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Abstract

In this manuscript, by properties on some corresponding resolvent operators and
techniques in multivalued analysis, we establish some results for solution sets of
Sobolev type fractional differential inclusions in the Caputo and Riemann-Liouville
fractional derivatives with order 1 < a < 2, respectively. We show that the solution
sets are nonempty, compact, contractible and thus arcwise connected under some suit-
able conditions. We remark that our results are directly established through resolvent
operators instead of subordination formulas usually applied, and the existence and
compactness of E~! is not necessarily needed. Some applications are also given in the
final.
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1 Introduction

Differential inclusions are usually applied to deal with differential equations with a
discontinuous right-hand side or an inaccurately known right-hand side, which can be
seen as a generalization of the notion of ordinary differential equations [I8, B9]. On the
other hand, differential inclusions are also closely related to control theory, for example,
considering the following control problem

7' = f(x,u),u €U,

where v is known as a control parameter. It finds that the above control system and the
following differential inclusion

'€ f(z,U) = U [z, u)
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has the same trajectories. If the set of controls depends upon the state x, i.e. U = U(x),
then the following differential inclusion can be obtained

2 € F(x,U(x)).

It is noted that the above mentioned equivalence between a control system and the cor-
responding differential inclusion plays a key role in establishing existence theorems in
optimal control theory. Differential inclusion has found its wide applications to models
arising in different disciplines, and thus it has been considerably investigated by lots of
scholars in last decades, see for instance [I}, [7, O 20} 2], 24, 25, [33, B9] and references
therein. We especially address that in the monograph [20], properties of solution sets for
various differential inclusions of integer order such as higher-order differential inclusions,
neutral differential inclusions, hyperbolic differential inclusions and impulsive differential
inclusions have been discussed in details.

Fractional calculus can be seen a generalization of the ordinary differentiation and
integration to arbitrary non-integer order, which has been recognized as one of the most
powerful tools to describe long-memory processes in the last decades. Many phenomena
from physics, chemistry, mechanics, electricity et al can been modelled by ordinary and
partial differential equations involving fractional derivatives, we refer to [2, 3] 4, [19] 29] [30L
38, 43|, [44], 46, [48] and references therein for more details. We also notice that properties
of solution sets for fractional differential inclusions have also been increasingly concerned
recently, see for instance [11] [12] 45], 46] and references therein.

Motivated by the above mentioned work, the main purpose of this manuscript is to
investigate properties of solution sets for Sobolev type semilinear fractional differential
inclusions in Banach spaces. Concretely, let A be a closed linear operator defined on a
Banach space (X, |- ||), uo,u1 € X. Denote P(X) ={Y C X : Y # (}}. Now, we consider
properties of solution sets for the following semilinear fractional differential inclusions of
Sobolev type

{ D (Bu)(t) € Au(t) 4+ F(t,u(t)), (1.1)
Eu(0) = ug, (Bu)(0) = u |
and
{ D*(Eu)(t) € Au(t) + F(t,u(t)), (1.2)
E(g2-a *u)(0) = ug, (E(g2-a *u))'(0) = us, '

where t € I := [0, b], the order 1 < o < 2, the notations D and D® denote, respectively,
the Caputo and Riemann-Liouville fractional derivatives, and the operator pair (A, E)
generates a resolvent family {ng s(t)}i>0 (see definition below, Section 2.1) for suitable
a, B > 0, the multivalued term F : I x X — P(X) and the function g,(-) is also specified
by in Section 2.

Sobolev type fractional differential inclusions are naturally applied to the control of
dynamical system when the controlled system or the controller is described by a Sobolev
type fractional differential equation. It is noted that there are already some interesting
results on abstract fractional differential equations of Sobolev type with the order 0 < o <
1, see for example [8, 15} [16} 23], 26 [40} 41] and the references therein. The main techniques
in these mentioned work are based upon the following assumptions: a). the erxistence of
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E~! as a bounded operator, or b). D(E) C D(A), E is bijective and E~' : X — D(E)
is a compact operator. Under these circumstances, the change of variable w(t) = Eu(t)
or subordination formulas can be used to deal with solution representations and related
problems. It should be pointed out that another method to deal with abstract Sobolev
type fractional differential equation with the order 0 < o < 1 is developed in [26] [41],
where solution representations are derived from subordination formulas of propagation
family (see [27]) without the above assumptions a) and b).

To the best of our knowledge, properties of solution sets for general systems and
in case 1 < a < 2 (and E # Z, identity operator) have not been addressed in the
existing literature. In present paper, we shall deal with properties of solution sets for Eq.
and Eq. respectively based upon properties on resolvent operator generated by
the pair (A, E') and techniques in multivalued analysis. We shall show that the solution
sets are nonempty, compact, contractible and thus arcwise connected under some suitable
conditions. We remark that our results are directly established through resolvent operators
generated by the pair (A, E) instead of subordination formulas usually applied, and thus
previous assumptions a) or b) is not necessarily needed. Finally, some applications are
also given to illustrate our main results.

The rest of this paper is organized as follows. Section 2 is involved in Preliminaries.
Section 3 is devoted to investigate properties of solution sets for Eq. and Eq. ,
respectively. Section 4 is involved in some applications, and Section 5 is Conclusions.

