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Abstract

In this paper, we investigate some existence results of weighted pseudo almost

automorphic solutions to a semilinear fractional differential equation in Banach spaces

with Stepanov-like weighted pseudo almost automorphic nonlinear term. Our main

results are based upon ergodicity and composition theorems of Stepanov-like weighted

pseudo almost automorphic functions combined with fixed point techniques.
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1 Introduction

The concept of almost automorphy was first introduced by Bochner in [5] in relation

to some aspects of differential geometry, which can be seen as an important generalization

of the classical almost periodicity in the sense of Bohr. After that, this concept has un-

dergone several interesting, natural and powerful generalizations. The concept of pseudo

almost automorphy was introduced by Liang et al. in [31] as a natural generalization of
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almost automorhy. Diagana [10] presented the concept of Stepanov-like pseudo almost

automorphy which generalizes notations of pseduo almost automorphy and Stepanov-like

almost automorphy by N’Guérékata and Pankov in [26]. Further, Blot et al. gave the

concept of weighted pseudo almost automorphic functions with values in Banach spaces

in [4]. Xia and Fan presented the notation of Stepanov-like (or Sp-) weighted pseudo

almost automorphy in [30], which is more general than those of Stepanov-like pseudo al-

most automorphy [10] and weighted pseudo almost automorphy [26]. Chang, N’Guérékata

et al. investigated some ergodic properties and composition theorems of Stepanov-like

weighted pseudo almost automorphic functions in [32, 33]. Applications of above men-

tioned concepts to various differential and integro-differential equations have widely been

investigated, see for instance [1, 2, 7, 11, 12, 13, 15, 17, 19, 23, 24, 25] and references

therein.

In recently years, fractional equations have gained considerable importance due to their

applications in various fields of the science, such as physics, mechanics, chemistry engi-

neering, etc. Significant development has been made in ordinary and partial differential

equations involving fractional derivatives, we refer to [16, 21, 22, 28, 29, 34, 35, 36] and

references therein. Araya and Lizama in [3] investigated the existence and uniqueness of

almost automorphic mild solutions to the semilinear equation

Dα
t u(t) = Au(t) + f(t, u(t)), t ∈ R, 1 < α < 2,

where A is a generator of an α-resolvent family and Dt is a Riemann Liouville fractional

derivative. In [9], Cuevas and Lizama considered the following fractional differential equa-

tion:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), t ∈ R, 1 < α < 2, (1.1)

where A is a linear operator of sectorial negative type on a complex Banach space. Under

suitable conditions on f , the authors proved the existence and uniqueness of an almost

automorphic mild solution to Eq. (1.1). See also [6] for some existence results of weighted

pseudo almost automorphic solutions for Eq. (1.1) with Sp-weighted pseudo almost auto-

morphic coefficients. In a recent paper [27], Ponce studied the existence and uniqueness

of bounded solutions for the following integro-differential fractional differential equation

Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t, u(t)), t ∈ R (1.2)

where A is a closed linear operator defined on Banach space X, a ∈ L1
loc(R+) is a scalar-

valued kernel, f : R × X → X belongs to a closed subspace of the space of continuous

and bounded functions satisfying some Lipschitz type conditions, and for α > 0, the frac-

tional derivative is understood in the sense of Weyl. Sufficient conditions are established
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for the existence and uniqueness of a continuous and bounded solution such as almost

periodic (automorphic), pseudo-almost periodic (automorphic), asymptotically almost pe-

riodic (automorphic) and S-asymptotically ω-periodic solution. Thus, a natural question

is: What is it about when the nonlinear term f is an Stepanov-like weighted pseudo almost

automorphic function? The main purpose of this paper is to investigate some existence

results of weighted pseudo almost automorphic solutions to Eq. (1.2) with Stepanov-like

weighted pseudo almost automorphic nonlinear term f . Our main results are based upon

ergodicity and composition theorems of Stepanov-like weighted pseudo almost automor-

phic functions in [32, 33] combined with fixed point techniques.

The paper is organized as follows. In Section 2, we recall some basic definitions, lemmas

and preliminary results which will be used throughout this paper. In Section 3, we prove

some existence results of weighted pseudo almost automorphic solutions to the problem

(1.2) with Stepanov-like weighted pseudo almost automorphic nonlinear term f .

2 Preliminaries

In this section, we list some basic definitions, notations, lemmas and preliminary facts

which are used in this paper. In the paper, we assume that (X, ‖·‖) and (Y, ‖·‖Y) are

two Banach spaces, let BC(R,X) (respectively BC(R × Y,X)) stand for the class of all

X-valued bounded continuous functions from R into X (respectively, the class of all jointly

bounded continuous functions from R × Y into X ). The space BC(R,X) equipped with

the sup norm defined by ‖f‖∞ = supt∈R ‖f(t)‖ is a Banach space. The notation B(X,Y)

stands for the space of bounded linear operators from X into Y endowed uniform operator

topology, and we abbreviate to B(X), whenever X = Y.

Now we give some necessary definitions.

