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Abstract. In this paper we prove the existence of weighted pseudo antiperiodic mild solutions for
fractional integro-differential equations in the form

Dα(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)),

where f(·, u(·)) is Stepanov weighted pseudo antiperiodic and A generates a resolvent family {Sα(t)}t≥0

of bounded and linear operators on a Banach space X, a ∈ L1
loc(R+) and α > 0. Also, we give a short

proof to show that the vector-valued space of Stepanov-like weighted pseudo antiperiodic functions is a
Banach space.

1. Introduction

Let us consider the equation

(1.1) L(u) = f,

where L is a linear, possibly unbounded operator, and the forcing term f belongs to some space of vector-
valued functions, say M. It is well known that mathematical understanding of the linear Equation (1.1)
is meant as a preliminary critical step for the subsequent analysis of full nonlinear models. Usually, one
is interested in to find conditions on the operator L such that the solution u belongs to the same space
of vector-valued functions than f . Then, fixed point arguments are used to obtain the desired solution
of associated nonlinear problems.

We ask for the following problem: (Q) Can the solution u be more regular that f?. In other words, is
it possible to find a subspace N ⊂ M such that u ∈ N ?.

This problem has begun to be studied recently and there are some cases in the literature where the
answer is positive. For example, in [8], Diagana, N’Guérékata and Mophou solved problem (Q) taking M
as the space of Stepanov-like weighted pseudo almost automorphic functions, L(u) := Dα

t u−Au and N
as the subspace of weighted pseudo almost automorphic functions. Here A is a closed and linear operator
defined on a Banach space X and Dα denotes fractional derivative of order α > 0.

In this paper, we are able to give an affirmative answer to (Q) taking M as the space of Stepanov-like
weighted pseudo antiperiodic functions; N as the space of weighted pseudo antiperiodic functions and
where the class of operators is defined by

(1.2) L(u)(t) = Dαu(t)−Au(t)−
∫ t

−∞
a(t− s)Au(s) ds,

where A generates a resolvent family {Sα(t)}t≥0 on Banach space X, a ∈ L1
loc(R+) and α > 0. The

class of operators (1.2) has been in studied in [28]. In that paper, the author has solved the problem of
maximal regularity in several spaces of functions, i.e. starting with f ∈ M and proving that the mild
solution u belongs to the same subspace M. We remark that continuity fails in the case of Stepanov
type functions and only measurability and integrability are required to work with this class of functions.
Hence, it justify think in the preceding problem in the context mentioned above. To the best of our
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knowledge, the existence of weighted pseudo antiperiodic solutions to Equation (1.2) in the case when
the forcing term f is Stepanov weighted pseudo antiperiodic is an untreated original problem, which
constitutes one of the main motivations of this work.

The existence and uniqueness of antiperiodic solutions to evolution equations have been studied in
several works. We mention here Aftabizadeh, Aizicivici and Pavel [1], [2], Al-Islam, Alsulami and Diagana
[5], H.L.Chen [9], Y.Q. Chen [10], Haraux [21], Okoshi [27], and N’Guérékata and Valmorin [26].

This paper is organized as follows. In Section 2, we first present some definitions and basic results
of Stepanov-like type spaces and then we give a short and direct proof to the fact that the space of
Stepanov-like weighted pseudo antiperiodic functions is a Banach space (Theorem 2.15). In Section 3, we
first give a composition Theorem in the space of Stepanov-like weighted pseudo antiperiodic functions,
assuming a compactness condition (Theorem 3.3). Then, we give sufficient conditions in order to ensure
the existence and uniqueness of weighted weighted antiperiodic mild solutions where the input data f
belongs to the space of Stepanov-like weighted pseudo antiperiodic functions. We finish this paper with an
illustrative example to find existence and uniqueness of mild solutions for a concrete semilinear problem
is given.

2. Preliminaries

In this section, we introduce some basic definitions, notations and preliminaries facts that we will use
in the paper. Particularly, we give an alternative proof to show that the space of Stepanov-like weighted
pseudo antiperiodic functions is a Banach space.

