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PROPERTIES OF VECTOR-VALUED 7-DISCRETE FRACTIONAL CALCULUS
AND ITS CONNECTION WITH CAPUTO FRACTIONAL DERIVATIVES

YONG-KUI CHANG AND RODRIGO PONCE

ABSTRACT. In this paper, for a given vector-valued sequence (v™)nen,, we study its discrete fractional
derivative in the sense of Caputo for 0 < a < 1 and its connection with the Caputo fractional derivative.
Moreover, we study the convergence of this Caputo fractional difference operator to the Caputo fractional
derivative.

1. INTRODUCTION

In the last two decades, the theory and the applications of time-fractional differential equations have
been a topic of great interest, see for instance, [2, 4, 12, 14, 15, 19, 20, 21, 23, 24, 25]. However, these
continuous-time applications sometimes need to be studied, for practical purposes, as discrete problems.

The first investigations on difference of fractional order date back to Kuttner in 1957 (see [13]) and
there are many different definitions of this concept. The study of existence, properties and applications
of discrete fractional difference equations has attracted considerable attention of many researchers in the
last years, see for instance [1, 3, 6, 7, 10, 18]. However, these articles focus mainly on scalar fractional
difference equations. Very recently, C. Lizama in [16] introduced a new method to study on fractional
difference equations in Banach spaces. See also [8, 9, 17] for related results.

For a given differentiable vector-valued function v : Ry — X, the Caputo fractional derivative of u
of order «, with 0 < a < 1, is defined by 9fu(t) := (g1—a * v')(t), where for 5 > 0, the function gz is
defined by gg(t) := %, and * denotes the usual finite convolution: (f * g)(t) = fot f(t—s)g(s)ds. On

the other hand, for 0 < a < 1 and a fixed time-size 7 > 0, the Caputo fractional difference operator of a
vector-valued sequence (v™)nen, is defined by (see for instance [22])

(cVe)" =V =9 (Viy)" neN,
where (V;(lio‘)v)” =Ty 0 kL1=%(n — j)v’, n € Ny, and for 3 > 0, V1" := %, and
I8+ n)
rBrn+1)’

Intuitively, for a given v : Ry — X and 7 small enough, (¢V*v)™ corresponds to an approximation
of d¢v(t) at t, := 7n, where the sequence (vV")nen, is defined by v™ = [° p7(t)v(t)dt and pf(t) =
e (1)

The properties of Caputo fractional derivatives and fractional differences are well-known, see for in-
stance [3, 10, 12, 19] and the references therein. However, there are only some papers studying its
connections. In this paper, we study the main properties of oV and its relations with the Caputo
fractional derivative 95 for 0 < a < 1.

The paper is organized as follows. In Section 2 we give the preliminaries. In Section 3 we study
the main properties of the discrete Caputo fractional derivative (¢V®v)™ of a vector-valued sequence.

k2 (n) :=

T

néNo‘
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Moreover, we study its connection with the Caputo fractional derivative J5*. In particular, we show that
for a differentiable function v : Ry — X, it holds

o
Ofu(t) = Tli%l+ T Z:Opn(t) cVIv",

for all t > 0, where v" = fooo pr (t)v(t)dt. Finally, we study the convergence of (¢V*v)" to 08w at t, = n
whenever 7 — 0T,

2. PRELIMINARIES

In this section, we give some definitions which are used further in this paper. Let 7 > 0 be fixed and
n € Ng. The functions p] are defined by

c (t\" 1
Tt)=e T - | —
pn(t) i=e <7) -

for all ¢ > 0, n € Ng. We notice that p7(t) > 0 and the change of variables s = ¢/7 implies

/ pn(t)dt =1, forall n e Np.
0

For a given Banach space X = (X, ||-||), the space of all vector-valued sequences v : Ny — X is denoted
by s(Ng, X). The backward Euler operator V. : s(Ng, X) — s(No, X) is defined by
n _ ,n—1
Vool =2 Y% peN.
T

For m > 2, the backward difference operator of order m, VI : s(Ng, X) — s(Ng, X), is defined by
(Vo)™ = V(T 0)", 0> m,
where V! is defined as V1 := V., V¥ as the identity operator, and for n < m, by (V7v)" := 0. As in
[10, Chapter 1, Section 1.5] we adopt the convention
(2.1) Zvﬂ =0, forall kel
7=0

Moreover, by induction, we have that if v € s(Np, X), then

1 w=/m . .
Vi)' = — ) (=1)70"77, neN.
(Vi) Tm;()(J)()

For a given o > 0, we define g, as go(t) := % and the sequence {k%(n)}nen, by

o 77 (o + )
kT(n) = m, TLGN0,0Z>O

By [11, Formula 3.381-4, p. 346], we get

(2.2) kX (n) = / pn(t)ga(t)dt, n €Ny, a>0.
0

In particular, we notice that k1(n) =1 for all n € Ny.