Definition 2.1 [27] Given a function f : R → X, the Wely fractional integral of order

α > 0 is defined by

D−αf(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1f(s)ds, t ∈ R

when this integral is convergent. The Wely fractional derivative Dαf of order α > 0 is

defined by

Dαf(t) :=
dn

dtn
D−(n−α)f(t), t ∈ R

where n = [α] + 1.

It is known that DαD−αf = f for any α > 0, and Dn = dn

dtn holds with n ∈ N. See more

details in [16] and [22].
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Definition 2.2 [27] Let A be a closed and linear operator with domain D(A) defined

on a Banach space X, and α > 0. Given a ∈ L1
loc(R+), the operator A is called the

generator of an α-resolvent family, if there exist ω ≥ 0 and a strongly continuous function

Sα : [0,∞)→ B(X) such that
{

λα

1+â(λ) : Reλ > ω
}
⊂ ρ̄(A) and for all x ∈ X,

(λα − (1 + â(λ))A)−1x =
1

1 + â(λ)

(
λα

1 + â(λ)
−A

)−1

x =

∫ ∞
0

e−λtSα(t)xdt, Reλ > 0,

where â denotes the Laplace transform of a, ρ̄(A) denotes the resolvent set of A. In this

case, Sα(t)t≥0 is called the α-resolvent family generated by A.

Sufficient conditions for {Sα(t)}t≥0 ⊂ B(X) to be a resolvent family can be found from

[8, 18, 20].

Definition 2.3 [25] A continuous function f : R → X is said to be almost automorphic

if every sequence of real numbers {s′n}n∈N there exists a subsequence {sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

f(t) := lim
n→∞

g(t− sn)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Definition 2.4 [25] A continuous function f : R×Y→ X is said to be almost automorphic

if f(t, x) is almost automorphic for each t ∈ R uniformly for all x ∈ K, where K is any

bounded subset of Y. The collection of all such functions will be denoted by AA(R×X,X).

Now, let U denotes the set of all functions ρ : R→ (0,∞) which are locally integrable

over R such that ρ > 0 almost everywhere. For a given r > 0 and for each ρ ∈ U, we set

m(r, ρ) :=
∫ r
−r ρ(t)dt. Thus the space of weighted U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) =∞}.

Now for ρ ∈ U∞ we define

PAA0(X, ρ) := {f ∈ BC(R,X) : lim
r→∞

1

m(r, ρ)

∫ r

−r
‖f(t)‖ρ(t)dt = 0},

PAA0(R× Y,X) = {f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1

m(r, ρ)

∫ r

−r
‖f(t, y)‖ ρ(t)dt = 0 uniformly in y ∈ Y

}
.
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Definition 2.5 [4] Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively, f ∈ BC(R ×
Y,X)) is called weighted pseudo almost automorphic if it can be expressed as f = g +

χ, where g ∈ AA(X) (respectively, AA(R × Y,X)) and the function χ ∈ PAA0(X, ρ)

(respectively, PAA0(Y,X, ρ)). We denote by WPAA(R,X) (respectively,WPAA(R ×
Y,X)) the set of all such functions.

Lemma 2.1 [23] Let ρ ∈ U∞. Suppose that PAA0(X, ρ) is translation invariant, then

the decomposition of weighted pseudo almost automorphic functions is unique.

Lemma 2.2 [23] Let ρ ∈ U∞. If PAA0(X, ρ) is translation invariant, then (WPAA(R,X), ‖
· ‖∞) is Banach space.

Definition 2.6 [11] The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a functions f :

R −→ X is defined by

f b(t, s) := f(t+ s).

Definition 2.7 [11] The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a func-

tions f : R× X −→ X is defined by

f b(t, s, u) := f(t+ s, u) for all u ∈ X.

Definition 2.8 [11] Let p ∈ [1,∞), the space BSp(X) of all Stepanov bounded functions,

with the exponent p, consists of all measurable functions f : R −→ X such that f b ∈
L∞(R, Lp(0, 1;X)). This is a Banach space with the norm

‖f‖Sp =
∥∥∥f b∥∥∥

L∞(R,Lp)
= sup

t∈R

(∫ t+1

t
‖f(τ)‖pdτ

) 1
p

.

Definition 2.9 [26] The spaceASp(X) of Stepanov-like almost automorphic (or Sp-almost

automorphic) functions consists of all f ∈ BSp(X) such that f b ∈ AA(Lp(0, 1;X)). In

other words, a function f ∈ Lploc(R,X) is said to be Sp-almost automorphic if its Bochner

transform f b : R −→ Lp(0, 1;X) is almost automorphic in the sense that for every sequence

of real numbers
{
skn
}
n∈N there exist a subsequence {sn}n∈N and a function g ∈ Lploc(R,X)

such that

lim
n→∞

(∫ t+1

t
‖f(s+ sn)− g(s)‖pds

) 1
p

= 0

and

lim
n→∞

(∫ t+1

t
‖g(s− sn)− f(s)‖pds

) 1
p

= 0.
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Definition 2.10 [26] A function f : R × Y −→ X, (t, u) −→ f(t, u) with f(·, u) ∈
Lploc(R,X) for each u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly in

