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Abstract

In this paper, we consider mild solutions to fractional differential inclusions with
nonlocal initial conditions. The main results are proved under conditions that: (i) the
multivalued term takes convex values with compactness of resolvent family of opera-
tors; (ii) the multivalued term takes nonconvex values with compactness of resolvent
family of operators; and (iii) the multivalued term takes nonconvex values without
compactness of resolvent family of operators, respectively.
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1 Introduction

A differential inclusion is a generalization of the notion of an ordinary differential
equation, which is often used to deal with differential equations with a discontinuous
right-hand side or an inaccurately known right-hand side [14, 32]. Differential inclusions
are also closely related to control theory, for instance, consider the control problem

x′ = f(x, u), u ∈ U,

where u is known as a control parameter. It finds that the above control system and the
following differential inclusion

x′ ∈ f(x, U) =
⋃
u∈U

f(x, u)
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has the same trajectories. If the set of controls depends upon the state x, i.e. U = U(x),
then we can obtain the following differential inclusion

x′ ∈ F (x, U(x)).

The above mentioned equivalence between a control system and the corresponding differ-
ential inclusion plays a key role in proving existence theorems in optimal control theory.
Differential inclusion has found its wide applications to models arising in economics, so-
ciology, and bio-ecology et al, and thus it has been considerably investigated by lots of
scholars in last decades, see for instance [7, 8, 16, 18, 20, 22, 32] and references therein.

The concept of nonlocal initial condition has been introduced to extend the study of
classical initial-valued problems. As indicated in [13], this notion can be more natural and
more precise in describing nature phenomena than the classical notion since some addition-
al information is taken into account. Nonlocal initial conditions for abstract differential
inclusions, we can refer to [8, 18, 19, 25] and references therein.

The concept of fractional calculus appeared for the first time in a famous correspon-
dence between G. A. de L’Hôspital and G.W. Leibniz, in 1695 (see Preface in [39]). After
that, mangy mathematicians have devoted to further develop this theory. Fractional calcu-
lus can be seen a generalization of the ordinary differentiation and integration to arbitrary
non-integer order, and has been recognized as one of the most powerful tools to describe
long-memory processes in the last decades. Many phenomena from physics, chemistry, me-
chanics, electricity et al can been modelled by ordinary and partial differential equations
involving fractional derivatives, we refer to [2, 3, 4, 15, 24, 30, 35, 38, 39] and references
therein for more details. We also note that fractional differential inclusions have also been
increasingly concerned, for instance [5, 6, 10, 12, 21, 23, 26, 29, 28, 31, 33, 36, 34, 37].

Very recently, some new properties on the compactness of resolvent family of operators
related to fractional differential equations have been established in [27]. This new charac-
terization of compactness of resolvent family of operators provides a new way to consider
mild solutions of abstract fractional differential equations.

Let (X, ‖ · ‖) be a real Banach space and A be a closed and linear operator defined
in Banach space X. Let P(X) = {Y ⊆ X : Y 6= ∅}. The notation L1(J,X) = {v : J →
X|v is Bochner integrable} on a compact interval J of R. In this paper, we consider the
following abstract fractional differential inclusions with nonlocal initial conditions such as

Dα
t x(t) ∈ Ax(t) + J1−α

t F (t, x(t)), t ∈ J := [0, b] (1.1)

x(0) = x0 + p(x), (1.2)

where 0 < α < 1, Jβt v(t) =
∫ t

0 Gβ(t− s)v(s)ds for v ∈ L1(J,X), Gβ(t) = tβ−1

Γ(β) for β > 0, t >

0, and Γ(·) stands for the Gamma function, and

Dα
t x(t) ∈ Ax(t) + F (t, x(t)), t ∈ J (1.3)

x(0) = x0 + p(x), x′(0) = x1 + q(x) (1.4)

where 1 < α < 2, Dα
t is understood in Caputo sense, x0, x1 ∈ X, F : J × X → P(X), p, q

are suitable continuous functions specified later.
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We shall establish existence results of mild solutions to the above problems (1.1)-(1.2)
and (1.3)-(1.4) under different cases: (i) the multivalued term F takes convex values with
compactness of resolvent family of operators; (ii) the multivalued term F takes nonconvex
values with compactness of resolvent family of operators; and (iii) the multivalued term F
has nonconvex values without compactness of resolvent family of operators, respectively.

The rest of this paper is organized as follows. Section 2 is involved in Preliminaries.
Section 3 is devoted to investigate mild solutions to the problems (1.1)-(1.2) and (1.3)-
(1.4), respectively. And Section 4 is Conclusions.

2 Preliminaries

Let (X, ‖ · ‖) be a Banach space. Denote Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) =
{Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact}, and Pcv(X) = {Y ∈ P(X) :
Y convex}. We also denote by L(X) the space of bounded linear operators from X into X.

A multivalued map G : X→ P(X) has convex (closed) values if G(x) is convex (closed)
for all x ∈ X. G is bounded on bounded sets if G(B) =

⋃
x∈B G(x) is bounded in X for

all B ∈ Pb(X), i.e. supx∈B {sup {‖y‖ : y ∈ G(x)}} <∞.
The multivalued map G : X→ P(X) is called upper semicontinuous (u.s.c.) on X if for

each x0 ∈ X, the set G(x0) is a nonempty, closed subset of X, and if for each open set N of
X containing G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N. G
is called lower semi-continuous (l.s.c.) if the set {x ∈ X : G(x)

⋂
A } is open for any open

subset A ⊆ X. Also, G is said to be completely continuous if G(B) is relatively compact
for every B ∈ Pb(X). G has a fixed point if there exists x ∈ X such that x ∈ G(x).

If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph, i.e.,

xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

The upper semicontinuous multivalued map G is said to be condensing if for any
B ∈ Pb(X) with ν(B) 6= 0, we have ν(G(B)) < ν(B), where ν denotes the Kuratowski
measure of noncompactness.

Definition 2.1 The multivalued map G : J ×X→ P(X) is said to be L1-Carathéodory if
(i) t 7→ G(t, x) is measurable for each x ∈ X;
(ii) u 7→ G(t, x) is u.s.c on X for almost all t ∈ J ;
(iii) For each r > 0, there exists ϕr ∈ L1(J,R+) such that

‖G(t, x)‖P(X) := sup {‖v‖ : v ∈ G(t, x)} ≤ ϕr(t),

for all ‖x‖ ≤ r and for a.e. t ∈ J .

