata-Feller Theorem separately in each summand,

and obtain the asymptotic behavior of MΦ
1 . To this end, we rewrite M̂Φ

1 as follows

M̂Φ
1 (λ) =

1

λ1−ϱ
L1

(
1

λ

)
+

1

λ
L2

(
1

λ

)
, λ > 0,

where L1, L2 : (0,∞) → (0,∞) are given by

L1(t) =
Ntϱ

1 + (δd − δb)ℓ̂(t−1)
, and L2(t) =

γℓ̂(t−1)

1 + (δd − δb)ℓ̂(t−1)
.

Let us assume that the mapping t 7→ ℓ̂(t−1) is regularly varying of index ϱ < 1. In such a case, we have
that both L1 and L2 are slowly varying at infinity functions. Thus, according Karamata-Feller Theorem
C.1 we have that

MΦ
1 (t) ∼ N

1 + (δd − δb)ℓ̂(t−1)
+

γℓ̂(t−1)

1 + (δd − δb)ℓ̂(t−1)
, as t→ ∞.

Since ℓ /∈ L1(R+), we have that γℓ̂(t−1)

1+(δd−δb)ℓ̂(t−1)
∼ γ

δd−δb
as t→ ∞, which in turn implies that

MΦ
1 (t) ∼ N

1 + (δd − δb)ℓ̂(t−1)
+

γ

δd − δb
, as t→ ∞.

In the case δd = δb, we have that

M̂Φ
1 (λ) =

N

λ
+
γℓ̂(λ)

λ
, λ > 0.
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We can rewrite the preceding expression as follows

M̂Φ
1 (λ) =

N

λ
+

1

λ1+ϱ
L

(
1

λ

)
, λ > 0.

where L : (0,∞) → (0,∞) is given by

L(t) = ℓ̂(t−1)t−ϱ, t > 0.

Since the mapping t 7→ ℓ̂(t−1) is regularly varying of index ϱ > −1, we have that L is a slowly varying
function, and by Karamata-Feller Theorem we have

MΦ
1 (t) ∼ N + γℓ̂(t−1), as t→ ∞,

which finishes the proof.

Proof of Theorem 2.3. Recall that c1 = δd − δb and c2 = 2(δd − δb) − 2β = 2c1 − 2β. According to
Theorem 2.1 we have that

MΦ
2 (t) = N2sc2(t) + (2γ + δb + δd)(rc2 ∗MΦ

1 )(t) + γ(1 ∗ rc2)(t), t ≥ 0,

which, by the expression of MΦ
1 , is equivalent to

MΦ
2 (t) =N2 sc2(t) + γ(1 ∗ rc2)(t) + (2γ + δb + δd)N (rc2 ∗ sc1)(t)

+ γ(2γ + δb + δd)(1 ∗ rc1 ∗ rc2)(t).

It follows from (A.3) that

sc1(t) = 1− c1(1 ∗ rc1)(t).
Therefore, MΦ

2 (t) is given by

MΦ
2 (t) =N2 sc2(t) + γ(1 ∗ rc2)(t) + (2γ + δb + δd)N (1 ∗ rc2)(t)

+ γ(2γ + δb + δd)(1 ∗ rc1 ∗ rc2)(t)− (2γ + δb + δd)c1(1 ∗ rc1 ∗ rc2)(t). (3.15)

The preceding expression shows that MΦ
2 is a finite sum of monotone functions. Thus, in order to

determine the asymptotic behavior of MΦ
2 we will analyze the asymptotic behavior of each term of

(3.15).

Initially, we first consider δd < δb + β. Since c1 = δd − δb, and c2 = 2c1 − 2β a straightforward
calculation shows that c2 < c1 provided that c1 < 0, which precludes the case c1 < c2 < 0. Hence, we
initially consider the case c2 < 0.

By (A.5) and (A.6) we have that

ŝc2(λ) =
1

λ

λĥ(λ)

λĥ(λ) + c2
, and 1̂ ∗ rc2(λ) =

1

λ

1

λĥ(λ) + c2
, λ > ω2,

where ω2 is the unique solution to the equation

λĥ(λ) + c2 = 0.

