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Abstract

This paper is mainly concerned with controlled time fractional differential equa-
tions of Sobolev type in Caputo and Riemann-Liouville fractional derivatives with the
order in (1, 2) respectively. By properties on some corresponding fractional resolvent
operators family, we first establish sufficient conditions for the existence of mild solu-
tions to these controlled time fractional differential equations of Sobolev type. And
then we present the existence of optimal controls of systems governed by correspond-
ing time fractional differential equations of Sobolev type via setting up approximating
minimizing sequences of suitable functions twice.
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1 Introduction

This paper mainly treats controlled time fractional differential equations of Sobolev
type and optimal controls. Concretely, let A : D(A) ⊆ X → X, E : D(E) ⊆ X → X be
closed linear operators defined on a Banach space X with the norm ‖ ·‖, x0, x1 ∈ X. Now,
we consider the following controlled fractional differential equations of Sobolev type{

Dα
t (Ex)(t) = Ax(t) + f(t, x(t)) + B(t)u(t),
Ex(0) = Ex0, (Ex)′(0) = Ex1, u ∈ Uad,

(1.1)

and {
Dα(Ex)(t) = Ax(t) + f(t, x(t)) + B(t)u(t),

E(g2−α ∗ x)(0) = Ex0, (E(g2−α ∗ x))′(0) = Ex1, u ∈ Uad,
(1.2)

where t ∈ I := [0, b], the order 1 < α < 2, the notations Dα
t and Dα denote, respectively,

the Caputo and Riemann-Liouville fractional derivatives, and the operator pair (A,E)
generates a resolvent family {SEα,β(t)}t≥0 (see definition below, Section 2) for suitable
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α, β > 0, Uad is a control set, nonlinear perturbation f : I × X → X and the functions
B(·), g?(·) will also specified in Section 2.

It is noted that there are already some fundamental results on abstract fractional
differential equations of Sobolev type with the order 0 < α < 1, see for example [6, 9,
10, 14, 18, 31, 32] and the references therein. The main techniques in these mentioned
work are based upon the following condition (C): D(E) ⊂ D(A), E is bijective and E−1 :
X → D(E) is a compact operator. Under this condition, the so-called subordination
formulas can be applied to deal with solution representations and related problems. It
should be mentioned that another method to deal with abstract time fractional differential
equation of Sobolev type with the order 0 < α < 1 is developed in [18, 32], where solution
representations are derived from subordination formulas of propagation family (see [20])
without the above condition (C).

Controlled fractional differential equations of Sobolev type are naturally applied to
the control of dynamical system when the controlled system or the controller is described
by a fractional differential equation of Sobolev type. We especially point out that in
Refs [9, 10], some interesting results on optimal multi-controls and optimal multi-integral
controls governed by fractional abstract evolution equations of Sobolev type have been
established. The fractional derivative in Refs [9, 10] is understood in Caputo sense with
the order 0 < α < 1, and solution operators are based upon subordination formulas under
the condition (C). For more detailed results on optimal control theory and applications,
we refer to [19, 37, 42, 43] and the references therein.

Notice the order 1 < α < 2, the above mentioned techniques are no longer directly
applicable to (1.1) and (1.2). As far as we know, existence of solutions and optimal
controls for controlled systems (1.1) and (1.2) in case 1 < α < 2 (and E 6= I, identity
operator) have not been addressed in the existing literature. In present paper, we shall
first establish sufficient conditions for the existence of mild solutions to Eq. (1.1) and
Eq. (1.2) respectively based upon properties on resolvent operator generated by the pair
(A,E). And then we shall present the existence of optimal controls of systems governed
by Eq. (1.1) or Eq. (1.2) via constructing approximating minimizing sequences of suitable
functions twice. We remark that our results are directly established through resolvent
operators generated by the pair (A,E), and thus previous condition (C) is not necessarily
needed. Finally, some applications are also given to illustrate our main results.

The rest of this paper is organized as follows. Section 2 is involved in Preliminar-
ies. Section 3 is devoted to investigate controlled time fractional differential equations
of Sobolve type Eq. (1.1) and Eq. (1.2), respectively. Section 4 is involved in some
applications.

2 Preliminaries

In this section, we list some definitions, notations and recall some basic results which
are used throughout this paper. Most of these results can be found in monographs [3, 21,
41, 42], papers [1, 2, 4, 5, 8, 12, 15, 25, 26, 27, 28, 29, 30, 33, 34, 38, 39, 40] and references
therein.
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Let (X, ‖ · ‖), Z be Banach spaces. We denote by B(X,Z) the space of all bounded
linear operators from X into Z, and denote by B(X) the space of all bounded linear
operators from X into itself. Let C(I,X) be the Banach space of all continuous functions
from I to X with the norm ‖x‖∞ = sup

t∈I
‖u(t)‖ and Lp(I,X)(1 ≤ p < +∞) be the

Banach space of all X-valued Bochner integrable functions defined on I with the norm

‖x‖Lp =

(∫
I
‖x(t)‖pdt

) 1
p

.

For a closed and linear operator A : D(A) ⊂ X → X, where D(A) is the domain
of A, we denote by ρ(A) its resolvent set and by R(λ,A) its resolvent operator, that is,
R(λ,A) = (λ−A)−1 which is defined for all λ ∈ ρ(A). For µ > 0, we define

gµ(t) =


tµ−1

Γ(µ)
, t > 0,

0, t ≤ 0,
(2.1)

where Γ(·) is the Gamma function. We also define g0 ≡ δ0, the Dirac delta. For µ > 0,
n = dµe denotes the smallest integer n greater than or equal to µ. The finite convolution

of f and g is denoted by (f ∗ g)(t) =

∫ t

0
f(t− s)g(s)ds.

Definition 2.1 Let α > 0. The α-order Riemann-Liouville fractional integral of u is
defined by

Jαu(t) :=

∫ t

0
gα(t− s)u(s)ds, t ≥ 0.

Also, we define J0u(t) = u(t). Because of the convolution properties, the integral operators
{Jα}α≥0 satisfy the following semigroup law: JαJβ = Jα+β for all α, β ≥ 0.