2 Preliminaries

In this section, we list some definitions, notations and recall some basic results which
are used throughout this paper.

2.1 Basic results on fractional calculus and resolvent operator

In this subsection, we recall some basic results on fractional calculus and list some
properties on fractional resolvent operators. Most of these results can be found in mono-
graphs [, 19, 29}, 48], papers [, 2, 3, 5 6, (11, 12} 14, 22, 28, 32, 33, 35, 36, 37, 38, 2] 43, [45]
and references therein.

Let (X,]| - ||), Z be Banach spaces. We denote by B(X, Z) the space of all bounded
linear operators from X into Z, and denote by B(X) the space of all bounded linear
operators from X into itself. For a closed and linear operator A : D(A) C X — X, where
D(A) is the domain of A, we denote by p(A) its resolvent set and by R(\, A) its resolvent
operator, that is, R(\, A) = (A — A)~! which is defined for all X € p(A).

For > 0, we define

th—1 0
M t > )
gu(t) = § T(n) (2.1)
0, t<0,

where T'(+) is the Gamma function. We also define gy = dp, the Dirac delta. For p > 0,
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n = [u] denotes the smallest integer n greater than or equal to u. The finite convolution

of f and g is denoted by (f * g)(¢ /ft—s

Definition 2.1 Let a > 0. The a-order Riemann-Liouville fractional integral of u is
defined by

J%u(t) == /0 ga(t — s)u(s)ds, t>0.

Also, we define JO%u(t) = u(t). Because of the convolution properties, the integral operators
{J%} 40 satisfy the following semigroup law: J*J? = Jo+8 for all a, 8 > 0.

Definition 2.2 Let a > 0. The a-order Caputo fractional derivative is defined

Di*u(t) ::/0 In—a(t — s)ul™(s)ds,

where n = [«].

Definition 2.3 Let a > 0. The a-order Riemann-Liouville fractional derivative of w is

defined

dn
D%u(t) := g7 gn ot — s)u(s)ds,
where n = [«].
. dm
ItlsclearDtm:Dm—dt—mlfa—meN

Let f (or £(f)) denote the Laplace transform of f, we have the following facts for the
fractional derivatives

n—1
Dou(N) = )= (gn-a xuw)F(O)AIF (2.2)
k=0
and
Dou(X) = Zu(k) 0)A* 1k, (2.3)

where n = [a] and A € C. For «, 5 > 0 and z € C, the generalized Mittag-Leffler function
is defined by

o0
Ca(2 kZ_OF (ak+ )’

and its Laplace transform L satisfies

L0 e ()N = S5 € CRed> o]t/
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The E-modified resolvent set of A, pg(A), is defined by

pE(A) ={ € C:(A\E—-A):D(A)ND(E) - X
is invertible and (AE — A)™! € B(X,[D(A) N D(E)))}.

The operator (AE — A)~! is called the E-resolvent operator of A.

A strongly continuous family {7'(¢)}+>0 C B(X) is said to be of type (M,w) or expo-
nentially bounded if there exist constants M > 0 and w € R, such that | T'(t)| < Me“* for
all ¢ > 0. Observe that, without loss of generality, we can assume w > 0 in the sequel.

Definition 2.4 Let A: D(A) C X — X, E: D(F) C X — X be closed linear operators
defined on a Banach space X satisfying D(A) N D(E) # {0}. Let o, 8 > 0. We say that
the pair (A, F) is the generator of an («, 3)-resolvent family, if there exist w > 0 and

a strongly continuous function 557 g [0,00) = B(X) such that SO]i 5(t) is exponentially
bounded, {A\* : ReA > w} C pg(A), and for all z € X,

MNBNE—A) e = / e MSE s(t)xdt, Red > w.
0

In this case, {S’gﬁ (t) }+>0 is called the (a, B)-resolvent family generated by the pair (4, E).

Definition 2.5 The resolvent family {Sfﬂ(t)}tzo C B(X) is to be compact if for every
t > 0, the operator Scﬁﬁ(t) is a compact operator.

Next we give some results on the norm continuity and compactness of Sﬁ B(t) for given
a,f > 0. The proofs of these results can be conducted similarly to [36, Lemma 3.12,
Theorem 3.14, Propositions 3.16-3.17, Proposition 7.1], we can also refer to [13] for details.

Lemma 2.1 Let o > 0 and 1 < 8 < 2. Suppose that {Sfig(t)}tzo is the (o, 8)-resolvent

family of type (M,w) generated by (A, E). Then the function t — S¥ 5(t) is continuous
in B(X) for all ¢t > 0.

Lemma 2.2 Suppose that the pair (A, E') generates an (o, 3)-resolvent family {S’fﬁ (t) }+>0

of type (M,w). If v > 0, then (A, E) also generates an («, 8 + 7)-resolvent family of type
M

'Y

Lemma 2.3 Let « >0, 1 < 5 <2 and {Sgﬁ(t)}tzo be an («, 3)-resolvent family of type
(M, w) generated by (A, E). Then the following assertions are equivalent

i) S’fiﬁ(t) is a compact operator for all ¢t > 0.
ii) (uE — A)~! is a compact operator for all > w!/®.