Since c2 < 0, both sc2 and 1 ∗ rc2 are non-decreasing functions. Thus, Wiener-Ikehara Theorem implies
that

sc2(t) ∼ R2 · eω2t, and (1 ∗ rc2)(t) ∼ R3 · eω2t, t→ ∞,

where

R2 = ĥ(ω2) lim
λ→ω2

(
λ− ω2

λĥ(λ) + 2(δd − δb − β)

)
, and R3 =

1

ω2
lim

λ→ω2

(
λ− ω2

λĥ(λ) + 2(δd − δb − β)

)
.

On the other hand, by the non-negativeness of both rc1 and rc2 , we have that the function 1 ∗ rc1 ∗ rc2 is
an increasing function, whose Laplace transform L is given by

L (1 ∗ rc2 ∗ rc1 ;λ) =
1

λ

1

λĥ(λ) + c2

1

λĥ(λ) + c1
, λ > ω2,
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where ω2 > 0 has been defined above. Since c2 < c1, we point out that λĥ(λ) + c1 ̸= 0 in the complex
half-plane Ω = {z ∈ C : Re(z) > ω2}, which implies that the function λ 7→ L (1 ∗ rc1 ∗ rc2 ;λ) is analytic
in this complex sector and it has a simple pole in z = ω2 with residue R1 given by

R1 =
1

ω2(2β + δb − δd)
lim

λ→ω2

(
λ− ω2

λĥ(λ) + 2(δd − δb + β)

)
.

Therefore, we have that
MΦ

2 (t) ∼ K2e
ω2t, t→ ∞,

where

K2 = N2R2 + γR3 +N (2γ + δb + δd)R3 + γ(2γ + δb + δd)R1 − (2γ + δb + δd)c1R1,

and the constants R1, R2 and R3 are given above. Indeed, using L’Hôpital rules they can be computed
explicitly to obtain

R1 =
1

ω2(2β + δb − δd)(ĥ(ω2) + ω2
˙̂
h(ω2))

, R2 =
ĥ(ω2)

(ĥ(ω2) + ω2
˙̂
h(ω2))

, and R3 =
1

ω2(ĥ(ω2) + ω2
˙̂
h(ω2))

,

which proves our assertion.

Assume now that δd > δb + β and the mapping t 7→ ℓ̂(t−1) is regularly varying of index ϱ < 1. We can

rewrite M̂Φ
2 (λ) as follows

M̂Φ
2 (λ) =

1

λ1−ϱ
L1

(
1

λ

)
+

1

λ
L2

(
1

λ

)
, λ > 0,

where L1, L2 : (0,∞) → (0,∞) are given by

L1(t) =
N2tϱ

1 + 2(δd − δb − β)ℓ̂(t−1)

and

L2(t) =
ℓ̂(t−1)

1 + 2(δd − δb − β)ℓ̂(t−1)

[
γ +N(2γ + δb + δd) + (γ − c1)

(2γ + δb + δd)ℓ̂(t
−1)

(1 + (δd − δb)ℓ̂(t−1))

]
.

Since β > 0 we have that δd > δb. Due to the mapping t 7→ ℓ̂(t−1) is regularly varying of index ϱ < 1,
we have that both L1 and L2 are slowly varying functions. Since ℓ /∈ L1(R+), and according to the
Karamata-Feller Theorem C.1 we have that

MΦ
2 (t) ∼ N2

1 + 2(δd − δb − β)ℓ̂(t−1)
+

κ
2,0

+ κ
2,1
N

2(δd − δb − β)
+

γκ
2,1

− κ
2,1
c1

2(δd − δb)(δd − δb − β)
as t→ ∞.

Assume now that δd = δb + β. Since β > 0 we have that δd > δb, and

M̂Φ
2 (λ) =

N2

λ
+

(1 +N)(2γ + δb + δd)ℓ̂(λ)

λ
+

(γ − c1)(2γ + δb + δd)(ℓ̂(λ))
2

λ(1 + c1 ℓ̂(λ)),

for any λ > 0. Proceeding in a similar way to the proof of statement (iii) in Theorem 2.2, we may use
Karamata-Feller Theorem C.1 to obtain

MΦ
2 (t) ∼ N2 +

(
γ + (2γ + δb + δd)N +

(γ − c1)(2γ + δb + δd)− (2γ + δb + δd)

c1

)
ℓ̂(t−1), as t→ ∞,

which finishes the proof.