u ∈ Y if t −→ f(t, u) is Sp-almost automorphic for each u ∈ Y. That means, for every

sequence of real numbers
{
skn
}
n∈N there exists a subsequence {sn}n∈N and a functions

g(·, u) ∈ Lploc(R,X) such that

lim
n→∞

(∫ t+1

t
‖f(s+ sn, u)− g(s, u)‖pds

) 1
p

= 0

and

lim
n→∞

(∫ t+1

t
‖g(s− sn, u)− f(s, u)‖pds

) 1
p

= 0

pointwise on R and for each u ∈ Y. We denote by ASp(R × Y,X) the set of all such

functions.

Definition 2.11 [30, 32] Let ρ ∈ U∞. A functions BSp(X) is said to be Stepanov-like

weighted pseudo almost automorphic (or Sp-weighted pseudo almost automorphic ) if it

can be expressed as f = g + χ, where g ∈ ASp(X) and χb ∈ PAA0(Lp(0, 1;X)). In other

words, a function f ∈ Lploc(R,X) is said to be Stepanov-like weighted pseudo almost auto-

morphic relatively to the weighted ρ ∈ U∞, if its Bochner transform f b : R −→ Lp(0, 1;X)

is weighted pseudo almost automorphic in the sense that there exist two functions g, χ :

R −→ X such that f = g+χ, where g ∈ ASp(X) and χb ∈ PAA0(Lp(0, 1;X), ρ). We denote

by WPAASp(R,X) the set of all such functions.

Definition 2.12 [30, 32] Let ρ ∈ U∞. A functions f : R × Y −→ X, (t, u) −→ f(t, u)

with f(·, u) ∈ Lploc(R,X) for each u ∈ Y is said to be Stepanov-like weighted pseudo

almost automorphic (or Sp-weighted pseudo almost automorphic ) if it can be expressed

as f = g + χ, where g ∈ ASp(R × Y,X) and χb ∈ PAA0(Y, Lp(0, 1;X), ρ). We denote by

WPAASp(R× Y,X) the set of all such functions.

Remark 2.1 [30, 32] It is clear that if 1 ≤ p < q < ∞ and f ∈ Lqloc(R,X) is Sq-almost

automorphic, then f is Sp almost automorphic. Also if f ∈ AA(X), then f is Sp-almost

automorphic for any 1 ≤ p <∞.

Lemma 2.3 [30, 32] Let ρ ∈ U∞ and assume that PAA0(Lp(0, 1;X), ρ) is translation

invariant, then the decomposition of an Sp-weighted pseudo almost automorphic function

is unique.

Lemma 2.4 [30, 33] Let ρ ∈ U∞ be such that

lim
t→∞

sup
ρ(t+ ι)

ρ(t)
<∞ and lim

r→∞
sup

m(r + ι, ρ)

m(r, ρ)
<∞, (2.1)
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for every ι ∈ R, then spaces WPAASp(R,X) and PAA0(Lp(0, 1;X), ρ) are translation

invariant.

Lemma 2.5 [30, 32] If f ∈WPAA(R,X), then f ∈WPAASp(R,X) for each 1 ≤ p <∞.

In other words, WPAA(R,X) ⊆WPAASp(R,X).

Lemma 2.6 [30, 32] Let ρ ∈ U∞ satisfy the condition (2.1), then the spaceWPAASp(R,X)

equipped with the norm ‖ · ‖Sp is a Banach space.

Lemma 2.7 [32] Let ρ ∈ U∞ and let f = g+ χ ∈WPAASp(R×X,X) with g ∈ ASp(R×
X,X),χb ∈ PAA0(X, Lp(0, 1;X), ρ). Assume that the following conditions are satisfied:

(i) f(t, x) is Lipschitzian in x ∈ X uniformly in t ∈ R; that is, there exist a constant

L > 0 such that

‖ f(t, x)− f(t, y) ‖≤ L ‖ x− y ‖

for all x, y ∈ X and t ∈ R.

(ii) g(t, x) is uniformly continuous in any bounded subset K
′ ⊆ X uniformly for t ∈ R.

If u = u1 + u2 ∈ WPAASp(R,X), with u1 ∈ ASp(X), ub2 ∈ PAA0(Lp(0, 1;X), ρ) and

K = {u1(t) : t ∈ R} is compact, then z : R −→ X defined by z(·) = f(·, u(·)) belongs to

WPAASp(R,X).

Lemma 2.8 [32] Let ρ ∈ U∞ and let f = g+χ ∈WPAASp(R×X,X) with g ∈ ASp(R×
X,X), χb ∈ PAA0(X, Lp(0, 1;X), ρ). Assume that the following conditions are satisfied:

(i) there exists a nonnegative function L(·) ∈ BSp(R) with p > 1 such that for all

u, v ∈ X and t ∈ R(∫ t+1

t
‖f(s, u)− f(s, v)‖pds

) 1
p

≤ L(t) ‖u− v‖ ;

(ii) ρ ∈ Lqloc(R) satisfies lim
T→∞

sup
T

1
pmq(T,ρ)
m(T,ρ) < ∞, where 1

p + 1
q = 1 and mq(T, ρ) =(∫ T

−T ρ
q(t)dt

) 1
q
;

(iii) g(t, x) is uniformly continuous in any bounded subset K
′ ⊆ X uniformly for t ∈ R.

