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Abstract. This paper treats the asymptotic behavior of resolvent operators of Sobolev type and its

applications to the existence and uniqueness of mild solutions to fractional functional evolution equations
of Sobolev type in Banach spaces. We first study the asymptotic decay of some resolvent operators (also

called solution operators) and next, by using fixed point results, we obtain the existence and uniqueness

of solutions to a class of Sobolev type fractional differential equation. We notice that, the existence or
compactness of an operator E−1 is not necessarily needed in our results.

1. Introduction

In this paper we study the existence of bounded mild solutions to the semilinear fractional differential
equation of Sobolev type in the form

∂α
t (Eu)(t) = Au(t) + ∂α−β

t (Ef)(t), t ∈ R,(1.1)

where A and E are closed linear operators defined on a Banach space X, α, β > 0, the function f belongs
to a closed subspace of the space of continuous and bounded functions, and ∂α

t denotes the Weyl fractional
derivative.

Fractional differential equations describe several physical and biological processes. Some examples
include studies in electrochemistry, electromagnetism, viscoelasticity, heredity of materials, rheology,
among other. See, for instance [1, 22, 25, 32] for further details.

The existence (and uniqueness) of mild solutions to fractional differential equations of Sobolev type
(also called degenerate) has been studied in the last years by several authors. See for instance [14, 15,
20, 23, 27, 28, 37] and the references therein. Sobolev type differential equations describes several partial
differential equations arising in physics and applied sciences. For example, if A = ∆ is the Laplacian and
E = m is the multiplication operator by a function m(x), then model in the form of (1.1) describes the
infiltration of water in unsaturated porous media. See for instance [8, 19, 33] for further details.

The equation (1.1) has been considered in some cases. For instance, if 1 < α < 2, β = 1, A is a sectorial
operator and E = I (the identity operator on X), then we get the equation

∂α
t u(t) = Au(t) + ∂α−1

t f(t), t ∈ R,(1.2)

which has been widely studied in the last years, see for instance [2, 9, 10, 11, 26, 36, 41, 42] and references
therein.

More explicitly, if A is ω-sectorial operators (see the definition below) defined on a Banach space X,
1 < α < 2, β = 1, ω < 0 and E = I, then A generates a resolvent family {Rα(t)}t≥0 which decays in
norm as 1

1+|ω|tα (see [12]) and the solution to (1.2) is given in terms of this resolvent family by

u(t) =

∫ t

−∞
Rα(t− s)f(s)ds, t ∈ R,
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where the Laplace transform of Rα(t) verifies R̂α(λ) = λα−1(λα −A)−1.
We observe that the equation (1.2) can be viewed as the limiting initial value problem

(1.3)

 v′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Av(s) + f(t), t ≥ 0

v(0) = v0, v0 ∈ X,

in the sense that the solution to (1.3) goes to the solution of (1.2) as t → ∞, because the mild solution
of (1.3) is given by

v(t) = Rα(t)v0 +

∫ t

0

Rα(t− s)f(s)ds, t ≥ 0.

On the other hand, if 1 < α < 2, β = 1 and E ̸= I, by using the change of variable w(t) = Eu(t) we
get from equation (1.1) the fractional differential system

(1.4) ∂α
t w(t) = Lw(t) + ∂α−1

t g(t), t ∈ R,
where L = AE−1 with domain D(L) = E(D(A)) and g(t) = Ef(t). Then, formally the equations (1.2)
and (1.4) are the same. However, in this change of variable we need the existence of E−1 as a bounded
operator, which in general could be restrictive. In some previous works, to establish the existence of mild
solutions to Sobolev type differential equations some assumptions on operators A and E are considered:

i) D(A) ⊆ D(E) and A admits a continuous inverse operator A−1 [16, 17],
ii) D(A) ⊆ D(E) and E has the bounded inverse [19],
iii) D(E) ⊆ D(A) and E has the compact inverse [5, 6].