Lemma 2.4 Let 1 < o < 2 and {S%,(¢)}+>0 be an (o, a)-resolvent family of type (M,w)
generated by (A, F). Then the following assertions are equivalent:
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i) SF,(t) is a compact operator for all ¢ > 0.
ii) (uE — A)~! is a compact operator for all g > w!/®,

Lemma 2.5 Let 1 < a < 2, and {Sgl(t)}tzo be the («, 1)-resolvent family of type (M, w)

generated by (A, E). Suppose that Sg 1(t) is continuous in the uniform operator topology
for all ¢ > 0. Then the following assertions are equivalent

i) Sf’l(t) is a compact operator for all ¢t > 0.

ii) (uE — A)~! is a compact operator for all > w!/®.

Lemma 2.6 Let g <a <2, and {SE_ | (t)}i>0 be the (o, a — 1)-resolvent family of type

a,a—1
(M, w) generated by (A, E). Suppose that 5’5 o_1(t) is continuous in the uniform operator
topology for all ¢ > 0. Then the following assertions are equivalent

i) Sga_l(t) is a compact operator for all ¢t > 0.

ii) (uE — A)~! is a compact operator for all 1 > w!/®.

2.2 Basic results on multivalued analysis

In this subsection, we recall some basic definitions and lemmas on multivalued analysis.
The following facts can be found in monographs [9, 10, 18| 20l 24} 25, B39], papers [5, [T
211, [37, 42| [45] and references therein.

Let (X,] - ||) be a Banach space. Denote Py(X) = {Y € P(X): Yclosed}, Pp(X) =
{Y € P(X) : Y bounded}, Pep(X) = {Y € P(X) : Ycompact}, and P, (X) = {Y € P(X) :
Yconvex}. The notation L'(I,X) = {v : I — X|v is Bochner integrable} on a compact

interval I of R with the norm ||v||;1 = / lv(t)]|dt.

I
A multivalued map G : X — P(X) has convex (closed) values if G(x) is convex (closed)

for all x € X. G is bounded on bounded sets if G(B) = U G(x) is bounded in X for all

xeB
B € Py(X), ie. sug {sup{lly|| : y € G(z)}} < 0.
S

The multivalued map G : X — P(X) is called upper semicontinuous (u.s.c.) on X
if for each xg € X, the set G(xg) is a nonempty, closed subset of X, and if for each
open set N of X containing G(z¢), there exists an open neighborhood Ny of xg such that
G(Np) € N. G is called lower semi-continuous (l.s.c.) if the set {x € X : G(z)[ &/} is
open for any open subset &7 C X. Also, G is said to be completely continuous if G(B) is
relatively compact for every B € P(X). G has a fixed point if there exists z € X such
that z € G(x).

If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph, i.e., x, — Z«, Yn — Ys, Yn €
G(x,) imply ys € G(xy).
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Definition 2.6 The multivalued map G : I x X — P(X) is said to be L!-Carathéodory
if

(i) t — G(t, ) is measurable for each x € X;

(ii) u — G(t,z) is u.s.c on X for almost all t € I;

(iii) For each r > 0, there exists ¢, € L'(I,R}) such that

1G(t,2)[[p(x) = sup {[[v]| s v € G(t,2)} < pr(t),

for all ||z]| <r and for a.e. t € I.

Definition 2.7 A space X is said to be contractible if and only if there exists a point
xo € X such that Zx ~ 1 (homotopically equivalent), where ¢ : X — X is defined by
Y(x) =z for each z € X, and Z denotes the identity operator.

We remark that a contractible space is arcwise connected.

Lemma 2.7 Let X be a Banach space. Let G : I x X — Py ,(X) be an L!-Carathéodory
multivalued map with

Seo={feL'(I,X): f(t) € G(t,x(t), for ae. t € 1} # 10,
and let I' be a linear continuous mapping from L!'(I, X) to C(I, X), then the operator
IF'oSq:C(I,X) = Pepew(C(I, X)), x— (T'oSg)(z) :=T(S¢z)

is a closed graph operator in C(I,X) x C(I,X).

Lemma 2.8 Let {K,,},en € K C X be a subset of sequences where K is compact in the
separable Banach space X. Then

conv(limsupKn> = ﬂ conv U K,

o no>0 n>ng

Lemma 2.9 Let = be a bounded and convex set in Banach space X. T : Z — P(2) is an
u.s.c., condensing multivalued map. If for every x € E, T(z) is a closed and convex set in
=, then T has a fixed point in =.

3 Properties of solution sets

In this section, we will prove our main results. We always assume that X is a separable
Banach space in the following.
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3.1 The Caputo case-Eq. (1.1]

Let us list the following assumptions.

(A1) The pair (A, E') generates the («, 1)-resolvent family {Sgl(t)}tzo of type (M,w), the

operator (\*E — A)~! is compact for all \* € pg(A4) with A > wa and {Sgl(t)}tzo
is norm continuous for all £ > 0.