If u = u1 + u2 ∈ WPAASp(R,X), with u1 ∈ ASp(X), ub2 ∈ PAA0(Lp(0, 1;X), ρ) and

K = {u1(t) : t ∈ R} is compact, then z : R −→ X defined by z(·) = f(·, u(·)) belongs to

WPAASp(R,X).
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Lemma 2.9 [32] Let ρ ∈ U∞ and let f : R× X −→ X be an Sp-weighted pseudo almost

automorphic function. Supose that f satisfies the following conditions:

(i) f(t, x) is uniformly continuous in any bounded subset K
′ ⊆ X uniformly for t ∈ R;

(ii) g(t, x) is uniformly continuous in any bounded subset K
′ ⊆ X uniformly for t ∈ R;

(iii) For every bounded subset K
′ ⊆ X, {f(·, x) : x ⊆ K ′} is bounded in WPAASp(R,X).

If u = u1 + u2 ∈ WPAASp(R,X), with u1 ∈ ASp(X), ub2 ∈ PAA0(Lp(0, 1;X), ρ) and

K = {u1(t) : t ∈ R} is compact, then z : R −→ X defined by z(·) = f(·, u(·)) belongs to

WPAASp(R,X).

Finally, we recall some properties on compactness criterion.

Let h : R −→ R be a continuous function such that h(t) ≥ 1 for all t ∈ R and

h(t) −→∞ as | t |−→ ∞. We consider the space:

Ch(X) =

{
u ∈ C(R,X) : lim

|t|→∞

u(t)

h(t)
= 0

}
.

Endowed with the norm ‖ u ‖h= supt∈R
‖u(t)‖
h(t) , it is a Banach space (see [15] ).

Lemma 2.10 [15] A subset Ξ ⊆ Ch(X) is a relatively compact set if it verifies the following

conditions:

(c-1) The set Ξ(t) = {u(t) : u ∈ Ξ} is relatively compact in X for each t ∈ R.

(c-2) The Ξ is equicontinuous.

(c-3) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ Ξ and all

|t| > L.

Lemma 2.11 [14] Let D be a closed convex subset of a Banach space X such that 0 ∈ D.

Let Γ : D → D be a completely continuous map. Then the set {x ∈ D : x = λΓ(x), 0 <

λ < 1} is unbounded or the map Γ has a fixed point in D.

3 Weighted pseudo almost automorphic solution

This section is mainly concerned with existence results of weighted pseudo almost

automorphic mild solutions. We recall the definition of mild solutions to Eq.(1.2).
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Definition 3.1 [27] Let α > 0 and A be the generator of an α-resolvet family {Sα(t)}t≥0.

A function u ∈ C(R,X) is called a mild solution to Eq. (1.2) if the function s 7→ Sα(t −
s)f(s, u(s)) is integrable on (−∞, t) for each t ∈ R and

u(t) =

∫ t

−∞
Sα(t− s)f(s, u(s))ds.

In the sequel, we always assume that the weight ρ satisfies the condition (2.1). And

now, we list the following basic assumptions.

(H1) Assume that A generates an α-resolvent family {Sα(t)}t≥0 such that ‖Sα(t)‖ ≤ ϕα(t),

for all t ≥ 0, where ϕα(·) ∈ L1(R+) is nonincreasing such that ϕ0 :=
∑∞

n=0 ϕα(n) <∞.

(H2) The function f ∈ WPAASp(R × X,X) (p > 1), and there exist a constant Lf > 0,

such that

‖f(t, x)− f(t, y)‖ ≤ Lf ‖x− y‖

for all t ∈ R and for each x, y ∈ X.

(H3) The function f ∈ WPAASp(R × X,X) (p > 1), and there exists a nonnegative

function Lf (·) ∈ BSp(R) with p > 1 such that

‖f(t, x)− f(t, y)‖ ≤ Lf (t) ‖x− y‖

for all t ∈ R and each x, y ∈ X.

(H4) Let ρ ∈ Lqloc(R) satisfy

lim
T→∞

T
1
pmq(T, ρ)

m(T, ρ)
<∞

where 1
p + 1

q = 1 and mq(T, ρ) = (
∫ T
−T ρ

q(t)dt)
1
q .

(H5) The function f = g + ψ ∈ WPAASp(R × X,X) (p > 1), where g ∈ ASp(R × X,X)

is uniformly continuous in any bounded subset M ⊆ X uniformly in t ∈ R and ψb ∈
PAA0(Lp(0, 1;X), ρ).