In this paper, we introduce a Sobolev type resolvent family (also called characteristic solution opera-
tors) {SE

α,β(t)}t≥0 which allows to write the solution to equation (1.1) as

u(t) =

∫ t

−∞
SE
α,β(t− s)f(s)ds, t ∈ R.

We give conditions on operators A, E and on the parameters α, β implying the existence of {SE
α,β(t)}t≥0.

Moreover, we prove that if 1 < α < 2 and β ≥ 1 are such that α − β + 1 > 0 and A is an ω-sectorial

operator with respect to E (see the definition in Section 2) then, the norm of SE
α,β(t) behaves as

tβ−1

1+|ω|tα .

With this results, we study the existence and uniqueness of almost periodic, almost automorphic (and
others) mild solutions to (1.1). We notice that in this paper it is not assumed the existence or compactness
of the inverse E−1 as well as any assumption on the relation between D(A) and D(E).

The paper is organized as follows. The Section 2 gives some preliminaries and we study the existence
and the asymptotic behavior of {SE

α,β(t)}t≥0. In Section 3, we study the existence and uniqueness of mild
solutions to the semilinear equation

∂α
t (Eu)(t) = Au(t) + ∂α−β

t (Ef)(t, u(t)), t ∈ R,
where the pair (A,E) generates the (α, β)-resolvent family {SE

α,β(t)}t≥0. Finally, the Section 4 gives some
applications.

2. Asymptotic behavior of Sobolev type resolvents.

Let (X, ∥ · ∥) be a Banach space. We denote by B(X) the space of all bounded and linear operators
from X into X. If A is a closed linear operator on X we denote by ρ(A) the resolvent set of A and
R(λ,A) = (λ−A)−1 the resolvent operator of A defined for all λ ∈ ρ(A) and [D(A)] denotes the domain
of A equipped with the graph norm.

For 1 ≤ p < ∞, Lp(R+, X) denotes the space of all Bochner measurable functions g : R+ → X such
that

∥g∥p :=

(∫ ∞

0

∥g(t)∥pdt
)1/p

< ∞.
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We recall that a strongly continuous family {S(t)}t≥0 ⊂ B(X) is said to be exponentially bounded if
there exist two constants M > 0 and w ∈ R such that ∥S(t)∥ ≤ Mewt, for all t > 0.

A closed operator A, defined on a Banach space (X, ∥ · ∥), is said to be ω-sectorial with respect to E
of angle ϕ, if there exist ϕ ∈ [0, π/2) and ω ∈ R such that its E-resolvent operator (λE − A)−1 exists in
the sector

ω +Σϕ :=
{
ω + λ : λ ∈ C, | arg(λ)| < π

2
+ ϕ

}
\ {ω}

and

∥(λE −A)−1E∥ ≤ K

|λ− ω|
, λ ∈ ω +Σϕ.

A class of such operators are the operators A which are 0-sectorial with respect to E, see [39, Chapter
3]. See moreover [18, 38].

Definition 2.1. Let A,E be closed and linear operators with domain D(A) ∩ D(E) ̸= {0} defined on
a Banach space X, and α, β > 0. We say that the pair (A,E) is the generator of an (α, β)-resolvent
family, if there exist ω̃ ≥ 0 and a strongly continuous function SE

α,β : [0,∞) → B([D(E)], X) such that

{λα : Reλ > ω̃} ⊂ ρE(A) and for all x ∈ D(E),

λα−β(λαE −A)−1Ex =

∫ ∞

0

e−λtSE
α,β(t)xdt, Reλ > ω̃,

where ρE(A) := {µ ∈ C : (µE −A)−1is invertible and (µE −A)−1is bounded}. In this case, {SE
α,β(t)}t≥0

is called the (α, β)-resolvent family generated by (A,E).