Remark 3.3. Note that the formula in equation (3.13) provides a recursive method for calculating the
moments of the process NΦ(t). As a result, this means that the proofs of Theorem 2.2 and Theorem
2.3 can be adjusted to describe the asymptotic behavior of moments of any order, not just the first and
second moments. However, the resulting expressions are quite lengthy. For the sake of brevity of the
text, we have omitted them in this work.



12

4. Examples

In this section, we demonstrate how Theorem 2.2 and Theorem 2.3 can be applied to various examples
of function pairs (h, ℓ) ∈ (PC)′.

Example 4.1. Let α ∈ (0, 1) and consider the pair of functions (h, ℓ) = (g1−α, gα), where gβ with β > 0
is the standard notation for the function

gβ(t) =
tβ−1

Γ(β)
, t > 0. (4.1)

In this case, the term ∂t(h∗·) becomes the time-fractional derivative ∂αt in the sense of Riemann- Liouville
of order α ∈ (0, 1), and the equation (3.1) is an example of the so-called time-fractional evolution equation,
which have been successfully applied in the context of diffusion processes whose mean square displacement
grows like a multiple of tα, see e.g. [11, 20].

Since α ∈ (0, 1), it is clear that (h, ℓ) ∈ (PC)′. In order to agree with the standard notation of the
literature, we refer the corresponding process NΦ(t) as Nα(t). For the same reason, we denote Mα

1 (t)

its first moment. We have that λĥ(λ) = λα for λ > 0. Therefore, it follows from the assertion (i) of
Theorem 2.2 that in the case δb > δd the asymptotic behavior of MΦ

1 is given by

Mα
1 (t) ∼

N(δb − δd) + γ

α(δb − δd)
exp

(
(δb − δd)

1
α t
)
, as t→ ∞.

On the other hand, we have that ℓ̂(λ) = λ−α for λ > 0, which implies that the mapping t 7→ ℓ̂(t−1) is
regularly varying of index α ∈ (0, 1). Hence, by assertion (ii) of Theorem 2.2 we have that

Mα
1 (t) ∼ N + γtα, as t→ ∞,

when δb = δd. Analogously, assertion (iii) of Theorem 2.2 implies that

Mα
1 (t) ∼

N

1 + (δd − δb)tα
+

γ

δd − δb
, as t→ ∞.

when δd > δb.

Remark 4.1. Example 4.1 illustrates that when δb > δd, the behavior of Mα
1 (t) closely resembles the

results obtained by Orsingher and Polito [21] for the so-called fractional Yule-Furry process. This char-
acteristic feature of the process under investigation demonstrates its suitability for modeling explosively
expanding populations.

We point out that a key insight for identifying nonlocal birth-death NΦ(t) processes where the first
moment grows exponentially when δb > δd is to find pairs (h, ℓ) ∈ (PC)′ such that the equation

λĥ(λ) = δb − δd (4.2)

can be solved explicitly. Although this task can generally be quite challenging, in the following examples,
we present several cases where the equation (4.2) can be solved effectively.

Example 4.2. Consider the pair of functions (h1, ℓ1) given by

h1(t) =

∫ 1

0

gα(t)dα, and ℓ1(t) =

∫ ∞

0

e−st

1 + s
ds, t > 0.

In this case, the integrodifferential operator ∂t(h1∗·) is an example of the so-called operators of distributed
order and the equation (3.1) can be viewed as an example of the so-called ultraslow evolution equations.
Such equations appear in the study of diffusion processes with a logarithmic growth of the mean square
displacement, see e.g. [15, 16, 18, 31]. For instance, it has been proved in [31] that h1 ∗ ℓ1 = 1, and

ℓ̂1(λ) =
log(λ)

λ− 1
, λ > 0.

Therefore lim
λ→0+

ℓ̂1(λ) = +∞, which implies that ℓ1 /∈ L1(R+), and consequently (h1, ℓ1) ∈ (PC)′. By a

direct computation, we have that

λĥ1(λ) =
λ− 1

log(λ)
, λ > 0.
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Hence, when δb − δd > 0, the unique solution ω1 > 0 of the equation λĥ1(λ) = δb − δd is given by

ω1 =

−(δb − δd)W−1

(
− 1

δb−δd
exp

( −1
δb−δd

))
, (δb − δd) ≥ 1,

−(δb − δd)W0

(
− 1

δb−δd
exp

( −1
δb−δd

))
, 0 < (δb − δd) ≤ 1,

where W0 and W−1 denote the two real branches of the so-called Lambert product function. Therefore,
Theorem 2.2 implies that in the case δb > δd we have that

MΦ
1 (t) ∼ K · exp(ω1t), as t→ ∞,

where ω1 > 0 has been given above, and

K1 = (N (δb − δd) + γ)
log(ω1)

ω1 + (δd − δb)
.

