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Abstract. In this paper we introduce a discrete fractional resolvent family {Snα,β}n∈N0
generated by a

closed linear operator in a Banach space X for a given α, β > 0. Moreover, we study its main properties

and, as a consequence, we obtain a method to study the existence and uniqueness of the solutions to
discrete fractional difference equations in a Banach space.

1. Introduction4

During the last six decades, the theory of C0−semigroups of operators on Banach spaces has been used5

by many authors as a powerful tool to study linear and nonlinear partial differential equations, as well as,6

to study concrete equations arising in mathematical physics, probability theory, engineering, biological7

processes, among others. See for instance [15]. Typically, in these situations, the problems are modeled8

by using partial differential equations of first order with unbounded linear operators. However, there9

are many problems in applied sciences, including, problems in transport dynamics, anomalous diffusion,10

non-Brownian motion, and many others, where the model of a partial differential equation of first order11

is not completely satisfactory.12

In recent decades, some investigations have demonstrated that some of these phenomena can be de-13

scribed more appropriately by means of time-fractional differential equations, see for instance, [6, 11, 30,14

33, 34, 40, 45]. As the one-parameter semigroups represent the natural framework to study differential15

equations of first order, in the case of time-fractional differential equations, the theory of continuous16

fractional resolvent families of one-parameter (that extends the theory of semigroups) gives one of the17

main tool to study such equations, see for instance [23, 32, 33, 41]. For example, if we consider the18

time-fractional differential equation19

(1.1) ∂αt u(t) = Au(t) + f(t), t > 0,

under the initial condition u(0) = x0, where for 0 < α < 1, ∂αt corresponds to the Caputo fractional
derivative, f is a suitable function and A generates an exponentially bounded fractional resolvent family
{Sα,α(t)}t≥0 (see for instance [12, 23, 32, 33, 41]). Then, the solution to (1.1) is given by

u(t) = Sα,1(t)x0 +

∫ t

0

Sα,α(t− s)f(s)ds,

where Sα,1(t) :=
∫ t

0
(t−s)−α
Γ(1−α) Sα,α(s)ds. This theory of continuous fractional resolvent families has been20

widely studied in the last recent years. See for instance [38, 44, 46] and the references therein. However,21

these continuous-time problems sometimes need to be studied, for practical purposes, as discrete problems.22

Although the first investigations on difference of fractional order date back to the work of Kuttner
[31], in the last decade, the study of existence and qualitative properties of discrete fractional difference
equations has been a topic of great interest and there is an extensive recent literature in this subject,
see for instance [4, 9, 16, 17, 20] and the references therein. However, these articles focus mainly on
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scalar fractional difference equations. Very recently, C. Lizama in [35] introduced, to the best of our
knowledge, the first study on fractional difference equations with unbounded linear operators. Here, the
author finds an interesting relation between the existence of solutions to an abstract fractional difference
and a discrete family of linear operators that corresponds to a discretization of a continuous fractional
resolvent family. More concretely, if 0 < α < 1, A is a closed linear operator defined on a Banach space
X and C∆αun is the approximation of the Caputo fractional derivative ∂αt u(t) (at time t = n) defined
by

C∆αun :=

n∑
j=0

Γ(1− α+ n− j)
Γ(1− α)Γ(n− j + 1)

(uj+1 − uj),

where uj :=
∫∞

0
pj(t)u(t)dt and pj(t) := tj/j!e−t is the Poisson distribution for j ∈ N0, then solution to1

the fractional difference equation2

C∆αun = Aun+1, n ∈ N,
is given by un = Snα,1(I−A)u0, where u0 ∈ D(A), {Sα,1(t)}t≥0 is the continuous resolvent family generated

by A, whose Laplace transform satisfies Ŝα,1(λ) = λα−1(λα−A)−1 and Snα,1 :=
∫∞

0
pn(t)Sα,1(t)dt, for all

n ∈ N0. From [32] it follows that the resolvent family {Sα,1(t)}t≥0 satisfies the resolvent equation

Sα,1(t)x = x+A

∫ t

0

gα(t− s)Sα,1(s)xds, x ∈ X, t ≥ 0,

where gα(t) := tα−1/Γ(α). Moreover, from [35], it is easy to see that the sequence of operators {Snα,1}n∈N0

verifies a similar relation:

Snα,1x = x+A

n∑
j=0

kα(n− j)Sjα,αx, x ∈ X, n ∈ N0,

where kα(j) := Γ(α+j)
Γ(α)Γ(j+1) . According to the Poisson distribution, we notice that for each n ∈ N0,3

Snα,1 corresponds to an approximation of Sα,1(t) at time t = n. Similarly, in [1, 2, 3, 7, 36, 47] the4

authors have introduced several discrete resolvent families to study fractional difference equations in5

Banach spaces. See [18, 19] for related results. We notice also that, fractional difference equations are6

closely related with discretization of fractional differential equations in Banach spaces, see for instance7

[24, 25, 26, 27, 28, 39, 43].8

Although the continuous fractional resolvent families are an important tool in the study of fractional9

differential equations in Banach spaces and, there are many published papers on these families, their10

properties and applications, there are only a few articles on discrete fractional resolvent families gener-11

ated by unbounded operators, and therefore, the study of the solutions of discrete fractional difference12

equations in Banach space has been limited by the lack of this tool.13

In this paper, for a given α, β > 0 and a step-size τ > 0, we introduce the general discrete resolvent14

family {Snα,β}n∈N0
generated by a closed linear operator A in a Banach space X, and we study its main15

properties. Moreover, we give a method to study the existence and uniqueness of solutions to discrete16

fractional difference equations in Banach spaces.17

The paper is organized as follows. In Section 2 we give the preliminaries. In Section 3 we introduce
the discrete fractional resolvent family {Snα,β}n∈N0 . Moreover, we study its main properties, conditions on

the operator A in order to be the generator of {Snα,β}n∈N0
and we show that {Snα,β}n∈N0

can be written
as

Snα,βx =

n+1∑
j=1

an,jτ
−αj(τ−α −A)−jx, n ∈ N0,

for all x ∈ X, where an,j are constants depending on α, β and τ. Finally, as an application of the results18

given previously, in Section 4 we study the existence and uniqueness of solutions to a fractional difference19

equation in a Banach space.20
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2. Preliminaries1

The set of non-negative integer numbers will be denoted by N0 and the non-negative real numbers by
R+

0 . Take τ > 0 fixed and n ∈ N0. We define the positive functions ρτn by

ρτn(t) := e−
t
τ

(
t

τ

)n
1

τn!
,

for all t ≥ 0, n ∈ N0. An easy computation shows that∫ ∞
0

ρτn(t)dt = 1, for all n ∈ N0.