Definition 2.2 Let α > 0. The α-order Caputo fractional derivative is defined

Dα
t u(t) :=

∫ t

0
gn−α(t− s)u(n)(s)ds,

where n = dαe.

Definition 2.3 Let α > 0. The α-order Riemann-Liouville fractional derivative of u is
defined

Dαu(t) :=
dn

dtn

∫ t

0
gn−α(t− s)u(s)ds,

where n = dαe.

It is clear Dm
t = Dm =

dm

dtm
if α = m ∈ N.

Let f̂ (or L(f)) denote the Laplace transform of f , we have the following facts for the
fractional derivatives

D̂αu(λ) = λαû(λ)−
n−1∑
k=0

(gn−α ∗ u)(k)(0)λn−1−k (2.2)
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and

D̂α
t u(λ) = λαû(λ)−

n−1∑
k=0

u(k)(0)λα−1−k, (2.3)

where n = dαe and λ ∈ C. For α, β > 0 and z ∈ C, the generalized Mittag-Leffler function
is defined by

eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
,

and its Laplace transform L satisfies

L(tβ−1eα,β(ρtα))(λ) =
λα−β

λα − ρ
, ρ ∈ C,Reλ > |ρ|1/α.

The E-modified resolvent set of A, ρE(A), is defined by

ρE(A) := {λ ∈ C : (λE −A) : D(A) ∩D(E)→ X

is invertible and (λE −A)−1 ∈ B(X, [D(A) ∩D(E)])}.

The operator (λE −A)−1 is called the E-resolvent operator of A.

A strongly continuous family {T (t)}t≥0 ⊆ B(X) is said to be of type (M,ω) or expo-
nentially bounded if there exist constants M > 0 and ω ∈ R, such that ‖T (t)‖ ≤Meωt for
all t ≥ 0. Observe that, without loss of generality, we can assume ω > 0 in the sequel.

Definition 2.4 Let A : D(A) ⊆ X → X, E : D(E) ⊆ X → X be closed linear operators
defined on a Banach space X satisfying D(A) ∩D(E) 6= {0}. Let α, β > 0. We say that
the pair (A,E) is the generator of an (α, β)-resolvent family, if there exist µ ≥ 0 and
a strongly continuous function SEα,β : [0,∞) → B(X) such that SEα,β(t) is exponentially
bounded, {λα : Reλ > µ} ⊂ ρE(A), and for all x ∈ X,

λα−βE (λαE −A)−1 x =

∫ ∞
0

e−λtSEα,β(t)xdt, Reλ > µ.

In this case, {SEα,β(t)}t≥0 is called the (α, β)-resolvent family generated by the pair (A,E).

It is easy to show (see [24, Proposition 3.1 and Lemma 2.2])) that if (A,E) generates
an (α, β)-resolvent family {SEα,β(t)}t≥0, then it satisfies the following properties:

i) SEα,β(0)Ex = gβ(0)Ex, for all x ∈ D(E);

ii) SEα,β(t)x ∈ D(A)∩D(E) and SEα,β(t)Ax = ASEα,β(t)x, SEα,β(t)Ex = ESEα,β(t)x, for all
x ∈ D(A) ∩D(E) and t ≥ 0;

iii) SEα,β(t)Ex = gβ(t)Ex+
∫ t
0 gα(t− s)ASEα,β(s)xds, for all x ∈ D(A)∩D(E) and t ≥ 0;
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iv)
∫ t
0 gα(t− s)SEα,β(s)xds ∈ D(A) and SEα,β(t)Ex = gβ(t)Ex+A

∫ t
0 gα(t− s)SEα,β(s)xds,

for all x ∈ D(A) ∩D(E) and t ≥ 0.

We notice that the Definition 2.4 corresponds to some well-known concepts in the
literature. In fact, the case SE1,1(t) corresponds to degenerate semigroups (see [13] and [16,

Chapter 1, Section 1.5]), if α = 1, β = k + 1, then SE1,k+1(t) is a degenerated k-integrated

semigroup (see [16, Chapter 1, Section 1.5] and [7]), and SE2,1(t) is a cosine degenerate

family (see [16, Chapter 1, Section 1.7]). If E = I, then SI1,1(t), S
I
1,k+1(t) and SI2,1(t)

correspond to a C0-semigroup, a k-integrated semigroup and a cosine family, respectively.
Finally, if β = 1, then SIα,1(t) is the α-resolvent family (also called the α-times resolvent
family) for fractional differential equations.

Definition 2.5 The resolvent family {SEα,β(t)}t≥0 ⊂ B(X) is said to be compact if for

every t > 0, the operator SEα,β(t) is a compact operator.

Next we give some results on the norm continuity and compactness of SEα,β(t) for given
α, β > 0. The proofs of these results can be conducted similarly to [28, Proposition 11,
Lemma 12, Theorem 14, Corollary 15, Propositions 16-17], we can also refer to [8] for
details.

Lemma 2.1 Let α > 0 and 1 < β ≤ 2. Suppose that {SEα,β(t)}t≥0 is the (α, β)-resolvent

family of type (M,ω) generated by (A,E). Then the function t 7→ SEα,β(t) is continuous
in B(X) for all t > 0.

Lemma 2.2 Suppose that the pair (A,E) generates an (α, β)-resolvent family {SEα,β(t)}t≥0
of type (M,ω). If γ > 0, then (A,E) also generates an (α, β + γ)-resolvent family of type(
M

ωγ
, ω

)
.

Lemma 2.3 Let α > 0, 1 < β ≤ 2 and {SEα,β(t)}t≥0 be an (α, β)-resolvent family of type
(M,ω) generated by (A,E). Then the following assertions are equivalent

i) SEα,β(t) is a compact operator for all t > 0.

ii) E(µE −A)−1 is a compact operator for all µ > ω1/α.

Lemma 2.4 Let 1 < α ≤ 2 and {SEα,α(t)}t≥0 be an (α, α)-resolvent family of type (M,ω)
generated by (A,E). Then the following assertions are equivalent:

i) SEα,α(t) is a compact operator for all t > 0.

ii) E(µE −A)−1 is a compact operator for all µ > ω1/α.