Definition 2.1. [22] Let a > 0. The o™ —fractional sum of v € F(R; X) is defined by

(V)" = TZkf(n — ), neN.
7=0
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Definition 2.2. [22] Let o € R, \ Ng. The Caputo fractional backward difference operator of order «,
Ve F(R: X) — F(Ry; X), is defined by

(cVo)" = Vo (Mm=a)(ymy)n peN,
where m — 1 < o < m.

Definition 2.3. Let o € Ry \ Nyg. The Riemann-Liouville fractional backward difference operator of
order o, BV : F(Ry; X) — F(Ry; X), is defined by

(Bvey)n .= v(vZm=y)n neN,
where m — 1 < a < m.

If o € Ny, the operators ¢V and #V® are defined as the backward difference operator V.
For a given vector-valued sequence {v" },en, and a scalar sequence ¢ = (¢"*)nen,, we define the discrete

convolution ¢x v as
n

(cxv)" = chfkvk, n € Npy.
k=0
Moreover, for scalar valued sequences b = (b"™)pen, and ¢ = (¢")nen,, we define (bkcxv)™ := (b*(cxv))™
for all n € Ng.
As in [22, Corollary 2.9] we can prove the following convolution property. If o, 8 > 0, then

n

(2.3) KB (n) =73 kS (n — DEL(G) = T(kS k) (n),

§=0
for all n € No. Given s € 5(Np, X), its Z-transform, 3, is defined by 3(2) := 3 72 27Js) where s/ 1= s(j)
and z € C. We notice that the convergence of this series holds for |z| > R, where R is large enough. Tt is
a well known fact that if sq, s2 € s(Np, X) and §1(2) = $2(z) for all |z| > R for some R > 0, then s] = sJ
for all j =0,1,...

3. PROPERTIES OF DISCRETE FRACTIONAL DERIVATIVE

In this section, we prove the main properties of the discrete fractional derivatives. The next proposition
shows that V™ verifies a semigroup law.

Proposition 3.4. If a, 8 > 0, then V; “Tyn = V-(V-Pv)™ for alln € Ny.
Proof. Let n € Ny. Then by (2.3) we get
VIV = VI (kP «0)") = 72(k2 % (P <)) = 7(k2T8 s 0)" = Vo (@t8yn,

T T

Proposition 3.5. [22, Proposition 2.6] If 0 < a < 1 and n € Ny, then
(1) Cva+1vn — Cva(vlv)n’
(2) Bvetlyn = VI(EVey)™ and
(3) BV (Viv)" = Vi(c Vo)™,
Moreover, ¢ Vetlom £ oV (V)" (see [22, Section 2]). The next result shows that ¢V is a left
inverse of V™% but, in general, it is not a right inverse.

Proposition 3.6. If 0 < a <1 and n € Ny, then
(1) cVH(V %)™ =™
(2) VZY(cVo)" = o™ — 0.

T
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1 Proof. Let n € N. Since kl(n) = 1 for all n € Ny, by Proposition 3.4 we have

Cva(v;av)n — V:(l—a)(vl(v;av)n)

1
— *V (1—a) (v avn_v—avn—l)

T

— (V:lvn —V:lvn_l)

n

TZkln—j —TZkln—l—]

Jj=0

R R B Rt

for all n € N. By convention (2.1), the last equalities imply that ¢V*(V-%v)? =% and (1) holds for all
n € Ny. To prove (2), as k(n) =1 for all n € Ny, we have by Proposition 3.4 that

Vo oVo)" = VooV m9vlyn) = vo1(Vie) —TZk (n—7) Vle—Zvj—vJ L= ="
7=0

2 for all n € N. Now, if n = 0, then by definition V-%(cV®0)? = 0 and therefore, (2) holds for all
3 n € Ng. O

Ezample 3.7. If 0 < a < 1 and > 0, then V;*(k2)" = k2P (n). In fact, by (2.3) we have
VoA = 73 ke (n — HREG) = 7(RE %K) (n) = K2+ (n),
=0

4 for all n € Ny.