Lemma 2.1 Let X be a Banach space. Let G : J×X→ Pcp,cv(X) be an L1-Carathéodory
multivalued map with

SG,x =
{
f ∈ L1(J,X) : f(t) ∈ G(t, x(t)), for a.e. t ∈ J

}
6= ∅,
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and let Γ be a linear continuous mapping from L1(J,X) to C(J,X), then the operator

Γ ◦ SG : C(J,X)→ Pcp,cv(C(J,X)), x 7→ (Γ ◦ SG)(x) := Γ(SG,x)

is a closed graph operator in C(J,X)× C(J,X).

Let A be a subset of J × B. A is L × B measurable if A belongs to the σ-algebra
generated by all sets of the form N × D, where N is Lebesgue measurable in J and D
is Borel measurable in B. A subset A of L1(J,X) is decomposable if, for all u, v ∈ A
and all measurable subsets N of J , the function uχN + vχJ−N ∈ A, where χ denotes the
characteristic function.

Let F : J × X→ Pcp(X). Assign to F the multivalued operator

F : C(J,X)→ P(L1(J,X))

by letting

F(x) = SF,x = {v ∈ L1(J,X) : v(t) ∈ F (t, x(t)) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated to F .

Definition 2.2 [8] Let Y be a separable metric space and let N : Y → P(L1(J,X)) be a
multivalued operator. We say that N has property (BC) if
(1) N is lower semicontinuous (l.s.c.);
(2) N has nonempty closed and decomposable values.

Definition 2.3 [8] Let F : J × X → Pcp(X). F is called to be of lower semicontinuous
type (l.s.c. type) if its associated Niemytzki operator F is l.s.c. and has nonempty closed
and decomposable values.

Lemma 2.2 [11] Let Y be a separable metric space and let N : Y → P(L1(J,X)) be
a multivalued operator with property (BC). Then N has a continuous selection, that is,
there exists a continuous function (single-valued) f : Y→ L1(J,X) such that f(x) ∈ N(x)
for every x ∈ Y.

Let (X, d) be a metric space induced by the normed space (X, ‖ · ‖). Let Hd : P(X)×
P(X)→ R+

⋃
{∞} be defined as

Hd(C,D) = max

{
sup
c∈C

d(c,D), sup
d∈D

d(C, d)

}
,

where d(c,D) = infd∈D d(c, d), d(C, d) = infc∈C d(c, d). Then (Pb,cl(X), Hd) is a metric
space and (Pcl(X), Hd) is a generalized (complete) metric space.

Definition 2.4 [8] A multivalued operator G : X→ Pcl(X) is called
(i) γ-Lipschitz if there exists γ > 0 such that

Hd(G(x), G(y)) ≤ γd(x, y), for each x, y ∈ X;

(ii) a contraction if it is γ-Lipschitz with γ < 1.
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For more detailed results on multivalued maps and differential inclusions, we refer to
[8, 14, 20, 22, 32]. We now give some important properties of resolvent family of operators.

Definition 2.5 [39] Let α > 0. The α-order Caputo fractional derivative of v is defined
as

Dα
t v(t) :=

∫ t

0
Gm−α(t− s)v(m)(s)ds,

where m = dαe.

Definition 2.6 [27] Let A be a closed and linear operator with domain D(A) defined
on a Banach space X and α > 0. We call A the generator of an (α, 1)-resolvent family
if there exists ω ≥ 0 and a strongly continuous function Sα : R+ → L(X) such that
{λα : Reλ > ω} ⊆ ρ(A) and

λα−1 (λα −A)−1 x =

∫ ∞
0

e−λtSα(t)xdt, Reλ > ω, x ∈ X.

In this case, the family {Sα(t)}t≥0 is called an (α, 1)-resolvent family generated by A.

Definition 2.7 [27] Let A be a closed and linear operator with domain D(A) defined on
a Banach space X and 1 ≤ α ≤ 2. We say that A is the generator of an (α, α)-resolvent
family if there exist ω ≥ 0 and a strongly continuous function Rα : R+ → L(X) such that
{λα : Reλ > ω} ⊆ ρ(A) and

(λα −A)−1 x =

∫ ∞
0

e−λtRα(t)xdt, Reλ > ω, x ∈ X.

In this case, the family {Rα(t)}t≥0 is called an (α, α)-resolvent family generated by A.

Recall that a strongly continuous family {T (t)}t≥0 ⊆ L(X) is said to be of type (M,ω) if
there exist constants M > 0 and ω ∈ R, such that ‖T (t)‖ ≤Meωt for all t ≥ 0.

Lemma 2.3 [27, Theorem 3.1] Let 0 < α ≤ 1 and {Sα(t)}t≥0 be an (α, 1)-resolvent family
of type (M,ω) generated by A. Suppose that Sα(t) is continuous in the uniform operator
topology for all t > 0. Then the following assertions are equivalent
(i) Sα(t) is a compact operator for all t > 0.

(ii) (µ−A)−1 is a compact operator for all µ > ω
1
α .

Lemma 2.4 [27, Theorem 3.5] Let 1 < α ≤ 2 and A be the generator of an (α, 1)-resolvent
family {Sα(t)}t≥0 of type (M,ω). Then A generates an (α, α)-resolvent family {Rα(t)}t≥0

of type
(

M
α−1 , ω

)
and the following assertions are equivalent

(i) Rα(t) is a compact operator for all t > 0.

(ii) (µ−A)−1 is a compact operator for all µ > ω
1
α .

Next, we list some well-known fixed point theorems.
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Lemma 2.5 [14] Let Ξ be a bounded, convex and closed subsets of a Banach space X
and let Υ : Ξ→ Ξ be a condensing map. Then, Υ has a fixed point in Ξ.

Lemma 2.6 [14] Let Ξ be a bounded and convex set in Banach space X. Υ : Ξ→ P(Ξ)
is an u.s.c., condensing multivalued map. If for every x ∈ Ξ, Υ(x) is a closed and convex
set in Ξ, then Υ has a fixed point in Ξ.