(A2) F:Ix X — Pepeo(X) satisfies the following conditions:
(a) For a.e. t € I, F(t,-) is u.s.c, and for each x € X, F(-,x) is measurable. And
for each z € C(I, X)), Sr, is nonempty;
(b) There exists a function ¢ € L*(I,R,) such that

[F (o)l < o)), vt € I,z € C(I, X).

Definition 3.1 For each ug,u; € X, a function v € C(I, X) is said to be a mild solution
to Eq. ([1.1)) if there exists v € L'(I, X) such that v(t) € F(t,u(t)) a.e. on I and u verifies
the following integral equation

t
u(t) = SE(t)uo + Sy (t)uy + / SE (= s)v(s)ds.
0

Remark 3.1 (i) By the uniqueness of the Laplace transform, it is clear that the mild
solution to Eq. (1.1]) can expressed as

u(t) = Sﬁl(t)uo + (g1 * Sf,l)(t)ul +/0 (ga—1 * Sﬁl)(t — s)v(s)ds.

(ii) In view of Lemma the condition (A1) implies {Sf 1(t)} is compact for all ¢ > 0.
Theorem 3.1 If assumptions (A1)-(A2) and the following relation

Mewb
—rlell <1 (3.1)

hold, then Eq. (1.1) admits at least one mild solution on I.
Proof: Consider the operator N : C(I,X) — P(C(I, X)) defined by
N(u) = {h €eC(I,X):h(t) = Sfil(t)uo + (g1 * Sﬁl)(t)ul

n /0 (g1 % SE1)(t — s)o(s)ds, t € I} :

where v € Sr,. Clearly, the fixed points of N are mild solutions to Eq. . We shall
show that N satisfies all the hypothesis of Lemma [2.9] The proof will be given in several
steps.

Step 1. There exists a positive number r such that N(B,) C B,, where B, = {u €
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C(I,X) : |lulloo < r}. If it is not true, then for each positive number r, there exists a
function u" such that A" € N(u") but ||A"(t)|| > r for some ¢ € I,

R (t) = Sﬁl(t)uo + (g1 * Sf,l)(t)ul + /Ot(ga_l * Sgl)(t — s)"(s)ds,

where v" € Sr . However, on the other hand, we have

¢
r < ‘Sﬁl(t)uo—i-(gl*sgl)(t)ul—i-/(ga_l*Sfil)(t—s)vT(s)ds
0
¢ M b olt—s)
< Me¥ w w(t—s d
< Ml + el + o [ e00(s) fulds
M M wb t
< MeWbHuoH—i-—e“’bHulH—i- e /e“scﬁ(s)ds
w woz—l 0
M Mrewt
< Me|fuoll + —eflun | + —— ¢l -
w w

Dividing both sides by r and and taking the lower limit as » — 0o, we obtain

Me?

1<

1ol

which contradicts the relation (3.1)).
Step 2. N(u) is convex for each u € C(I, X).

Indeed, if hi,ho € N(u), then there exist vi,vs € Sr, such that for each t € I, we
have

hi(t) = SE 1 (t)uo + (g1 + ST ) (t)ur + /Ot(ga—l « SE)(t — s)vi(s)ds, i =1,2.
Let 6 € (0,1). Then for each t € I, we have
(Oh1 + (1= O)ho)(t) = SF1(t)uo + (g1 % SF1)(H)wa
+/Ot(ga_1 « SE)(t — 8)[0ur(s) + (1 — O)va(s)]ds.

Since F has convex values and thus Sr,, is convex, 6hi + (1 — §)ha € N(u).
Step 3. N(u) is closed for each u € C(I, X).

Let{hn}n>0 € N(u) such that h, — h in C(I,X). Then h € C(I, X) and there exist
{vn} € Sr. such that for each ¢t € I

hn(t) = Sgl(t)uo + (g1 % Sgl)(t)ul + /Ot(ga_l * Sgl)(t — 8)vp(s)ds.

Due to the fact that F has compact values, we may pass to a subsequence if necessary to
get that v,, converges to v in L'(I, X) and hence v € Sx,. Then for each t € I,

hn(t) — h(t) = Sf,l(t)uo + (g1 * Sf:l)(t)ul —i—/o (ga—1 * Sgl)(t — s)u(s)ds.
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Thus, h € N(u).
Step 4. N is u.s.c.
(i) N(By) is obviously bounded.
(ii) N(By) is equicontinuous.
Indeed, let uw € By, h € N(u) and take t1,to € I with to < t;. Then there exists a
selection v € Sr, such that

h(t) = Sgl(t)uo + (g1 % Sgl)(t)ul + /Ot(ga_l * Sgl)(t — s)u(s)ds,t € 1.
Then
[h(t) = h(t2)l| < || (SE1(tr) = SE1(t2)) woll + 1| ((g1 % SE1)(t1) — (g1 % SE1)(t2)) wall

t1
" / 1(ga1 * SE,)(t1 — s)o(s)]|ds

t2
+ /;2 1 ((ga—1* S31)(t1 = 8) = (ga—1% S31) (t2 — 5)) v(s)]|ds
= L+ 1+ I3+ 14
For the term I, we have
Iy < [|(S5(t1) = Saa ()] lluoll-
By the norm continuity of Sf, 1(t) in assumption (A1), we get tlligr%Q I =0.