On the other hand, we have that ℓ̂1(t
−1) = t·log(t)

t−1 for t > 0. Therefore, the function t 7→ ℓ̂1(t
−1) is

regularly varying of index ϱ = 0. Hence, by assertion (ii) of Theorem 2.2 we have that

MΦ
1 (t) ∼ N + γ log(t), as t→ ∞,

when δb = δd. Analogously, by the assertion (iii) of Theorem 2.2 we have that

MΦ
1 (t) ∼ N

1 + (δd − δb) log(t)
+

γ

δd − δb
, as t→ ∞.

when δd > δb.

Example 4.3. Let ϵ ∈ (0, 1). In [2, Example 3.10], the authors have proved the existence of a pair of
functions (hϵ, ℓϵ) ∈ (PC) such that

ĥϵ(λ) =
1

λ

(
λ− 1

log(λ)

)ϵ

, and ℓ̂ϵ(λ) =

(
log(λ)

λ− 1

)ϵ

We note that limλ→0+ ℓ̂ϵ(λ) = ∞, which implies that for all ϵ ∈ (0, 1) the pair (hϵ, ℓϵ) belongs to (PC)′.
The corresponding Bernstein function will be denoted by Φϵ. Assume that δb > δd. In this case, the
equation (4.2) takes the form (

λ− 1

log(λ)

)ϵ

= δb − δd.

Analogously to Example (4.2) this equation can solved by means of the Product Lambert Function.
Indeed, it follows from the assertion (i) of Theorem 2.2 that when δb > δd we have that

MΦ
1 (t) ∼ K1 · exp

(
ωϵt
)
, as t→ ∞,

where

ωϵ =


−(δb − δd)

1
ϵ W−1

(
− 1

(δb−δd)
1
ϵ
exp

(
−1

(δb−δd)
1
ϵ

))
, (δb − δd) ≥ 1,

−(δb − δd)
1
ϵ W0

(
− 1

(δb−δd)
1
ϵ
exp

(
−1

(δb−δd)
1
ϵ

))
, 0 < (δb − δd) ≤ 1,

and

K1 = (N (δb − δd) + γ)
(ωϵ − 1) log(ωϵ)

ϵ(δd − δb)(ωϵ − 1− ωϵ log(ωϵ))
.

On the other hand, we have that ℓ̂ϵ(t
−1) =

(
t·log(t)
t−1

)ϵ
for t > 0. Therefore, the function t 7→ ℓ̂ϵ(t

−1) is

regularly varying of index ϱ = 0. According to Theorem 2.2 we have that

MΦϵ
1 (t) ∼ N + γ

(
log(t)

)ϵ
, as t→ ∞,

when δb = δd. Analogously, by the assertion (iii) of Theorem 2.2 we have that

MΦϵ
1 (t) ∼ N

1 + (δd − δb)
(
log(t)

)ϵ +
γ

δd − δb
, as t→ ∞.

when δd > δb.

In order to present the following example, we first recall the result established in [2, Lemma 3.9].
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Lemma 4.1. Let ϕ, φ ∈ (CM). Then, there exists a unique ψ ∈ (CM) such that

ψ̂(λ) = ϕ̂(λ)φ̂(ϕ̂(λ)), λ > 0.

This result provides a method for constructing infinitely many pairs (k, ℓ) ∈ (PC)′. Consequently, it
enables the definition of infinitely many nonlocal birth-death processes NΦ(t), each exhibiting interesting
properties, as we will illustrate through the following example.

Proposition 4.1. There exists a pair of functions (h2, ℓ2) ∈ (PC)′ such that

λĥ2(λ) =
ℓ̂1(λ)− 1

ℓ̂1(λ) log(ℓ̂1(λ))
, λ > 0, (4.3)

where (h1, ℓ1) ∈ (PC)′ is defined in Example 4.2.

Proof. Let δ ∈ (0, 1), and consider ϕ = ℓ1 and φ = g1−δ. It well known that both ϕ and φ are
completely monotonic. According to Lemma 4.1 there exists fδ ∈ (CM) such that

f̂δ(λ) =
(
ℓ̂1(λ)

)δ
, λ > 0.