Lemma 2.5 Let 1 < α < 2, and {SEα,1(t)}t≥0 be the (α, 1)-resolvent family of type (M,ω)

generated by (A,E). Suppose that SEα,1(t) is continuous in the uniform operator topology
for all t > 0. Then the following assertions are equivalent
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i) SEα,1(t) is a compact operator for all t > 0.

ii) E(µE −A)−1 is a compact operator for all µ > ω1/α.

Lemma 2.6 Let
3

2
< α < 2, and {SEα,α−1(t)}t≥0 be the (α, α−1)-resolvent family of type

(M,ω) generated by (A,E). Suppose that SEα,α−1(t) is continuous in the uniform operator
topology for all t > 0. Then the following assertions are equivalent

i) SEα,α−1(t) is a compact operator for all t > 0.

ii) E(µE −A)−1 is a compact operator for all µ > ω1/α.

Remark 2.1 If E = I (the identity operator), then the facts of above lemmas are reduced
to the corresponding results in [28, Lemma 3.12, Theorem 3.14, Propositions 3.16-3.17,
Proposition 7.1] with SIα,β(t) = Sα,β(t).

Finally, we recall the following results.

Lemma 2.7 If K is a compact subset of a Banach space X, then its convex closure
conv(K) is compact.

Lemma 2.8 The closure and weak closure of a convex subset of a normed space are the
same.

Lemma 2.9 Let C be a nonempty, closed, bounded and convex subset of a Banach space
X. Suppose that Υ : C → C is a compact operator. Then Υ has at least a fixed point in
C.

In what follows, we introduce the admissible control set as [9] and [42, pp.141]. Let Y
be another separable reflexive Banach space from which the control u takes values. Let 1 <
p < +∞ and Lp(I, Y ) denote the usual Banach space of all Y -valued Bochner integrable
functions having p-th power summable norms. Denoted P(Y ) by a class of nonempty
closed and convex subsets of Y . We assume that the multivalued map U : I → P(Y ) is
graph measurable, U(·) ⊂ Ξ, where Ξ is a bounded set of Y . The admissible control set is
defined as

Uad = SpU = {u(·) ∈ Lp(Ξ)|u(t) ∈ U(t), a.e. t ∈ I} , 1 < p < +∞.

Then Uad 6= ∅, which can be found in [17].

3 Controlled fractional differential equations of Sobolev type

In this section, we will prove our main results.
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3.1 The Caputo case–Eq. (1.1)

Let us list the following assumptions.

(A1) The pair (A,E) generates the (α, 1)-resolvent family {SEα,1(t)}t≥0 of type (M,ω), the

operator E(λαE−A)−1 is compact for all λα ∈ ρE(A) with λ > ω
1
α and {SEα,1(t)}t≥0

is norm continuous for all t > 0.

(A2) f : I ×X → X satisfies the following conditions:
(a) For a.e. t ∈ I, f(t, ·) is continous, and for each x ∈ X, f(·, x) is measurable;
(b) There exists a function φ ∈ L1(I,R+) such that

‖f(t, x)‖ ≤ φ(t)‖x‖,∀t ∈ I, x ∈ X.

(A3) B : I → B(Y,X) is essentially bounded, i.e. B ∈ L∞(I,B(Y,X)).

(A4) There exists a constant r > 0 such that

Meωb
[
‖x0‖+

1

ω
‖x1‖+

r

ωα−1
‖φ‖L1 +

1

ωα−1
‖Bu‖L1

]
≤ r.

According to the properties of the Laplace transform we can give the following defini-
tion of mild solution to problem (1.1).

Definition 3.1 For each x0, x1 ∈ X, a function x ∈ C(I,X) is said to be a mild solution
to Eq. (1.1) if it verifies the following integral equation

x(t) = SEα,1(t)x0 + SEα,2(t)x1 +

∫ t

0
SEα,α(t− s)[f(s, x(s)) + B(s)u(s)]ds.

Remark 3.1 (i) By the uniqueness of the Laplace transform, it is clear that the mild
solution to Eq. (1.1) can expressed as

x(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds.

(ii) In view of Lemma 2.5, the condition (A1) implies SEα,1(t) is compact for all t > 0.
(iii) [42, pp.141] According to the assumption (A3) and the definition of the admissible
set Uad, it is concluded that Bu ∈ Lp(I,X) with 1 < p < ∞ for all u ∈ Uad. Thus,
Bu ∈ L1(I,X) and ‖Bu‖L1 < +∞.

For r > 0 we define Br := {x ∈ C(I,X) : ‖x(t)‖ ≤ r, t ∈ I}.

Theorem 3.1 If assumptions (A1)-(A4) hold, then Eq. (1.1) admits at least one mild
solution on I.
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Proof: Consider the operator N : C(I,X)→ C(I,X) defined by

(Nx)(t) = SEα,1(t)x0+(g1∗SEα,1)(t)x1+

∫ t

0
(gα−1∗SEα,1)(t−s)[f(s, x(s))+B(s)u(s)]ds, t ∈ I.

Clearly, the fixed points of N are mild solutions to Eq. (1.1). We shall show that N
admits a fixed point. The proof will be given in several steps.
Step I. N maps Br into Br.

‖(Nx)(t)‖

≤
∥∥∥∥SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1 +

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds

∥∥∥∥
≤ Meωt‖x0‖+

M

ω
eωt‖x1‖+

M

ωα−1

∫ t

0
eω(t−s) [φ(s)‖x(s)‖+ ‖B(s)u(s)‖] ds

≤ Meωb‖x0‖+
M

ω
eωb‖x1‖+

Mreωb

ωα−1

∫ t

0
e−ωsφ(s)ds

+
Meωb

ωα−1

∫ t

0
e−ωs‖B(s)u(s)‖ds

≤ Meωb‖x0‖+
M

ω
eωb‖x1‖+

Mreωb

ωα−1
‖φ‖L1 +

Meωb

ωα−1
‖Bu‖L1

≤ Meωb
[
‖x0‖+

1

ω
‖x1‖+

r

ωα−1
‖φ‖L1 +

1

ωα−1
‖Bu‖L1

]
≤ r.