We define for all t ≥ 0 the function gα(t) = tα−1

Γ(α) . It is easy to show (see [30, Proposition 3.1 and

Lemma 2.2])) that if (A,E) generates an (α, β)-resolvent family {SE
α,β(t)}t≥0, then it satisfies the following

properties:

i) SE
α,β(0)E = gα(0)E;

ii) (gα ∗ SE
α,β)(t)x ∈ D(A) ∩ D(E) and ESE

α,β(t)x = gβ(t)Ex + A
∫ t

0
gα(t − s)SE

α,β(s)xds, for all

x ∈ D(E) and t ≥ 0.

The next generation result, analogous to the Hille-Yosida Theorem for C0-semigroups, can be obtained
similarly to [30, Theorem 3.4]. See also [3] and [13].

Theorem 2.2. Let A be a closed linear operator defined in a Banach space X. Then the following
assertions are equivalent.

(1) The pair (A,E) generates an (α, β)-resolvent family {Sα,β(t)}t≥0 satisfying ∥Sα,β(t)∥ ≤ Meµt

for all t ≥ 0 and for some constants M > 0 and µ ∈ R.
(2) There exist constants µ ∈ R and M > 0 such that λα ∈ ρE(A) for all λ with λ > µ and

H(λ) := λα−β (λαE −A)
−1

E satisfies the estimates

∥H(n)(λ)∥ ≤ Mn!

(λ− µ)n+1
,

for all λ > µ and n ∈ N0.

The next result gives conditions on operators A and E in order to generate an (α, β)-resolvent family.

Theorem 2.3. Let 1 < α < 2 and β ≥ 1 such that α − β + 1 > 0. Assume that A is an ω-sectorial
operator with respect to E of angle 0 ≤ ϕ < (α − 1)π2 , where ω < 0. Then the pair (A,E) generates the

(α, β)-resolvent family {SE
α,β(t)}t≥0.
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Proof. For λ = reiθ with |θ| < π/2 and r > 0, we define g(λ) = λα. We observe that

arg(g(reiθ)) = Im log(g(reiθ)) = Im

∫ θ

0

d

dt
log(g(reit))dt = Im

∫ θ

0

g′(reit)ireit

g(reit)
dt

with

λg′(λ)

g(λ)
= α.

Therefore

| arg(g(reiθ))| ≤ α|θ| < (α− 1)
π

2
+

π

2
.

We conclude that λα ∈ Σ(α−1)π
2
for all Reλ > 0. From the above, we have thatH(λ) = λα−β(λαE−A)−1E

is well defined and satisfies

∥λH(λ)∥ ≤ K|λ|α−β+1

|λα − ω|
≤ M1 for all Re(λ) > 0,

where M1 is a positive constant. On the other hand,

∥λ2H ′(λ)∥ ≤ |α− β| ∥λH(λ)∥+ α∥λH(λ)∥ ∥λα(λαE −A)−1E∥

≤ |α− β| ∥λH(λ)∥+ α∥λH(λ)∥ |λα|
|λα − ω|

≤ M2,

for all Reλ > 0 and a constant M2 > 0. By using [40, Proposition 0.1] and Theorem 2.2 we obtain that
(A,E) generates a resolvent family {SE

α,β(t)}t≥0. �

Remark 2.4. If 0 < α < 1, then the method of proof given in Theorem 2.3 does not allow to prove that
the pair (A,E) generates an (α, β)-resolvent family {SE

α,β(t)}t≥0.

The next result gives an asymptotic behavior of the resolvent family {SE
α,β(t)}t≥0 and is one of the

main Theorem in this paper.

Theorem 2.5. Let 1 < α < 2 and β ≥ 1 such that α−β+1 > 0. Let A and E closed linear operators on
X, D(A)∩D(E) ̸= {0}. Suppose A is an ω-sectorial operator with respect to E of angle 0 ≤ ϕ < (α−1)π2 ,
where ω < 0. Then, there exists a constant M > 0 depending only on α and β such that the resolvent
family {SE

α,β(t)}t≥0 generated by (A,E) satisfies

∥SE
α,β(t)∥ ≤ Mtβ−1

1 + |ω|tα
,(2.5)

for all t > 0.