Lemma 2.7 (see [8, Theorem 1.11]) Let (X, d) be a metric space. If G : X→ Pcl(X) is a
contraction, then Fix(G) 6= ∅, where Fix(G) denotes the fixed point set of G.

3 Mild solutions to fractional differential inclusions

In this section, we shall investigate some existence results for mild solutions to the
equation (1.1)-(1.2) and the equation (1.3)-(1.4). We shall prove our main results under
conditions that: (i) the multivalued term takes convex values with compactness of resolvent
family of operators; (ii) the multivalued term takes nonconvex values with compactness
of resolvent family of operators; and (iii) the multivalued term takes nonconvex values
without compactness of resolvent family of operators, respectively.

For the problem (1.1)-(1.2), according to [27], we have the following definition.

Definition 3.1 Let A be the generator of an (α, 1)-resolvent family Sα(t), the mild solu-
tions of the problem (1.1)-(1.2) is defined as following

x(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)v(s)ds, v ∈ SF,x, t ∈ J.

We list the following assumptions:
(A1) A generates an (α, 1)-resolvent family {Sα(t)}t≥0 of type (M,ω). (λα −A)−1 is
compact for all λ > ω, and Sα(t) is continuous in the uniform operator topology for all
t > 0.
(A2) F : J × X→ Pcp,cv(X) satisfies the following conditions:
(a) For a.e. t ∈ J , F (t, ·) is u.s.c, and for each x ∈ X, F (·, x) is measurable. And for each
x ∈ C(J,X), SF,x is nonempty;
(b) There exists a function φ ∈ L1(J,R+) such that

‖F (t, x)‖P ≤ φ(t)‖x‖, ∀t ∈ J, x ∈ X.

(A3) p : C(J,X)→ C(J,X) is continuous and there exists Lp > 0 such that

‖p(x)− p(y)‖ < Lp‖x− y‖, ∀x, y ∈ C(J,X).

Remark 3.1 (i) Of concern useful criteria for the continuity of Sα(t) in the uniform
operator topology, one can refer to the work [17]. For instance, this property holds true
for the class of analytic resolvent.
(ii) According to Lemma 2.3, the condition (A1) implies Sα(t) is compact for all t > 0.



Fractional differential inclusions with nonlocal initial conditions 7

Theorem 3.1 If conditions (A1)-(A3) hold, then the problem (1.1)-(1.2) admits at least
one mild solution on J provided that

M̃(Lp + ‖φ‖L1) < 1, (3.1)

where M̃ = max{M,Meωb}.

Proof: Consider the operator N : C(J,X)→ P(C(J,X)) defined by

N(x) =

{
h ∈ C(J,X) : h(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)v(s)ds, t ∈ J

}
,

where v ∈ SF,x. Clearly, the fixed points of N are mild solutions to (1.1)-(1.2). We shall
show that N satisfies all the hypothesis of Lemma 2.6. The proof will be given in several
steps.

Step 1. There exists a positive number r such that N(Br) ⊆ Br, where Br = {x ∈
C(J,X) : ‖x‖∞ ≤ r}. If it is not true, then for each positive number r, there exists a
function xr such that hr ∈ N(xr) but ‖hr(t)‖ > r for some t ∈ J ,

hr(t) = Sα(t)[x0 + p(xr)] +

∫ t

0
Sα(t− s)vr(s)ds,

where vr ∈ SF,xr . However, on the other hand, we have

r <

∥∥∥∥Sα(t)[x0 + p(xr)] +

∫ t

0
Sα(t− s)vr(s)ds

∥∥∥∥
≤ M̃(‖x0‖+ ‖p(xr)‖) + M̃

∫ t

0
|φ(s)|‖x‖ds

≤ M̃‖x0‖+ M̃(Lp‖xr‖+ ‖p(0)‖) + M̃‖φ‖L1r

≤ M̃(x0 + ‖p(0)‖) + M̃(Lp + ‖φ‖L1)r.

Dividing both sides by r and and taking the lower limit as r →∞, we obtain

1 ≤ M̃(Lp + ‖φ‖L1),

which contradicts the relation (3.1).
Step 2. N(x) is convex for each x ∈ C(J,X).
Indeed, if h1, h2 ∈ N(x), then there exist v1, v2 ∈ SF,x such that for each t ∈ J , we

have

hi(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)vi(s)ds, i = 1, 2.

Let θ ∈ (0, 1). Then for each t ∈ J , we have

(θh1 + (1− θ)h2)(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)[θv1(s) + (1− θ)v2(s)]ds.

Because SF,x is convex (since F has convex values), θh1 + (1− θ)h2 ∈ N(x).
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Step 3. N(x) is closed for each x ∈ C(J,X).
Let{hn}n≥0 ∈ N(x) such that hn → h in C(J,X). Then h ∈ C(J,X) and there exist

{vn} ∈ SF,x such that for each t ∈ J

hn(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)vn(s)ds.

Due to the fact that F has compact values, we may pass to a subsequence if necessary to
get that vn converges to v in L1(J,X) and hence v ∈ SF,x. Then for each t ∈ J ,

hn(t)→ h(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)v(s)ds.

Thus, h ∈ N(x).
Step 4. N is u.s.c. and condensing.
Now, we decompose N as N1+N2 as

(N1x)(t) = Sα(t)[x0 + p(x)]

N2(x) =

{
m ∈ C(J,X) : m(t) =

∫ t

0
Sα(t− s)v(s)ds, t ∈ J

}
.

We only need to prove that N1 is a contraction and N2 is completely continuous.
To show that N1 is a contraction, for arbitrary x1, x2 ∈ Br and each t ∈ J , we have

from (A3)

‖N1(x1)(t)−N1(x2)(t)‖ = ‖Sα(t)[p(x1)− p(x2)]‖ ≤ M̃Lp‖x1 − x2‖∞,

Thus
‖N1(x1)−N1(x2)‖∞ ≤ M̃Lp‖x1 − x2‖∞.