For a given Banach space X, s(N0, X) denotes the vectorial space consisting of all vector-valued
sequences v : N0 → X. The backward Euler operator ∇τ : s(N0, X)→ s(N0, X) is defined by

∇τvn :=
vn − vn−1

τ
, n ∈ N.

For m ≥ 2, we define ∇mτ : s(N0, X)→ s(N0, X) recursively by

(∇mτ v)n := ∇m−1
τ (∇τv)n, n ≥ m.

Here ∇1
τ is defined as ∇1

τ := ∇τ and ∇0
τ as the identity operator. As in [20, Chapter 1, Section 1.5] we2

define by convention3

(2.2)

−k∑
j=0

vj = 0

for all k ∈ N.4

The operator ∇mτ is called the backward difference operator of order m. It is easy to show that if
v ∈ s(N0, X) then

(∇mτ v)n =
1

τm

m∑
j=0

(
m

j

)
(−1)jvn−j , n ∈ N.

For a given α > 0, define the function gα as gα(t) := tα−1

Γ(α) . Now, we introduce the following sequence

kατ (n) :=

∫ ∞
0

ρτn(t)gα(t)dt, n ∈ N0, α > 0.

It is easy to see that5

(2.3) kατ (n) =
τα−1Γ(α+ n)

Γ(α)Γ(n+ 1)
=

Γ(α+ n)

Γ(n+ 1)
gα(τ), n ∈ N0, α > 0.

In particular, we notice that k1
τ (n) = 1 for all n ∈ N0.6

Definition 2.1. [43] Let α > 0. The αth−fractional sum of v ∈ F(R;X) is defined by

(∇−ατ v)n := τ

n∑
j=0

kατ (n− j)vj , n ∈ N0.

Definition 2.2. [43] Let α ∈ R+ \ N0. The Caputo fractional backward difference operator of order α,

C∇α : F(R+;X)→ F(R+;X), is defined by

(C∇αv)n := ∇−(m−α)
τ (∇mτ v)n, n ∈ N,

where m− 1 < α < m.7
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For a given α ∈ N0, the fractional backward difference operators C∇α is defined as the backward1

difference operator ∇ατ . Moreover, if 0 < α < 1 and n ∈ N, then C∇α+1vn = C∇α(∇1v)n. However,2

C∇α+1vn 6= C∇1(C∇αv)n, (see [43, Section 2]).3

For a given discrete sequence of operators {Sn}n∈N0 ⊂ B(X) and a scalar sequence c = (cn)n∈N0 , we
define the discrete convolution c ? S as

(c ? S)n :=

n∑
k=0

cn−kSk, n ∈ N0.

Moreover, for scalar valued sequences b = (bn)n∈N0
and c = (cn)n∈N0

, we define (b?c?S)n := (b?(c?S))n4

for all n ∈ N0.5

As in [43, Corollary 2.9] we can prove the following convolution property. If α, β > 0, then6

(2.4) kα+β
τ (n) = τ

n∑
j=0

kατ (n− j)kβτ (j),

for all n ∈ N0. Given s ∈ s(N0, X), its Z-transform, s̃, is defined by

s̃(z) :=

∞∑
j=0

z−jsj ,

where sj := s(j) and z ∈ C. We notice that the convergence of this series holds for |z| > R, where R is7

large enough. It is a well known fact that if s1, s2 ∈ s(N0, X) and s̃1(z) = s̃2(z) for all |z| > R for some8

R > 0, then sj1 = sj2 for all j = 0, 1, ... Moreover, the Z-transform is a linear operator on s(N0, X) and9

satisfies the finite discrete convolution property (see for instance [5]):10

(2.5) s̃1 ? s2(z) = s̃1(z)s̃2(z), s1, s2 ∈ s(N0, X).

The operator A : D(A) ⊂ X → X is called ω-sectorial of angle θ, if there exist θ ∈ [0, π/2) and ω ∈ R
such that its resolvent exists in the sector ω + Σθ :=

{
ω + λ : λ ∈ C, | arg(λ)| < π

2 + θ
}
\ {ω} and

‖(λ−A)−1‖ ≤ M

|λ− ω|
,

for all λ ∈ ω + Σθ. In case ω = 0 we say that A is sectorial of angle φ + π/2. More details on sectorial11

operators can be found in [22].12

Definition 2.3. A family of linear operators {S(t)}t≥0 ⊂ B(X) is said to be exponentially bounded, if13

there exist constants M, ω ∈ R such that ‖S(t)‖ ≤Meωt, for all t ≥ 0.14

Proposition 2.4. Let {S(t)}t≥0 ⊂ B(X) be a family of exponentially bounded linear operators with
‖S(t)‖ ≤Meωt, where M > 0 and ω < 1

τ . Let x ∈ X. If we define the sequence Snx for each n ∈ N by

Snx :=

∫ ∞
0

ρτn(t)S(t)xdt.