Lemma 3.1 Let ρ ∈ U∞. Assume that A generates an α-resolvent family {Sα(t)}t≥0

satisfying the condition (H1). If f ∈WPAASp(R,X) with p > 1, then

F (t) :=

∫ t

−∞
Sα(t− s)f(s)ds ∈WPAA(R,X), t ∈ R.

Proof: Since f ∈ WPAASp (R,X), we have by Definition 2.11 that f = g + ψ, where

g ∈ ASp (R,X) and ψb ∈ PAA0 (Lp(0, 1;X), ρ). Consider for each n = 1, 2, · · · , the

integrals

Fn(t) =

∫ n

n−1
Sα(r)f(t− r)dr
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=

∫ n

n−1
Sα(r)g(t− r)dr +

∫ n

n−1
Sα(r)ψ(t− r)dr

= Xn(t) + Yn(t),

where Xn(t) =
∫ n
n−1 Sα(r)g(t − r)dr, Yn(t) =

∫ n
n−1 Sα(r)ψ(t − r)dr. In order to prove

that each Fn is a weighted pseudo almost automorphic function, we only need to verify

Xn ∈ AA(X) and Yn ∈ PAA0(X, ρ) for each n = 1, 2, · · · . Let us show that Xn ∈ AA(X).

We have

‖Xn(t)‖ ≤
∫ t−n+1

t−n
‖Sα(t− r)g(r)‖dr

≤
∫ t−n+1

t−n
ϕα(t− r)‖g(r)‖dr

≤ ϕα(n− 1)

∫ t−n+1

t−n
‖g(r)‖dr

≤ ϕα(n− 1)

(∫ t−n+1

t−n
‖g(r)‖pdr

) 1
p

≤ ϕα(n− 1)‖g‖Sp .

Since
∑∞

n=1 ϕα(n − 1) :=
∑∞

n=0 ϕα(n) < ∞, we deduce that from the well-known Weier-

strass theorem that the series
∑∞

n=1Xn(t) is uniformly convergent on R. Furthermore,

X(t) :=

∫ t

−∞
Sα(t− r)g(r)dr =

∞∑
n=1

Xn(t).

Clearly, X(t) ∈ C(R,X) and ‖X(t)‖ ≤
∑∞

n=1 ‖Xn(t)‖ ≤
∑∞

n=0 ϕα(n)‖g‖Sp .
Since g ∈ ASp (R,X), then for every sequence of real numbers {sn}n∈N, there exist a

sequence {sm}m∈N and a function g̃(·) ∈ Lploc(R,X) such that for each t ∈ R

lim
m→∞

(∫ t+1

t
‖g(s+ sm)− g̃(s)‖pds

) 1
p

= 0 and lim
m→∞

(∫ t+1

t
‖g̃(s− sm)− g(s)‖pds

) 1
p

= 0.

Let X̃n(t) =
∫ n
n−1 Sα(r)g̃(t− r)dr. Then using the Hölder inequality, we have

‖Xn(t+ sm)− X̃n(t)‖ =

∥∥∥∥∫ n

n−1
Sα(r)[g(t+ sm − r)− g̃(t− r)]dr

∥∥∥∥
≤

∫ n

n−1
ϕα(r)‖g(t+ sm − r)− g̃(t− r)‖dr

≤ ϕα(n− 1)

(∫ n

n−1
‖g(t+ sm − r)− g̃(t− r)‖pdr

) 1
p

.
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Obviously, ‖Xn(t+ sm)− X̃n(t)‖ → 0 as m→∞. Similarly, we can prove that

lim
m→∞

‖X̃n(t− sm)−Xn(t)‖ = 0.

Thus, we conclude that each Xn ∈ AA(X) and consequently their uniform limit X(t) ∈
AA(X).

Let us show that each Yn ∈ PAA0(X, ρ). For this, note that

‖Yn(t)‖ ≤
∫ t−n+1

t−n
‖Sα(t− r)ψ(r)‖dr

≤
∫ t−n+1

t−n
ϕα(t− r)‖ψ(r)‖dr

≤ ϕα(n− 1)

(∫ t−n+1

t−n
‖ψ(r)‖pdr

) 1
p

.

Then, for T > 0, we see that

1

m(T, ρ)

∫ T

−T
‖Yn(t)‖ρ(t)dt ≤ ϕα(n− 1)

1

m(T, ρ)

∫ T

−T

(∫ t−n+1

t−n
‖ψ(r)‖pdr

) 1
p

ρ(t)dt.

Since ψb ∈ PAA0 (Lp(0, 1;X), ρ), the above inequality leads to Yn ∈ PAA0(X, ρ) for each

n = 1, 2, · · · . Since ‖ ψ ‖Sp
∑∞

n=0 ϕα(n) <∞, then we again deduce from Weierstrass test

that the series
∑∞

n=1 Yn(t) is uniformly convergent on R. Hence

Y (t) :=

∫ t

−∞
Sα(t− s)ψ(s)ds =

∞∑
n=1

Yn(t).

