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Abstract. In this paper we study the well-posedness, regularity, and asymptotic behavior of the solutions

to the abstract pseudo-parabolic equation ∂αt u(t) = Au(t) + B∂βt u(t) + f(t), where A,B are closed linear
operators in a Banach space, and ∂γt u denotes the Caputo or Riemann–Liouville fractional derivative of

order γ > 0.

1. Introduction

Consider the prototype pseudo–parabolic equation

(1) ∂tu(x, t)− ε∆∂tu(x, t)−∆u(x, t) = f(u(x, t)), (x, t) ∈ Ω× [0, T ],

along with suitable initial and boundary conditions, where Ω ⊂ Rn, n = 1, 2, or 3, ε > 0, and ∂t stands for
the time derivative of order one.

The equation (1) arises in several fields of science and engineering. In fact in the earlier work [7] the
authors describe how this kind of equations may be used in the study of some materials for which two
different temperatures apply (the conductive and thermodynamic ones). The equation (1) is also related
to the analysis of unidirectional propagation of nonlinear, dispersive, long waves [4] where f(u) = up,
1 < p < +∞, and n = 1, 2; the aggregation of population [20]; the analysis of nonstationary processes for
semi–conductors in presence of sources and a constant homogeneous external electric field [14]; two–phase
immiscible flow in porous media with dynamic capillary pressure [1, 2]; electrical conduction in heterogeneous
media [3]; or image texture recognition [27].

In the last few years some generalizations of (1) have been studied whose main novelty might be the use
of fractional calculus both, in the time and the spatial setting. In fact, in [12] and [24] a fractional Laplacian
(−∆)α, α > 0, replaces the classical one acting both on u(x, t) and some functional of u(x, t) respectively,
and the well–posedness and asymptotic behavior of its solutions is studied. In [6, 8, 10, 22, 28] the study
is extended to semi–linear pseudo–parabolic equations also involving a fractional Laplacian. In [25, 26] two
different powers of the Laplacian acting separately on u(x, t) and ∂tu(x, t) are considered, and in [16, 21]
time fractional derivatives are introduced in the format

(2) ∂αt u(x, t) + µ(−∆)s1∂αt u(x, t) + (−∆)s2u(x, t) = f(u(x, t)),

where 0 < s1 6= s2 < 1, α > 0, and f stands for a locally Lipchitz function. In [5, 15, 18, 19] second
order elliptical operators are considered instead of the Laplacian itself, even within the framework of time
fractional derivatives.

We here address the generalization of such a fractional linear pseudo–parabolic problems by considering
an abstract approach in the framework of complex Banach spaces and the format

(3) ∂αt u(t) = Au(t) +B∂βt u(t) + f(t), t > 0,
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where A,B stand for two linear operators (might be unbounded) defined in D(A),D(B) ⊂ X respectively,

X is a complex Banach space, and ∂αt , ∂
β
t denote time fractional derivatives of order α, β > 0 respectively,

whose precise definition is discussed below. We keep this notation throughout the paper even if α and β are
integers, in that case time derivatives stand for the classical integer derivatives. Convenient initial data for
(3) will be also discussed below.

Our first contribution consists of stating conditions on α, β, A, and B for the well–posedness of (3).
Moreover, since one of the main issues when time fractional derivatives are involved is the time regularity
at t = 0+ we also study the regularity of its solutions as t→ 0+. The present study is then completed with
the asymptotic behavior of the solutions as t→ +∞.

The paper organizes as follows. In Section 2 we give the notation, definitions and precise formulation
of the problem. Here we introduce a family Eγ(t) : X → X, t ≥ 0, of evolution operators whose Laplace
transform L(Eγ)(z), verifies L(Eγ)(z) = zγ(zα − A − zβB)−1. This family allows us to write the solution
of (3) as a variation of parameters formula. Section 3 is devoted to the case A = B in (3) where we study
the well–posedness, the regularity, and asymptotic behavior of the solutions to (3) in terms of the properties
of Eγ(t). In Section 4 carry out the same analysis now in the case A 6= B, here under suitable but general
conditions on the operators A and B.

2. Notation and problem formulation

Let X be a complex Banach space. Recall that a linear operator A is θ–sectorial, 0 < θ < π/2, if there
exist M > 0, and w ∈ R, such that

(4) ‖(A− λI)−1‖ ≤ M

|λ− w|
, λ /∈ w + Sθ = {w + z : z ∈ Sθ},

where

(5) Sθ := {z ∈ C : |arg(−z)| < θ},

I is the identity operator, and (A − λI)−1 stands for the resolvent operator of A defined in their resolvent
set %(A) (see [11] Ch. 2 and [17] Ch. 2).

Related to the fractional derivative of order α ≥ 0 of g(t), ∂αt g(t), here we focus on two of the most
commonly used in practical instances: The Caputo and the Riemann–Liouville ones. Even though the
results shown in the present paper actually coincide for both choices, and there are hardly any differences in
the corresponding proofs, some differences arise related to the initial data. For the sake of the convenience
of readers recall that the Riemann–Liouville type derivative of order α ≥ 0, with n − 1 ≤ α < n, n ∈ Z+,
and g ∈ L1(0,+∞), reads

(6) ∂αt g(t) := ∂nt (In−αt g(t)), t ≥ 0,

where Iβt stands for the fractional integral of order β > 0 in the Riemann–Liouville sense, and defines, for
g ∈ L1(0,+∞), as the convolution integral

(7) Iβt g(t) :=

∫ t

0

(t− s)β−1

Γ(β)
g(s) ds, t ≥ 0.

On the other hand, the fractional derivative of g(t) in the Caputo’s sense is defined by

(8) c∂
α
t g(t) := In−αt (∂nt g(t)), t ≥ 0.