From the relation (3.1), we conclude that N1 is a contraction.
Next, we show that N2 is u.s.c. and condensing.
(i) N2(Br) is obviously bounded.
(ii) N2(Br) is equicontinuous.
Indeed, Let x ∈ Br, m ∈ N2(x) and take t1, t2 ∈ J with t2 < t1. Then there exists a

selection v ∈ SF,x such that

m(t) =

∫ t

0
Sα(t− s)v(s)ds, t ∈ J.

Then

‖m(t1)−m(t2)‖ ≤
∫ t1

t2

‖Sα(t1 − s)v(s)‖ds

+

∫ t2

0
‖[Sα(t1 − s)− Sα(t2 − s)]v(s)‖ds

= I1 + I2.
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For the term I1, as t1 → t2, we have

I1 ≤
∫ t1

t2

M̃φ(s)‖x(s)‖ds ≤ M̃r

∫ t1

t2

φ(s)ds→ 0.

Next for the term I2, we have

I2 ≤
∫ t2

0
‖[Sα(t1 − s)− Sα(t2 − s)]‖‖v(s)‖ds

≤
∫ t2

0
‖[Sα(t1 − s)− Sα(t2 − s)]‖φ(s)‖x(s)‖ds

≤ r

∫ t2

0
‖[Sα(t1 − s)− Sα(t2 − s)]‖φ(s)ds.

Now take into account that

‖[Sα(t1 − ·)− Sα(t2 − ·)]‖φ(s) ≤ 2M̃φ(s) ∈ L1(J,R+),

and Sα(t1 − s) − Sα(t2 − s) → 0 in L(X), as t1 → t2 (see (A1)). By the Lebesgue’s
dominated convergence theorem, I2 → 0 as t1 → t2.

(iii) V (t) = {m(t) : m(t) ∈ N2(Br)} is relatively compact in X.
For t = 0, the conclusion obviously holds. Let 0 < t ≤ b and ε be a real number

satisfying 0 < ε < t. For x ∈ Br and v ∈ SF,x such that

m(t) =

∫ t

0
Sα(t− s)v(s)ds, t ∈ J.

Define

mε(t) =

∫ t−ε

0
Sα(t− s)v(s)ds, t ∈ J.

In view of (A1) and Lemma 2.3, we have Sα(t) is compact for t > 0. Therefore, the
set K = {Sα(t − s)v(s), 0 ≤ s ≤ t − ε} is relatively compact. Then convK is compact.
Considering mε(t) ∈ tconvK for all t ∈ J , the set Vε(t) = {mε(t) : mε(t) ∈ N2(Br)} is
relatively compact in X for every ε, 0 < ε < t. Moreover, for m ∈ N(Br),

‖m(t)−mε(t)‖ ≤
∥∥∥∥∫ t

t−ε
Sα(t− s)v(s)ds

∥∥∥∥
≤ M̃r

∫ t

t−ε
φ(s)ds.

Therefore, let ε→ 0, we see that there are relatively compact sets arbitrarily close to the
set V (t) = {m(t) : m(t) ∈ N2(Br)}. Hence, the set V (t) = {m(t) : m(t) ∈ N2(Br)} is
relatively compact in X.

As a consequence of the above steps and the Arzela-Ascoli theorem, we can deduce
that N2 is completely continuous.

(iv) N2 has a closed graph.
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Let xn → x∗,mn ∈ N2(xn) and mn → m∗. We shall show that m∗ ∈ N2(x∗). Now
mn ∈ N2(xn) implies that there exists vn ∈ SF,xn such that

mn(t) =

∫ t

0
Sα(t− s)vn(s)ds, t ∈ J.

We must prove that there exists v∗ ∈ SF,x∗ such that

m∗(t) =

∫ t

0
Sα(t− s)v∗(s)ds, t ∈ J.

Consider the linear continuous operator defined by

Γ : L1(J,X)→ C(J,X)), v 7→ (Γv)(t) =

∫ t

0
Sα(t− s)v(s)ds.

From Lemma 2.1 it follows that Γ ◦ SF is a closed graph operator. Moreover, we have
mn(t) ∈ Γ(SF,xn).

Since xn → x∗ and mn → m∗, it follows again from Lemma 2.1 that m∗(t) ∈ Γ(SF,x∗).
That is, there must exists v∗ ∈ SF,x∗ such that

m∗(t) =

∫ t

0
Sα(t− s)v∗(s)ds, t ∈ J.

Therefore, N2 is u.s.c. On the other hand, N1 is a contraction, hence N = N1 + N2 is
u.s.c. and condensing. By the fixed point theorem Lemma 2.6, there exists a fixed point
x(·) for N on Br . Thus, the problem (1.1)-(1.2) admits a mild solution.

Replace the condition (A2)(b) by
(b′) There exist a constant τ ∈ (0, 1) and a function φ ∈ L1(J,R+) such that

‖F (t, x)‖P ≤ φ(t)(‖x‖)τ ,∀t ∈ J, x ∈ C(J,X).

From the above proof of Theorem 3.1, we can obtain the following result.

Corollary 3.1 If conditions (A1)-(A2)(a) and (A2)(b′)-(A3) hold, then the problem (1.1)-
(1.2) admits at least one mild solution on J provided that

M̃Lp < 1. (3.2)

For the problem (1.3)-(1.4). We first consider the following equation

Dα
t x(t) = Ax(t) + v(t), t ∈ J,
x(0) = x0, x

′(0) = x1,

where 1 < α < 2, v ∈ L1(J,X). By Laplace transform, we have

λαx̂(λ)− λα−1x(0)− λα−2x′(0) = Ax̂(λ) + v̂(λ).
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That is

x̂(λ) = λα−1 (λα −A)−1 x0 + λα−2 (λα −A)−1 x1 + (λα −A)−1 v̂(λ)

= Ŝα(λ)x0 + ̂(G1 ∗ Sα)(λ)x1 + ̂(Rα ∗ v)(λ).

Thus, we have

x(t) = Sα(t)x0 +

∫ t

0
Sα(θ)x1dθ +

∫ t

0
Rα(t− s)v(s)ds.

Now, we can give the following definition.