Then

S̃(z)x =
1

τ
Ŝ

(
1

τ

(
1− 1

z

))
x,

for all |z| > 1.15

Proof. The hypothesis implies that

‖Snx‖ ≤M
∫ ∞

0

ρτn(t)eωt‖x‖dt =
M

(1− ωτ)n+1
‖x‖,
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for all n ∈ N0. Therefore, the Z-transform of S exists for all |z| > 1. On the other hand, the hypothesis1

implies that the Laplace transform of S exists for all Re(λ) > 0. Thus2

S̃(z)x =

∞∑
n=0

z−nSnx

=

∞∑
n=0

z−n
∫ ∞

0

ρτn(t)S(t)xdt

=

∫ ∞
0

e−
t
τ

∞∑
n=0

z−n
(
t

τ

)n
1

τn!
S(t)xdt

=
1

τ

∫ ∞
0

e−
t
τ

∞∑
n=0

1

n!

(
t

τz

)n
S(t)xdt

=
1

τ

∫ ∞
0

e−
t
τ (1− 1

z )S(t)xdt

=
1

τ
Ŝ

(
1

τ

(
1− 1

z

))
x.

�3

We notice that a similar result holds for vector-valud functions. Thus, if (fn)n∈N0 denotes the sequence
defined by fn :=

∫∞
0
ρτn(t)f(t)dt for a given function f : R+ → X, then

F̃ (z) =
1

τ
f̂

(
1

τ

(
1− 1

z

))
,

where F denotes the sequence associated to (fn)n∈N0
.4

3. Discrete fractional resolvent families5

In this Section we introduce the notion of discrete fractional resolvent family generated by a closed6

linear operator A in a Banach space and we study its main properties.7

Definition 3.5. Let 1 ≤ α ≤ 2 and 0 < β ≤ 2 be given. Let A be a closed linear operator defined on8

a Banach space X. An operator-valued sequence {Snα,β}n∈N0 ⊂ B(X) is called a discrete (α, β)-resolvent9

family generated by A if it satisfies the following conditions10

(1) Snα,β ∈ D(A) for all x ∈ X and ASnα,βx = Snα,βAx for all x ∈ D(A), and n ∈ N0.11

(2) For each x ∈ X and n ∈ N0,12

(3.6) Snα,βx = kβτ (n)x+ τA(kατ ? Sα,β)nx = kβτ (n)x+ τA

n∑
j=0

kατ (n− j)Sjα,βx.

Proposition 3.6. Let {Snα,β}n∈N0 ⊂ B(X) be a discrete (α, β)-resolvent family generated by A. Then,13

(1) τ−α ∈ ρ(A), and14

(2) For n = 0, we have

S0
α,β = kβτ (0)τ−α

(
τ−α −A

)−1
= τβ−1−α (τ−α −A)−1

.

Proof. We notice that, by (3.6), we have

Snα,βx = kβτ (n)x+ kατ (0)τASnα,βx+ τA

n−1∑
j=0

kατ (n− j)Sjα,βx, for all x ∈ X.
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As kατ (0)τ = τα, for all α > 0, we get (for n = 0)

S0
α,βx = kβτ (0)x+ ταAS0

α,βx,

and hence (
τ−α −A

)
S0
α,βx = kβτ (0)τ−αx,

for all x ∈ X. Now, from Definition 3.5 we obtain

S0
α,β

(
τ−α −A

)
x = τ−αS0

α,βx− S0
α,βAx =

(
τ−α −A

)
S0
α,βx = kβτ (0)τ−αx,

for all x ∈ X. Since A is a closed linear operator, we conclude that τ−α ∈ ρ(A) and

S0
α,βx = kβτ (0)τ−α

(
τ−α −A

)−1
x,

for all x ∈ X. �1

An easy computation (see Proposition 2.4) shows that, for a given α > 0, the Z-transform of the2

sequence {kατ (n)}n∈N0
is given by3

(3.7) k̃ατ (z) = τα−1 zα

(z − 1)α
.

Proposition 3.7. Let {Snα,β}n∈N0
⊂ B(X) be a discrete (α, β)-resolvent family generated by A. Then,

its Z-transform satisfies

S̃α,β(z)x =
1

τ

(
z − 1

τz

)α−β ((
z − 1

τz

)α
−A

)−1

x,

for all x ∈ X.4

Proof. Using the definition (3.6) and the identity (2.5) we have5

S̃α,β(z)x = k̃βτ (z)x+ τ ˜(kατ ? ASα,β)(z)x = k̃βτ (z)x+ τ k̃ατ (z)AS̃α,β(z)x.

A straightforward computation and using (3.7) yield

S̃α,β(z)x =
1

τ

(
z − 1

τz

)α−β ((
z − 1

τz

)α
−A

)−1

x

and the proof is finished. �6

The next result gives a functional equation to the discrete fractional resolvent families {Snα,β}n∈N0
⊂7

B(X). Its continuous counterpart can be found in [38].8

Theorem 3.8. Let {Snα,β}n∈N0
⊂ B(X) be a discrete (α, β)-resolvent family generated by A. Then, the9

following functional equation holds10

(3.8) Smα,β(kατ ? Sα,β)n − (kατ ? Sα,β)mSnα,β = kβτ (m)(kατ ? Sα,β)n − kβτ (n)(kατ ? Sα,β)m,

for all m,n ∈ N0.11

Proof. For each x ∈ X and n ∈ N0 we recall that

Snα,βx = kβτ (n)x+ τA

n∑
j=0

kατ (n− j)Sjα,βx.
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Let n,m ∈ N0. Then, from Definition 3.5 part (1) we have: m∑
j=0

kβτ (m− j)Sjα,β

Snα,βx =

 m∑
j=0

kβτ (m− j)Sjα,β

kβτ (n)x+ τA

n∑
j=0

kατ (n− j)Sjα,βx.