In order to simplify the notation and without no confusion we denote Iβt = ∂−βt . See e.g. [23, 13] and
references therein for a deeper study on fractional calculus.

Now we are in a position to state the problem which is the main purpose of our study. Let A,B be two
linear operators in X, D(A),D(B) ⊂ X, and let α, β be two positive constants such that

(9) 1 ≤ α < 2, and 0 < β ≤ α.
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Consider the linear fractional pseudo–parabolic equation

(10) ∂αt u(t) = Au(t) +B∂βt u(t) + f(t), t > 0,

along with some initial conditions. Those initial conditions depend on the definition of fractional derivative
one opts for, and this point deserves a short discussion.

Let us consider the definition (6) and take the Laplace transform in (10), in fact for the left–hand side
term we have

L(∂αt u)(z) = zαU(z)− z ∂α−2
t u(t)

∣∣
t↓0+ − ∂α−1

t u(t)
∣∣
t↓0+ ,

where U(z) := L(u)(z). Analogously, the Laplace transform of the fractional derivative in the right–hand
side of (10), taking from apart the operator B, leads to

L(∂βt u)(z) = zβU(z)− ∂β−1
t u(t)

∣∣∣
t↓0+

, if 0 < β ≤ 1,

and

L(∂βt u)(z) = zβU(z)− z ∂β−2
t u(t)

∣∣∣
t↓0+
− ∂β−1

t u(t)
∣∣∣
t↓0+

, if 1 < β ≤ α.

In view of the above suitable initial conditions consist of the existence of

(11) uα−2
0 = ∂α−2

t u(t)
∣∣
t↓0+ , uα−1

0 = ∂α−1
t u(t)

∣∣
t↓0+ ∈ X,

and the existence of

(12) uβ−1
0 = ∂β−1

t u(t)
∣∣∣
t↓0+

∈ D(B), if 0 < β ≤ 1,

or

(13) uβ−2
0 = ∂β−2

t u(t)
∣∣∣
t↓0+

, uβ−1
0 = ∂β−1

t u(t)
∣∣∣
t↓0+

,∈ D(B), if 1 < β ≤ α.

Such a conditions have not by far physical meaning, and in addition lead to solutions that may not be defined
at t = 0.

On the contrary if one consider the fractional derivatives in Caputo’s sense (8), then the Laplace transforms
of (10) reads

(14) L(c∂
α
t u)(z) = zαU(z)− zα−1u(0)− zα−2∂tu(0),

and taking again from apart the operator B,

(15) L(c∂
β
t u)(z) = zβU(z)− zβ−1u(0), if 0 < β ≤ 1,

or

(16) L(c∂
β
t u)(z) = zβU(z)− zβ−1u(0)− zβ−2∂tu(0), if 1 < β ≤ α.

In this case one may naturally consider the following initial conditions

(17)

u(0) = u0 +Bu0, u0 ∈ D(B), and ∂tu(0) = u1
0 ∈ X, if 0 < β ≤ 1,

or

u(0) = u0 +Bu0, u0 ∈ D(B), and ∂tu(0) = u1
0 +Bu1

0, u1
0 ∈ D(B), if 1 < β ≤ α.

Observe that initial conditions have now a precise physical meaning since they are given in terms of u and its
first derivative at t = 0, and moreover they provide solutions well defined at t = 0. Is for that we henceforth
adopt the definition (8) of fractional derivative. In fact denote

(18) U0(z) = zα−1u0 + zα−2u1
0 − zβ−1Bu0, if 0 < β ≤ 1,

or

(19) U0(z) = zα−1u0 + zα−2u1
0 − zβ−1Bu0 − zβ−2Bu1

0, if 1 < β ≤ α,
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According to (19)–(18) and denoting F (z) = L(f)(z), the equation (10) may be written in the domain of
the Laplace transform as

(20) (zα −A− zβB)U(z) = U0(z) + F (z),

from where we have, in case of existing the operator (zα −B − zβB)−1

(21) U(z) = (zα −A− zβB)−1(U0(z) + F (z)).

Therefore, in case of existing the inverse Laplace transform of the operator (zα −B − zβB)−1, we have

(22) u(t) = (Eα−1(t)− Eβ−1(t)B)u0 + Eα−2(t)u1
0 +

∫ t

0

E0(t− s)f(s) ds, t > 0, if 0 < β ≤ 1.

and
(23)

u(t) =
(
Eα−1(t)−Eβ−1(t)B

)
u0 + (Eα−2(t)− Eβ−2(t)B)u1

0 +

∫ t

0

E0(t− s)f(s) ds, t > 0, if 1 < β ≤ α,

In (22) and (23) {Eγ(t)}t≥0, for γ ≤ α − 1, stands for a strongly continuous family of linear and bounded
operators Eγ(t) : X → X, t ≥ 0, such that t 7→ Eγ(t)v belongs to L1

loc([0,+∞)), and where in fact, Eγ(t)
comes given by the inversion Laplace transform formula or Bromwich integral

(24) Eγ(t) :=
1

2πi

∫
Γ

eztzγ(zα −A− zβB)−1 dz,

for a suitable complex path Γ. The family of operators {Eγ(t)}t≥0 might be extended for γ in a larger range
of values, however for our purposes it is enough to consider γ ≤ α− 1.

If not regularity at all is assumed for u0 and u1
0, then (22) and (23) are be adopted as the mild solutions

of (10), for 0 < β ≤ 1 and 1 < β ≤ α respectively. Moreover, whether some regularity on the initial data is
assumed or not in case satisying (22) and (23) it is said that the problem (10)–(17) is well–posed.

In the following sections we state conditions for the existence of mild solutions for (10), that is for the
existence of(24) to be meaningful, in both cases A = B and A 6= B. Moreover suitable regularity conditions
related to the initial data are stated in both cases in order to get genuine solutions of (10).