For the term Iy, we have (g1 * SZ,)(t) = 5’52@) for all ¢ > 0 due to the uniqueness of the
Laplace transform and Lemma Meanwhile, the Lemma [2.1{ implies that (g * Soli ()
is continuous in B(X). Hence

Iz < [[(g1 * Sa1)(t1) = (g1 % Sa)(t2) | [luoll = 0, as ty — .
For the term I3, as t; — t3, we have

Mewb t1 3 M’re"‘)b t
Bs M e ot s < 25 [N otsds o
w to w ts

Finally for the term Iy, we have

Iy < /0 2 1T(gat1 * SZ1) (81 — ) = (gae1 * SED) (b2 — 8)] || Il(s)]|ds
< [t S = 5) = (g ¢ S0 = 9] 000) (o) s

= T/ (1[G * SE ) = ) = (gas * SEy)(t2 — )] || 6(s)ds.
0

Now taking into account that

Mewb

wafl

¢(s) € L'(I,Ry),

1(ga—1 % SZ1) (81 =) = (ga—1% S51)(t2 — )l é(s) < 2
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(ga—1 * Sofil)(t) = SE (t) for all t > 0 (see Lemma and S, (t) is norm continuous
(see Lemma , we have (ga—1 * 551)@1 —8) = (ga—1 * 5’51)(@ —s) — 0 in B(X) as
t1 — to. By the Lebesgue’s dominated convergence theorem, we conclude tlirr% 1, =0.
112
(iii) H(t) = {h(t) : h(t) € N(B,)} is relatively compact in X.
Clearly, H(0) is relatively compact in X. For w € B, and v € Sf,,, we define

Nau) = {m € CLX) s m(e) = [ (g1 SE)(0 = shols)ds.e e 1),

Now, let 0 <t < b and € be a real number satisfying 0 < & < t, we further introduce

m.(t) = /0 (Gar * SEL)(t — s)o(s)ds, t € 1.

The assumption (A1) and Lemma g imply the compactness of (go—1%SY)(t) = SF,(t)
for all ¢ > 0. Therefore the set K¢ := {(ga—1%Sa,1)(t—5)v(s) : 0 < s < t—e} is compact for
all € > 0. Then conv(K;) is also a compact set by Mazur Theorem. In view of Mean-Value
Theorem for the Bochner integrals, we have m.(t) € tconv(K.) for all ¢ € I. Thus the
set Mc(t) = {me(t) : m(t) € Na(B,)} is relatively compact in X for every ¢, 0 < e < ¢.
Moreover, for m € N(B,),

M wb t
< - / e P p(s)ds.
t

a—1
w —

IN

/t (Gor * SE1)(t — s)u(s)ds

—E&

[m(t) — me(t)]

Since s > e “*¢(s) belong to L([t — ¢,t],R ), we conclude by the Lebesgue Dominated
Convergence Theorem that lin(l) |lm(t) — mq(t)|| = 0. Thus, let ¢ — 0, we see that there
E—

are relatively compact sets arbitrarily M.(t) close to the set M(t) = {m(t) : m(t) €
Ny(B;)}. Hence, the set M(t) = {m(t) : m(t) € Na(By)} is relatively compact in X.
The compactness of Sgl(t) and (g1 * S(fil)(t) = 5’52@) (see Lemma [2.5 and Lemma
imply that H(t) = {h(t) : h(t) € N(B,)} is relatively compact in X. As a consequence
of the above steps and the Arzela-Ascoli theorem, we can deduce that N is completely
continuous.
(iv) N has a closed graph.

Let u™ — u*,h" € N(u") and h™ — h*. We shall show that h* € N(u*). Now
h™ € N(u") implies that there exists v™ € Sz » such that for each t € I

R (t) = Sclil(t)uo + (g1 * Sﬁl)(t)ul + /Ot(ga_l * Sgl)(t — $)v"(s)ds.

We need to prove that there exists v* € Sz ,+ such that for each t € I

t

h*(t) = So]il(t)uo + (g1 * Sﬁl)(t)ul + /0 (ga—1 * Sﬁl)(t — s)v*(s)ds.
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Consider the linear continuous operator defined by
T:LYI,X) — C(I,X),
v (To)(t) = /Ot(ga_l « SE)(t - syo(s)ds.
From Lemma it follows that Y o S is a closed graph operator. Moreover, we have
h™(t) — Sﬁl(t)uo — (g1 * Sfil)(t)ul € T(Srun).
Since u" — u*, it again follows from Lemma [2.7] that
R (t) — ST (tuo — (g1 % S (B)wr € T(Srur).

Thus, there exists v* € Sz, such that

R*(t) = Sﬁl(t)uo + (g1 * Sf,l)(t)ul + /Ot(ga_l * S(ﬁl)(t — s)v*(s)ds.

Therefore, N is completely continuous and u.s.c. By the fixed point theorem Lemma [2.9
there exists a fixed point u(-) for N on B, . Thus, Eq. (1.1)) admits a mild solution.
For ug,u; € X, define the following set

S(up,u1) ={u e C(I1,X) : u is a mild solution of Eq. (L.1)}.