Applying Yn(t) ∈ PAA0(X, ρ) and the inequality

1

m(T, ρ)

∫ T

−T
‖Y (t)‖ ρ(t)dt ≤ 1

m(T, ρ)

∫ T

−T

∥∥∥∥∥Y (t)−
k∑

n=1

Yn(t)

∥∥∥∥∥ρ(t)dt

+

k∑
n=1

1

m(T, ρ)

∫ T

−T
‖Yn(t)‖ ρ(t)dt

−→ 0,

we obtain that the uniform limit Y (·) =
∑∞

n=1 Yn(t) ∈ PAA0(X, ρ). Therefore, F (t) :=

X(t) + Y (t) is weighted pseudo almost automorphic in t ∈ R. The proof is complete.

Theorem 3.1 Let ρ ∈ U∞. Assume that (H1), (H2) and (H5) are satisfied. Then Eq.

(1.2) has a unique mild solution in WPAA(R,X) provided

Lf ≤ ‖ϕα‖−1
L1(R+)

(3.1)



12 Y. -K. Chang, M. -J. Zhang, and R. Ponce

Proof: Consider the nonlinear operator Γ : WPAA(R,X) −→WPAA(R,X). Such that

(Γx)(t) :=

∫ t

−∞
Sα(t− s)f(s, u(s))ds.

First we need to prove Γ maps WPAA(R,X) into itself. For every x ∈WPAA(R,X) has

the form of x = x1 + x2 with x1 ∈ AA(X), the fact that the rang of almost automorphic

functions is relatively compact, so the set {x1(t) : t ∈ X} is relatively compact. By using

Lemma 2.7, one can easily see that f(·, x(·)) ∈ WPAASp(R,X). Therefore, from the

proof of Lemma 3.1 we obtain that (Γx)(·) ∈ WPAA(R,X). Thus, Γ(WPAA(R,X)) ⊆
WPAA(R,X). The following is needed to prove Γ is a contraction, then for each x, y ∈
WPAA(R,X), we have

‖Γx− Γy‖∞ := sup
t∈R

∥∥∥∥∫ t

−∞
Sα(t− s)[f (s, x(s))− f (s, y(s))]ds

∥∥∥∥
≤ Lf sup

t∈R

∫ ∞
0
‖Sα(s)‖‖x(t− s)− y(t− s)‖ds

≤ Lf‖x− y‖∞
∫ ∞

0
ϕα(s)ds

≤ Lf‖ϕα‖L1(R+)‖x− y‖∞.

From inequality (3.1), Γ is a contraction map. So by the Banach space fixed point theorem

Γ has a unique fixed point x(·) in WPAA(R,X). The proof is completed.

A different Lipschition condition is considered in the following result.

Theorem 3.2 Let ρ ∈ U∞. Assume conditions (H1), (H3)–(H5) hold. Then Eq.(1.2)

admits a unique mild solution in WPAA(R,X) whenever

‖Lf‖Sp ≤ ϕ
−1
0 . (3.2)

Proof: Consider the nonlinear operator Γ given by

(Γx)(t) :=

∫ t

−∞
Sα(t− s)f(s, x(s))ds, t ∈ R.

First, let us prove that Γ(WPAA(R,X)) ⊆WPAA(R,X). For each x ∈WPAA(R,X) by

the fact that the range of a almost automorphic function is relatively compact combined

with Lemmas 2.5 and 2.8, we gain that the function s 7−→ f(s, x(s)) is in WPAASp(R,X).

Furthermore, from Lemma 3.1 we know (Γx)(·) ∈ WPAA(R,X), that is the operator Γ

maps WPAA(R,X) into WPAA(R,X). Next, we prove that the operator Γ has a unique

fixed point in WPAA(R,X). Indeed, for each t ∈ R, x, y ∈WPAA(R,X), we have

‖Γx(t)− Γy(t)‖ =

∥∥∥∥∫ t

−∞
Sα(t− s)[f (s, x(s))− f (s, y(s))]ds

∥∥∥∥
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≤
∫ t

−∞
‖Sα(t− s)‖‖f (s, x(s))− f (s, y(s)) ‖ds

≤
∫ t

−∞
ϕα(t− s)‖f (s, x(s))− f (s, y(s)) ‖ds

≤
∞∑
n=1

ϕα(n− 1)

∫ t−n+1

t−n
Lf (s)ds‖x− y‖∞

≤
∞∑
n=1

ϕα(n− 1)

(∫ t−n+1

t−n
‖Lf (s)‖pds

) 1
p

‖x− y‖∞

≤ φ0‖Lf‖Sp‖x− y‖∞.

Hence

‖Γx(t)− Γy(t)‖∞ ≤ φ0‖Lf‖Sp‖x− y‖∞.

Since φ0‖Lf‖Sp < 1 by the inequality (3.2) , Γ has a unique fixed point x ∈WPAA(R,X).

This finishes the proof.

We next investigate the existence of weighted pseudo almost automorphic mild solu-

tions of Eq.(1.2) when the perturbation f is not necessarily Lipschitz continuous. For

that, we require the following assumptions:

(H6) f ∈WPAASp(R×X,X) (p > 1) and f(t, x) is uniformly continuous in any bounded

subset M ⊆ X uniformly for t ∈ R and for every bounded subset M ⊆ X, {f(·, x) : x ∈M}
is bounded in WPAASp(X).