Before going to the following sections of the paper let us recall a known result which will be used repeatedly
throughout the paper: Let H(z) be a complex function, analytic outside a sector w+Sθ, 0 < θ < π/2, w ∈ R,
and such that there exist γ ∈ R and M > 0 satisfying

(25) |H(z)| ≤M |z|−γ , z /∈ w + Sθ.

Therefore there exists a complex path Γ surrounding w + Sθ, and connecting −i∞ and +i∞, such that the
inverse Laplace transform writes as

(26) h(t) =
1

2πi

∫
Γ

eztH(z) dz, t > 0,

and C > 0, independent on t, such that

(27) |h(t)| ≤ Ctγ−1 ewt, t > 0.

Observe that, if γ > 0, then f(t) turns out to be locally integrable. However, if γ ≤ 0, then those convolutions
where h(t) stands for its convolution kernel∫ t

0

h(t− s)g(s) ds, t > 0,

will be interpreted as the k–th (integer) derivative

∂kt

(∫ t

0

h̃(t− s)g(s) ds

)
, t > 0,
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where h̃(t) stands for the inverse Laplace transform of z−kH(z), for γ + k > 0, as long as g(t) is k–times
continuously differentiable.

For the sake of the simplicity of presentation, and without lost of generality, from now on we assume that
f(t) = 0. Besides observe that if α = β = 1, and A = B, then the equation (10) matches the classical linear
pseudo–parabolic equations, and if in addition B = 0, then (10) matches the classical fractional parabolic
equations.

3. Only one operator: A = B.

The first part of the paper is devoted to those equations (10) where only one operator is involved. In that
way let A be a θ–sectorial operator, D(A) ⊂ X, 0 < θ < π/2, and w ∈ R, and assume that A = B.

3.1. Well–posedness. The first result we address in this paper concerns the well–posedness of the initial
value problem (10)–(17). For the sake of the simplicity of the presentation in this section we assume that
w = 0. This assumption does not mean a loss of generality since in the case of w 6= 0 no relevant differences
arise in the final result, and no additional difficulties in the proof.

Theorem 1. Let A be a linear and θ–sectorial, 0 < θ < π/2, and α, β positive constants satisfying (9). If

(28) θ <
π(2− α+ β)

2
,

then the initial value problem (10)–(17) is well–posed.

Proof. First of all notice that according to (23) and (22) –(24), now with A = B, the proof of the well–
posedness consists of the existence of the resolvents

(29)
zγ

1 + zβ

(
zα

1 + zβ
−A

)−1

, γ ≤ α− 1,

in a convenient domain, and the convergence of the integral (24) for a suitable complex path Γ. These facts
are directly related to the sectorial property of A and in particular to the behavior of zα/(1 + zβ) respect to
the sector Sθ associated to A. In this regard note that the left–hand side term zγ/(1 + zβ) in (29) does not
affect the result, and therefore is avoided hereafter in the proof.

Denote z = ρ eiϕ, ρ ≥ 0, and π/2 < ϕ < π. Observe that

(30) arg

(
zα

1 + zβ

)
= arctan

(
sin(αϕ) + ρβ sin((α− β)ϕ)

cos(αϕ) + ρβ cos((α− β)ϕ)

)
,

and asymptotically we have

(31) arg

(
zα

1 + zβ

)
→ (α− β)ϕ, as ρ→ +∞.

Henceforth, since ϕ > π/2, if π(α − β)/2 < π − θ or equivalently if (28) satisfies, then one can set ϕ
satisfying π(α − β)/2 < (α − β)ϕ < π − θ, and R0 > 0, such that zα/(1 + zβ) does not belong to Sθ, for
ρ ≥ R0.

Now, we are in a position to define a suitable complex Γ for the existence of the evolution operator (24).
In fact let ϕ be belonging to (π/2, π) such that π(α− β)/2 < (α− β)ϕ < π − θ, define Γ = Γ1 ∪ Γ2 where

(32)
Γ1 := {z ∈ C : z = ρ eiϕ, ρ ≥ R0},
Γ2 := {z ∈ C : z = R0 eiσ,−ϕ ≤ σ ≤ ϕ},

positively oriented, that is with increasing imaginary part. The complex path (32) keeps out of Sθ, and the
complex integral is certainly convergent. Therefore the representation (24) of the evolution operator Eγ(t)
is meaningful, as well as the mild solution (23) and (22). �

Notice that if α− β ≤ 1, then there is not restrictions on θ since in that case π(2− α+ β)/2 ≥ π/2.
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3.2. Regularity. We here study the regularity of the solution of (10)–(17) as t→ 0+. To this end we first
show a result concerning to the behavior of the evolution operator (24) as t → 0+, and which will be the
key to state the regularity and the asymptotic behavior of the solution.

Notice that the value w involved in the sectoriallity of A actually does not affect the regularity of the
solution and the corresponding result is shown for the shortness only for w = 0. On the contrary, the
asymptotic behavior shows differences depending on w and it study in two cases, that is whether w ≥ 0 or
w < 0. This is why the following result is stated both for w ≥ 0, then for w < 0.

Theorem 2. Let α, β be two positive constants satisfying (9). Moreover let {Eγ(t)}t≥0 be the family of
evolution operators defined in (24), for γ ≤ α− 1.

Therefore there exists C > 0 independent on t such that, for t > 0,

‖Eγ(t)‖ ≤


C ewttα−γ−1, if w ≥ 0,

C min

{
tβ−γ−1

|w|
, tα−γ−1

}
, if w < 0.

(33)

If in addition ζ ∈ D(A), then there exist an operator R(t) and C > 0 so that, for t > 0,

(34) Eγ(t)ζ =
tα−γ−1

Γ(α− γ)
ζ +R(t)Aζ,

where

‖R(t)‖ ≤


C ewtt2α−γ−β−1, if w ≥ 0,

C min

{
tα−γ−1

|w|
, t2α−γ−β−1

}
, if w < 0.