Proof. We exploit some ideas of [24]. Since A is ω-sectorial with respect to E of angle 0 ≤ ϕ < (α− 1)π2 ,

we have by Theorem 2.3 that the pair (A,E) generates an (α, β)-resolvent family {SE
α,β(t)}t≥0. As in

the proof of Theorem 2.3 we have that λα ∈ ρE(A) for all λα ∈ Σϕ. Moreover, the Laplace transform of

SE
α,β(t) satisfies Ŝ

E
α,β(λ) = λα−β(λαE −A)−1E for all λα ∈ ρE(A). The inversion theorem of the Laplace

transform implies

SE
α,β(t) =

1

2πi

∫
γ

eλtλα−β(λαE −A)−1Edλ,(2.6)

where γ is a suitable positively oriented path. Now, we define γ as the path whose support Γ is given by

Γ := {λ : λ ∈ C, λα belongs to the boundary of B 1
tα
, t > 0},
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where B 1
tα

is given by

B 1
tα

:=

{
1

tα
+Σθ

}
∪ {ω +Σϕ},

and ϕ < θ < π
2 . Note that, with this path γ the function SE

α,β(t) given in (2.6), is well-defined.

Since A is ω-sectorial with respect to E of angle 0 ≤ ϕ < (α− 1)π2 , it follows that

∥(λE −A)−1E∥ ≤ K

|λ− ω|
,

for all λ ∈ C with λ ∈ ω +Σϕ, λ ̸= ω.
Now, we split γ into two paths, γ1, γ2, whose supports Γ1 and Γ2 are given by

Γ1 := Γ ∩
{

1

tα
+Σθ

}
and Γ2 = Γ ∩ {ω +Σϕ},

Therefore, Γ = Γ1 ∪ Γ2 and SE
α,β(t) = I1(t) + I2(t), where

Ij(t) :=
1

2πi

∫
γj

eλtλα−β(λαE −A)−1Edλ, j = 1, 2.

First, we estimate ∥I1(t)∥. We define λmin as the complex λ ∈ C such that Im(λ) > 0, and |λα
min−ω| =

dist(L, ω), where L in the line passing by ( 1
tα , 0) and the intersection of Γ1 and Γ2. For λ ∈ Γ1 and ω < 0

we have that

cos(θ) = sin
(π
2
− θ
)
=

|λα
min − ω|
|ω|+ 1

tα

≤ |λα − ω|
|ω|+ 1

tα

.

Therefore, if λ ∈ Γ1 then

1

|λα − ω|
≤ tα

cos(θ)(1 + |ω|tα)
.

Hence,

∥I1(t)∥ ≤ K

2π

tα

cos(θ)(1 + tα|ω|)

∫
γ1

|eλt||λ|α−β |dλ|

≤ K

π

tα

cos(θ)(1 + tα|ω|)

∫ ∞

0

e−t sin(θ)ss(α−β)ds

=
K

π

tα

cos(θ)(1 + tα|ω|)
Γ(α− β + 1)

sin(θ)α−β+1tα−β+1

≤ M1t
β−1

1 + tα|ω|
.

Next, we estimate ∥I2(t)∥. Let zt be the intersection point between the boundary of 1
tα + Σθ and

ω +Σϕ. We notice that for all λ ∈ Γ2, we have (by using the law of sines)

|zt − ω| =
|ω|+ 1

tα

sin(θ − ϕ)
cos(θ), t > 0.