Since fδ ∈ (CM) it follows from [13, Theorem 5.4] that there is kδ ∈ (CM) such that

k̂δ(λ) =
1

λ

(
ℓ̂1(λ)

)−δ
, λ > 0.

Consider the function h2 : (0,∞) → (0,∞) defined by

h2(t) =

∫ 1

0

kδ(t)dδ, t > 0.

Since the class of functions (CM) is closed under sums and pointwise limits, we conclude that h2 ∈ (CM).
Therefore, applying again [13, Theorem 5.4] there exists ℓ2 ∈ (CM) such that h2 ∗ ℓ2 = 1. Moreover, we
have that

ĥ2(λ) =

∫ 1

0

1

λ

(
ℓ̂1(λ)

)−δ
dδ =

ℓ̂1(λ)− 1

λℓ̂1(λ) log(ℓ̂1(λ))
, λ > 0,

which implies that λĥ2(λ) =
ℓ̂1(λ)−1

ℓ̂1(λ) log(ℓ̂1(λ))
, and the proof is complete.

Example 4.4. Let (h2, ℓ2) ∈ (PC)′ be the pair of functions defined in Proposition 4.1. Consider the
Bernstein function Φ2 : (0,∞) → (0,∞) given by

Φ2(λ) = λĥ2(λ), λ > 0,

and the process NΦ2(t) induced by a time non-local birth-death process N and the function Φ2. As

mentioned above, in order to describe the asymptotic behavior of MΦ2
1 (t) when δb > δd, we need solve

the equation (4.2). In this case, this is equivalent to find µ2 > 0 such that

ℓ̂1(µ2)− 1

ℓ̂1(µ2) log(ℓ̂1(µ2))
= δb − δd.

Analogously to the examples (4.2) and (4.3), this equation can be solved using the properties of Lambert
product function. More concretely, it can be solved by an iterative procedure. Indeed, if we make the

change of variable ℓ̂1(µ2) = µ1 we have that

µ1 − 1

µ1 log(µ1)
= δb − δd,

which implies that

µ1 =


−1

(δb−δd)W−1

(
− e−1/(δb−δd)

(δb−δd)

) , δb − δd ≥ 1,

− (δb−δd)

W0((δb−δd)e
−(δb−δd))

, 0 < δb − δd ≤ 1,
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where W0 and W−1 are the real branches of the Lambert product function. Since µ1 = ℓ̂1(µ2) =
log(µ2)
µ2−1 ,

by using again the properties of the Lambert function, it follows that

µ2 =

{
−W0(−µ1e

−µ1 )
µ1

, µ1 ≥ 1,
−W−1(−µ1e

−µ1 )
µ1

, 0 < µ1 ≤ 1,

where µ1 has been defined above. Therefore, according to Theorem (2.2) we have that

MΦ
1 (t) ∼ K exp

(
µ2t
)
, t→ ∞,

where K is given by

K =

(
N (δb − δd) + γ

)
µ2(ĥ(µ2) + µ2

˙̂
h(µ2))

.

On the other hand, we have that

ℓ̂2(t
−1) =

 t log(t) log
(

t log(t)
t−1

)
t log(t)− t+ 1

 , t > 0.

By a straighforward computation, we conclude that the function t 7→ ℓ̂2(t
−1) is a regularly varying

function at infinity of index ϱ = 0.

MΦ2
1 (t) ∼ N + γ log(log(t)), as t→ ∞,

when δb = δd. Analogously, by the assertion (iii) of Theorem 2.2 we have that

MΦ2
1 (t) ∼ N

1 + (δd − δb) log(log(t))
+

γ

δd − δb
, as t→ ∞.

when δd > δb.

Remark 4.2. The process to define the pair (h2, ℓ2) can be slightly modified to define recursively a
family of pairs (hn, ℓn) ∈ (PC)′ such that

λĥn+1(λ) =
ℓ̂n(λ)− 1

ℓ̂n(λ) log(ℓ̂n(λ))
, λ > 0, (4.4)

where (h1, ℓ1) ∈ (PC)′ has been defined in Example 4.2. This allows us to consider a process NΦn(t)

induced by a time non-local birth-death process N and the Bernstein function Φn(λ) = λĥn(λ). Following
the same procedure described in Example 4.4, the corresponding equation (4.2) can be solved by a
recursive manner. For the sake of the brevity of the text, we omit the computations.