(35)

Proof. First of all, according to the definition of Γ in the proof of the Theorem 1, let Γw+
be the complex path

surrounding the sector w+Sθ defined by Γw+
:= (w+ +Γ1)∪ (w+ +Γ2) where w+ +Γj := {w+ +z : z ∈ Γj},

j = 1, 2, and w+ = max{0, w}. Assume also that Γw+ is defined with R0 large enough. Therefore the
evolution operator Eγ(t) writes

(36) Eγ(t) =
1

2πi

∫
Γw+

ezt
zγ

1 + zβ

(
zα

1 + zβ
−A

)−1

dz, t > 0.

Notice that, since the integrand could not be longer extended to the left hand side complex plane, the
integral is only admitted over Γw+

. This will implies that in this analysis the exponential growth shown if
w > 0 has not the counterpart exponential decay if w < 0.

According to the sectorial property of A, we have that

(37)

∥∥∥∥∥ zγ

1 + zβ

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤

M

∣∣∣∣ zγ

1 + zβ

∣∣∣∣∣∣∣∣ zα

1 + zβ
− w

∣∣∣∣ ≤
CM

|z|α−γ
,

for a C > 0 independent on t. This means that Eγ(t) stands for a functional whose Laplace transform is
bounded by CM/|z|α−γ , z ∈ Γw+

. Therefore, by (25)–(27) there exists C > 0, independent on t, such that

‖Eγ(t)‖ ≤ C etw+tα−γ−1, t > 0.

This bound applies for any w ∈ R, in particular if w < 0 the operator A may though merely as with w = 0.
If w < 0 a slightly different analysis must be done. In fact, straightforwardly one has from (37) that

M

∣∣∣∣ zγ

1 + zβ

∣∣∣∣∣∣∣∣ zα

1 + zβ
− w

∣∣∣∣ ≤M
∣∣∣∣ zγ

1 + zβ

∣∣∣∣ 1

|w| sin(θ)
≤ M/ sin(θ)

|w||z|β−γ
,
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therefore, for w < 0 we have also the bound

‖Eγ(t)‖ ≤ C

|w|
tβ−γ−1, t > 0,

and the first statement of the theorem follows.
By going a step forward the evolution operator Eγ(t) admits the following expression, for ζ ∈ D(A),

Eγ(t)ζ =
1

2πi

∫
Γw+

ezt
zγ

1 + zβ

(
zα

1 + zβ
−A

)−1

ζ dz

=
1

2πi

∫
Γw+

ezt
1

zα−γ
zα

1 + zβ

(
zα

1 + zβ
−A

)−1

ζ dz

=
1

2πi

∫
Γw+

ezt
1

zα−γ

{
I +

(
zα

1 + zβ
−A

)−1

A

}
ζ dz

= R0(t)ζ +R(t)Aζ,

where

(38) R0(t) :=
1

2πi

∫
Γw+

ezt
1

zα−γ
I dz, and R(t) :=

1

2πi

∫
Γw+

ezt
1

zα−γ

(
zα

1 + zβ
−A

)−1

dz.

Note that R0(t) may be written as

(39) R0(t) =
tα−γ−1

Γ(α− γ)
I, t > 0,

and by the sectorial property of A, and since R0 is assumed to be large enough, there exists C > 0 such that

(40)

∥∥∥∥∥ 1

zα−γ

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤M |1 + zβ |

|z|2α−γ
≤ CM

|z|2α−γ−β
, z ∈ Γw+

.

ThereforeR(t) stands for the inverse Laplace transform of a function depending on z bounded by |z|−(2α−γ−β),
for z ∈ Γw+ . Once again, from (25)–(27) it follows that,

(41) ‖R(t)Aζ‖ ≤ CM‖Aζ‖ etw+t2α−γ−β−1, t > 0,

for ζ ∈ D(A). Once again, for w < 0, the analysis above may be applied here to have

(42)

∥∥∥∥∥ 1

zα−γ

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤M

1

|z|α−γ∣∣∣∣ zα

1 + zβ
− w

∣∣∣∣ ≤
CM/ sin(θ)

|w||z|α−γ
, z ∈ Γw+

,

and consequently

(43) ‖R(t)‖ ≤ C

|w|
tα−γ−1, t > 0.

In that manner the proof of the theorem concludes. �

In view of (23) and (22) the regularity of the solution is achieved by applying Theorem 2 with some
particular values of γ, and suitable regularity conditions for u0 and u1

0. All these cases are collected in
following corollary. Notice that since the regularity of the solutions is not actually affected by w, for the
shortness of the presentation we only show the results for w = 0. The results for w 6= 0 straightforwardly
might achieved.
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Corollary 3. Let α, β be two positive constants satisfying (9), and let {Eγ(t)}t≥0 be the family of evolution
operators defined in (24), for γ ≤ α− 1, and w = 0.

Therefore,

(1) If ζ ∈ D(A), then we have the following,

(44) Eα−1(t)ζ − Eβ−1(t)Aζ = ζ + E−1(t)Aζ, t ≥ 0.

(45) ∂t
{
Eα−1(t)ζ − Eβ−1(t)Aζ

}∣∣
t=0

= 0.

(46) Eα−2(t)ζ − Eβ−2(t)Aζ = tζ + E−2(t)Aζ, t ≥ 0.

(47) ∂t
{
Eα−2(t)ζ − Eβ−2(t)Aζ

}∣∣
t=0

= ζ.