Hence, if λ ∈ Γ2, then

1

|λα − ω|
≤ sin(θ − ϕ)

cos(θ) cos(ϕ)

tα

(1 + |ω|tα)
.
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Therefore, there exists a constant C > 0 (depending only on θ and ϕ) such that

∥I2(t)∥ ≤ KC

2π

tα

(1 + tα|ω|)

∫
γ2

|eλt||λ|α−β |dλ|

≤ KC

π

tα

(1 + tα|ω|)

∫ ∞

0

e−t sin(ϕ)ss(α−β)ds

=
K

π

tα

(1 + tα|ω|)
Γ(α− β + 1)

sin(ϕ)α−β+1tα−β+1

≤ M2t
β−1

1 + tα|ω|
.

Therefore, there exists a constant M depending only on α and β such that

∥SE
α,β(t)∥ ≤ ∥I1(t)∥+ ∥I2(t)∥ ≤ Mtβ−1

1 + |ω|tα
, t > 0.

�

3. Bounded mild solutions on the real line

In this section, we study the existence of mild solutions to a Sobolev type fractional differential
equations defined on the real line. We recall that for a given function g : R → X, the Weyl fractional
integral of order α > 0 is defined by

∂−α
t g(t) :=

1

Γ(α)

∫ t

−∞
(t− s)α−1g(s)ds, t ∈ R,

when this integral is convergent. The Weyl fractional derivatives ∂αg of order α > 0 is defined by

∂α
t g(t) :=

dn

dtn
∂
−(n−α)
t g(t), t ∈ R,

where n = [α] + 1, and [α] denotes the integer part of α. It is known that ∂α
t ∂

−α
t g = g for any α > 0, and

∂n
t = dn

dtn holds with n ∈ N. See [34] for further details.
Now, we recall some definitions of some subspaces of continuous functions. The Banach space of all

bounded and continuous functions is defined by BC(X) := {f : R → X : ∥f∥∞ := supt∈R ∥f(t)∥ < ∞}.
On the other hand, PT (X) := {f ∈ BC(X) : f(t + T ) = f(t), for all t ∈ R} defines the space of all
vector-valued T−periodic functions.

By AP (X) we denote the space of all almost periodic functions, which consists of all f ∈ BC(X) such
that for every ε > 0 there exists l > 0 such that for every subinterval of R of length l contains at least
one point τ such that ∥f(t+ τ)− f(t)∥∞ ≤ ε. A function f ∈ BC(X) is said to be almost automorphic
if for every sequence of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N ⊂ (s′n)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and
f(t) = lim

n→∞
g(t− sn), for each t ∈ R.

This Banach space is denoted by AA(X).
Next, we consider the set C0(X) := {f ∈ BC(X) : lim|t|→∞ ||f(t)|| = 0}, and define the space of

asymptotically periodic functions as APT (X) := PT (X)⊕C0(X). Analogously, the space of asymptotically
almost periodic functions is defined by,

AAP (X) := AP (X)⊕ C0(X),

and the space of asymptotically almost automorphic functions,

AAA(X) := AA(X)⊕ C0(X).
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For more details on this function spaces, we refer to reader to [31, 35].
Throughout, we will use the notation N (X) to denote any of the above spaces. Finally, for a Banach

space Y, we define the set N (R × X;Y ) which consists of all functions f : R × X → Y such that
f(·, x) ∈ N (Y ) uniformly for each x ∈ B, where B is any bounded subset of X.

Now, we consider the following Sobolev type linear fractional differential equation

(3.7) ∂α
t (Eu)(t) = Au(t) + ∂α−β

t (Ef)(t), t ∈ R.

This equation, in case β = 1 and E = I (the identity operator) has been widely studied in the last
years, see for instance [2, 9, 10, 11, 42] and references therein.

Assume that (A,E) is the generator of an (α, β)-resolvent family {SE
α,β(t)}t≥0 which is uniformly

integrable, which means that ∫ ∞

0

∥SE
α,β(t)∥dt < ∞.

Given f ∈ N (X), let Φ(t) be the function defined by

(3.8) Φ(t) :=

∫ t

−∞
SE
α,β(t− s)f(s)ds, t ∈ R.