Throughout the paper (X, ∥·∥X) and (Y, ∥·∥Y ) are complex Banach spaces and B(X,Y ) is the Banach
space of bounded linear operators from X to Y ; when X = Y we simply write B(X).

We denote by

BC(R, X) := {f : R → X : f is continuous, ||f ||∞ := sup
t∈R

||f(t)|| < ∞},

the Banach space of X-valued bounded and continuous functions on R, with natural norm.
Given a function g : R → X, the Caputo (or Weyl) fractional integral of order α > 0 is defined by

D−αg(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1g(s)ds, t ∈ R,

when this integral is convergent. The Caputo (or Weyl) fractional derivative Dαg of order α > 0 is
defined by

Dαg(t) :=
dn

dtn
D−(n−α)g(t), t ∈ R,

where n = [α] + 1. It is known that DαD−αg = g for any α > 0, and Dn = dn

dtn holds with n ∈ N. See
[25] for more details.

The Mittag-Leffler function (see e.g. [24]) is defined as follows:

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Ha

eµ
µα−β

µα − z
dµ, α, β > 0, z ∈ C,

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|1/α
counterclockwise. The Laplace transform of a variant of the Mittag-Leffler function is given by:

L(tβ−1Eα,β(−ρtα))(λ) =
λα−β

λα + ρ
, ρ ∈ C,Reλ > |ρ|1/α.

We recall the following definition [28] (see also [29] for a general treatment on resolvent families).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Banach space X,
and α > 0. Given a ∈ L1

loc(R+), we say that A is the generator of an α-resolvent family, if there exist
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ω ≥ 0 and a strongly continuous function Sα : [0,∞) → B(X) such that { λα

1+â(λ) : Reλ > ω} ⊂ ρ(A) and

for all x ∈ X,(
λα − (1 + â(λ))A

)−1
x =

1

1 + â(λ)

(
λα

1 + â(λ)
−A

)−1

x =

∫ ∞

0

e−λtSα(t)xdt, Reλ > ω.

In this case, {Sα(t)}t≥0 is called the α-resolvent family generated by A.

Now, we recall the definitions of antiperiodic functions.

Definition 2.2. A function f ∈ C(R, X) is said to be antiperiodic if there exists a ω ∈ R \ {0} with the
property f(t+ω) = −f(t) for all t ∈ R. If there exists a least positive ω with this property, it is called the
anti-period of f . The collection of those functions with the same anti-period ω is denoted by Pωap(R, X).

Remark 2.3. Note that if f ∈ Pωap(R, X), then f ∈ P2ω(R, X), where P2ω(R, X) denotes the Banach
space of all 2ω-periodic functions.

Definition 2.4. A function f ∈ C(R × X,X) (resp., C(R × X × X,X)) is said to be antiperiodic in
t ∈ R and uniformly in u ∈ X (resp. in (u, v) ∈ X ×X) if there exists a ω ∈ R \ {0} with the property
f(t+ω, u) = −f(t, u) for all t ∈ R, u ∈ X. (resp. f(t+ω, u, v) = −f(t, u, v) for all t ∈ R, (u, v) ∈ X×X).
The collection of those ω-antiperiodic functions is denoted by Pωap(R×X,X) (resp., Pωap(R×X×X,X)).

Let U be denote the set of all functions ρ : R → (0,∞) in L1
loc(R) such that ρ(t) > 0 for all t ∈ R a.e.

For a given r > 0 and for each ρ ∈ U , we set

m(r, ρ) :=

∫ r

−r

ρ(t) dt.

Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) = ∞}.

Now, for ρ ∈ U∞, we define

PAA0(R, X) := {f ∈ BC(R, X) : lim
r→∞

1

m(r, ρ)

∫ r

−r

∥f(t)∥ρ(t) dt = 0};

PAA0(R× Y,X) := {f ∈ BC(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1

m(r, ρ)

∫ r

−r

∥f(t)∥ρ(t) dt = 0, uniformly in y ∈ Y }.