Eα−2(t)ζ = tζ +R(t)Aζ, R(t) = O(tα−β+1),

∂tEα−2(t)ζ = ζ +R(t)Aζ, R(t) = O(tα−β),

}
t→ 0+.(48)

(2) If ζ ∈ D(A2), then we have the following,

(49) Eα−1(t)ζ − Eβ−1(t)Aζ = ζ +
tα

Γ(α+ 1)
Aζ +R(t)A2ζ, t ≥ 0, R(t) = O(t2α−β), t→ 0+.

(50) Eα−2(t)ζ − Eβ−2(t)Aζ = tζ +
tα+1

Γ(α+ 2)
Aζ +R(t)A2ζ, t ≥ 0, R(t) = O(t2α−β+1), t→ 0+.

(51) Eα−2(t)ζ = tζ +R1(t)Aζ +R2(t)A2ζ, R1(t) = O(tα−β+1), R2(t) = O(t2(α−β)+1), t→ 0+.

Proof. In order to prove (44) recall that the operators Eγ(t) admit the integral representation (24) along a
suitable complex path Γ, in fact we adopt again the path Γ = Γ0 according the notation in the proof of the
Theorem 2, here again for R0 > 0 large enough. Therefore we have

Eα−1(t)ζ − Eβ−1(t)Aζ

=
1

2πi

∫
Γ

ezt
zα−1

1 + zβ

(
zα

1 + zβ
−A

)−1

ζ dz − 1

2πi

∫
Γ

ezt
zβ−1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ +
1

2πi

∫
Γ

ezt
1

z

(
zα

1 + zβ
−A

)−1

Aζ dz − 1

2πi

∫
Γ

ezt
zβ−1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ +
1

2πi

∫
Γ

ezt
(

1

z
− zβ−1

1 + zβ

)(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ +
1

2πi

∫
Γ

ezt
z−1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ + E−1(t)Aζ dz.

So the statement (44) follows, and in a similar manner the proof of (46) follows as well.
On the other hand, once observed that

∂t
{
Eα−1(t)ζ − Eβ−1(t)Aζ

}
=

1

2πi

∫
Γ

ezt
1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz = E0(t)Aζ dz, t ≥ 0,

the Theorem 2, now with γ = 0, leads to

‖E0(t)‖ ≤ Ctα−1, t > 0,

and accordingly to (45). Likewise the proof of (47) is done.
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The proof of (49) in based on the fact that, according to the Theorem 2 and (44), if ζ ∈ D(A2) the
operator E−1(t) admits the following expression

E−1(t)ζ =
1

2πi

∫
Γ

ezt
1

zα+1

zα

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz =
tα

Γ(α+ 1)
Aζ +R(t)A2ζ,

where

R(t) =
1

2πi

∫
Γ

ezt
1

zα+1

(
zα

1 + zβ
−A

)−1

dz, t > 0.

Here, we have that

(52)

∥∥∥∥∥ 1

zα+1

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤ CM

|z|2α−β+1
, z ∈ Γ,

and therefore

(53) ‖R(t)‖ ≤ Ct2α−β , t > 0.

In that manner the proof of (49) concludes. The proof of (50) follows the same steps as with E−1(t), now
E−2(t).

Finally proofs of (48) and (51) follow similar steps and by the shortness of the paper are omitted. �

Theorem 4. Let α, β be two positive constants satisfying (9). Moreover let u(t) be the mild solution (23)
of the initial value problem (10)–(17), for 0 < β ≤ 1, and 1 < β ≤ α respectively. If u0, u

0
1 ∈ D(A), then

u(t) is a genuine solution of (10)–(17) such that

u(0) = u0, ∂tu(0) = u1
0,

and satisfies that,

(1) For 1 < β ≤ α,

u(t) = u0 + tu1
0 + E−1(t)Au0 + E−2(t)Au1

0, t > 0,

and if moreover u0, u
1
0 ∈ D(A2), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +

tα+1

Γ(α+ 1)
Au1

0 +R1(t)A2u0 +R2(t)A2u1
0,

where there exists C > 0, independent on t, such that

‖R1(t)‖ ≤ Ct2α−β , and ‖R2(t)‖ ≤ Ct2α−β+1, t > 0.

(2) For 0 < β ≤ 1, there exists C > 0 such that

u(t) = u0 + tu1
0 + E−1(t)Au0 +R(t)Au1

0, where ‖R(t)‖ ≤ Ctα−β+1, t > 0,

and if moreover u0, u
1
0 ∈ D(A2), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +R1(t)Au1

0 +R2(t)A2u0 +R3(t)A2u1
0,

where

‖R1(t)‖ ≤ Ctα−β+1, ‖R2(t)‖ ≤ Ct2α−β , and ‖R3(t)‖ ≤ Ct2(α−β)+1, t > 0.

The proof of the Theorem 4 is a straightforward consequence of the Corollary 3.
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3.3. Asymptotic behavior. In this section we show the behavior of the solution of (10)–(17) as t→ +∞.
In this section the coefficient w plays an important role, henceforth we here consider any w ∈ R instead of
merely w = 0.

Theorem 5. Let α, β be two positive constants satisfying (9), u0, u
0
1 ∈ D(A), and u(t) the solution of the

initial value problem (10)–(17).
Therefore there exists C > 0 such that

(1) If 1 < β ≤ α, then

(54) ‖u(t)‖ ≤


C ewttα−β+1, w ≥ 0,

Ct

|w|
, w < 0,

as t→ +∞.

(2) If 0 < β ≤ 1, then

(55) ‖u(t)‖ ≤


C ewttmax{α−β,1}, w ≥ 0,

Ctmax{β−α+1,0}

|w|
, w < 0,

as t→ +∞.

Proof. Let us consider the expressions (22), and (23) of the solution u(t) of (10)–(17), for 0 < β ≤ 1, and
1 < β ≤ α respectively.