By (A4), we conclude that Nx ∈ Br.
Step II. N is continous in Br.

Let xn, x ∈ Br be such that xn → x in Br. In view of Lemma 2.2, we have

‖(Nxn)(t)− (Nx)(t)‖ ≤
∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, xn(s))− f(s, x(s))]ds

≤ Meωb

ωα−1

∫ t

0
e−ωs‖f(s, xn(s))− f(s, x(s))‖ds

≤ Meωb

ωα−1

∫ t

0
φ(s)(‖xn(s)‖+ ‖x(s)‖)ds

≤ 2rMeωb

ωα−1

∫ t

0
φ(s)ds.

Note that the function s 7→ φ(s) is integrable on I. By the Lebesgue Dominated Conver-

gence Theorem

∫ t

0
‖f(s, xn(s)) − f(s, x(s))‖ds → 0, n → ∞. Hence, N is continuous in

Br.
Step III. N is equicontinous.

Let x ∈ Br, and take 0 ≤ t2 < t1 ≤ b. Observe that

‖(Nx)(t1)− (Nx)(t2)‖
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≤ ‖
(
SEα,1(t1)− SEα,1(t2)

)
x0‖+ ‖

(
(g1 ∗ SEα,1)(t1)− (g1 ∗ SEα,1)(t2)

)
x1‖

+

∫ t1

t2

‖(gα−1 ∗ SEα,1)(t1 − s)[f(s, x(s)) + B(s)u(s)]‖ds

+

∫ t2

0
‖
(
(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)

)
[f(s, x(s)) + B(s)u(s)]‖ds

:= I1 + I2 + I3 + I4.

For the term I1, we have

I1 ≤ ‖(SEα,1(t1)− SEα,1(t2))‖‖x0‖.

By the norm continuity of SEα,1(t) in assumption (A1), we get lim
t1→t2

I1 = 0.

For the term I2, we have (g1 ∗ SEα,1)(t) = SEα,2(t) for all t ≥ 0 due to the uniqueness of the

Laplace transform and Lemma 2.2. Meanwhile, the Lemma 2.1 implies that (g1 ∗ SEα,1)(t)
is continuous in B(X). Hence

I2 ≤ ‖(g1 ∗ Sα,1)(t1)− (g1 ∗ Sα,1)(t2)‖ ‖x1‖ → 0, as t1 → t2.

For the term I3, as t1 → t2, we have

I3 ≤ Meωb

ωα−1

∫ t1

t2

e−ωs[φ(s)‖x(s)‖+ ‖B(s)u(s)‖]ds

≤ Mreωb

ωα−1

∫ t1

t2

φ(s)ds+
Meωb

ωα−1

∫ t1

t2

‖B(s)u(s)‖ds→ 0.

Finally for the term I4, we have

I4 ≤
∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥ ‖[f(s, x(s)) + B(s)u(s)]‖ds

≤
∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥φ(s)‖x(s)‖ds

+

∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥ ‖B(s)u(s)‖ds

≤ r

∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥φ(s)ds

+

∫ t2

0

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥ ‖B(s)u(s)‖ds.

Now taking into account that

‖(gα−1 ∗ SEα,1)(t1 − ·)− (gα−1 ∗ SEα,1)(t2 − ·)‖φ(s) ≤ 2
Meωb

ωα−1
φ(s) ∈ L1(I,R+),

∥∥[(gα−1 ∗ SEα,1)(t1 − s)− (gα−1 ∗ SEα,1)(t2 − s)
]∥∥ ‖B(s)u(s)‖ ≤ 2

Meωb

ωα−1
‖B(s)u(s)‖ ∈ L1(I,R+),
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(gα−1 ∗ SEα,1)(t) = SEα,α(t) for all t ≥ 0 (see Lemma 2.2) and Sα,α(t) is norm continuous

(see Lemma 2.1), we have (gα−1 ∗ SEα,1)(t1 − s) − (gα−1 ∗ SEα,1)(t2 − s) → 0 in B(X) as
t1 → t2. By the Lebesgue’s dominated convergence theorem, we conclude lim

t1→t2
I4 = 0.

Step IV. The set H(t) := {(Nx)(t) : x ∈ Br} is relatively compact for every t ∈ I.
Clearly, H(0) is relatively compact in X. For x ∈ Br, we define the following operator

(N2x)(t) :=

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds.

Now, let 0 < t ≤ b and ε be a real number satisfying 0 < ε < t, we further introduce

(N ε
2x)(t) =

∫ t−ε

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds.

The assumption (A1), Remark 3.1 (iii) and Lemma 2.4 imply the compactness of (gα−1 ∗
SEα,1)(t) = SEα,α(t) for all t > 0. Therefore the set Kε := {(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) +

B(s)u(s)] : x ∈ Br, 0 ≤ s ≤ t − ε} is compact for all ε > 0. Then conv(Kε) is also a
compact set by Lemma 2.7. In view of Mean-Value Theorem for the Bochner integrals,
we have (N ε

2x)(t) ∈ tconv(Kε) for all t ∈ I. Thus the set Hε(t) = {(N ε
2x)(t) : x ∈ Br} is

relatively compact in X for every ε, 0 < ε < t. Moreover, for x ∈ Br,

‖(N2x)(t)− (N ε
2x)(t)‖ ≤

∥∥∥∥∫ t

t−ε
(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds

∥∥∥∥
≤ Meωb

ωα−1

∫ t

t−ε
e−ωs[rφ(s) + ‖B(s)u(s)‖]ds.

Since s 7→ e−ωs[rφ(s) + ‖B(s)u(s)‖] belong to L1([t − ε, t],R+), we conclude by the
Lebesgue Dominated Convergence Theorem that lim

ε→0
‖(N2x)(t) − (N ε

2x)(t)‖ = 0. Thus,

the set

{∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds : x ∈ Br

}
is relatively compact

for all t ∈ (0, b]. The compactness of SEα,1(t) and (g1 ∗ SEα,1)(t) = SEα,2(t) (see Lemma 2.5
and Lemma 2.3) imply that H(t) := {(Nx)(t) : x ∈ Br} is relatively compact in X.