Definition 2.5 ([16]). Let ρ ∈ U∞. A function f ∈ BC(R, X) (respectively f ∈ BC(R × Y,X)) is
called weighted pseudo antiperiodic if it can be expressed as f = g+ h where g ∈ Pωap(R, X) (respectively
Pωap(R × Y,X)) and h ∈ PAA0(R, X) (respectively PAA0(R × Y,X)). We denote by WPPωap(R, X)
(respectively WPPωap(R× Y,X)) the set of all such functions.

Definition 2.6 ([17]). The Bochner transform f b(t, s) with t ∈ R, s ∈ [0, 1] of a function f : R → X is
defined by

f b(t, s) := f(t+ s).

Definition 2.7 ([17]). The Bochner transform f b(t, s, u) with t ∈ R, s ∈ [0, 1], u ∈ X of a function
f : R×X → X is defined by

f b(t, s, u) := f(t+ s, u) for all u ∈ X.

Definition 2.8 ([17]). Let p ∈ [1,∞). The space BSp(R, X) of all Stepanov bounded functions, with
exponent p, consist of all measurable functions f : R → X such that f b ∈ L∞(R, Lp(0, 1;X)). This is a
Banach space with the norm

∥f∥Sp := ∥f b∥L∞(R,Lp) = sup
t∈R

(∫ t+1

t

∥f(τ)∥p dτ
) 1

p

.
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Definition 2.9. A function f ∈ BSp(R, X) is called Stepanov antiperiodic if f b ∈ Pωap(R, Lp(0, 1;X)).
We denote the set of all such functions by PωapS

p(R, X).

Remark 2.10. We note that the preceding definition implies

sup
t∈R

(∫ t+1

t

∥f(s+ ω) + f(s)∥p ds
)1/p

= 0

which is equivalent to say that f(t+ω) = −f(t) a.e. t ∈ R; that is; ∥f(t+ω)+ f(t)∥p = 0. This coincide
with the definition of Z. Xia in [35].

Definition 2.11. A function f : R×X → Y with f(·, u) ∈ BSp(R, Y ), for each u ∈ X, is called Stepanov
antiperiodic function in t ∈ R uniformly for u ∈ X if f(t+ ω, u) = −f(t, u) a.e. t ∈ R and each u ∈ X.
We denote by PωapS

p(R×X,Y ) the set of such functions.

Now, we introduce a (natural) linear operator from BSp(R, X) into L∞(R, Lp(0, 1;X)) which will be
an important tool in order to clarity some concepts and achieve our goals.

Definition 2.12. We define the map

B :BSp(R, X) → L∞(R, Lp(0, 1;X))

f 7→ (Bf)(t)(s) = f(t+ s).

Remark 2.13. It follows from the definitions that the operator B is a linear isometry between BSp(R, X)
and L∞(R, Lp(0, 1;X)). More precisely

∥Bf∥∞ = ∥f∥BSp(R,X).

Remark 2.14. The definition of Stepanov-like weighted pseudo antiperiodic functions given by Z. Xia
in [35] can be written using the preceding notation. Thus, for ρ ∈ U∞, we say that a function f
is Stepanov-like weighted pseudo antiperiodic (or Sp−weighted pseudo antiperiodic) if and only if f ∈
B−1(Pωap(R, Lp(0, 1;X))) + B−1(PAA0(R, Lp(0, 1;X))). In other words,

(2.1) WPPωapS
p(R, X) = B−1(Pωap(R, Lp(0, 1;X))) + B−1(PAA0(R, Lp(0, 1;X)))

Moreover, since B is an isometry and Pωap(R, Lp(0, 1;X))∩PAA0(R, Lp(0, 1;X)) = {0} then the sum is
direct, that is,

WPPωapS
p(R, X) = B−1(Pωap(R, Lp(0, 1;X)))⊕ B−1(PAA0(R, Lp(0, 1;X))).