= kβτ (n)

m∑
j=0

kβτ (m− j)Sjα,βx+

m∑
j=0

kβτ (m− j)Sjα,β

τA n∑
j=0

kατ (n− j)Sjα,βx


= kβτ (n)

m∑
j=0

kβτ (m− j)Sjα,βx+

m∑
j=0

kβτ (m− j)τASjα,β

 n∑
j=0

kατ (n− j)Sjα,βx


= kβτ (n)

m∑
j=0

kβτ (m− j)Sjα,βx+ τA

m∑
j=0

kβτ (m− j)Sjα,β

 n∑
j=0

kατ (n− j)Sjα,βx


= kβτ (n)

m∑
j=0

kβτ (m− j)Sjα,βx+
(
Smα,β − kβτ (m)

) n∑
j=0

kατ (n− j)Sjα,βx


= kβτ (n)

m∑
j=0

kβτ (m− j)Sjα,βx+ Smα,β

n∑
j=0

kατ (n− j)Sjα,βx

− kβτ (m)

n∑
j=0

kατ (n− j)Sjα,βx.

Therefore, we obtain m∑
j=0

kβτ (m− j)Sjα,β

Snα,βx = kβτ (n)

m∑
j=0

kβτ (m− j)Sjα,βx+ Smα,β

n∑
j=0

kατ (n− j)Sjα,βx

− kβτ (m)

n∑
j=0

kατ (n− j)Sjα,βx.

Reorganizing the last equality we get the desired result and the proof is finished. �1

Theorem 3.9. Let 1 < α < 2 and β ≥ 1 such that α− β + 1 > 0. Assume that A is ω-sectorial of angle2

(α−1)π
2 , where ω < 0. Then A generates an (α, β)-resolvent sequence {Snα,β}n∈N0 ⊂ B(X).3

Proof. By [41, Theorem 2.5], A generates an exponentially bounded (α, β)-resolvent family {Sα,β(t)}t≥04

such that Sα,β(t)Ax = ASα,β(t)x for all x ∈ D(A) and t ≥ 0, and5

(3.9) Sα,β(t)x = gβ(t)x+A

∫ t

0

gα(t− s)Sα,β(s)xds,

for all x ∈ X and t ≥ 0, where for µ > 0, gµ(t) := tµ−1/Γ(µ). For each x ∈ X, define Snα,βx by

Snα,βx :=

∫ ∞
0

ρτn(t)Sα,β(t)xdt, n ∈ N0.

Multiplying (3.9) by ρτn(t) and integrating over [0,∞) we conclude by [3, Theorem 5.2] or [43, Theorem
2.8] that

Snα,βx = kβτ (n)x+A

∫ ∞
0

ρτn(t)(gα ∗ Sα,β)(t)xdt = kβτ (n)x+ τA

n∑
j=0

kατ (n− j)Sjα,βx.
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Finally, multiplying the identity Sα,β(t)Ax = ASα,β(t)x by ρτn(t) and integrating over [0,∞), we get1

Snα,βAx = ASnα,βx for all n ∈ N0 and x ∈ D(A). �2

Theorem 3.10. Let 0 < α < 1. Assume that A is the generator of a C0-semigroup {T (t)}t≥0. Then, A
generates the (α, 1)-resolvent sequence {Snα,1}n∈N0

given by

Snα,1x =

∫ ∞
0

∫ ∞
0

ρτn(t)ψα,1−α(t, s)T (s)xdsdt, x ∈ X,

where ψα,1−α is the Wright type function given by3

ψα,1−α(t, s) =
1

π

∫ ∞
0

ρα−1e−sρ
α cosα(π−θ)−tρ cos θ

× sin (tρ sin θ − sρα sinα(π − θ) + α(π − θ)) dρ,(3.10)

for θ ∈ (π − π
2α , π/2).4

Proof. By [10] or [42, Corollary 2], A generates the fractional resolvent family {Sα,1(t)}t≥0 defined by5

(3.11) Sα,1(t)x =

∫ ∞
0

ψα,1−α(t, s)T (s)xds, x ∈ X,

where ψα,1−α(t, s) is defined in (3.10). For each n ∈ N0, define Snα,1 by

Snα,1 :=

∫ ∞
0

ρτn(t)Sα,1(t)dt.

Multiplying both sides in equation (3.11) by ρτn(t) and integrating over [0,∞) we obtain the desired6

result. �7

Theorem 3.11. Let 0 < α < 1. Assume that A is the generator of a C0-semigroup {T (t)}t≥0. Then, A
generates the (α, α)-resolvent sequence {Snα,α}n∈N0 given by

Snα,αx =

∫ ∞
0

∫ ∞
0

ρτn(t)ψα,0(t, s)T (s)xdsdt, x ∈ X,

where ψα,0 is the Wright type function given by8

(3.12) ψα,0(t, s) =
1

π

∫ ∞
0

etρ cos θ−sρα cosαθ · sin(tρ sin θ − sρ sinαθ + θ)dρ,

for π/2 < θ < π.9

Proof. By [29, Theorem 3.1] or [42, Corollary 3], A generates the fractional resolvent family {Sα,α(t)}t≥0

which is defined by

Sα,α(t)x =

∫ ∞
0

ψα,0(t, s)T (s)xds, x ∈ X,

where ψα,0(t, s) is given in (3.12). Multiplying both sides in the last equation by ρτn(t) and integrating10

over [0,∞) the result follows as in the proof of Theorem 3.10.11

�12

Theorem 3.12. Let 1 < α < 2. Assume that A is the generator of a cosine family {C(t)}t∈R. Then, A
generates the (α, 1)-resolvent sequence {Snα,1}n∈N0

given by

Snα,1x =

∫ ∞
0

∫ ∞
0

ρτn(t)ψα
2 ,1−

α
2

(t, s)C(s)xdsdt, x ∈ X,
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where ψα
2 ,1−

α
2

is the Wright type function given by1

ψα
2 ,1−

α
2

(t, s) =
1

π

∫ ∞
0

ρ
α
2−1e−sρ

α
2 cos α2 (π−θ)−tρ cos θ

× sin
(
tρ sin θ − sρα2 sin α

2 (π − θ) + α
2 (π − θ)