First of all notice that one might consider the expressions of u(t) provided by the Theorem 4 instead of
(23) and (22), however no more accurate bounds can be achieved. Therefore consider two cases, 1 < β ≤ α
and 0 < β ≤ 1 as follows:

1. Let β be a positive constant such that 1 < β ≤ α. According to (23) and (33), for w ≥ 0, we have

(56) Eα−1(t) ≤ C ewt, Eβ−1(t) ≤ C ewttα−β , Eα−2(t) ≤ C ewtt, Eβ−2(t) ≤ C ewttα−β+1,

for t > 0. The first statement of (54) then follows. On the other hand, if w < 0, then and according again
to (33) we have

(57) Eα−1(t) ≤ C

|w|tα−β
, Eβ−1(t) ≤ C

|w|
, Eα−2(t) ≤ Ctβ−α+1

|w|
, Eβ−2(t) ≤ Ct

|w|
,

for t > 0. Since β − α+ 1 ≤ 1 the second statement of (54) follows as well.
2. Let β be a positive constant such that 0 < β ≤ 1. In this case we only have to take into account the

first third terms in (56), so that the dominant terms are

Eβ−1(t) ≤ C ewttα−β , Eα−2(t) ≤ C ewtt, t > 0.

Therefore we have the first statement of (55). On the same manner if if w < 0, then the last term in (57)
does nort affect the bound, and according one more time to (33) we have that the dominant terms are

Eβ−1(t) ≤ C

|w|
, Eα−2(t) ≤ Ctβ−α+1

|w|
, t > 0.

So, since β − α + 1 ≥ 0 is not always satisfies, the proof of the second statement of (55) follows, and the
proof of the theorem concludes. �

The Theorem 5 deserves some comment, in particular note that if B = 0, β = 0, and u1
0 = 0, that is if one

has the classical parabolic fractional integral equation u(t) = u0 + ∂−αt Au(t), then the asymptotic behavior
shown above perfectly matches the one provided in [9].

4. Two operators: A 6= B

Despite the results shown in this section turn out to be fairly similar to the ones in the case A = B, two
different operators are now involved and the proofs are slightly different. This is why the proofs below are
shown.
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4.1. Well–posedness. In this section we consider two different linear operators A and B, D(A),D(B) ⊂ X.
Let us recall a definition that will prove useful hereafter: Given two linear operators A,B : X → X, the

operator A is called B–bounded if D(A) ⊆ D(B), and there exists b > 0 such that

(58) ‖Aζ‖ ≤ b‖Bζ‖, ζ ∈ D(A).

In that case b is so–called the B–bound of A, if b := inf{a > 0 : ‖Aζ‖ ≤ a‖Bζ‖, ζ ∈ D(A)}.
Once again assume also here that w = 0 since as in Section 3 no relevant differences arise if w 6= 0. Now

we have the following result.

Theorem 6. Assume that A and B commute. Let B be a linear θB–sectorial operator, 0 ≤ θB < π/2, such
that

(59) θB <
π(2− α+ β)

2
,

MB is the associated sectorial bound, and let A : D(A) ⊂ X → X be a linear B–bounded operator with
B–bound b > 0. Moreover let α, β be positive constants satisfying (9). Then the problem (10)–(17) is
well–posed.

Proof. Similarly to the proof of Theorem 1, the term zγ in (24) does not affect the result, therefore we
concentrate in the term (zα −A− zβB)−1.

First of all observe that the operator in (20) may be written as

(60) (zα −A− zβB)−1 = z−β(I − z−βA(zα−β −B)−1)−1(zα−β −B)−1.

Now the proof consists of the existence of the resolvent (zα−β − B)−1 and the operator (I − A(zα −
zβB)−1)−1 in a convenient domain, and then existence of a complex path Γ to be the integral (24) convergent.

Since the argument of arg(zα−β) = (α − β) arg(z) the condition on θ is straightforward by following the
same step as in the Theorem 1. Moreover, the complex path Γ surrounding SθB defined in that Theorem
may be used here as well. Having in mind all these facts there holds

(61) ‖(zα − zβB)−1‖ =
1

|z|β
‖(zα−β −B)−1‖ ≤ MB

|z|α
, z /∈ SθB .

As A and B commute we have that if x ∈ D(A), then (zα−zβB)−1x ∈ D(A). Therefore by the B–boundness
of A we have, for x ∈ D(A), and z /∈ SθB , that

(62) ‖A(zα − zβB)−1x‖ ≤ b‖B(zα − zβB)−1x‖ ≤ b(1 +MB)

|z|β
‖x‖.

Let R0 be a positive constant large enough, in fact so that R0 > (b(1 +MB))
1/β

, and set z /∈ SθB . In
that case ‖A(zα − zβB)−1‖ < 1 and in view of (60) we have

‖(zα −A− zβB)−1‖ =

∥∥∥∥∥∥
+∞∑
j=0

(A(zα − zβB)−1)j

 (zα − zβB)−1

∥∥∥∥∥∥
≤

+∞∑
j=0

(
b(1 +MB)

|z|β

)j
MB

|z|α

≤ 1

1− b(1 +MB)

|z|β

MB

|z|α

=
MB

Rβ0 − b(1 +MB)

1

|z|α−β
.

Therefore the operator (zα −A− zβB)−1 is bounded.



12 EDUARDO CUESTA AND RODRIGO PONCE*

Accordingly, since β ≤ α, Γ keeps out of SθB (with R0 large enough), and the operator (zα−A−zβB)−1 is
bounded, for z ∈ Γ and then the expression (24) of the evolution operator Eγ(t) is meaningful. Consequently
the mild solutions (22) exists, that is the problem (10)–(17) is well–posed, and the proof concludes. �

4.2. Regularity. Let A,B be two linear operators such that B is θB–sectorial, 0 < θB < π/2, with sectorial
bound MB > 0, and A of type B–bounded with B–bound b > 0.