Theorem 3.2 Suppose X is a reflexive Banach space. If assumptions (A1)-(A2) and the
inequality (3.1]) are satisfied, then the set S(ug,u1) is compact in C'(I, X).

Proof: In view of Theorem the set S(ug,u1) # 0, and there exists 7 > 0 such that
for each u € S(ug,u1), ||u||loc < r. Owing to N : C(I,X) — P(C(I,X)) is completely
continuous, the set N(S(ug,u1)) is relatively compact. Considering the definition of N,
we have S(ug,u1) C N(S(ug,u1)). It remains to show that S(ug,uq) is closed.

Let u™ € S(ug,u1) satisfy nlglgo u" = u. For each n, there exists v € Sz » such that

(1) = SE, (tyuo + (g1 * SE) (1) +/0 (Gos * SE1)(t — 5)0"(s)ds.

Since F is L'-Carathéodory with closed values, its selection set S, F,u is closed and nonempty.
Considering the space X is reflexible, this selection set Sz, is weakly relatively compact
due to [34, Theorem 6.4.6, Corollary 6.4.11], and hence sequentially weakly relatively com-
pact by Eberlein’s theorem (see [47]). Owing to (A2) and (3.1, [[v"()|| < ¢(t)r. As a
consequence, there exists a subsequence, still denoted by {v™}, which converges weakly

to some limit v(-) € L'. According to Mazur Theorem, there exists a double sequence
[e.e]

{cnn}tnken such that ¥n € N, Jko(n) € N : ¢pp = 0,k > ko(n), Y _cnp = 1,Yn € N,
k=n
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and the sequence of convex combinations 9"(-) = Y 32 ¢, xv"(-) converges strongly to
v(+) € L'. By the facts that F takes convex values and Lemma we get for a.e. t €1

ot) € (0. k=nyc () W{vk(t),k > n}

n>1 n>1
c Neow! |JF (t, uk(t)) — comv <limsup]: (t, uk(t))> L (32)
n>1 k>n k—o0

Note that F is u.s.c. with compact values, by [20, Lemma 6.48, Chapter 6], we obtain for
ae tel

limsup F (¢, u"(t)) = F(t, u(t)).

n—oo

This together with (3.2) implies that v(t) € conv.F(t,u(t)). Since F has closed convex
values, we have v(t) € F(t,u(t)). Let

a(t) = S (H)uo + (g1 * S ) (t)w +/0 (ga—1 % SE1)(t — s)v(s)ds, t € I.

From the properties of resolvent operators, we have

[u(t) —a(®)ll < t [(ga—1% SE1)(t = 8)[| 10" (s) — v(s)lds
0

Mewb t W

< M / e 0™ (5) — v(s) | ds
w 0
Mewb b

< 2 [ () —vls)lds

Thus, by the Lebesgue dominated convergence theorem we obtain
~ Mewb b
|u" — Uoo < wal/o |v"™(s) — v(s)||ds — 0, as n — oc.

Therefore, u(t) = a(t),t € I, which proves S(-,-) € P, (C(I, X)).

Theorem 3.3 Let X be a reflexive Banach space. Suppose that conditions (A1)-(A2)
and are satisfied. Let F : I x X — Pgp (X)) be an mLL-selectionable multivalued
map. Then for each ug,u; € X, the solution set S(ug,uq1) is contractible, and thus it is
arcwise connected.

Proof: Let f C F be a measurable, locally Lipschitz selection and consider the following
single valued equation

D (Bu)(t) = Au(t) + f(t,u(t)),
{ Eu(0) = up, (Eu)'(0)=1uy. (3.3)
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Denote u(ug,u;) is the unique mild solution of Eq. (3.3). Taking into account conditions
(A2) and (3.1]), this solution exists on the whole interval I. Now we define the homotopy
h:S(ug,ur) x [0,1] = S(up,u1) as following

~f u(t), for 0 <t <70,
hlu, 7)(#) = { u(t), for 7b < t < b.

Particularly,
, for T =1,
, for 7 =0.

gl

) = {

Let {(u™,7™)} C S(up,u1) % [0,1] be such that (u",7") — (u,7) as n — oo, we shall show
h is a continuous homotopy, i.e. h(u",7") — h(u,T) as n — oo with

n v | u(t), for 0 <t < 71"b,
hu, )(#) = { a(t), for 7 <t <b.

Next we divide the proof into different cases:
Case I. If lim 7" = 0, then from definition of h we have
n—oo

h(u,0)(t) =a(t), t € I.

Thus,
[R(u”, 7) = h(u, 7)|| < [Ju" =l = Stlg{\\un(t) —u(@)|},

which approaches 0 as n — co. The case for lim,, . 7" = 1 is treated similarly.

Case II. If lim 7" # 0 and lim 7" = 7 < 1, then the following appears:
n—oo n—oo

(1) If t € [0, 7b], then, from the fact u" € S(ug,u1) there exists v € S yn such that for
t €[0,7b

t

u(t) = SE (t)uo + (g1 % S5 ) (Bw —|—/ (ga—1 * SE1)(t — s)v"(s)ds.
0
Arguing as in the proof of Theorem [3.2] we can obtain that there exists a subsequence,
still denoted by {v"}, which converges weakly to some limit v(-) € L!, and v(t) €
conv.F(t,u(t)). Since F has closed convex values, we have v(t) € F(t,u(t)). By the
Lebesgue dominated convergence theorem, we obtain that for ¢ € [0, 7]

u(t) = Sy (B)uo + (g1 % SF1)(Eyuy + /O (g1 * SE)(t — s)u(s)ds.