Based in the definition of operator B, we prove thatWPPωapS
p(R, X) is a Banach space when endowed

with their natural norm.

Theorem 2.15. WPPωapS
p(R, X) is a Banach space with the norm

∥f∥WPPωapSp(R,X) := ∥g∥BSp(R,X) + ∥h∥BSp(R,X)

where f = g + h with g ∈ B−1(Pωap(R, Lp(0, 1;X))) and h ∈ B−1(PAA0(R, Lp(0, 1;X))).

Proof. Let (fn) be a Cauchy sequence in WPPωapS
p(R, X). Then ∥fn − fm∥WPPωapSp(R,X) → 0 as

n,m → ∞. Let fn = gn + hn and fm = gm + hm with gn, gm ∈ B−1(Pωap(R, Lp(0, 1;X))) and hn, hm ∈
B−1(PAA0(R, Lp(0, 1;X))). If n,m → ∞, then

∥Bgn − Bgm∥L∞(R,Lp) = ∥gn − gm∥BSp(R,X) ≤ ∥fn − fm∥WPPωapSp(R,X) → 0

and
∥Bgn − Bgm∥L∞(R,Lp) = ∥gn − gm∥BSp(R,X) ≤ ∥fn − fm∥WPPωapSp(R,X) → 0.

This implies that (Bgn) and (Bhn) are Cauchy sequences in Pωap(R, Lp(0, 1;X)) and PAA0(R, Lp(0, 1;X))
respectively. Since Pωap(R, Lp(0, 1;X)) and PAA0(R, Lp(0, 1;X)) are Banach spaces (see [26] and [18]
resp.) then there exist g ∈ Pωap(R, Lp(0, 1;X)) and h ∈ PAA0(R, Lp(0, 1;X)) such that

∥Bgn − g∥L∞(R,Lp) → 0, ∥Bhn − h∥L∞(R,Lp) → 0 (n → ∞).
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Let f1 := B−1({g}) ∈ B−1(Pωap(R, Lp(0, 1;X))) and f2 := B−1({h}) ∈ B−1(PAA0(R, Lp(0, 1;X))). Note
that f1 and f2 are well defined because B is injective. Let f := f1 + f2 ∈ WPPωapS

p(R, X). Then

∥fn − f∥WPPωapSp(R,X) = ∥(gn + hn)− (f1 + f2)∥WPPωapSp(R,X)

= ∥gn − f1∥BSp(R,X) + ∥hn − f2∥BSp(R,X)

= ∥Bgn − Bf1∥L∞(R,Lp) + ∥Bhn − Bf2∥L∞(R,Lp)

= ∥Bgn − g∥L∞(R,Lp) + ∥Bhn − h∥L∞(R,Lp) → 0 (n → ∞).

Therefore WPPωapS
p(R, X) is a Banach space. �

Theorem 2.16. Let ρ ∈ U∞ be given and let S : R+ → B(X) be strongly continuous. Suppose that there
exist a function ϕ ∈ L1(R+) such that

(a) ∥S(t)∥ ≤ ϕ(t) t ≥ 0;
(b) ϕ(t) is increasing;
(c)

∑∞
n=0 ϕ(n) < ∞.

Suppose that f ∈ WPPωapS
p(R, X). Then

(S ∗ f)(t) :=
∫ t

−∞
S(t− s)f(s) ds ∈ WPPωap(R, X).

Proof. See [35, Lemma 36]. �

3. Weighted pseudo antiperiodic mild solutions

In this section we consider the problem of existence and uniqueness of weighted pseudo antiperiodic
mild solutions for the following class of integro-differential equations

(3.1) Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)),

where A generates an α-resolvent family {Sα(t)}t≥0 on a Banach space X, a ∈ L1
loc(R+), α > 0 and

the fractional derivative is understood in the sense of Caputo. Note that Equation (3.1) has the form of

Equation (1.1) with Lu = Dαu(t)−Au(t)−
∫ t

−∞ a(t− s)Au(s) ds.