As in the Section 3.2 we first show a result concerning to the behavior of the evolution operator (24) as
t→ 0+.

The regularity of the genuine solution then follows, depending again on the regularity of the initial data.

Theorem 7. Let α, β be two positive constants satisfying (9). Moreover let {Eγ(t)}t≥0 be the family of
evolution operators defined in (24), for γ ≤ α− 1.

Therefore, there exists C > 0, independent on t, such that, for t > 0,

(63) ‖Eγ(t)‖ ≤


C ewttα−γ−1, if w ≥ 0,

C min

{
tβ−γ−1

|w|
, tα−γ−1

}
, if w < 0.

If ζ ∈ D(A), then there exist an operator R(t) and C > 0 so that,

(64) Eγ(t)ζ =
tα−γ−1

Γ(α− γ)
ζ + Eγ−α(t)Aζ + Eγ−α+β(t)Bζ, t > 0.

And if ζ ∈ D(B), but ζ /∈ D(A), then

(65) Eγ(t)ζ = R(t)ζ + Eγ−α+β(t)Bζ, t > 0,

where

(66) ‖R(t)‖ ≤ C ew+ttα−γ−1, t > 0.

Proof. Let Γw+ be once again the complex path surrounding the sector w + Sθ defined by Γw+ := (w+ +
Γ1) ∪ (w+ + Γ2) where w+ + Γj := {w+ + z : z ∈ Γj}, w+ = max{0, wB}, and Γj is defined according to
that in the Theorem 1, for j = 1, 2. Assume again that Γw+

is defined with R0 large enough. Therefore the
evolution operator Eγ(t) writes

(67) Eγ(t) =
1

2πi

∫
Γw+

eztzγ(zα −A− zβB)−1 dz, t > 0.

As in Theorem 6 let us write the evolution operator Eγ(t) as

Eγ(t) =
1

2πi

∫
Γw+

eztzγ(I −A(zα − zβB)−1)−1(zα − zβB)−1 dz, t > 0.

On the one hand,

(68) ‖(zα − zβB)−1‖ =
1

|z|β
‖(zα−β −B)−1‖ ≤ MB

|zα − zβw|
, z /∈ w + SθB .

Since A and B commute, we have that if x ∈ D(A), then (zα− zβB)−1x ∈ D(A). Therefore if R0 is large

enough, in fact R0 > (b(1 + 2MB))
1/β

, so that

|z|α−β

|zα−β − w|
≤ 2, z ∈ Γw+

,

then according to (68) we have, for x ∈ D(A), that

(69) ‖A(zα − zβB)−1x‖ ≤ b‖B(zα − zβB)−1x‖ ≤ b(1 + 2MB)

|z|β
‖x‖, z /∈ w + SθB .
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Therefore, following the ideas of the proof of Theorem 6, if z ∈ Γw+
, then

‖zγ(zα −A− zβB)−1‖ =

∥∥∥∥∥∥zγ
+∞∑
j=0

(A(zα − zβB)−1)j

 (zα − zβB)−1

∥∥∥∥∥∥ ≤ MB

|z|β − b(1 + 2MB)

|z|γ+β

|zα − zβw|
.

Once again, for z ∈ Γw+ , there exists C > 0 such that

MB

|z|β − b(1 + 2MB)

|z|γ+β

|zα − zβw|
≤ C

|z|α−γ
,

that is the Laplace transform of Eγ(t) is bounded by C/|z|α−γ , z ∈ Γw+ . Accordingly there exists C > 0
such that

‖Eγ(t)‖ ≤ C ew+ttα−γ−1, t > 0.

However, if w < 0, then we have a slightly different bound,

|zα−β − w| ≥ |w| sin(θ), z ∈ Γw+
,

therefore there exists C > 0 such that

MB

|z|β − b(1 +MB)

|z|γ+β

|zα − zβw|
≤ MB

|z|β − b(1 +MB)

|z|γ

|w| sin(θ)
≤ C

|w||z|β−γ
,

and (63) then follows.
Assume that ζ ∈ D(A). Therefore we have

Eγ(t)ζ =
1

2πi

∫
Γw+

eztzγ−α
(
I + (A+ zβB)(zα −A− zβB)−1

)
ζ dz

=
tα−γ−1

Γ(α− γ)
ζ +

1

2πi

∫
Γw+

eztzγ−α(zα −A− zβB)−1Aζ dz

+
1

2πi

∫
Γw+

eztzγ−α+β(zα −A− zβB)−1Bζ dz,

and (64) follows as well.
If ζ ∈ D(B) but ζ /∈ D(A), then the last term in (64) remains, and only the first ones change. In particular

that term writes as

R(t) =
1

2πi

∫
Γw+

eztzγ−α(I +A(zα −A− zβB)−1)ζ dz

=
1

2πi

∫
Γw+

eztzγ−α(zα − zβB)(zα −A− zβB)−1ζ dz

=
1

2πi

∫
Γw+

eztzγ−α(I −A(zα − zβB)−1)−1ζ dz.

Repeating again the arguments, straightforwardly follows that the operator (I − A(zα − zβB)−1)−1, for
z ∈ Γw+

, is merely bounded. Moreover since there exits C > 0 such that the Laplace transform of R(t) is
bounded by C|z|γ−α, we have

‖R(t)‖ ≤ C ew+ttα−γ−1, t > 0.

The case w < 0 does not allow to achieve different bounds, therefore the proof of the theorem ends. �

The following corollary collects those particular cases of the Theorem 7 required for the regularity of the
solution of (10) according the regularity of the initial data.

Corollary 8. Let α, β be two positive constants satisfying (9), and let {Eγ(t)}t≥0 be the family of evolution
operators defined in (24), for γ ≤ α− 1. Therefore,
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(1) If ζ ∈ D(A), then we have the following,

(70) Eα−1(t)ζ − Eβ−1Bζ = ζ + E−1(t)Aζ, t > 0.