As a consequence of the above steps and the Arzela-Ascoli theorem, we can deduce
that N is a compact operator. By the fixed point theorem Lemma 2.9, there exists a fixed
point x(·) for N on Br. Thus, Eq. (1.1) admits a mild solution. This completes the proof.

Next, we consider the existence of optimal controls for Eq. (1.1). For any u ∈ Uad, let
S(u) denote all mild solutions to Eq. (1.1) in Br.

Let xu ∈ Br denote the mild solution to Eq. (1.1) corresponding to the control u ∈ Uad,
we consider the following limited Lagrange problem (LP):
Find x0 ∈ Br ⊆ C(I,X) and u0 ∈ Uad such that for all u ∈ Uad, J(x0, u0) ≤ J(xu, u),
where

J(xu, u) =

∫ b

0
L(t, xu(t), u(t))dt,

and x0 ∈ Br denotes the mild solution to Eq. (1.1) related to the control u0 ∈ Uad.
We need the following assumption.

(A5): The function L : I ×X × Y → R
⋃
{∞} satisfies:
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(1) The function L : I ×X × Y → R
⋃
{∞} is Borel measurable;

(2) L(t, ·, ·) is sequentially lower semicontinuous on X × Y for a.e. t ∈ I;

(3) L(t, x, ·) is convex on Y for each x ∈ X and a.e. t ∈ I;

(4) There exist constants c ≥ 0, d > 0, ψ is nonnegative and ψ ∈ L1(I,R) such that

L(t, x, u) ≥ ψ(t) + c‖x‖+ d‖u‖pY ,

where 1 < p <∞. We remark that under the conditions of Theorem 3.1, a pair (x(·), u(·))
is feasible if it verifies Eq. (1.1) for x(·) ∈ Br, and if (xu(·), u(·)) is feasible, then xu ∈
S(u) ⊂ Br. We first list the following result.

Lemma 3.1 Assume that assumptions (A1) and (A3) hold and 1 < p < +∞. Define the
operator Π by

(Πu)(·) =

∫ ·
0

(gα−1 ∗ SEα,1)(· − s)B(s)u(s)ds, ∀u(·) ∈ Uad ⊂ Lp(I, Y ).

Then, Π : Uad ⊂ Lp(I, Y )→ C(I,X) is compact. Moreover, if un ∈ Uad converges weakly
to u as n→∞ in Lp(I, Y ), then Πun → Πu as n→∞.

Proof: The assumption (A1) and the Lemma 2.4 imply the compactness of (gα−1 ∗
SEα,1)(t) = SEα,α(t) for all t > 0. Conducted similarly as the proof of Theorem 3.1, we
can show that Π is a compact operator. The convergence of Πun → Πu follows as in proof
of Lemma 3.2 and Corollary 3.3 of Chapter 3 in [19].

Now, we can establish the existence of optimal controls for the problem (LP).

Theorem 3.2 Assume that conditions (A1)-(A5) hold. Then the problem (LP) admits
at least one optimal feasible pair.

Proof: For any u ∈ Uad, we define

J(u) = inf
xu∈S(u)

J(xu, u).

If the set S(u) admits finite elements, there exists some x̃u ∈ S(u) such that J(x̃u, u) =
inf

xu∈S(u)
J(xu, u) = J(u). If the set S(u) admits infinite elements and inf

xu∈S(u)
J(xu, u) =

+∞, there is nothing to prove. We assume that J(u) = inf
xu∈S(u)

J(xu, u) < +∞. By (A5),

we have J(u) > −∞. We now divide the proof into the following steps.
Step 1. By the definition of the infimum, there exists a sequence {xun} ⊆ S(u) satisfying
J(xun, u)→ J(u) as n→∞. Considering {xun, u} is a sequence of feasible pairs, we have

xun(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, xun(s)) + B(s)u(s)]ds, t ∈ I. (3.1)
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Step 2. We show that there exists some x̃u ∈ S(u) such that J(x̃u, u) = inf
xu∈S(u)

J(xu, u) =

J(u). To do this, we first prove that for each u ∈ Uad, {xun} is relatively compact in C(I,X).
Note that

xun(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, xun(s)) + B(s)u(s)]ds

:= I1x
u
n + I2x

u
n + I3x

u
n.

From (A1), Lemmas 2.3-2.5 and Steps III-IV in the proof of Theorem 3.1, we can conclude
that {I1xun}, {I2xun}, {I3xun} are all precompact subsets of C(I,X). In consequence, the
set {xun} is precompact in C(I,X) for u ∈ Uad. Without loss of generality, we may assume
that xun → x̃u in C(I,X) for u ∈ Uad as n→∞. Let n→∞ in both sides of (3.1), by the
Lebesgue Dominated Convergence Theorem, we obtain that

x̃u(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x̃u(s)) + B(s)u(s)]ds, t ∈ I,

which implies that x̃u ∈ S(u).

We claim that J(x̃u, u) = inf
xu∈S(u)

J(xu, u) = J(u) for any u ∈ Uad. In fact, owing to

C(I,X) is continuously embedded in L1(I,X), through the definition of a feasible pair,
the assumption (A5) and Balder theorem, we have

J(u) = lim
n→∞

∫ b

0
L(t, xun(t), u(t))dt ≥

∫ b

0
L(t, x̃u(t), u(t))dt = J(x̃u, u) ≥ J(u),

i.e. J(x̃u, u) = J(u). This shows that J(u) admits its minimum at x̃u ∈ C(I,X) for each
u ∈ Uad.
Step 3. We show that there exists u0 ∈ Uad such that J(u0) ≤ J(u) for all u ∈ Uad. If
inf

u∈Uad
J(u) = +∞, there is nothing to prove. Assume that inf

u∈Uad
J(u) < +∞. Similarly

to Step 1, we can prove that inf
u∈Uad

J(u) > −∞, and there exists a sequence {un} ⊆ Uad

such that J(un)→ inf
u∈Uad

J(u) as n→∞. Since {un} ⊆ Uad, {un} is bounded in Lp(I, Y )

and Lp(I, Y ) is a reflexive Banach space for 1 < p < +∞, there exists a subsequence still
denoted by {un} weakly converges to some u0 ∈ Lp(I, Y ) as n → ∞. Note that Uad is
closed and convex, by Lemma 2.8 it follows that u0 ∈ Uad.