Definition 3.1. A function u : R → X is said to be a mild solution of (3.1) if

u(t) =

∫ t

−∞
Sα(t− s)f(s, u(s)) ds (t ∈ R)

where {Sα(t)}t≥0 is the α-resolvent family generated by A, whenever it exists.

Now, we present the following composition theorems.

Theorem 3.2. Assume that F : R×X → X is a bounded function that satisfies

(a) There exists ω > 0 such that F (t+ ω,−x) = −F (t, x) for a.e. t ∈ R and for all x ∈ X;
(b) There exists L > 0 such that ∥F (t, x)− F (t, y)∥ ≤ L∥x− y∥ for all x, y ∈ X and t ∈ R;
(c) u ∈ PωapS

p(R, X).

Then F (·, u(·)) ∈ PωapS
p(R, X).

Proof. Since ∥F (t, x)− F (t, y)∥ ≤ L∥x− y∥ implies ∥F (t, x)− F (t, y)∥p ≤ L∥x− y∥p, then

∥F (t+ ω, u(t+ ω)) + F (t, u(t))∥p = ∥F (t+ ω, u(t+ ω))− F (t+ ω,−u(t))∥p
+ ∥F (t+ ω,−u(t)) + F (t, u(t))∥p
≤ L∥u(t+ ω) + u(t)∥p + ∥F (t+ ω,−u(t)) + F (t, u(t))∥p = 0.

Therefore F (t+ ω, u(t+ ω)) = −F (t, u(t)) a.e. t ∈ R and consequently F (·, u(·)) ∈ Pωap(R, X). �
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Our next result assume a compactness condition in order to obtain invariance under composition of
functions for the space of Stepanov weighted pseudo antiperiodic functions.

Theorem 3.3. Let ρ ∈ U∞, p > 1, f = g + ϕ ∈ WPPωapS
p(R × X,X) with g ∈ B−1(Pωap(R ×

X,Lp(0, 1;X))) and ϕ ∈ B−1(PAA0(R×X,Lp(0, 1;X))). Assume that

(i) There exists ω > 0 such that f(t+ ω,−x) = −f(t, x).
(ii) There exist constants Lf , Lg > 0 such that

∥f(t, u)− f(t, v)∥ ≤ Lf∥u− v∥, ∥g(t, u)− g(t, v)∥ ≤ Lg∥u− v∥ t ∈ R, u, v ∈ X.

(iii) h = α+β ∈ WPPωapS
p(R, X) with α ∈ B−1(Pωap(R, Lp(0, 1;X))) and β ∈ B−1(PAA0(R, Lp(0, 1;X)))

is such that the set

K := {α(t) : t ∈ R}

is compact in X. Then f(·, h(·)) ∈ WPPωapS
p(R, X).

Proof. We can decompose

f(t, h(t)) = g(t, α(t)) + f(t, h(t))− f(t, α(t)) + ϕ(t, α(t)).

Set

F (t) := g(t, α(t)), G(t) := f(t, h(t))− f(t, α(t)), H(t) := ϕ(t, α(t)).

Since α ∈ PωapS
p(R, X) and g ∈ PωapS

p(R × X,X) then by assumptions and Theorem 3.2 we obtain
that F (t) ∈ B−1(Pωap(R, Lp(0, 1;X))).

Next we show that G(t) ∈ B−1(PAA0(R, Lp(0, 1;X))). Indeed∫ t+1

t

∥G(σ)∥p dσ =

∫ t+1

t

∥f(σ, h(σ))− f(σ, α(σ))∥p dσ

≤
∫ t+1

t

Lp
f∥h(σ)− α(σ)∥p dσ

=

∫ t+1

t

Lp
f∥β(σ)∥

p dσ.

Then

1

m(r, ρ)

∫ r

−r

(∫ t+1

t

ρ(t)∥G(σ)∥p dσ
)1/p

dt ≤ Lf

m(r, ρ)

∫ r

−r

ρ(t)

(∫ t+1

t

∥β(σ)∥p dσ
)1/p

dt.