(71) Eα−2(t)ζ − Eβ−2Bζ = tζ + E−2(t)Aζ, t > 0.

(72) ∂t {Eα−1(t)ζ − Eβ−1Bζ}t=0 = 0.

(73) ∂t {Eα−2(t)ζ − Eβ−2Bζ}t=0 = ζ.

Eα−2(t)ζ = tζ + E−2(t)Aζ + Eβ−2(t)Bζ,

∂tEα−2(t)ζ = E−1(t)Aζ + Eβ−1(t)Bζ.

}
t > 0.(74)

(2) If ζ ∈ D(A2), then we have the following,

(75) Eα−1(t)ζ − Eβ−1Bζ = ζ +
tα

Γ(α+ 1)
Aζ + E−α−1(t)A2ζ + Eβ−α−1(t)BAζ, t > 0.

(76) Eα−2(t)ζ − Eβ−2Bζ = tζ +
tα+1

Γ(α+ 2)
Aζ + E−α−2(t)A2ζ + Eβ−α−2(t)BAζ, t > 0.

If in addition Bζ ∈ D(A), then

Eα−2(t)ζ = tζ +
tα+1

Γ(α+ 2)
A2ζ +

tα−β+1

Γ(α− β + 2)
Bζ

+E−α−2(t)A2ζ + Eβ−α−2(t)(BA+AB)ζ + E2β−α−2(t)B2ζ.(77)

The case ζ ∈ D(B)\D(A) may be straightforwardly derived but for the shortness of the paper is omitted.

Proof. First of all consider the representation (24)-(32), of the operators Eγ(t), for R0 > 0 large enough.
Secondly notice that if we apply directly the Theorem 7 some key cancelations are not revealed, therefore
we make use in this proof of the expression of the evolution operators.

In particular if ζ ∈ D(A), then we have that

Eα−1(t)ζ =
1

2πi

∫
Γ

etz
1

z
(I + (A+ zβB)(zα −A− zβA)−1)ζ dz

= ζ +
1

2πi

∫
Γ

etz
1

z
(zα −A− zβA)−1)Aζ dz +

1

2πi

∫
Γ

etzzβ−1(zα −A− zβA)−1)Bζ dz

= ζ + E−1(t)Aζ + Eβ−1(t)Bζ,

and (70) follows. In the same manner, the proof of (71) may be done, and the proof of (72)–(74) follows
easily from (70)–(71) and (64) by repeating the same arguments.

Since ζ ∈ D(A2), and D(A) ⊂ D(B), we have that A2ζ and BAζ are meaningful. Therefore the proof of
(75) follows this steps

Eα−1(t)ζ = ζ +
1

2πi

∫
Γ

etz
1

zα+1

(
I + (A+ zβB)(zα −A− zβB)−1

)
Aζ dz

+
1

2πi

∫
Γ

etz
1

zα−β+1

(
I + (A+ zβB)(zα −A− zβB)−1

)
Bζ dz

= ζ +
tα

Γ(α+ 1)
Aζ +

tα−β

Γ(α− β + 1)
Bζ

+E−α−1(t)A2ζ + Eα−β−1(t)(BA+AB)ζ + E2β−α−1(t)B2ζ.
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Analogously,

Eβ−1(t)Bζ =
1

2πi

∫
Γ

etz
1

zα−β+1

(
I + (A+ zβB)(zα −A− zβB)−1

)
Bζ dz

=
tα−β

Γ(α− β + 1)
Bζ + Eβ−α−1(t)ABζ + E2β−α−1(t)B2ζ.

By subtracting both expressions the statement follows.
The proof of (76) and (77) straightforwardly follow the same steps, and so the proof ends. �

The proof of the next result follows from Corollary 8.

Theorem 9. Let α, β be two positive constants satisfying (9). Moreover let u(t) be the mild solution (23)
and (23) of the initial value problem (10)–(17), for 1 < β ≤ α and 0 < β ≤ 1, respectively. If u0, u

0
1 ∈ D(A),

then u(t) is a genuine solution of (10)–(17) such that

u(0) = u0, ∂tu(0) = u1
0,

and satisfies that,

(1) For 1 < β ≤ α,

u(t) = u0 + tu1
0 + E−1(t)Au0 + E−2(t)Au1

0, t > 0,

and if moreover u0, u
1
0 ∈ D(A2), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +

tα+1

Γ(α+ 1)
Au1

0

+E−α−1(t)A2u0 + Eβ−α−1(t)BAu0 + E−α−2(t)A2u1
0 + Eβ−α−2(t)BAu1

0, t > 0.

(2) For 0 < β ≤ 1,

u(t) = u0 + tu1
0 + E−1(t)Au0 + E−2(t)Au1

0 + Eβ−2(t)Bu1
0,

and if moreover u0, u
1
0 ∈ D(A2), and Bu1

0 ∈ D(A), then for any t > 0, we have

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +

tα+1

Γ(α+ 2)
Au1

0 +
tα−β+1

Γ(α− β + 2)
Bu1

0

+E−α−1(t)A2u0 + Eβ−α−1(t)BAu0 + E−α−2(t)A2u1
0

+E−β−α−2(t)(BA+AB)u1
0 + E2β−α−2B

2u1
0.

4.3. Asymptotic behavior. The asymptotic behavior in the case of A 6= B, under the assumptions stated
at the beginning of the section for both, perfectly fits the one in the case A = B, that is there is hardly any
difference, both if u0, u

1
0 ∈ D(A), and even if u0, u

1
0 ∈ D(B)/D(A). Therefore the Theorem 5 is perfectly

valid here, the proof straightforwardly follows, and this is why both are omitted.
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