(2) If t € (7b, b], then
h(u™, 7)(t) = h(u, 7)(t) = u(t).

Hence, ||h(u™,7™)(t) — h(u,7)(t)|| — 0 as n — oc.
As a consequence of the above cases, we see that h is continuous, and thus S(ug,u;)
is contractible to the point w(ug,u1).
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3.2 The Riemann-Liouville case-Eq. (|1.2))
For Eq. (|1.2]), we need the following hypotheses.
3
et - < a < 2, and the pair , generates the (o, — 1)-resolvent tamily
H1) L 5 2, and th ir (A,E h 1 1 famil
{Sf,a_l(t)}tzo of type (M,w), the operator (\*E — A)~! is compact for all \* € pg(A)
with A > wa and {SE . (t)}>0 is norm continuous for all ¢ > 0.

a,a—1

Definition 3.2 For each up,u; € X, a function u € C(I, X) is said to be a mild solution
to Eq. ([1.2) if there exists v € L*(I, X) such that v(t) € F(t,u(t)) a.e. on I and u verifies
the following integral equation

t
u(t) = Sga_l(t)uo + Sfia(t)ul + / Sfia(t — s)v(s)ds.
0

Remark 3.2 (i) By the uniqueness of the Laplace transform, it is clear that the mild
solution to Eq. (1.2]) can expressed as

ut) = S 1(t)uo + (g1 % Sga1) (Hur +/0 (91 % Saa—1)(t = s)u(s)ds.

(ii) In view of Lemma% the condition (H1) implies {SZ_ ()} is compact for all ¢ > 0.

a,a—1
Theorem 3.4 If assumptions (H1), (A2) and the following relation

Mewb
w

hold, then Eq. (1.2)) admits at least one mild solution on I.

ol <1 (3.4)

Proof: We define the operator N : C(I,X) — P(C(I,X)) as
N(u)={h€C(,X):h(t) =55, 1(t)uo + (g1 % S5 o 1) (t)ua

t
+/ (g1 * vaafl)(t —s)v(s)ds, v € Sgy, t € I} .
0

The remainder can be conducted similarly to Theorem

We can conclude that there exists a positive number r such that N(B,) C B,, and
N (u) is convex, closed for each u € C(I,X). Because Sga_l(t) is norm continuous for
all t > 0 (see (H1)) and t +— (g1 * Sf’a_l)(t) is also norm continuous by Lemma we
can similarly prove N(B,) is equicontinuous. The Lemma implies the compactness of
(g1 * Sf,a—ﬂ(t) = 5F,(t) for all t > 0 and therefore the set {fg(gl * Sf,a—l)(t —s)v(s)ds :
v € Srqy,u € B} is relatively compact for all ¢t € I (as in the proof of Theorem . On
the other hand, from (H1) and Lemma we get the compactness of Sﬁ a_1(t) for all
t > 0. Thus, we show the set H(t) = {h(t) : h(t) € N(B,)} is relatively compact in X.
By the Arzela-Ascoli theorem, we can deduce that IV is completely continuous. We can

also show N has a closed graph (see the proof of Theorem . In the final, we see IV
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is u.s.c. and satisfies Lemma there exists a fixed point u(-) for N on B, . Thus, Eq.
(1.2) admits a mild solution.
For ug,u; € X, define the following set
S(up,u1) ={u € C(I,X) : u is a mild solution of Eq. (L.2))}.
The following results involved in Eq. (1.2]) can be proved the same as Theorems 3.3

Theorem 3.5 Suppose X is a reflexive Banach space. If assumptions (H1), (A2) and the
inequality (3.4) are satisfied, then the set &(ug, u1) is compact in C'(I, X).

Theorem 3.6 Let X be a reflexive Banach space. Suppose that conditions (H1), (A2)
and (3.4) are satisfied. Let F : I x X — Pepco(X) be an mLL-selectionable multivalued
map. Then for each ug,u; € X, the solution set &(ug,u1) is contractible, and thus it is
arcwise connected.

4 Applications

As applications of the above results, we consider the following semilinear equation

{ D (Eu)(t) € Au(t) + J2F(t,u(t)),t € I,

Eu(0) = ug, (Eu)'(0) = uy, (4.1)

where ug,u; € X, X is a separable Banach space, 1 < o < 2, J>~® denotes the Riemann-
Liouville fractional integral operator. Assume the pair (A, E') generates the («, 1)-resolvent
family {Sgl(t)}tzo. The mild solution to Eq. (4.1)) is given by

t
u(t) = Sﬁl(t)uo + (g1 * Sf’l)(t)ul +/ (g1 * Sf’l)(t — s)v(s)ds,v € Sgy,t € l.
0

In view of Theorems |3.113.3) we have the following result for Eq. (4.1)).