Although in the previously developed examples, the equation (4.2) has been difficult to solve, there are
instances where this is not the case. In such a context we present the following example.

Example 4.5. Let (h1, ℓ1) the pair of functions in (PC)′ defined in Example 4.2. Consider the function
he : (0,∞) → (0,∞) given by

he(t) = e−tℓ1(t), t > 0.

We recall that the multiplication of two completely monotonic functions is completely monotonic, which
implies that he ∈ (CM). Moreover, it follows from [13, Theroem 5.4] that there exists ℓe ∈ (CM) such

that he ∗ ℓe = 1 on R+. Since ℓ̂1(λ) =
log(λ)
λ−1 we have that

ĥe(λ) =
log(λ+ 1)

λ
, and ℓ̂e(λ) =

1

log(λ+ 1)
, λ > 0.

Clearly we have that lim
λ→0+

ℓ̂e(λ) = +∞, which implies that ℓe /∈ L1(R+), and the pair (he, ℓe) ∈ (PC)′.

Consider the process NΦe where Φe(λ) = λĥe(λ). In this case the equation (4.2) takes the form

log(λ+ 1) = δb − δd.

Therefore, when δb > δd the unique solution ωe > 0 of the equation λĥe(λ) = δb − δd is given by

ωe = eδb−δd − 1.
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Therefore, by assertion (i) of Theorem 2.2 when δb > δd, we have that

MΦ
1 (t) ∼ Re · exp(ωet), as t→ ∞,

where ωe > 0 has been given above, and

Re =

(
N (δb − δd) + γ

)
eδb−δd

eδb−δd − 1
.

5. Appendix

A. Scalar Volterra equations. By scalar Volterra equation we mean any scalar integral equation of
the form

v(t) + µ(ℓ ∗ v)(t) = f(t), t ≥ 0,

where v is the unknown function, µ ∈ C, and the functions f : R+ → C and ℓ : R+ → R are given.
Over the years, this type of equations has been widely studied, see, e.g. [8, 13, 27]. In particular, the
following two scalar Volterra equations have played an crucial role in the treatment of many nonlocal in
time evolution equations.

Definition A.1. Let µ ∈ C and ℓ ∈ L1,loc(R+). The scalar resolvent function sµ : R+ → C is defined
as the unique solution of the Volterra equation

sµ(t) + µ(sµ ∗ ℓ)(t) = 1, t ≥ 0. (A.1)

The integrated scalar resolvent function rµ is defined as the unique solution of the equation

rµ(t) + µ(rµ ∗ ℓ)(t) = ℓ(t), t > 0. (A.2)

It is well known from [13, Chapter 2, Theorem 3.1] that if ℓ ∈ L1,loc(R+), then for every µ ∈ C there
exists a unique locally integrable scalar resolvent function rµ ∈ L1,loc(R+). Furthermore, it follows from
[13, Chapter 2, Theorem 3.5] that the solution of the scalar Volterra equation is given by

v(t) = f(t)− µ(rµ ∗ f)(t), t > 0.

This shows in particular that if ℓ ∈ L1,loc(R+) then there exists a unique scalar resolvent function sµ,
and it satisfies that

µ(1 ∗ rµ)(t) = 1− sµ(t), t > 0. (A.3)

A direct consequence of (A.3) is that for all µ ∈ R, the function sµ is differentiable. Further, for all µ > 0
we have that ∫ ∞

0

rµ(t)dt ≤
1

µ
. (A.4)

Remark A.1. Both sµ and rµ are nonnegative functions for all µ ∈ R. For µ ≥ 0, this is a consequence
of the complete positivity of ℓ, see, e.g. [8, Theorem 2.1]. If µ < 0, this can be seen, e.g., by a simple fixed
point argument in the space of nonnegative L1((0, T ))-functions with arbitrary T > 0 and an appropriate
norm, see [32] for more details.

Remark A.2. In Definition A.1, we will denote the corresponding scalar resolvent functions by s(t, µ)
and r(t, µ). With this notation, it follows from (A.3) that if µ > 0, then the function s(·, µ) is a decreasing
function. Meanwhile, if µ < 0 then s(·, µ) is increasing.