If f(t) ∈ D(E) for all t ∈ R, then Φ(t) ∈ D(E) for all t ∈ R (see [4, Proposition 1.1.7]). Since {SE
α,β(t)}t≥0

is uniformly integrable, we get Φ ∈ N ([D(E)]) by [31, Theorem 3.3]. Take n = [α] + 1 and assume the
existence of ∂α

t (EΦ). From the Fubini’s theorem we get

∂α
t (EΦ)(t) =

dn

dtn

∫ t

−∞
gn−α(t− s)EΦ(s)ds

=
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
ESE

α,β(s− r)f(r)drds

=
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

[
gβ(s− r)Ef(r) +A(gα ∗ SE

α,β)(s− r)f(r)

]
drds

=
dn

dtn

∫ t

−∞
gn−α(t− s)∂−βEf(s)ds+

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
A

∫ s−r

0

gα(s− r − v)SE
α,β(v)f(r)dvdrds

= ∂α−β
t (Ef)(t) +

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
A

∫ s

r

gα(s− w)SE
α,β(w − r)f(r)dwdrds

= ∂α−β
t (Ef)(t) +

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
A

∫ w

−∞
gα(s− w)SE

α,β(w − r)f(r)drdwds

= ∂α−β
t (Ef)(t) +

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
gα(s− w)AΦ(w)dwds

= ∂α−β
t (Ef)(t) +AΦ(t),

for all t ∈ R, which means that Φ is a (strong) solution to equation (3.7).
In general, we only have Φ(t) ∈ X or that ∂α

t (EΦ) does not exists. We introduce the following
definition of solution.

Definition 3.6. Let α, β > 0. Assume that (A,E) generates an (α, β)-resolvent family {SE
α,β(t)}t≥0.

A continuous function u ∈ C(R, X) is called a mild solution to equation (3.7) if the function s 7→
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SE
α,β(t− s)f(s) is integrable on (−∞, t) for each t ∈ R and

u(t) =

∫ t

−∞
SE
α,β(t− s)f(s)ds, t ∈ R.

Lemma 3.7. If 1 ≤ β < α < 2 and (A,E) is an ω-sectorial operator of angle 0 ≤ ϕ < (α − 1)π2 , where

ω < 0, then {SE
α,β(t)}t≥0 is uniformly integrable.

Proof. The condition 1 ≤ β < α < 2 implies α− β + 1 > 0 and by using the estimate (2.5) we have∫ ∞

0

∥SE
α,β(t)∥dt ≤ M

∫ ∞

0

tβ−1

1 + |ω|tα
dt = M

(
1
|ω|
)β−1/α

α|ω|1/α

∫ ∞

0

u(β−α)/α

1 + u
du =

M

α|ω|β/α
B

(
β

α
, 1− β

α

)
,

where B(·, ·) denotes the Beta function. Since that β
α > 0 and 1− β

α > 0, then we have the claim. �

The next result gives conditions on operators A and E to ensure the existence of bounded mild solutions
to the linear equation (3.7).

Theorem 3.8. Let 1 ≤ β < α < 2 and assume that (A,E) is an ω-sectorial operator of angle 0 ≤
ϕ < (α − 1)π2 , where ω < 0. If f ∈ N ([D(E)]), then the equation (3.7) has a unique mild solution
u ∈ N ([D(E)]).

Proof. By Theorem 2.3, the pair (A,E) generates an (α, β)-resolvent {SE
α,β(t)}t≥0, which is uniformly

integrable by Lemma 3.7. Next, if f ∈ N ([D(E)]), then u given by u(t) :=
∫ t

−∞ SE
α,β(t− s)f(s)ds is well

defined and by [31, Theorem 3.3], the function u belongs to N ([D(E)]), and therefore u defines a mild
solution of (3.7). The uniqueness it is easy to prove. �

Now, we consider the semilinear differential equation

(3.9) ∂α
t (Eu)(t) = Au(t) + ∂α−β

t Ef(t, u(t)), t ∈ R,

where α, β > 0, (A,E) is the generator of an (α, β)-resolvent family. We define the concept of mild
solution to equation (3.9) as follows.