)
dρ,(3.13)

for θ ∈ (π − 2
α , π/2).2

Proof. By [42, Corollary 4], A generates the fractional resolvent family {Sα,1(t)}t≥0 given by

Sα,1(t)x =

∫ ∞
0

ψα
2 ,1−

α
2

(t, s)C(s)xds, x ∈ X,

where ψα
2 ,1−

α
2

(t, s) is defined in (3.13). The result follows as in the Proof of Theorem 3.11. �3

Theorem 3.13. Let 1 < α < 2. Assume that A is the generator of a cosine family {C(t)}t∈R. Then, A
generates the (α, α)-resolvent sequence {Snα,α}n∈N0

given by

Snα,αx =

∫ ∞
0

∫ ∞
0

ρτn(t)ψα
2 ,
α
2

(t, s)C(s)xdsdt, x ∈ X,

where ψα
2 ,
α
2

is the Wright type function given by4

(3.14) ψα
2 ,
α
2

(t, s) = (gα
2
∗ ψα

2 ,0
(·, s))(t),

where ψα
2 ,0

(·, s) is given in (3.12).5

Proof. By [42, Corollary 5], A generates the fractional resolvent family {Sα,1(t)}t≥0 given by

Sα,α(t)x =

∫ ∞
0

ψα
2 ,
α
2

(t, s)C(s)xds, x ∈ X,

where ψα
2 ,
α
2

(t, s) is defined in (3.14). The rest of the proof follows as in Theorem 3.10. �6

Proposition 3.14. If {Snα,β}n∈N0
and {Tnα,β}n∈N0

are (α, β)-resolvent sequences generated by A, then7

Snα,β = Tnα,β for all n ∈ N0.8

Proof. For x ∈ X, we define h(n) := Snα,βx− Tnα,βx. By Proposition 3.6, we obtain

S0
α,βx = T 0

α,βx = kβτ (0)τ−α(τ−α −A)−1,

which implies that h(0) = 0. On the other hand, by Definition 3.5

h(n) = τA

n∑
j=0

kατ (n− j)h(j)

and thus

(I − ταA)h(n) = τA

n−1∑
j=0

kατ (n− j)h(j).

By Proposition 3.6, τ−α ∈ ρ(A), and therefore (I−ταA) = τα(τ−α−A) is an invertible operator. Hence,

h(n) = 0

for all n ∈ N. This implies that Snα,βx = Tnα,βx for all n ∈ N0 and x ∈ X. �9

Now, we define the following sequence (an,l) as:10

a0,1 := kβτ (0), a1,1 := (kβτ (1)kατ (1)− kβτ (0)kατ (1))kατ (0)−1, a1,2 := kβτ (0)kατ (1)kατ (0)−1

and for n ≥ 2, we define (an,l) as follow:

an,n+1 := kατ (1)an−1,nk
α
τ (0)−1.
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(3.15) an,1 :=

kβτ (n)kατ (0)−
n−1∑
j=0

kατ (n− j)aj,1

 kατ (0)−1,

(3.16) an,l :=

 n−1∑
j=l−2

kατ (n− j)aj,l−1 −
n−1∑
j=l−1

kατ (n− j)aj,l

 kατ (0)−1, for 2 ≤ l ≤ n,

Moreover, we denote the resolvent operator Rτ : X → D(A) as

Rτ := τ−α
(
τ−α −A

)−1
.

The next Theorem is one of the main result in this paper and gives an explicit representation of the1

discrete resolvent family Snα,β for all n ∈ N0.2

Theorem 3.15. Let {Snα,β}n∈N0 ⊂ B(X) be a discrete (α, β)-resolvent family generated by A. Then, for3

each x ∈ X,4

(3.17) S0
α,βx = a0,1Rτx, and S1

α,β = a1,1Rτx+ a1,2R
2
τx,

and for n ≥ 25

(3.18) Snα,βx =

n+1∑
j=1

an,jR
j
τx.

Proof. The first identity in (3.17) follows from (3.6). In order to prove the second one, we take m =6

1, n = 0 in (3.8) and we get7

S1
α,βk

α
τ (0)S0

α,βx−

 1∑
j=0

kατ (1− j)Sjα,β

S0
α,βx = kβτ (1)kατ (0)S0

α,βx− kβτ (0)

 1∑
j=0

kατ (1− j)Sjα,βx

 ,

which is equivalent to

−kατ (1)S0
α,βS

0
α,βx = kβτ (1)kατ (0)S0

α,βx− kβτ (0)kατ (1)S0
α,βx− kβτ (0)kατ (0)S1

α,βx.

As S0
α,βx = kβτ (0)Rτx this last identity implies that8

kβτ (0)kατ (0)S1
α,βx = kβτ (1)kατ (0)kβτ (0)Rτx− kβτ (0)kατ (1)kβτ (0)Rτx+ kβτ (0)kατ (1)kβτ (0)R2

τx.

Since kατ (0) = τα−1 6= 0, we conclude that

S1
α,βx = (kβτ (1)kατ (0)− kβτ (0)kατ (1))kατ (0)−1Rτ + kβτ (0)kατ (1)kατ (0)−1R2

τx = a1,1Rτx+ a1,2R
2
τx.