Definition 3.2 Let 1 < α < 2 and A be the generator of an (α, 1)-resolvent family
{Sα(t)}t≥0 of type (M,ω). Then A generates an (α, α)-resolvent family {Rα(t)}t≥0 of

type
(

M
α−1 , ω

)
and the mild solution of the problem (1.3)-(1.4) can be given as

x(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ +

∫ t

0
Rα(t− s)v(s)ds, v ∈ SF,x, t ∈ J.

Let us list the following basic assumptions:
(A4) Let 1 < α < 2 and A generates an (α, 1)-resolvent family {Sα(t)}t≥0 of type (M,ω).
(λα −A)−1 is compact for all λ > ω.
(A5) q : C(J,X)→ C(J,X) is continuous and there exists Lq > 0 such that

‖q(x)− q(y)‖ < Lq‖x− y‖, ∀x, y ∈ C(J,X).

Remark 3.2 If (A4) holds, according to Lemma 2.4, A generates an (α, α)-resolvent

family {Rα(t)}t≥0 of type
(

M
α−1 , ω

)
and Rα(t) is a compact operator for all t > 0. And

from the proof of [27, Theorem 3.5], Rα(t) is continuous in the uniform operator topology
for all t > 0.

Theorem 3.2 If conditions (A2)-(A5) hold, then the problem (1.3)-(1.4) admits at least
one mild solution on J provided that

M̃(Lp + bLq + ‖φ‖L1) < 1, (3.3)

where M̃ = max
{

M
α−1 ,

M
α−1e

ωb
}

.

Proof: Consider the operator N : C(J,X)→ P(C(J,X)) defined by

N(x) =

{
h ∈ C(J,X) : h(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ

+

∫ t

0
Rα(t− s)v(s)ds, t ∈ J

}
,
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where v ∈ SF,x. Clearly, the fixed points of N are mild solutions to (1.1)-(1.2). We shall
show that N satisfies all the hypothesis of Lemma 2.6. The proof will be given in several
steps.

Step 1. There exists a positive number r such that N(Br) ⊆ Br, where Br = {x ∈
C(J,X) : ‖x‖∞ ≤ r}. If it is not true, then for each positive number r, there exists a
function xr such that hr ∈ N(xr) but ‖hr(t)‖ > r for some t ∈ J ,

hr(t) = Sα(t)[x0 + p(xr)] +

∫ t

0
Sα(θ)[x1 + q(xr)]dθ +

∫ t

0
Rα(t− s)vr(s)ds,

where vr ∈ SF,xr . However, on the other hand, we have

r <

∥∥∥∥Sα(t)[x0 + p(xr)] +

∫ t

0
Sα(θ)[x1 + q(xr)]dθ

∥∥∥∥+

∥∥∥∥∫ t

0
Rα(t− s)vr(s)ds

∥∥∥∥
≤ M̃(‖x0‖+ ‖p(xr)‖) + bM̃(‖x1‖+ ‖q(xr)‖) + M̃

∫ t

0
|φ(s)|‖x‖ds

≤ M̃‖x0‖+ M̃(Lp‖xr‖+ ‖p(0)‖) + bM̃‖x1‖+ bM̃(Lq‖xr‖+ ‖q(0)‖) + M̃‖φ‖L1r

≤ M̃(x0 + ‖p(0)‖+ b‖x1‖+ b‖q(0)‖) + M̃(Lp + bLq + ‖φ‖L1)r.

Dividing both sides by r and and taking the lower limit as r →∞, we obtain

1 ≤ M̃(Lp + bLq + ‖φ‖L1),

which contradicts the relation (3.3).

Step 2. N(x) is convex for each x ∈ C(J,X).

Indeed, if h1, h2 ∈ N(x), then there exist v1, v2 ∈ SF,x such that for each t ∈ J , we
have

hi(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ +

∫ t

0
Rα(t− s)vi(s)ds, i = 1, 2.

Let δ ∈ (0, 1). Then for each t ∈ J , we have

(δh1 + (1− δ)h2)(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ

+

∫ t

0
Rα(t− s)[δv1(s) + (1− δ)v2(s)]ds.

Because SF,x is convex (since F has convex values), δh1 + (1− δ)h2 ∈ N(x).

Step 3. N(x) is closed for each x ∈ C(J,X).

Let{hn}n≥0 ∈ N(x) such that hn → h in C(J,X). Then h ∈ C(J,X) and there exist
{vn} ∈ SF,x such that for each t ∈ J

hn(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ +

∫ t

0
Rα(t− s)vn(s)ds.
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Due to the fact that F has compact values, we may pass to a subsequence if necessary to
get that vn converges to v in L1(J,X) and hence v ∈ SF,x. Then for each t ∈ J ,

hn(t)→ h(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ +

∫ t

0
Rα(t− s)v(s)ds.

Thus, h ∈ N(x).
Step 4. N is u.s.c. and condensing.
Now, we decompose N as N1+N2 as

(N1x)(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ

N2(x) =

{
m ∈ C(J,X) : m(t) =

∫ t

0
Rα(t− s)v(s)ds, t ∈ J

}
.

We only need to prove that N1 is a contraction and N2 is completely continuous.
To show that N1 is a contraction, for arbitrary x1, x2 ∈ Br and each t ∈ J , we have

from (A3) and (A5)

‖N1(x1)(t)−N1(x2)(t)‖

≤ ‖Sα(t)[p(x1)− p(x2)]‖+

∥∥∥∥∫ t

0
Sα(θ)[q(x1)− q(x2)]dθ

∥∥∥∥
≤ M̃Lp‖x1 − x2‖∞ + bM̃Lq‖x1 − x2‖∞,

Thus
‖N1(x1)−N1(x2)‖∞ ≤ M̃(Lp + bLq)‖x1 − x2‖∞.

From the relation (3.3), we conclude that N1 is a contraction.
Next, we show that N2 is u.s.c. and condensing.
(i) N2(Br) is obviously bounded.
(ii) N2(Br) is equicontinuous.
Indeed, Let x ∈ Br, m ∈ N2(x) and take t1, t2 ∈ J with t2 < t1. Then there exists a

selection v ∈ SF,x such that

m(t) =

∫ t

0
Rα(t− s)v(s)ds, t ∈ J.

Then

‖m(t1)−m(t2)‖ ≤
∫ t1

t2

‖Rα(t1 − s)v(s)‖ds

+

∫ t2

0
‖[Rα(t1 − s)−Rα(t2 − s)]v(s)‖ds

= I1 + I2.