Lemma 4.1 Let X be a reflexive Banach space. Suppose that conditions (A1)-(A2) and
relation and hold. Let F : I x X — Pgpp(X) be an mLL-selectionable multivalued
map. Then for each ug,u; € X, the solution set S(up,u;) of Eq. is nonempty,
compact, contractible, and thus arcwise connected.

On the other hand, for the semilinear equation in Riemann-Liouville fractional derivative

{ DY(Eu)(t) € Au(t) + J>~*F(t,u(t)),t € I,

(E(g2—a *u))(0) = ug, (E(g2-a *u))"(0) = u1, (4.2)

3
where ug,u; € X, X is a separable Banach space, 3 < a < 2. Let the pair (A4, E) generate

the (a, a — 1)-resolvent family {Sga_l(t)}tzo, then the mild solution to Eq. 1’ can be
written as

t
u(t) = Sf’a,l(t)uo + (g1 * Sf,a,l)(t)ul +/ (g3—a * Sfﬂafl)(t —s)v(s)ds,v € Sgy,t € 1.
0

Based upon Theorems we can obtain the following result for Eq. (4.2).
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Lemma 4.2 Let X be a reflexive Banach space. Suppose that conditions (H1), (A2) hold
M wb

—[l¢llpr < 1. Let F: I x X — Pepev(X) be an mLL-selectionable multivalued

map. Then for each ug,u; € X, the solution set &(up,u;) of Eq. (4.2) is nonempty,
compact, contractible, and thus arcwise connected.

and

Example 4.1 In the following, we end this paper with a simple example. Take X =
L?[0,7], (t,z) € [0,1] x [0, 7], consider the following problem

D? [u(t7 JJ) - uzr(tv J})] = _ull?w(t7 l‘) + f(tv U(t, CL’)),
u(t,0) =u(t,m) =0, te]0,1],

u(0,z) = ug(z), =z €]l0,n],

u(0,2) = uy(z), =« €][0,7],

(4.3)

e tu(t, x)
(Com? +t)(1 4+ u(t,z))’

Define the the operators A: D(A) C X — X and F: D(E) C X — X respectively by

where 1 < a < 2, f(t,u(t,x)) := Cy > 0 will be defined later.

with the domain D(E) = D(A) := {u € X : v € H*([0,7]),u(t,0) = u(t,7) = 0}.
It is known that A has discrete spectrum with eigenvalues of the form n?,n € N, and
the corresponding normalized eigenvectors are given by wuy(s) := ( 2)2 sm(ns) Moreover,
{u,, : n € N} is an orthonormal basis for X, and thus A and E can be written as (see [31])

Au = Zn2<u,un>un,u € D(A),

n=1
[e's)

Eu= Z(l + n2) (u, up )iy, u € D(E).

n=1
Thus, for any v € X and § = 1, we have

AT OE - A = 3 A
= A*(1+n?) +n?

<u, un>un

[e.e]

1 )\a—l
= Z Y v (U, Up, ) U, (4.4)
n2+1

_ —\t
= / Z n2 1 o1 (B)dt(u, up)uny,

R Aafl
where the function Ay, | (t) := €q,1 < nQHta) satisfying Ay, 1 (A) = ————— forall A > 0.

n +1
Therefore, the (a,1)-resolvent family {Sgl(t)}tzo generated by the pair (A, E) can be




18 Y .-K. Chang, R. Ponce, and X.-S Yang

given by
=~ 1
E
Sa,l(t)u = nz_; mhg’l(t) <U, un>un, fOI" all u < X
1
From the continuity of e, 1(-) and the convergence of series Z FUREE we can conclude
Aafl
that SZ, (¢) is norm continuous. From (4.4)) and the fact lim 3 5s— = 0 for all
) n—oo n* + 1 PR

n2+1
A > 0, we can also deduce that (A*E — A)~! is a compact operator on the Hilbert space
X. Furthermore, for each u € X we have (see[I7])

oo

1 1 1
ISZa®ull <Y ———hG®lllull < Ca Z = ~

2
ot +1 nc+11+ 2+1

IN

=1 w2
Ca > —sllull = Ca |l
n=1

where C,, is a positive constant given in [I7, Theorem 1]. Therefore, Sf: 1 () is of type
2 2
C’a%, 1),ie. M= C’a% and w = 1.

Let F =: {f}, I :=[0,1]. We note that Eq. (4.3) can be rewritten in the abstract

el < Shgb=w=1
_c — =
Com2+1t’ s O, 2
Me+? e : .
and thus —— |81 = 6 < 1. According to Theorems |[3.143.3 the solution set of Eq.
w

(4.3) is nonempty, compact, contractible and arcwise connected.

form 1) We also observe that in this case ¢(t) :=

5 Conclusions.

In this paper, we treats properties of solution sets for Sobolev type fractional differential
inclusions Eq. and Eq. with the order 1 < a < 2 respectively. We show that
the solution sets are nonempty, compact, contractible and thus arcwise connected under
some suitable conditions. Our main results are directly established through properties
of resolvent operators generated by the operator pair (A, F) instead of subordination
formulas. In particular, the existence or compactness of an operator E~! is not necessarily
needed here. Some applications are also presented to illustrate obtained results.
Acknowledgements: The first author was partially supported by NSFC (11361032) and
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