Definition 3.9. Let α, β > 0. Assume that (A,E) generates an (α, β)-resolvent family {SE
α,β(t)}t≥0. A

function u ∈ C(R, X) is called a mild solution to equation (3.9) if the function s 7→ SE
α,β(t− s)f(s, u(s))

is integrable on (−∞, t) for each t ∈ R and

u(t) =

∫ t

−∞
SE
α,β(t− s)f(s, u(s))ds, t ∈ R.

The following is the main result in this section.

Theorem 3.10. Let 1 ≤ β < α < 2 and assume that (A,E) is an ω-sectorial operator of angle 0 ≤ ϕ <
(α− 1)π2 , where ω < 0. If f ∈ N (R×X, [D(E)]) satisfies

(3.10) ||f(t, x)− f(t, y)|| ≤ L||x− y||, for all t ∈ R, and x, y ∈ X,

where L < α
M |ω|β/αB

(
β
α , 1−

β
α

)−1

, and M is the constant given in Theorem 2.5, and B(·, ·) denotes

the Beta function, then the equation (3.9) has a unique mild solution u ∈ N ([D(E)]).

Proof. Define the operator F : N ([D(E)]) → N ([D(E)]) by

(3.11) (FΦ)(t) :=

∫ t

−∞
SE
α,β(t− s)f(s,Φ(s)) ds, t ∈ R.
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By the composition Theorem [31, Theorem 4.1], the function s 7→ f(s,Φ(s)) belongs to N ([D(E)]) and
by Lemma 3.7 and [31, Theorems 3.3], FΦ ∈ N ([D(E)]), which means that F is well defined. For
Φ1,Φ2 ∈ N ([D(E)]) and t ∈ R, we have:

||(FΦ1)(t)− (FΦ2)(t)|| ≤
∫ t

−∞
||SE

α,β(t− s)[f(s,Φ1(s))− f(s,Φ2(s))]||ds

≤
∫ t

−∞
L∥SE

α,β(t− s)∥ · ∥Φ1(s)− Φ2(s)∥ds

≤ L∥Φ1 − Φ2∥∞
∫ ∞

0

∥SE
α,β(r)∥dr

≤ LM

α
|ω|−β/αB

(
β

α
, 1− β

α

)
∥Φ1 − Φ2∥∞.

This proves that F is a contraction, and thus by the Banach fixed point theorem there exists a unique
u ∈ N ([D(E)]) such that Fu = u. �

Theorem 3.11. Let 1 ≤ β < α < 2 and assume that (A,E) is an ω-sectorial operator of angle 0 ≤ ϕ <
(α− 1)π2 , where ω < 0. If f ∈ N (R×X, [D(E)]) satisfies

(3.12) ||f(t, x)− f(t, y)|| ≤ L(t)∥x− y∥, for all t ∈ R, and x, y ∈ X,

where L ∈ L1(R). Then the equation (3.9) has a unique mild solution u ∈ N ([D(E)]).

Proof. Notice that if t ≥ 1, then ∥SE
α,β(t)∥ ≤ M

|ω|
1

tα−β+1 ≤ M
|ω| , and if 0 ≤ t ≤ 1, then ∥SE

α,β(t)∥ ≤
M

1+|ω|tα ≤ M. Therefore, ∥SE
α,β(t)∥ ≤ N, where N = max{M, M

|ω|}.
Define the operator F as in (3.11). For Φ1,Φ2 ∈ N ([D(E)]) and t ∈ R we have:

∥(FΦ1)(t)− (FΦ2)(t)∥ ≤
∫ t

−∞
∥SE

α,β(t− s)[f(s,Φ1(s))− f(s,Φ2(s))]∥ds

≤ N∥Φ1 − Φ2∥∞
∫ ∞

0

L(t− τ)dτ

= N∥Φ1 − Φ2∥∞
∫ t

−∞
L(s)ds.