For the term I1, as t1 → t2, we have

I1 ≤
∫ t1

t2

M̃φ(s)‖x(s)‖ds ≤ M̃r

∫ t1

t2

φ(s)ds→ 0.
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Next for the term I2, we have

I2 ≤
∫ t2

0
‖[Rα(t1 − s)−Rα(t2 − s)]‖‖v(s)‖ds

≤
∫ t2

0
‖[Rα(t1 − s)−Rα(t2 − s)]‖φ(s)‖x(s)‖ds

≤ r

∫ t2

0
‖[Rα(t1 − s)−Rα(t2 − s)]‖φ(s)ds.

Now take into account that

‖[Rα(t1 − ·)−Rα(t2 − ·)]‖φ(s) ≤ 2M̃φ(s) ∈ L1(J,R+),

and Rα(t1 − s) − Rα(t2 − s) → 0 in L(X), as t1 → t2 (see (A4)). By the Lebesgue’s
dominated convergence theorem, I2 → 0 as t1 → t2.

(iii) V (t) = {m(t) : m(t) ∈ N2(Br)} is relatively compact in X.
For t = 0, the conclusion obviously holds. Let 0 < t ≤ b and ε be a real number

satisfying 0 < ε < t. For x ∈ Br and v ∈ SF,x such that

m(t) =

∫ t

0
Rα(t− s)v(s)ds, t ∈ J.

Define

mε(t) =

∫ t−ε

0
Rα(t− s)v(s)ds, t ∈ J.

In view of (A4) and Lemma 2.4, we have Rα(t) is compact for t > 0. Therefore, the
set K = {Rα(t − s)v(s), 0 ≤ s ≤ t − ε} is relatively compact. Then convK is compact.
Considering mε(t) ∈ tconvK for all t ∈ J , the set Vε(t) = {mε(t) : mε(t) ∈ N2(Br)} is
relatively compact in X for every ε, 0 < ε < t. Moreover, for m ∈ N(Br),

‖m(t)−mε(t)‖ ≤
∥∥∥∥∫ t

t−ε
Rα(t− s)v(s)ds

∥∥∥∥
≤ M̃r

∫ t

t−ε
φ(s)ds.

Therefore, let ε→ 0, we see that there are relatively compact sets arbitrarily close to the
set V (t) = {m(t) : m(t) ∈ N2(Br)}. Hence, the set V (t) = {m(t) : m(t) ∈ N2(Br)} is
relatively compact in X.

As a consequence of the above steps and the Arzela-Ascoli theorem, we can deduce
that N2 is completely continuous.

(iv) N2 has a closed graph.
Let xn → x∗,mn ∈ N2(xn) and mn → m∗. We shall show that m∗ ∈ N2(x∗). Now

mn ∈ N2(xn) implies that there exists vn ∈ SF,xn such that

mn(t) =

∫ t

0
Rα(t− s)vn(s)ds, t ∈ J.
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We must prove that there exists v∗ ∈ SF,x∗ such that

m∗(t) =

∫ t

0
Rα(t− s)v∗(s)ds, t ∈ J.

Consider the linear continuous operator defined by

Γ : L1(J,X)→ C(J,X)), v 7→ (Γv)(t) =

∫ t

0
Rα(t− s)v(s)ds.

From Lemma 2.1 it follows that Γ ◦ SF is a closed graph operator. Moreover, we have
mn(t) ∈ Γ(SF,xn).

Since xn → x∗ and mn → m∗, it follows again from Lemma 2.1 that m∗(t) ∈ Γ(SF,x∗).
That is, there must exist v∗ ∈ SF,x∗ such that

m∗(t) =

∫ t

0
Rα(t− s)v∗(s)ds, t ∈ J.

Therefore, N2 is u.s.c. On the other hand, N1 is a contraction, hence N = N1 + N2 is
u.s.c. and condensing. By the fixed point theorem Lemma 2.6, there exists a fixed point
x(·) for N on Br . Thus, the problem (1.1)-(1.2) admits a mild solution.

According to the above proof of Theorem 3.2, we can also have the following result.

Corollary 3.2 If conditions (A2)(a), (A2)(b′) and (A3)-(A5) hold, then the problem
(1.1)-(1.2) admits at least one mild solution on J provided that

M̃(Lp + bLq) < 1. (3.4)

Next we consider the problems (1.1)-(1.2) and (1.3)-(1.4) when the multivalued map
F takes nonconvex values with compactness of resolvent family of operators. Let X be a
separable Banach space X. We list the following condition:
(C1) F : J × X→ Pcp(X) satisfies
(I) (t, x) 7→ F (t, x) is L × B measurable;
(II) x 7→ F (t, x) is l.s.c for a.e. t ∈ J .

Theorem 3.3 Suppose hypotheses (A1), (A2)(b), (C1) and (A3) are satisfied. Then the
problem (1.1)-(1.2) admits at least one mild solution on J if the condition (3.1) holds.

Proof: Hypotheses (A2)(b) and (C1) imply that F is of l.s.c. type. In view of Lemma
2.2, there exists a continuous function f : C(J,X) → L1(J,X) such that f(x) ∈ F(x) for
all x ∈ C(J,X). Now consider the following equation

Dα
t x(t) = Ax(t) + J1−α

t f(x)(t), t ∈ J (3.5)

x(0) = x0 + p(x), (3.6)



16 Y.-K. Chang, R. Ponce, and X.-S Yang

Notice that if x ∈ C(J,X) is a solution of the problem (3.5)-(3.6), then x is also a solution
of the problem (1.1)-(1.2). Next, we transform the problem (3.5)-(3.6) into a fixed point
problem by defining N : C(J,X)→ C(J,X) as

N(x) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)f(x)(s)ds, t ∈ J.

We shall show that N satisfies all the hypothesis of Lemma 2.5. The proof will be given
in several steps.

Step 1. There exists a positive number r such that N(Br) ⊆ Br, where Br = {x ∈
C(J,X) : ‖x‖∞ ≤ r}.