Suppose x̃un is the mild solution to Eq. (1.1) related to un, where J(un) attains its
minimum. Then (x̃un , un) is a feasible pair and verifies the following integral equation

x̃un(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x̃un(s)) + B(s)un(s)]ds, t ∈ I. (3.2)
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Define

Λ1x̃
un(t) = SEα,1(t)x0, Λ2x̃

un(t) = (g1 ∗ SEα,1)(t)x1,

Λ3x̃
un(t) =

∫ t

0
(gα−1 ∗ SEα,1)(t− s)f(s, x̃un(s))ds,

Λ4un(t) =

∫ t

0
(gα−1 ∗ SEα,1)(t− s)B(s)un(s)ds.

Then

x̃un(t) = Λ1x̃
un(t) + Λ2x̃

un(t) + Λ3x̃
un(t) + Λ4un(t), t ∈ I.

From (A1), Lemmas 2.3-2.5 and similarly to Steps III-IV in the proof of Theorem 3.1,
we can conclude that {Λ1x̃

un}, {Λ2x̃
un}, {Λ3x̃

un} are all relatively compact subsets of
C(I,X). Moreover, by Lemma 3.1, Λ4un → Λ4u

0 in C(I,X) as n→∞ and Λ4 is compact.
Thus, the set {x̃un} ⊂ C(I,X) is relatively compact, and there exists a subsequence still
denoted by {x̃un}, x̃u0 ∈ C(I,X) such that x̃un → x̃u

0
in C(I,X) as n→∞. Let n→∞

in both sides of (3.2), we have

x̃u
0
(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1

+

∫ t

0
(gα−1 ∗ SEα,1)(t− s)[f(s, x̃u

0
(s)) + B(s)u0(s)]ds, t ∈ I,

which implies that (x̃u
0
, u0) is a feasible pair.

Since C(I,X) is continuously embedded in L1(I,X), by the assumption (A5) and
Balder theorem, we have

inf
u∈Uad

J(u) = lim
n→∞

∫ b

0
L(t, x̃un(t), un(t))dt ≥

∫ b

0
L(t, x̃u

0
(t), u0(t))dt

= J(x̃u
0
, u0) ≥ inf

u∈Uad
J(u).

Therefore,

J(x̃u
0
, u0) = J(u0) = inf

xu0∈S(u0)
J(xu

0
, u0).

Furthermore,

J(u0) = inf
u∈Uad

J(u),

i.e., J admits its minimum at u0 ∈ Uad. This finishes the proof.

3.2 The Riemann-Liouville case–Eq. (1.2)

For Eq. (1.2), we need the following hypotheses.

(H1) Let
3

2
< α < 2, and the pair (A,E) generates the (α, α − 1)-resolvent family

{SEα,α−1(t)}t≥0 of type (M,ω), the operator E(λαE −A)−1 is compact for all λα ∈ ρE(A)
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with λ > ω
1
α and {SEα,α−1(t)}t≥0 is norm continuous for all t > 0.

(H2) There exists a constant r > 0 such that

Meωb
[
‖x0‖+

1

ω
‖x1‖+

r

ω
‖φ‖L1 +

1

ω
‖Bu‖L1

]
≤ r.

By using the properties of the Laplace transform we are able to give the following
definition of mild solution to problem (1.2).

Definition 3.2 For each x0, x1 ∈ X, a function x ∈ C(I,X) is said to be a mild solution
to Eq. (1.2) if it verifies the following integral equation

x(t) = SEα,α−1(t)x0 + SEα,α(t)x1 +

∫ t

0
SEα,α(t− s)[f(s, x(s)) + B(s)u(s)]ds.

Remark 3.2 (i) By the uniqueness of the Laplace transform, it is clear that the mild
solution to Eq. (1.2) can expressed as

x(t) = SEα,α−1(t)x0 + (g1 ∗ SEα,α−1)(t)x1 +

∫ t

0
(g1 ∗ SEα,α−1)(t− s)[f(s, x(s)) + B(s)u(s)]ds.

(ii) In view of Lemma 2.6, the condition (H1) implies SEα,α−1(t) is compact for all t > 0.

Theorem 3.3 Let assumptions (H1)-(H2), (A2)-(A3) hold, then Eq. (1.2) has at least
one mild solution on I.

Proof: We define the operator N : C(I,X)→ C(I,X) as

(Nx)(t) = SEα,α−1(t)x0 + (g1 ∗ SEα,α−1)(t)x1

+

∫ t

0
(g1 ∗ SEα,α−1)(t− s)[f(s, x(s)) + B(s)u(s)]ds, t ∈ I.

The remainder can be conducted similarly as the proof of Theorem 3.1. Since

‖(Nx)(t)‖

≤
∥∥∥∥SEα,α−1(t)x0 + (g1 ∗ SEα,α−1)(t)x1 +

∫ t

0
(g1 ∗ SEα,α−1)(t− s)[f(s, x(s)) + B(s)u(s)]ds

∥∥∥∥
≤ Meωt‖x0‖+

M

ω
eωt‖x1‖+

M

ω

∫ t

0
eω(t−s) [φ(s)‖x(s)‖+ ‖B(s)u(s)‖] ds

≤ Meωb‖x0‖+
M

ω
eωb‖x1‖+

Mreωb

ω

∫ t

0
e−ωsφ(s)ds

+
Meωb

ω

∫ t

0
e−ωs‖B(s)u(s)‖ds

≤ Meωb‖x0‖+
M

ω
eωb‖x1‖+

Mreωb

ω
‖φ‖L1 +

Meωb

ω
‖Bu‖L1



Sobolev type fractional differential equations and optimal controls 15

≤ Meωb
[
‖x0‖+

1

ω
‖x1‖+

r

ω
‖φ‖L1 +

1

ω
‖Bu‖L1

]
≤ r.