In order to prove (3.18) we proceed by induction on n ≥ 2. For n = 2, we take m = 2 and n = 0 in (3.8)9

to obtain10

S2
α,βk

α
τ (0)S0

α,βx−

 2∑
j=0

kατ (2− j)Sjα,β

S0
α,βx = kβτ (2)kατ (0)S0

α,βx− kβτ (0)

 2∑
j=0

kατ (2− j)Sjα,βx

 ,

which can be written as11

−kατ (2)S0
α,βS

0
α,βx− kατ (1)S1

α,βS
0
α,βx = kβτ (2)kατ (0)S0

α,βx− kβτ (0)kατ (2)S0
α,βx− kβτ (0)kατ (1)S1

α,βx

−kβτ (0)kατ (0)S2
α,βx.
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Since S0
α,βx = kβτ (0)Rτx and S1

α,β = a1,1Rτx+ a1,2R
2
τx we have1

kβτ (0)kατ (0)S2
α,βx = kβτ (2)kατ (0)kβτ (0)Rτx− kβτ (0)kατ (2)kβτ (0)Rτx− kβτ (0)kατ (1)a1,1Rτx

−kβτ (0)kατ (1)a1,2R
2
τx+ kατ (2)kβτ (0)kβτ (0)R2

τx

+kατ (1)kβτ (0)a1,1R
2
τx+ kατ (1)kβτ (0)a1,2R

3
τx.

Hence,2

kατ (0)S2
α,βx = (kβτ (2)kατ (0)− kβτ (0)kατ (2)− kατ (1)a1,1)Rτx

+(kατ (2)kβτ (0) + kατ (1)a1,1 − kατ (1)a1,2)R2
τx+ kατ (1)a1,2R

3
τx.(3.19)

On the other hand, if we expand the sum (for n = 2) in (3.18) and we obtain3

3∑
j=1

an,jR
j
τx = a2,1Rτx+ a2,2R

2
τx+ a2,3R

3
τx,

and by definition of the sequence (an,l) we get4

a2,1 = (kβτ (2)kατ (0)− kατ (2)a0,1 − kατ (1)a1,1)kατ (0)−1

a2,2 = (kατ (2)a0,1 + kατ (1)a1,1 − kατ (1)a1,2)kατ (0)−1

a2,3 = kατ (1)a1,2k
α
τ (0)−1.

From (3.19) we conclude that5

S2
α,βx =

3∑
j=1

an,jR
j
τx.

Now, we assume that (3.18) holds for all l ≤ n. In order to prove the identity for n + 1, we first take6

m = n+ 1 and n = 0 in (3.8) to obtain7

Sn+1
α,β k

α
τ (0)S0

α,βx−

n+1∑
j=0

kατ (n+ 1− j)Sjα,β

S0
α,βx = kβτ (n+ 1)kατ (0)S0

α,βx

−kβτ (0)

n+1∑
j=0

kατ (n+ 1− j)Sjα,βx

 .

Hence,8

Sn+1
α,β k

α
τ (0)S0

α,βx− kατ (n+ 1)S0
α,βS

0
α,βx− kατ (n)S1

α,βS
0
α,βx− ...− kατ (0)Sn+1

α,β S
0
α,βx =

kβτ (n+ 1)kατ (0)S0
α,βx− kβτ (0)kατ (n+ 1)S0

α,βx− kβτ (0)kατ (n)S1
α,βx− ...− kβτ (0)kατ (0)Sn+1

α,β x.

That is,9

kβτ (0)kατ (0)Sn+1
α,β x = kβτ (n+ 1)kατ (0)S0

α,βx− kβτ (0)kατ (n+ 1)S0
α,βx− ...− kβτ (0)kατ (1)Snα,βx

+kατ (n+ 1)S0
α,βS

0
α,βx+ kατ (n)S1

α,βS
0
α,βx+ ...+ kατ (1)Snα,βS

0
α,βx.

Since S0
α,βx = kβτ (0)Rτx we can write this last identity as10

kατ (0)Sn+1
α,β x = kβτ (n+ 1)kατ (0)Rτx− kατ (n+ 1)S0

α,βx− kατ (n)S1
α,βx− ...− kατ (1)Snα,βx

+kατ (n+ 1)RτS
0
α,βx+ kατ (n)S1

α,βRτx+ ...+ kατ (1)Snα,βRτx.
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By induction hypothesis we have1

kατ (0)Sn+1
α,β x = kβτ (n+ 1)kατ (0)Rτx− kατ (n+ 1)kβτ (0)Rτx− kατ (n)a1,1Rτx− kατ (n)a1,2R

2
τx− ...

...− kατ (1)[an,1Rτ + ...+ an,nR
n
τ + an,n+1R

n+1
τ ]x

...+ kατ (n+ 1)kβτ (0)R2
τx+ kατ (n)Rτ [a1,1Rτ + a1,2R

2
τ ]x+ ...

+kατ (1)Rτ [an,1Rτ + ...+ an,nR
n
τ + an,n+1R

n+1
τ ]x

=
(
kβτ (n+ 1)kατ (0)− kατ (n+ 1)kβτ (0)− kατ (n)a1,1 − ...− kατ (1)an,1

)
Rτx

+
(
kατ (n+ 1)kβτ (0) + kατ (n)a1,1 + ...+ kατ (1)an,1 − kατ (n)a1,2 − ...− kατ (1)an,2

)
R2
τx

...

+ (kατ (2)an−1,n + kατ (1)an,n − kατ (1)an,n+1)Rn+1
τ x

+kατ (1)an,n+1R
n+2
τ x,

and therefore

Sn+1
α,β x = an+1,1Rτx+ an+1,2R

2
τx+ ...+ an+1,n+2R

n+2
τ x.

This finishes the proof.2

�3

If A is a bounded operator, we have the following result.4

Proposition 3.16. Let α, β > 0 such that τα < 1. If A is a bounded operator with ‖A‖ < 1, then A5

generates the (α, β)-resolvent sequence {Snα,β}n∈N0
defined by6

(3.20) Snα,β =

∞∑
j=0

kαj+βτ (n)Aj .

Proof. Let x ∈ X and n ∈ N0. From [21, Formula 8.328] the serie in (3.20) converges for τα < 1 and7

‖A‖ < 1. Then, by (2.4) we get8

τA

n∑
j=0

kατ (n− j)Sjα,βx =

∞∑
l=0

Al+1τ

n∑
j=0

kατ (n− j)kαl+βτ (j)x

=

∞∑
l=0

Al+1kα(l+1)+β
τ (n)x

=

∞∑
j=0

Ajkαj+βτ (n)x− kβτ (n)x.