(H7) There exists a continuous nondecreasing function W : [0,∞)→ (0,∞) such that

‖f(t, x)‖ ≤W (‖x‖) for all t ∈ R and x ∈ X.

Theorem 3.3 Assume that A generates an α-resolvent family {Sα(t)}t≥0 satisfying the

condition (H1). Let f : R × X → X be a function that satisfies assumptions (H5)–(H7),

and the following additional conditions:

(i) For each c ≥ 0, the function t→
∫ t
−∞ ϕα(t− s)W (h(s)) ds belongs to BC(R). We set

β() =

∥∥∥∥∫ t

−∞
ϕα(t− s)W (ch(s)) ds

∥∥∥∥
h

(ii) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ‖u − v‖h ≤ δ implies

that ∫ t

−∞
ϕα(t− s)‖f(s, u(s))− f(s, v(s))‖ds ≤ ε

for all t ∈ R.

(iii) lim infξ→∞
ξ

β(ξ) > 1.
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(iv) For all c, d ∈ R, c < d, and Λ > 0, the set {f(s, x) : c ≤ s ≤ d, x ∈ Ch(X), ‖x‖h ≤ Λ}
is relatively compact in X.
Then Eq.(1.2) has at least one weighted pseudo almost automorphic mild solution.

Proof: We define the nonlinear operator Γ : Ch(X)→ Ch(X) by

(Γx)(t) :=

∫ t

−∞
Sα(t− s)f(s, x(s))ds, t ∈ R.

We will show that Γ has a fixed point in WPAA(R,X). For the sake of convenience, we

divide the proof into several steps.

(I) For x ∈ Ch(X), we have that

‖(Γx)(t)‖ ≤
∫ t

−∞
ϕα(t− s)W (‖x(s)‖)ds ≤

∫ t

−∞
ϕα(t− s)W (‖x‖hh(s)) ds.

It follows from the condition (i) that Γ is well defined.

(II) The operator Γ is continuous. In fact, for any ε > 0, we take δ > 0 involved in the

condition (ii). If x, y ∈ Ch(X) and ‖x− y‖h ≤ δ, then

‖(Γx)(t)− (Γy)(t)‖ ≤
∫ t

−∞
ϕα(t− s)‖f(s, x(s))− f(s, y(s))‖ds ≤ ε,

which shows the assertion.

(III) We will show that Γ is completely continuous. We set BΛ(X) for the closed ball

with center at 0 and radius Λ in the space X. Let V = Γ(BΛ(Ch(X))) and v = Γ(x) for x ∈
BΛ(Ch(X)). First, we will prove that V (t) is a relatively compact subset of X for each t ∈ R.

It follows from the condition (i) that the function s → ϕα(s)W (Λh(t − s)) is integrable

on [0,∞). Hence, for ε > 0, we can choose c ≥ 0 such that
∫∞
c ϕα(s)W (Λh(t− s))ds ≤ ε.

Since

v(t) =

∫ c

0
Sα(s)f(t− s, x(t− s))ds+

∫ ∞
c

Sα(s)f(t− s, x(t− s))ds

and ∥∥∥∥∫ ∞
c

Sα(s)f(t− s, x(t− s))ds
∥∥∥∥ ≤ ∫ ∞

c
ϕα(s)W (Λh(t− s))ds ≤ ε,

we get v(t) ∈ cc0(N) + Bε(X), where c0(N) denotes the convex hull of N and N =

{Sα(s)f(ξ, x) : 0 ≤ s ≤ c, t − c ≤ ξ ≤ t, ‖x‖h ≤ Λ}. Using the strong continuity of

Sα(·) and the property (iv) of f , we infer that N is a relatively compact set, and V (t) ⊆
cc0(N) +Bε(X), which establishes our assertion.

Second, we show that the set V is equicontinuous. In fact, we can decompose

v(t+ s)− v(t) =

∫ s

0
Sα(σ)f(t+ s− σ, x(t+ s− σ))dσ
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+

∫ c

0
[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ))dσ

+

∫ ∞
c

[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ))dσ.

For each ε > 0, we can choose c > 0 and δ1 > 0 such that∥∥∥∥∫ s

0
Sα(σ)f(t+ s− σ, x(t+ s− σ))dσ +

∫ ∞
c

[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ))dσ

∥∥∥∥
≤

∫ s

0
ϕα(σ)W (Λh(t+ s− σ))dσ +

∫ ∞
c

[ϕα(σ + s)− ϕα(σ)]W (Λh(t− σ))dσ

≤ ε

2

for s ≤ δ1. Moreover, since {f(t− σ, x(t− σ)) : 0 ≤ σ ≤ c, x ∈ BΛ(Ch(X))} is a rela-

tively compact set and Sα(·) is strongly continuous, we can choose δ2 > 0 such that

‖[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ))‖ ≤ ε
2c for s ≤ δ2. Combining these estimates, we

get ‖v(t+ s)− v(t)‖ ≤ ε for s small enough and independent of x ∈ BΛ(Ch(X)).