Let (h, ℓ) ∈ (PC) and µ ∈ C. Consider the functions s(·, µ) and r(·, µ) associated to ℓ. Then the Laplace
transform of both s(·, µ) and r(·, µ) exist, and they are respectively given by

ŝ(λ, µ) =
ĥ(λ)

λĥ(λ) + µ
=

1

λ(1 + µℓ̂(λ))
, λ > λ0, (A.5)

and

r̂(λ, µ) =
1

λĥ(λ) + µ
=

ℓ̂(λ)

1 + µℓ̂(λ)
, λ > λ0, (A.6)

for some λ0 ≥ 0.
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B. Propagation function associated to a Bernstein function. Let (h, ℓ) ∈ (PC). In this section

we introduce the so-called propagation function associated to the function Φ(λ) = λĥ(λ). It follows from

[27, Proposition 4.5] that the completely positivity of ℓ implies that Φ(λ) := λĥ(λ), λ > 0, is a Bernstein
function. This in turn implies that, for each fixed τ ≥ 0, the function ψτ : (0,∞) → (0,∞) defined by

ψτ (λ) =
exp(−τΦ(λ))

λ
, λ > 0,

is completely monotonic. Therefore, it follows from Bernstein’s theorem ([29, Theorem 1.4]) that for
every τ ≥ 0 there is a unique nondecreasing function WΦ(·, τ) ∈ BV (R+), normalized by WΦ(0, τ) = 0
and left-continuous, whose Laplace transform (with respect to t) is given by

ŴΦ(λ, τ) =
exp(−τΦ(λ))

λ
, λ > 0. (A.7)

The function WΦ(·, ·) is known as the propagation function associated to a Bernstein function Φ.
We refer the reader to [27, Section 4.5] for several results and applications of this function to more general
frameworks. For instance, the propagation function is strongly related to the scalar resolvent function
s(t, µ). Indeed, for all µ > 0 and t ≥ 0 we have that

s(t, µ) = −
∫ ∞

0

e−τµdτWΦ(t, τ).

This implies that the mapping µ 7→ −s(t, µ) is completely monotonic with respect to the parameter µ.

Remark B.1. Under the assumption Φ(λ) = λĥ(λ) with h in (PC)′ the inverse subordinator EΦ is such
that, for all t > 0, EΦ(t) admits a density fΦ(s; t). Such a density can be recognized in terms of the
propagator as follows:

fΦ(s; t)ds = −dsWΦ(t, s).

Nevertheless, s(t, µ) is the Laplace transform of the inverse subordinator EΦ(t).

C. Tauberian theorems. This type of theorem is a powerful tool for determining the asymptotic
behavior of certain functions, provided that some information about an integral transformation of the
function, such as the Laplace transform, is known. In this work, we apply two such theorems.

Theorem C.1. (Karamata-Feller) Let L : (0,∞) → (0,∞) be a slowly varying function and ϱ > 0. If
g : (0,∞) → R be a monotone function whose Laplace transform ĝ(z) exists for all z ∈ C+ := {z ∈ C :
Re(z) > 0}, then

ĝ(z) ∼ 1

zϱ
L
(1
z

)
, as z → 0, if and only if g(t) ∼ tϱ−1

Γ(ϱ)
L(t), as t→ ∞.

The approach here is considered on the positive real axis and the notation f(t) ∼ h(t) as t → t∗ means
that lim

t→t∗
f(t)/h(t) = 1.

Karamata-Feller Theorem establishes that the asymptotic behavior of a function g(t) as t→ ∞ can be
determined, under suitable conditions, by looking at the behavior of its Laplace transform ĝ(z) and vice
versa. See the monograph [12, Section 5, Chapter XIII] for a more general version and proofs.

Theorem C.2. (Wiener-Ikehara) Let f : R+ → R+ be a non-decreasing function. Assume that there

exist a, c > 0 such that the Laplace transform f̂ is well-defined in the set {z ∈ C : Re(z) > c}, and the
function F defined by

F (z) = f̂(z)− a

z − c
,

has a continuous extension to {z ∈ C : Re(z) ≥ c}. Then

f(t) ∼ aect, as t→ ∞.

Wiener-Ikehara’s theorem can be rephrased as follows. If the Laplace transform f̂ of a non-decreasing
function f is analytic in the complex half-plane {z ∈ C : Re(z) > c} having a simple pole in z = c with
residue a, then

f(t) ∼ a · exp(ct), as t→ ∞.
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