Hence,

kβτ (n)x+ τA

n∑
j=0

kατ (n− j)Sjα,βx =

∞∑
j=0

Ajkαj+βτ (n)x,

that is,

Snα,β =

∞∑
j=0

kαj+βτ (n)Aj .

�9

The next Corollary is a direct consequence of Proposition 3.16.10
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Corollary 3.17. Let τ < 1. If A is a bounded operator with ‖A‖ < 1, then A generates the (1, 1)-resolvent1

sequence {Sn1,1}n∈N0 defined by2

(3.21) Sn1,1 =

∞∑
j=0

kj+1
τ (n)Aj =

∞∑
j=0

τ j
Γ(j + n+ 1)

Γ(j + 1)Γ(n+ 1)
Aj =

∞∑
j=0

τ j
(
n+ j

j

)
Aj .

Now, since for any β > 0

kβ1 (n) =
nβ−1

Γ(β)

(
1 +O

(
1

n

))
, n ∈ N, β > 0

(see [21, Formula 8.328]) we get

Γ(j + n+ 1)

Γ(j + 1)Γ(n+ 1)
= kj+1

1 (n) =
nj

j!

(
1 +O

(
1

n

))
and therefore, the identity (3.21) gives an approximation of the semigroup

etA :=

∞∑
j=0

(tA)j

j!

at tn := nτ, that is, Sn1,1 approximates etnA for each n ∈ N0.3

Remark 3.18. For n ∈ N given, we define the matrix A ∈Mn+1(R) and the vector R ∈ Rn+1 as follow:

A(i, j) :=

{
ai−1,j , i ≥ j,
0, j > i.

R(i) := Ri, i = 1, ..., n+ 1.

Then, S ∈M(n+1)×1(R) defined by

S(i) = Si−1
α,β , i = 1, ..., n+ 1.

satisfies S = ART . Furthermore, it is not difficult to see that for the case α = β = 1, the matrix A4

corresponds to unity In+1.5

We notice that if eα,β(t) := tβ−1Eα,β(−%tα), where % > 0, then {Snα,β}n∈N0
, corresponds to a discretiza-6

tion of eα,β(t) on the interval [0, T ]. In Figure 1, we illustrate the function eα,β(t) := tβ−1Eα,β(−%tα) and7

the sequence Snα,β (generated by A = %I) on the interval [0, 1], where τ = 1/N, 0 ≤ n ≤ N and N = 100,8

respectively. For % = 1, we choose, respectively, α = 1.1, β = 0.1, and α = 0.1, β = 0.9.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8
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10

11
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0

5

10

15

20

25

Figure 1. eα,β(t) (line) and Snα,β (circles) for N = 100.
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4. Solution to a fractional difference equations1

In this section, we study the existence and uniqueness of solutions to a fractional difference equation.2

The results in this section shows that the discrete resolvent families play a crucial role in the representation3

of solutions.4

To illustrate the previous results, we consider the initial value problem5  C∇αun = Aun + C∇α−1fn, n ≥ 2,
u0 = x0,
u1 = 0,

(4.22)

where 1 < α < 2, A is a closed linear operator in a Banach space X and x0 ∈ X. We notice that (4.22)6

can be see as a discretization of the problem7

(4.23) ∂αt u(t) = Au(t) + ∂α−1
t f(t), t > 0,

under the initial conditions u(0) = x0 and u′(0) = 0, where ∂αt denotes the Caputo fractional derivative.
This equation has been widely studied in the last years, see for instance [8, 13, 14, 37] and references
therein. By [12] or [41], if A generates an exponentially bounded (α, 1)-resolvent family {Sα,1(t)}t≥0 in
the sense of (3.9), then the solution to (4.23) is given by

u(t) = Sα,1(t)x0 +

∫ t

0

Sα,1(t− s)f(s)ds.

The next result shows that the solution to (4.22) can be written as a discrete variation of parameter8

formula, similarly to the continuous case.9

Theorem 4.19. Let τ > 0 and 1 < α < 2. Let A be the generator of an (α, 1)-discrete resolvent sequence
{Snα,1}n∈N0

. If x0 ∈ X, then the Caputo fractional difference equation (4.22) has a unique solution given
by

un = Snα,1x0 + τ(Sα,1 ? f)n,

for all n ≥ 2 and u0 = x0, u
1 = 0.10

Proof. Since A generates an (α, 1)-discrete resolvent sequence {Snα,1}n∈N0
and k1

τ (n) = 1 for all n ∈ N0,11

we have, by definition, that12

(4.24) Sjα,1x = x+ τA

j∑
l=0

kατ (j − l)Slα,1x,

for all j ≥ 0 and x ∈ X. By definition of the Caputo fractional backward difference operator for 1 < α < 2,13

we have for all n ≥ 2 that14

(4.25) C∇α(Sα,1x)n = ∇−(2−α)
τ ∇2

τ (Sα,1x)n = τ

n∑
j=0

k2−α
τ (n− j)(∇2

τSα,1x)j .