By (H2), we conclude that Nx ∈ Br.
Because SEα,α−1(t) is norm continuous for all t > 0 (see (H1)) and t 7→ (g1 ∗ SEα,α−1)(t)

is also norm continuous by Lemma 2.1, we can similarly prove N(Br) is equicontinuous.
The Lemma 2.4 implies the compactness of (g1 ∗ SEα,α−1)(t) = SEα,α(t) for all t > 0 and

therefore the set {
∫ t
0 (g1 ∗ SEα,α−1)(t − s)[f(s, x(s)) + B(s)u(s)]ds : x ∈ Br} is relatively

compact for all t ∈ I (as in the proof of Theorem 3.1). On the other hand, from (H1)
and Lemma 2.6, we get the compactness of SEα,α−1(t) for all t > 0. Thus, we show the set
H(t) := {(Nx)(t) : x ∈ Br} is relatively compact in X. By the Arzela-Ascoli theorem,
we can deduce that N is a compact operator and by Lemma 2.9 there exists a fixed point
x(·) for N on Br. Thus, Eq. (1.2) admits a mild solution.

We also have the following result, which can be proved similarly to Lemma 3.1.

Lemma 3.2 Assume that assumptions (H1) and (A3) hold and 1 < p < +∞. Then the
operator defined by

(Πu)(·) =

∫ ·
0

(g1 ∗ SEα,α−1)(· − s)B(s)u(s)ds, ∀u(·) ∈ Uad ⊂ Lp(I, Y )

is compact. Moreover, if un ∈ Uad converges weakly to u as n → ∞ in Lp(I, Y ), then
Πun → Πu as n→∞.

Next, we consider the existence of optimal controls for Eq. (1.2). For any u ∈ Uad,
we still denote by S(u) all mild solutions to Eq. (1.2) in Br. Let xu ∈ Br denote the
mild solution to Eq. (1.2) corresponding to the control u ∈ Uad, we consider the following
limited Lagrange problem (LP′):
Find x0 ∈ Br ⊆ C(I,X) and u0 ∈ Uad such that for all u ∈ Uad, J(x0, u0) ≤ J(xu, u),
where

J(xu, u) =

∫ T

0
L(t, xu(t), u(t))dt,

and x0 ∈ Br denotes the mild solution to Eq. (1.2) related to the control u0 ∈ Uad.
Theorem 3.4 Assume that conditions (H1)-(H2), (A2)-(A3) and (A5) hold. Then the
problem (LP′) admits at least one optimal feasible pair.

Proof: From (H1), Lemmas 2.3-2.4, Lemma 2.6 and Lemma 3.2, we can complete the
proof similarly to that of Theorem 3.2.

4 Some applications

In this section, we make some further discussions as applications. Let us consider
special cases with E = I, then Eq. (1.1) and Eq. (1.2) can be rewritten respectively in
the following {

Dα
t x(t) = Ax(t) + f(t, x(t)) + B(t)u(t),
x(0) = x0, x

′(0) = x1, u ∈ Uad,
(4.1)
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and {
Dαx(t) = Ax(t) + f(t, x(t)) + B(t)u(t),

(g2−α ∗ x)(0) = x0, (g2−α ∗ x)′(0) = x1, u ∈ Uad.
(4.2)

Accordingly, we list the following assumptions.

(A1′) The operator A generates the (α, 1)-resolvent family {Sα,1(t)}t≥0 of type (M,ω), the

operator (λα − A)−1 is compact for all λα ∈ ρ(A) with λ > ω
1
α and {Sα,1(t)}t≥0 is

norm continuous for all t > 0.

(H1′) Let
3

2
< α < 2, and the operator A generates the (α, α − 1)-resolvent family

{Sα,α−1(t)}t≥0 of type (M,ω), the operator (λα−A)−1 is compact for all λα ∈ ρ(A)

with λ > ω
1
α and {Sα,α−1(t)}t≥0 is norm continuous for all t > 0.

For each x0, x1 ∈ X, the mild solution to Eq. (4.1) can be expressed as

x(t) = Sα,1(t)x0 + (g1 ∗ Sα,1)(t)x1 +

∫ t

0
(gα−1 ∗ Sα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds,

and the mild solution to Eq. (4.2) can be expressed as

x(t) = Sα,α−1(t)x0 + (g1 ∗ Sα,α−1)(t)x1 +

∫ t

0
(g1 ∗ Sα,α−1)(t− s)[f(s, x(s)) + B(s)u(s)]ds.

From Remark 2.1 and [28, Proposition 11, Lemma 12, Theorem 14, Corollary 15, Propo-
sitions 16-17], we can obtain the following results.

Corollary 4.1 If assumptions (A1′), and (A2)-(A4) hold, then Eq. (4.1) admits at least
one mild solution on I.

Corollary 4.2 Let assumptions (H1′)-(H2), and (A2)-(A3) hold, then Eq. (4.2) has at
least one mild solution on I.

Corollary 4.3 Assume that conditions (A1′)-(A5) hold. Then the limited Lagrange prob-
lem related to Eq. (4.1) admits at least one optimal feasible pair.

Corollary 4.4 Let conditions (H1′)-(H2), (A2)-(A3) and (A5) hold. Then the limited
Lagrange problem related to Eq. (4.2) admits at least one optimal feasible pair.