Finally, applying the condition (i), we can see that

‖v(t)‖
h(t)

≤ 1

h(t)

∫ t

−∞
ϕα(t− s)W (Λh(s))ds→ 0, |t| → ∞,

and this convergence is independent of x ∈ BΛ(Ch(X)). Hence, by Lemma 2.10, V is a

relatively compact set in Ch(X).

(IV) Let us show assume that xλ(·) is a solution of the equation xλ = λΓ(xλ) for some

0 < λ < 1. We can estimate∥∥∥xλ(t)
∥∥∥ = λ

∥∥∥∥∫ t

−∞
Sα(t− s)f(s, xλ(s))ds

∥∥∥∥
≤

∫ t

−∞
ϕα(t− s)W (‖xλ‖hh(s))ds

≤ β(‖xλ‖h)h(t).

Hence, we get

‖xλ‖h
β(‖xλ‖h)

≤ 1

and combining with the condition (iii), we conclude that the set
{
xλ : xλ = λΓ(xλ), λ ∈ (0, 1)

}
is bounded.

(V) It follows from Lemma 2.5, (H5)–(H6) and Lemma 2.9 that the function t →
f(t, x(t)) belongs to WPAASp(R,X), whenever x ∈ WPAA(R,X). Moreover, from

Lemma 3.1 we infer that Γ(WPAA(R,X)) ⊆WPAA(R,X) and noting that WPAA(R,X)
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is a closed subspace of Ch(X), consequently, we can consider Γ : WPAA(R,X)→WPAA(R,X).

Using properties (I)–(III), we deduce that this map is completely continuous. By Lemma

2.11, we infer that Γ has a fixed point x ∈WPAA(R,X). This completes the proof.

As a consequence of Theorem 3.3, we obtain the following corollary.

Corollary 3.1 Assume that A generates an α-resolvent family {Sα(t)}t≥0 satisfying con-

dition (H1). Let f : R × X → X be a function that satisfies assumptions (H5)–(H6) and

the Hölder type condition:

‖f(t, x)− f(t, y)‖ ≤ γ‖x− y‖τ , 0 < τ < 1,

for all t ∈ R and x, y ∈ X, where τ > 0 is a constant. Moreover, assume the following

conditions:

(a) f(t, 0) = q.

(b) supt∈R
∫ t
−∞ ϕα(t− s)h(s)τds = γ2 <∞.

(c) For all c, d ∈ R, c < d, and p > 0, the set {f(s, x) : c ≤ s ≤ d, x ∈ Ch(X), ‖x‖h ≤ p} is

relatively compact in X.
Then Eq.(1.2) has a weighted pseudo almost automorphic mild solution.

Proof: Let γ0 = ‖q‖, γ1 = γ. We take W (ξ) = γ0 +γ1ξ
τ . Then condition (H7) is satisfied.

It follows from (b), we can see that function f satisfies (i) in Theorem 3.3. Note that for

each ε > 0 there is 0 < δτ < ε
γ1γ2

such that for every x, y ∈ Ch(X), ‖x − y‖h ≤ δ implies

that
∫ t
−∞ ϕα(t− s)‖f(s, x(s)− f(s, y(s))‖ds ≤ ε for all t ∈ R. The hypothesis (iii) in the

statement of Theorem 3.3 can be easily verified using the definition of W. So by Theorem

3.3 we can prove Eq.(1.2) has a weighted pseudo almost automorphic mild solution.

Example 3.1 Let A = −%I, a(t) = %
4
tα−1

Γ(α) and f(t, u) = u sin 1
2+cos t+cos

√
2t

+ e−|t| sinu,

where 0 < α < 1, % > 0 and f : X→ X. From Eq. (1.1) we have

Dαu(t) = −%u(t)− %2

4

∫ t

−∞

(t− s)α−1

Γ(α)
u(s)ds+ f(t, u(t)), t ∈ R. (3.3)

From [27, Example 4.17], it follows that A generates an α-resolvent family {Sα(t)}t≥0 such

that

Ŝα(λ) =
λα

(λα + 2/%)2 =
λα−α/2

(λα + 2/%)
· λα−α/2

(λα + 2/%)
.

Thus, Sα(t) = (r∗r)(t) with r(t) = t
α
2
−1Eα,α

2
(−%

2 t
α), Eα,α

2
(·) is the Mittag-Leffler function

defined as in [21].
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Note that the function f ∈WPAASp(R,X) with weight ρ(t) = |t| for t ∈ R, and

||f(t, u)− f(t, v)|| ≤ 2||u− v||.

Then we can conclude that there exists a unique mild solution x(·) ∈ WPAA(R,X) of

Eq.(3.3) by Theorem 3.1 provided ‖Sα‖ < 1
2 . We remark that given 0 < α < 1, we can

choose the number % > 0 such that ‖Sα‖ < 1
2 as in the proof of [27, Lemma 3.9]
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