s Theorem 3.8. [22, Theorem 2.7] Let 0 < a < 1. If v : [0,00) — X s differentiable and bounded, then
6 for alln € N, we have

(3.4) | rwopuvi = cveon
0

Ezample 3.9. If 0 < o < 1 and B > 1, then V(k2)" = kP=*(n). In fact, as kZ(n) = [~ pp(t)gs(t)dt
(see (2.2)), by Theorem 3.8, we have

CV kB = / o ()05 (1)dt,
0

7 for all n € No. Since (go * g5)(t) = gats(t) for any o, 8 > 0, we have 07'gs(t) = (g1-a * g5)(t) =
0 (G1-0 % 951)() = G5—a(t), and therefore oV* (k)" = kB2 (n).

o Proposition 3.10. If0 < a < 1 and n € N, then V-%(Viv)" = VL(V-2)" — k2(n)°.
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Proof. For all n € N, we have

VIV = Ty kR (n— ) (Vi)

Jj=0

= Y Rm-HE -0

n n—1
= D K= =Y k(=1 — k()
j=0 j=0

= (k2 %0)" — (k% % 0)" "t — k%(n)°

VL (r (kS % 0)") — K ()

VEVZ)" — k¥ (n)0°.
O
The next result relates the discrete Caputo and Riemann-Liouville fractional derivatives.
Proposition 3.11. If0 < a <1 and n € N, then ¢ V2" = BV2%" — k1=%(n)o".
Proof. Since 0 < 1 — a < 1, by Proposition 3.10 we have
Vet = V7TV = VIV D) — k() = BVSe -k (n)o’.
d

Similarly to [16, Theorem 3.1] we can prove the following assertion: If (f™),en, denotes the sequence
defined by f™ := fooo ol (t) f(t)dt for a given vector-valued function f: Ry — X, then

Fo=1i(3(1-1)). H=1

where F' denotes the sequence associated to (f™)nen,. As consequence, we have that for a given § > 0

the Z-transform of the sequence (kZ(n)),en, is given by
—~ B

. T s

(3.5) (z) =71 Go17

for all |z]| > 1.
We recall that for 0 < o« < 1 and a differentiable function f : R, — X, the Laplace transform of the
Caputo fractional derivative satisfies

(3.6) B2 F(N) = X2 F(A) — AL f(0).

The next theorem gives an analogous result for the Z-transform of the discrete Caputo fractional deriv-
ative of a sequence (u")pen,-

Theorem 3.12. Let v™ := ¢V¥u™. If0 < o < 1, then the Z-transform of the sequence (V")nen, s given
by

(3.7) @(z)zl(z1>aﬂ(z)—1<21)a_1u0.

T z T z




1

3

4

6 YONG-KUI CHANG AND RODRIGO PONCE

Proof. By definition and (3.5),

oo

o(z) = Z vtz

_ i (1—-) Vl )n —n

n=0

A\
= i( Zkl *( Vlu] z "
n=0
>
n=0

(T _O‘(n)z_"> (Z(Vlu")z‘")
=| n=0

= Tl_ai(z i 1_)1704 <Z(Vlu”)z_"> .

n=0
Moreover, we have

Z(Vl n S Z w " s = = (Z utz" — Z—l Zunz—n _ u0> — ( ’l](Z) — uo) .
T T z

ne0 n—1 n=0 n=0

Therefore,

i2) = 7' le_;ai (z; Lit2) —uO) -~ (z - 1)a11(z) -~ (Zgl)a_lu‘).

Theorem 3.13. Let v: Ry — X be a differentiable function and 0 < o« < 1. For v" := fooo pr(r)v(r)dr,
we have

ofu(t) = hm Tan cVIv",

for allt > 0.
Proof. Let R%(t) := 7Y .2 pn(t) c V0™ From [11, Formula 3.381-4] we have that the Laplace transform

of pI verifies pl(\) = W Then by Theorem 3.12 with z =1+ 7\, we have

~ T > T 1 2 \“ 1 A O\

R(\) = —— Vv (1 )\7”:7 o(l14+7A) — — or.
() (1—1—7‘)\)7;0 ot (147) (147X (1+7’)\) o147 a<1+7)\) U]

Since 0(z) = 10 (£ (21)) we have 9(1 4+ 7A) = 20 (ﬁ) , and therefore

& . A . A a1 1 0
RT()\>_(1+7)\)Q+11}(1+7A> Moot

0 = /OOO o6 (r)v(r)dr = i/ooo e~ 7 u(r)dr = %@ <71_> )

for all 7 > 0. As lim, _ o+ %f) (%) = v(0), we conclude that

lim RE(A) = A*D(A) — A% (0).