Since β(·) ∈ B−1(PAA0(R, Lp(0, 1;X))) we obtain that G(·) ∈ B−1(PAA0(R, Lp(0, 1;X))).
Next, we prove that H(·) ∈ B−1(PAA0(R, Lp(0, 1;X))). Since ϕ ∈ B−1(PAA0(R × X,Lp(0, 1;X)))

then for any ϵ > 0 there exist r0 > 0 such that r > r0 implies that

1

m(r, ρ)

∫ r

−r

ρ(t)

(∫ t+1

t

∥ϕ(σ, u)∥p dσ
)1/p

dt < ϵ (u ∈ X).

Since K is compact, we can find finite open balls Ok (k = 1, 2, 3, ..., n) with center xk and radius less
than ϵ

Lf+Lg
such that K ⊂ ∪m

k=1Ok. Set Bk := {t ∈ R : α(t) ∈ Ok}. Then R = ∪n
k=1Bk. Let E1 = B1,

Ek = Bk \ (∪k−1
j=1Bj) (2 ≤ k ≤ m). Thus Ei ∩ Ej = ∅ for i ̸= j. By Minkowski inequatility, for r > r0 we
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have

1

m(r, ρ)

∫ r

−r

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(σ))∥p dσ
)1/p

dt

=
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(σ))∥p dσ
)1/p

dt

≤ 1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(σ))− ϕ(σ, α(xk))∥p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(xk))∥p dσ
)1/p

dt

≤ 1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥f(σ, α(σ))− f(σ, α(xk))∥p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥g(σ, α(σ))− g(σ, α(xk))∥p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(xk))∥p dσ
)1/p

dt

≤ Lf
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ 1

0

∥α(σ + t)− xk∥p dσ
)1/p

dt

+ Lg
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ 1

0

∥α(σ + t)− xk∥p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(xk))∥p dσ
)1/p

dt

< 2ϵ+
n∑

k=1

1

m(r, ρ)

∫ r

−r

ρ(t)

(∫ t+1

t

∥ϕ(σ, xk)∥p dσ
)1/p

dt.

Then

1

m(r, ρ)

∫ r

−r

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(σ))∥p dσ
)1/p

dt < (n+ 2)ϵ (r > r0).

Hence

lim
r→∞

1

m(r, ρ)

∫ r

−r

ρ(t)

(∫ t+1

t

∥ϕ(σ, α(σ))∥p dσ
)1/p

dt = 0.

Therefore H(·) ∈ B−1(PAA0(R, Lp(0, 1;X))). It follows that f(·, h(·)) ∈ WPPωapS
p(R, X). �

Now, we obtain the existence and uniqueness of weighted pseudo antiperiodic solutions with help of
Theorem 2.16 and Theorem 3.2.

Theorem 3.4. Let ρ ∈ U∞ and p > 1 and f = g + h ∈ WPPωapS
p(R×X,X) be given. Suppose that

(H1) There exists ω > 0 such that f(t+ ω,−x) = −f(t, x).
(H2) There exist constants Lf , Lg > 0 such that

∥f(t, u)− f(t, v)∥ ≤ Lf∥u− v∥, ∥g(t, u)− g(t, v)∥ ≤ Lg∥u− v∥, t ∈ R, u, v ∈ X.

(H3) The operator A generates an α-resolvent family {Sα(t)}t≥0 such that ∥Sα(t)∥ ≤ φα(t), for all t ≥
0, where φα(·) ∈ L1(R+) is nonincreasing such that φ0 :=

∑∞
n=0 φα(n) < ∞ and Lf < ∥φα∥−1.

Then the Equation (3.1) has a unique mild solution in WPPωap(R, X).
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Proof. Consider the operator Q : WPPωap(R, X) → WPPωap(R, X) defined by

Q(u)(t) :=

∫ t

−∞
S(t− s)f(s, u(s)) ds, t ∈ R.