This can be conducted similarly as Step 1. in the proof of Theorem 3.1.
We decompose N as N1+N2 as

N1(x)(t) = Sα(t)[x0 + p(x)]

N2(x)(t) =

∫ t

0
Sα(t− s)f(x)(s)ds.

Step 2. N2 is continuous on Br.
Let {xn} be a sequence such that xn → x in Br. Then

‖N2(xn)(t)−N2(x)(t)‖

≤
∫ t

0
‖Sα(t− s)‖‖f(xn)(s)− f(x)(s)‖ds

≤ M̃

∫ t

0
φ(s)[‖xn(s)‖+ ‖x(s)‖]ds

≤ 2rM̃

∫ t

0
φ(s)ds.

Note that φ ∈ L1(J,R+),
∫ t

0 ‖f(xn)(s) − f(x)(s)‖ds → 0, n → ∞ by the Lebesgue’s
Dominated Convergence Theorem. Hence, N2 is continuous.

Step 3. N is condensing.
Similarly conducted as the proof of Theorem 3.1, we can prove that N1 is a contraction

and N2 is completely continuous.
From the above three steps, we can complete the proof via Lemma 2.5.

Theorem 3.4 Suppose hypotheses (C1), (A2)(b) and (A3)-(A5) are satisfied. Then the
problem (1.3)-(1.4) admits at least one mild solution on J if the condition (3.3) holds.

Proof: Deduced as the proof of Theorem 3.3, we can transform the problem (1.3)-(1.4)
into a single-valued problem. We define N = N1 +N2 : C(J,X)→ C(J,X) as

N1(x)(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ

N2(x)(t) =

∫ t

0
Rα(t− s)f(x)(s)ds.
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Similarly conducted as the proof of Theorems 3.2 and 3.3, we can prove that N1 is a
contraction and N2 is completely continuous. Thus, Lemma 2.5 can be applied to complete
the proof.

Similarly, from proofs of Theorems 3.3 and 3.4, we have the following results.

Corollary 3.3 Suppose hypotheses (A1), (A2)(b′), (C1) and (A3) are satisfied. Then the
problem (1.1)-(1.2) admits at least one mild solution on J if the condition (3.2) holds.

Corollary 3.4 Suppose hypotheses (C1), (A2)(b′) and (A3)-(A5) are satisfied. Then the
problem (1.3)-(1.4) admits at least one mild solution on J if the condition (3.4) holds.

In the following, we give some results when the multivalued map F has nonconvex
values without compactness of resolvent family of operators. Let us list the following
assumptions:
(A6) F : J × X→ Pcp(X) satisfies the following conditions:
(1) F : J × X→ Pcp(X) : (·, x) 7→ F (·, x) is measurable for each x ∈ X;
(2) There exists a function l ∈ L1(J,R+) such that

Hd(F (t, x1), F (t, x2)) ≤ l(t)‖x1 − x2‖, for a.e. t ∈ J,∀x1, x2 ∈ X,
d(0, F (t, 0)) ≤ l(t), for a.e. t ∈ J.

Remark 3.3 [8] Owing to (A6)(1), for each x ∈ C(J,X), F has a measurable selection,
thus SF,x 6= ∅.

Theorem 3.5 Let A be the generator of an (α, 1)-resolvent family {Sα(t)}t≥0 of type
(M,ω). Assume that conditions (A3) and (A6) are satisfied, then the problem (1.1)-(1.2)
admits at least one mild solution on J provided that

M̃ (Lp + ‖l‖L1) < 1, (3.7)

where M̃ = max
{
M,Meωb

}
.

Proof: Transform the problem (1.1)-(1.2) into a fixed point problem. Let the multivalued
operator N : C(J,X)→ P(C(J,X)) be defined as in Theorem 3.1. We shall prove that N
admits at leas one fixed point. We divide the proof into two steps.

Step 1. For each x ∈ C(J,X), N(x) ∈ Pcl(C(J,X)).

This can be proved just as Step 3 in the proof of Theorem 3.1.

Step 2. For each x, x̃ ∈ C(J,X), there exists a constant 0 < γ < 1 such that
Hd(N(x), N(x̃)) ≤ γ‖x− x̃‖∞.

Let x, x̃ ∈ C(J,X) and h ∈ N(x). Then there exists v ∈ SF,x such that for each t ∈ J

h(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(t− s)v(s)ds.
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From (A6)(2), we have

Hd(F (t, x(t)), F (t, x̃(t))) ≤ l(t)‖x(t)− x̃(t)‖.

Thus there exists w ∈ SF,x̃ such that

‖v(t)− w(t)‖ ≤ l(t)‖x(t)− x̃(t)‖, t ∈ J.

Consider U : J → P(X) defined as

W (t) = {w ∈ X : ‖v(t)− w(t)‖ ≤ l(t)‖x(t)− x̃(t)‖}.

Because U(t) = W (t)
⋂
F (t, x̃) is measurable (see [9, Proposition III. 4]), there exists a

function ṽ(t), which is a measurable selection for U . Hence, ṽ(t) ∈ F (t, x̃(t)) and

‖v(t)− ṽ(t)‖ ≤ l(t)‖x(t)− x̃(t)‖, t ∈ J.

For each t ∈ J , we now define

h̃(t) = Sα(t)[x0 + p(x̃)] +

∫ t

0
Sα(t− s)ṽ(s)ds.

Then for each t ∈ J , we have

‖h(t)− h̃(t)‖ ≤ ‖Sα(t)[p(x(t))− p(x̃)(t)]‖

+

∥∥∥∥∫ t

0
Sα(t− s)[v(s)− ṽ(s)]ds

∥∥∥∥
≤ M̃Lp‖x− x̃‖∞ + M̃

∫ t

0
l(s)ds‖x− x̃‖∞

≤ M̃ [Lp + ‖l‖L1 ] ‖x− x̃‖∞.

Thus,
‖h− h̃‖∞ ≤ M̃ [Lp + ‖l‖L1 ] ‖x− x̃‖∞.

By an analogous relation, obtained by interchanging the roles of x̃ and x, we can obtain

Hd(N(x), N(x̃)) ≤ M̃ [Lp + ‖l‖L1 ] ‖x− x̃‖∞.

Owing to relation (3.7), we conclude that N is a contraction. Thus, by Lemma 2.7, N
admits a fixed point, which just is one mild solution to the problem (1.1)-(1.2).