T—01

Moreover,

By the uniqueness of the Laplace transform and (3.6), we have lim, ,o+ R%(t) = 0pv(t) for allt > 0. O
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Now, for any fixed ¢ > 0, we will consider the following path I'; : For § < 6 < m, we take ¢ such that
%(b < Ja < ¢ < 6. Next, we define I'; as the union '} UT?, where
< r} .

1, ,

I} = {teW/a P <Y< qﬁ} and T} := {rem/a :
From [22, Lemma 4.18] we have the following Lemma.

Lemma 3.14. LetT'; be the complex path defined above. If > 0, then there exist positive constants C,,

depending only on «, such that

S

zt

L%
:<2¢’/ . —cos<¢/a>)

Theorem 3.15. Let u : Ry — X be bounded differentiable function, 0 < o < 1 and 7 > 0. Define the
sequence (V™" )pen, as v 1= fooo pr(r)v(r)dr. Let T > 0 be fized, n € N, t,, = ™n with 0 < t, <T. If v’ is
bounded and v" € L*(R,), then there exists a constant M,, depending only on o, such that

1050(tn) — V0| < T Mo (0 O + |21z, )-

|dz| < Cot ™!

for all t > 0, where

Proof. Since fo pr(t)dt =1, by Theorem 3.8, we can write

of(tn) — cVe0" = [ p(oloru(e,) - oo

Let T' = {\ € T; : Re(\) > 0}, where T'; is the path defined in Lemma 3.14. As the Laplace transform of
O2v(t) verifies Ofv(X) = A*d(X) — A*1v(0), we have by the inversion of the Laplace transform,
1
00(tn) — O (t) = — / (M — AMYA%H(A) — A Lo (0))dA.
211 r
Integrating by parts, we have
1 (eMn — M) 1 1 (eMn — M) 1 o
O v(ty) — 05 v(t) = —/F ) e v'(0)d\ + 7/1“ 3 e /0 e 0" (s)dsd.

211 21

By the mean value for complex valued functions, there exist ty,t; with 0 < ¢, < ty < t; < t such that
| A e/\tnl

Al
The hypotheses and Lemma 3.14 imply that

1 leMn — M| 1
O%v(t,) — 0%v(t < — "(0)|||d\
|05 0(tn) — O 0(t)]| - < 2W/P A e Ol

1 e — M| 1 * _Re(x
_ —he )S " d dA
o [ s e ) sy

< (t—ta) (Je +|e"]) -

1 : ) ]l

< etV OI+ 1) | |15+ x| 1
C —a -«

< 2=t (IO + I o) (657 +£)
Ca _

< 22— ) (O + 1 )
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Since [i° pf (t)tdt = T(n+ 1) [, pfo1 (t)dt, we obtain that [~ p7(¢)(t — t,)dt = 7, and therefore,

[’ @, n > T o4 o4 COé -
107 v(tn) — VI < /0 Pr@OOFv(tn) = 07 v(@)ldt < 7—=([[o ()] + 10"l 2y ) )
Thus,

—aCa _
10F0(tn) = oVF" | < T (W O+ 10 (2 y) = 77 Ma(ll0 O + 10" ][1ry)-

Corollary 3.16. Under the assumptions of Theorem 8.15, we have
i o5 v(ta) — oV = 0.

4. EXAMPLES

Given a > 0 we have by [5, Appendix A] that if u(t) = e”*, and m = [a], then
Ofult) =

=0

pH—th—m—a
Frl+1+m-—q)

= p"t" " B m—a+1(pt),

o0

where for p,q > 0, E, ; is the Mittag-Leffler function defined by E, ;(z) = ZJ o W Moreover, by
[11, Formula 3.381-4] we have that

ul = /Oo pj (t)u(t)dt =
0

(
for all 7 > 0. On the other hand, for each n € N and o = % by definition we have

1
1—7p)itt

)uj—uj ! L+n—j)

T fzfn—j+l(

(Cvau)n:v (1— a)(vl —TZkl a n_] uj*l)'
7j=1

In Figure 1 we have 9{u(t) and its approximation (¢V®u)™ on the interval [0,1] for 1 <n < N, a = %

2
and p = —%. We consider 7 = 1/N for N =30, N = 60 and N = 120.

FIGURE 1. The fractional derivative 0fu(t) (line) and its approximation (¢V®u)™ (cir-
cles) for N =30, N = 60 and N = 120.
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