Now, we consider the following semilinear equation in the Caputo fractional derivatives{
Dα
t (Ex)(t) = Ax(t) + J2−α[f(t, x(t)) + B(t)u(t)], t ∈ I,

Ex(0) = Ex0, (Ex)′(0) = Ex1,
(4.3)

where x0, x1 ∈ X, 1 < α < 2, J2−α denotes the Riemann-Liouville fractional integral
operator. Assume the pair (A,E) generates the (α, 1)-resolvent family {SEα,1(t)}t≥0. The
mild solution to Eq. (4.3) is given by

x(t) = SEα,1(t)x0 + (g1 ∗ SEα,1)(t)x1 +

∫ t

0
(g1 ∗ SEα,1)(t− s)[f(s, x(s)) + B(s)u(s)]ds, t ∈ I.
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On the other hand, for the semilinear equation in Riemann-Liouville fractional derivative{
Dα(Ex)(t) = Ax(t) + J2−α[f(t, x(t)) + B(t)u(t)], t ∈ I,
(E(g2−α ∗ x))(0) = Ex0, (E(g2−α ∗ x))′(0) = Ex1,

(4.4)

where
3

2
< α < 2. Let the pair (A,E) generate the (α, α−1)-resolvent family {SEα,α−1(t)}t≥0,

then the mild solution to Eq. (4.4) can be written as

x(t) = SEα,α−1(t)x0+(g1∗SEα,α−1)(t)x1+
∫ t

0
(g3−α∗SEα,α−1)(t−s)[f(s, x(s))+B(s)u(s)]ds, t ∈ I.

Note that ∥∥(g1 ∗ SEα,1)(t)
∥∥ ≤ Meωt

ω
, and

∥∥(g3−α ∗ SEα,α−1)(t)
∥∥ ≤ Meωt

ω3−α .

According to proofs of Theorems 3.1-3.4, we can similarly obtain the following results.

Lemma 4.1 If assumptions (A1)-(A3) and (H2) hold, then Eq. (4.3) admits at least one
mild solution on I.

Lemma 4.2 Assume that conditions (A1)-(A3), (H2) and (A5) hold. Then the limited
Lagrange problem related to Eq. (4.3) admits at least one optimal feasible pair.

Lemma 4.3 Let assumptions (H1), (A2)-(A3) and the following condition
(H2′) There exists a constant r > 0 such that

Meωb
[
‖x0‖+

1

ω
‖x1‖+

r

ω3−α ‖φ‖L1 +
1

ω3−α ‖Bu‖L1

]
≤ r.

hold. Then Eq. (4.4) has at least one mild solution on I.

Lemma 4.4 Assume that conditions (H1), (H2′), (A2)-(A3) and (A5) are satisfied. Then
the limited Lagrange problem related to Eq. (4.4) admits at least one optimal feasible
pair.

Example 4.1 In the following, we end this paper with a simple example. Take X =
L2[0, π], (t, ξ) ∈ [0, 1]× [0, π], consider the following problem

Dα
t

[
x(t, ξ)− ∂2x

∂ξ2
(t, ξ)

]
= ∂4x

∂ξ4
(t, ξ) + f(t, x(t, ξ)) + u(t, ξ),

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],
x(0, ξ) = x0(ξ), ξ ∈ [0, π],
xt(0, ξ) = x1(ξ), ξ ∈ [0, π],

(4.5)

where 1 < α < 2, f(t, x(t, ξ)) :=
e−tx(t, ξ)

(6 + t)(1 + |x(t, ξ)|)
. Let x(·)(ξ) = x(·, ξ), B(·)u(·)(ξ) =

u(·, ξ), and

J(x, u) =

∫ π

0

∫ 1

0
|x(t, ξ)|2dtdξ +

∫ π

0

∫ 1

0
|u(t, ξ)|2dtdξ.
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Define the the operators A : D(A) ⊂ X → X and E : D(E) ⊂ X → X respectively by Ax = −∂
4x

∂ξ4
,

Ex = x− ∂2x
∂ξ2

,

with the domain D(E) = D(A) := {x ∈ X : x ∈ H4([0, π]), x(t, 0) = x(t, π) = 0}. It is
known that A has discrete spectrum with eigenvalues of the form −n4, n ∈ N, and the

corresponding normalized eigenvectors are given by xn(s) :=

(
2

π

) 1
2

sin(ns). Moreover,

{xn : n ∈ N} is an orthonormal basis for X, and thus A and E can be written as (see [23])
Ax = −

∞∑
n=1

n4〈x, xn〉xn, x ∈ D(A),

Ex =

∞∑
n=1

(1 + n2)〈x, xn〉xn, x ∈ D(E).

Thus, for any x ∈ X and β = 1, we have

λα−1E(λαE −A)−1x =
∞∑
n=1

λα−1(1 + n2)

λα(1 + n2) + n4
〈x, xn〉xn

=
∞∑
n=1

λα−1

λα + n4

n2+1

〈x, xn〉xn (4.6)

=

∫ ∞
0

e−λt
∞∑
n=1

hnα,1(t)dt〈x, xn〉xn,

where the function hnα,1(t) := eα,1

(
− n4

n2+1
tα
)

satisfies ĥnα,1(λ) =
λα−1

λα + n4

n2+1

for all λ > 0.

Therefore, the pair (A,E) generates the (α, 1)-resolvent family {SEα,1(t)}t≥0 given by

SEα,1(t)x =
∞∑
n=1

hnα,1(t)〈x, xn〉xn, for all x ∈ X.

From the continuity of eα,1(·), we can conclude that SEα,1(t) is norm continuous. From (4.6)

and the fact lim
n→∞

λα−1

λα + n4

n2+1

= 0 for all λ > 0, we can also deduce that E(λαE − A)−1

is a compact operator on the Hilbert space X. Furthermore, for each x ∈ X we have (by
[11])

‖SEα,1(t)x‖ ≤ 2‖x‖.

Therefore, SEα,1(t) is of type (2, 1), i.e. M = 2 and ω = 1.
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Let I := [0, 1]. We note that Eq. (4.5) can be rewritten in the abstract form (1.1). We

also observe that in this case φ(t) :=
e−t

6 + t
, ‖φ‖L1 ≤

1

6
, b = ω = 1 and

Meωb

ωα−1
‖φ‖L1 <

e

3
<

1, thus we can choose a suitable constant r in (A4). According to Theorems 3.1-3.2, the
Eq. (4.5) has a mild solution, and its corresponding limited Lagrange problem admits at
least one optimal feasible pair.
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