In general we get

∥(FnΦ1)(t)− (FnΦ2)(t)∥ ≤ ∥Φ1 − Φ2∥∞
Nn

(n− 1)!

(∫ t

−∞
L(s)

(∫ s

−∞
L(τ)dτ

)n−1

ds

)

≤ ∥Φ1 − Φ2∥∞
Nn

n!

(∫ t

−∞
L(s)ds

)n

≤ ∥Φ1 − Φ2∥∞
(∥L∥1N)n

n!
.

Hence, since (∥L∥1N)n

n! < 1 for n sufficiently large, by the contraction principle F has a unique fixed point
u ∈ N ([D(E)]). �

4. An Example

We consider the following problem

∂α
t (m(x)u) = ∆u+ ∂α−β

t (m(x)f(t, x)), in R× Ω(4.13)

u = 0, in R× ∂Ω,(4.14)
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where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, m(x) ≥ 0 is a given measurable
bounded function on Ω and f is a function on R×Ω. We notice that if m(x) = 0 over a non empty subset
of Ω, then the inverse of the multiplication operator E defined by Eu(t, x) := m(x)u(t, x) is unbounded.

We consider this problem in the space X = H−1(Ω). By [7, p.38] there exists a constant C > 0 such
that

∥(Ez −∆)−1E∥ ≤ C

1 + |z|
,

for all Re(z) ≥ −c(1 + |Im(z)|), where c is a positive constant. Take ω = −c < 0. Observe that
|z − ω| ≤ |z|+ c ≤ K(|z|+ 1) for a positive constant K ∈ N. Hence, if Re(z) ≥ −c(1 + |Im(z)|), then

∥(Ez −∆)−1E∥ ≤ C

1 + |z|
≤ KC

|z − ω|
.

Observe that Re(z) ≥ −c(1 + |Im(z)|) represents the right hand side sector of the complex plane

bounded by γ1(t) = −c− tei arctan(
1
c ) and γ2(t) = −c− te−i arctan( 1

c ), for all t ≥ 0. Therefore, the operator
A := ∆ is a (−c)-sectorial operator with respect to E of angle ϕ = arctan

(
1
c

)
.

If 2
π

(
arctan

(
1
c

)
+ π

2

)
< α < 2 and β ≥ 1 such that 1 ≤ β < α < 2, then by Theorem 2.3 the pair

(A,E) generates an (α, β)-resolvent family {SE
α,β(t)}t≥0 which satisfies (by Theorem 2.5 and Lemma 3.7)

that the function t 7→ SE
α,β(t) belongs to L1(R+, X).

Therefore, if f ∈ N (R × X,X) satisfies the condition (3.12), then the problem (4.13)-(4.14) has a
unique mild solution u ∈ N (X).

Now, if f(t, v)(s) = γb(t) sin(v(s)) for all v ∈ X and s, t ∈ R with b ∈ AA(R) and γ ∈ R. We notice
that t 7→ f(t, v) is almost automorphic in t for each v ∈ X. Moreover, for u, v ∈ X there exists a constant
D := D(Ω) (by the Poincaré’s inequality) such that

∥f(t, u)− f(t, v)∥2X ≤ D∥f(t, u)− f(t, v)∥2L2(Ω) ≤ Dγ2∥b∥2∞∥u− v∥2X .

If L :=
√
Dγ∥b∥∞, then we can choose γ ∈ R such that

L <
α

KC
|c|β/αB

(
β

α
, 1− β

α

)−1

,

and then the problem (4.13)-(4.14) has a unique mild solution u ∈ AA(X).
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