First, we show that Q(WPPωap(R, X)) ⊂ WPPωap(R, X). Let u = u1+u2 ∈ WPPωap(R, X). Then u1 ∈
Pωap(R, X) and hence K := {u1(t) : t ∈ R} is compact. Moreover, it is clear that u ∈ WPPωapS

p(R, X)
and hence (iii) in Theorem 3.3 is satisfied. From (H1) and (H2) we have the conditions (i) and (ii) in
Theorem 3.3. It follows that f(·, u(·)) ∈ WPPωapS

p(R, X). On the other hand, the hypothesis (H3) and
Theorem 2.16 imply that Q(u)(t) ∈ WPPωap(R, X). Now, if u, v ∈ WPPωap(R, X) we have

∥Q(u)(t)−Q(v)(t)∥∞ = sup
t∈R

∥∥∥∥∫ t

−∞
S(t− s)[f(s, u(s))− f(s, v(s))] ds

∥∥∥∥
≤ Lf sup

t∈R

∫ ∞

0

∥S(s)∥∥u(t− s)− v(t− s)∥ ds

≤ Lf∥u− v∥∞
∫ ∞

0

φα(s) ds.

This proves that Q is a contraction, so by the Banach Fixed Point Theorem we conclude that Q has
unique fixed point. It follows that Q(u) = u ∈ WPPωap(R, X) is unique. Hence u is the unique mild
solution of (3.1). �

We finish this paper with a simple application that no means generality but illustrates how our hy-
potheses apply.

Example 3.5. We put A = −ϱ in X = R, a(t) =
ϱ

4

tα−1

Γ(α)
, ϱ > 0, 0 < α < 1, and f(t, u) = cos(u)g(t) +

ϕ(t) cosu, where g(t) =
∞∑
k=1

sin((2k + 1)t)

k2
, and

ϕ(t) =

{
cos(t), t ∈ [2n − π

2 , 2
n + π

2 ], n ∈ N
0, otherwise.

The functions g(t, u) := cos(u)g(t), h(t, u) := ϕ(t) cosu verify the hypothesis in Theorem 3.4 (with
ρ(t) = 1). Thus, we have equation (1.2) in the form

(3.2) Dαu(t) = −ϱu(t)− ϱ2

4

∫ t

−∞

(t− s)
α−1

Γ(α)
u(s)ds+ f(t, u(t)), t ∈ R.

From [28, Example 4.17], it follows that A generates an α-resolvent family {Sα(t)}t≥0 such that

Ŝα(λ) =
λα

(λα + 2/ϱ)
2 =

λα−α/2

(λα + 2/ϱ)
· λα−α/2

(λα + 2/ϱ)
.

Thus, we obtain explicitly

Sα(t) = (r ∗ r)(t)
with r(t) = t

α
2 −1Eα,α2

(−ϱ
2 t

α), and where Eα,α2
(·) is the Mittag-Leffler function.

Note that f ∈ WPPωapS
p(R, X) with weight ρ(t) = 1 for t ∈ R. Moreover,

||f(t, u)− f(t, v)|| ≤
(
π2

6
+ 1

)
||u− v||.

Then, by Theorem 3.4, we can conclude that there exists a unique mild solution u(·) ∈ WPPωap(R, X)
of Eq.(3.2) provided ∥Sα∥ < 6

π2+6 . We remark that given 0 < α < 1, we can choose the number ϱ > 0

such that ∥Sα∥ < 6
π2+6 as in the proof of [28, Lemma 3.9].
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26. G.M. N’Guérékata, V. Valmorin. Antiperiodic solutions for semilinear integrodifferential equations in Banach spaces.

Appl. Math. Comp.218 (2012), 11118-11124.
27. H. Okoshi. On the existence of antiperiodic solutions to a nonlinear evolution equation associated with odd subdiffer-

ential operators. J. Funct. Anal. 91 (1990) 246258.
28. R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87,

(2013), 377-392, DOI 10.1007/s00233-013-9474-y.

29. J. Prüss. Evolutionary Integral Equations and Applications. Monographs Math., 87, Birkhäuser Verlag, 1993.
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