Theorem 3.6 Let 1 < α < 2 and A generates an (α, 1)-resolvent family {Sα(t)}t≥0 of
type (M,ω). Suppose that conditions (A3), (A5) and (A6) are satisfied, then the problem
(1.3)-(1.4) has at least one mild solution on J provided that

M̃(Lp + bLq + ‖l‖L1) < 1, (3.8)

where M̃ = max
{

M
α−1 ,

M
α−1e

ωb
}

.
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Proof: Transform the problem (1.3)-(1.4) into a fixed point problem. Let the multivalued
operator N : C(J,X)→ P(C(J,X)) be defined as in Theorem 3.2. We shall prove that N
admits at leas one fixed point. We divide the proof into two steps.

Step 1. For each x ∈ C(J,X), N(x) ∈ Pcl(C(J,X)).
This can be proved just as Step 3 in the proof of Theorem 3.2.
Step 2. N is a contraction.
Let x, x̃ ∈ C(J,X) and h ∈ N(x). Then there exists v ∈ SF,x such that for each t ∈ J

h(t) = Sα(t)[x0 + p(x)] +

∫ t

0
Sα(θ)[x1 + q(x)]dθ +

∫ t

0
Rα(t− s)v(s)ds.

From (A6)(2), we have

Hd(F (t, x(t)), F (t, x̃(t))) ≤ l(t)‖x(t)− x̃(t)‖.

Thus there exists w ∈ SF,x̃ such that

‖v(t)− w(t)‖ ≤ l(t)‖x(t)− x̃(t)‖, t ∈ J.

Consider U : J → P(X) defined as

W (t) = {w ∈ X : ‖v(t)− w(t)‖ ≤ l(t)‖x(t)− x̃(t)‖}.

Because U(t) = W (t)
⋂
F (t, x̃) is measurable (see [9, Proposition III. 4]), there exists a

function ṽ(t), which is a measurable selection for U . Hence, ṽ(t) ∈ F (t, x̃(t)) and

‖v(t)− ṽ(t)‖ ≤ l(t)‖x(t)− x̃(t)‖, t ∈ J.

For each t ∈ J , we now define

h̃(t) = Sα(t)[x0 + p(x̃)] +

∫ t

0
Sα(θ)[x1 + q(x̃))]dθ +

∫ t

0
Rα(t− s)ṽ(s)ds.

Then for each t ∈ J , we have

‖h(t)− h̃(t)‖ ≤ ‖Sα(t)[p(x(t))− p(x̃)(t)]‖

+

∫ t

0
Sα(θ)[q(x(t)))− q(x̃(t)))]dθ

+

∥∥∥∥∫ t

0
Rα(t− s)[v(s)− ṽ(s)]ds

∥∥∥∥
≤ M̃Lp‖x− x̃‖∞ + bM̃Lq‖x− x̃‖∞

+M̃

∫ t

0
l(s)ds‖x− x̃‖∞

≤ M̃ [Lp + bLq + ‖l‖L1 ] ‖x− x̃‖∞.

Thus,
‖h− h̃‖∞ ≤ M̃ [Lp + bLq + ‖l‖L1 ] ‖x− x̃‖∞.
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By an analogous relation, obtained by interchanging the roles of x̃ and x, we can obtain

Hd(N(x), N(x̃)) ≤ M̃ [Lp + bLq + ‖l‖L1 ] ‖x− x̃‖∞.

Owing to relation (3.8), we conclude that N is a contraction. Thus, by Lemma 2.7, N
admits a fixed point, which just is one mild solution to the problem (1.3)-(1.4).

Example 3.1 As a simple application, we consider the following equations

Dα
t u(t, x) =

∂2

∂x2
u(t, x) + g(t, u(t, x)), (t, x) ∈ [0, 1]× [0, π], (3.9)

u(t, 0) = u(t, π) = 0, u′x(t, 0) = u′x(t, π) = 0, t ∈ [0, 1], (3.10)

u(0, x) =
∑n

k=1 aku(t, x) + u0(x), u′(0, x) =
∑n

k=1 bku
′(t, x) + u1(x), (3.11)

where 1 < α < 2, ak, bk ∈ R, n ∈ N. Let X = L2([0, π]) and consider the operator
A : D(A) ⊂ X → X defined by D(A) := {u ∈ X : u ∈ H2([0, π]), u(0) = u(π)} and for

u ∈ D(A), Au :=
∂2u

∂x2
. Define the functions g : [0, 1] ×D(A) → X, and p, q : D(A) → X

by

g(t, u(t, x)) :=
e−tu(t, x)

(6 + t)(1 + u(t, x))
, p(u)(x) :=

n∑
k=1

aku(t, x), q(u)(x) :=
n∑
k=1

bku
′(t, x).

It is well-known that A generates a compact and analytic (and hence norm continuous
for all t > 0) C0-semigroup {T (t)}t≥0 on X such that ‖T (t)‖ ≤ 1. Now, we can extract an
(α, α)-resolvent family {Rα(t)}t≥0 of type (1, 1) (see [1]). Meanwhile, the compactness of
T (t) implies that (λα −A)−1 is compact.

Let F =: {g}, J := [0, 1]. We note that the above problem (3.9)-(3.11) can be rewritten

in the abstract form (1.3)-(1.4). Furthermore, we assume that
∑n

k=1 |ak| ≤
1

6
,
∑n

k=1 |bk| ≤
1

6
. We also observe that in this case

φ(t) :=
e−t

6 + t
, b = M̃ = 1, and Lp =

1

6
, Lq =

1

6
, ‖φ‖L1 ≤

1

6
.

According to Theorem 3.2, the problem (3.9)-(3.11) has at least one mild solution on J .

4 Conclusions

In this paper, we establish some sufficient conditions to guarantee the existence of mild
solutions to abstract fractional differential inclusions with nonlocal initial conditions under
conditions that: (i) the multivalued term takes convex values with compactness of resolvent
family of operators; (ii) the multivalued term takes nonconvex values with compactness
of resolvent family of operators; and (iii) the multivalued term takes nonconvex values
without compactness of resolvent family of operators, respectively. The main results are
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based upon theories of resolvent family of operators, multivalued analysis and fixed point
approach.
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