The equality (4.24) implies that15

(∇2
τSα,1x)j =

1

τ2
(Sjα,1x− 2Sj−1

α,1 x+ Sj−2
α,1 x)

=
A

τ2

[
τ

j∑
l=0

kατ (j − l)Slα,1x− 2τ

j−1∑
l=0

kατ (j − 1− l)Slα,1x+ τ

j−2∑
l=0

kατ (j − 2− l)Slα,1x

]
,
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for all j ≥ 2 and x ∈ X. Since k1
τ (n) = 1 for all n ∈ N0, the convolution property (2.4) implies that1

τ

n∑
j=0

k2−α
τ (n− j)τ

j∑
l=0

kατ (j − l)Slα,1x = τ2
n∑
j=0

k2−α
τ (n− j)(kατ ? Sα,1)jx

= τ2(k2−α
τ ? (kατ ? Sα,1))nx

= τ(k2
τ ? Sα,1))nx

= τ2(k1
τ ? (k1

τ ? Sα,1))nx

= τ2
n∑
j=0

(k1
τ ? Sα,1)jx

= τ2
n∑
j=0

j∑
l=0

Slα,1x,

for all n ≥ 2. Since
∑−k
j=0 v

j = 0 for all k ∈ N, we get similarly that

τ

n∑
j=0

k2−α
τ (n− j)τ

j−1∑
l=0

kατ (j − 1− l)Slα,1x = τ2
n−1∑
j=0

j∑
l=0

Slα,1x,

and2

(4.26) τ

n∑
j=0

k2−α
τ (n− j)τ

j−2∑
l=0

kατ (j − 2− l)Slα,1x = τ2
n−2∑
j=0

j∑
l=0

Slα,1x,

for all n ≥ 2. By (4.25)–(4.26) we obtain3

C∇α(Sα,1x)n = A

 n∑
j=0

j∑
l=0

Slαx− 2

n−1∑
j=0

j∑
l=0

Slα,1x+

n−2∑
j=0

j∑
l=0

Slα,1x


= ASnαx,

for all n ≥ 2 and x ∈ X, and therefore

C∇αSnα,1x0 = ASnα,1x0.

On the other hand, by definition we have

C∇α((Sα,1 ? f)n) = ∇−(2−α)
τ ∇2

τ ((Sα,1 ? f))n = τ

n∑
j=0

k2−α
τ (n− j)∇2

τ (τ(Sα,1 ? f)j),

for all n ≥ 2. Since

∇2
τ (Sα,1 ? f)j =

1

τ2

[
(Sα,1 ? f)j − 2(Sα,1 ? f)j−1 + (Sα,1 ? f)j−2

]
,

for all j ≥ 2, and by definition

Snα,1x = k1
τ (n)x+ τA

n∑
j=0

kατ (n− j)Sjα,1x = x+ τA(kατ ? Sα,1)nx,

for all x ∈ X, and n ∈ N0, we get that

(Sα,1 ? f)n =

n∑
j=0

f j + τA(kατ ? Sα,1 ? f)n,
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for all n ∈ N0. Hence1

C∇α((Sα,1 ? f)n) = τ

n∑
j=0

k2−α
τ (n− j)∇2

τ (Sα,1 ? f)j

=
1

τ2

n∑
j=0

k2−α
τ (n− j)

[
τ

j∑
l=0

f l − 2τ

j−1∑
l=0

f l + τ

j−2∑
l=0

f l

]

+
A

τ2

n∑
j=0

k2−α
τ (n− j)

[
τ(kατ ? Sα,1 ? f)j − 2τ(kατ ? Sα,1 ? f)j−1 + τ(kατ ? Sα,1 ? f)j−2

]
,

for all n ≥ 2.2

An easy computation shows that3

(4.27)

[
τ

j∑
l=0

f l − 2τ

j−1∑
l=0

f l + τ

j−2∑
l=0

f l

]
= τ2 (f j − f j−1)

τ
= τ2∇1

τ (f)j .

Moreover, by (2.4), we obtain4

τ

n∑
j=0

k2−α
τ (n− j)(kατ ? Sα,1 ? f)j = τ(k2−α

τ ? kα ? Sα,β ? f)n

= τ2(k1
τ ? k

1
τ ? Sα,β ? f)n

= τ2
n∑
j=0

k1
τ (n− j)(k1

τ ? Sα,β ? f)l

= τ2
n∑
j=0

j∑
l=0

(Sα,β ? f)l.

Similarly, by (2.2), it is easy to prove that

τ

n∑
j=0

k2−α
τ (n− j)(kατ ? Sα,1 ? f)j−1 = τ2

n−1∑
j=0

j∑
l=0

(Sα,β ? f)l,

and

τ

n∑
j=0

k2−α
τ (n− j)(kατ ? Sα,1 ? f)j−2 = τ2

n−2∑
j=0

j∑
l=0

(Sα,β ? f)l,

for all n ≥ 2.5

On the other hand,6

(4.28) C∇α−1fn = ∇−(1−(α−1))
τ (∇1

τf)n = ∇2−α
τ (∇1

τf)n = τ

n∑
j=0

k2−α
τ (n− j)(∇1f)j

and, by (4.27)–(4.28), we conclude that7

C∇α(τ(Sα,1 ? f)n) = τ

n∑
j=0

k2−α
τ (n− j)∇1

τ (f)j +
A

τ2
τ

n∑
j=0

k2−α
τ (n− j)

[
τ2

n∑
j=0

j∑
l=0

(Sα,β ? f)l

−2τ2
n−1∑
j=0

j∑
l=0

(Sα,β ? f)l + τ2
n−2∑
j=0

j∑
l=0

(Sα,β ? f)l
]

= C∇α−1fn +A(τ(Sα,1 ? f)n),
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for all n ≥ 2. We conclude that if un := Snα,1x0 + τ(Sα,1 ? f)n for n ≥ 2, then1

C∇α(un) = C∇α
(
Snα,1x0 + τ(Sα,1 ? f)n

)
= ASnα,1x0 +A(τ(Sα,1 ? f)n) +C ∇α−1fn

= Aun +C ∇α−1fn,

for all n ≥ 2, that is, un solves the equation

C∇αun = Aun +C ∇α−1fn, n ≥ 2.

We conclude that the sequence (un)n∈N0
defined by2

un :=


Snα,1x0 + τ(Sα,1 ? f)n, n ≥ 2,

x0, n = 1,
0, n = 0,

solves the problem (4.22). The uniqueness, follows from Proposition 3.14. �3
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[37] C. Lizama, G. M. N’Guérékata, Mild solutions for abstract fractional differential equations, Appl. Anal. 92 (2013),28

1731-1754.29

[38] C. Lizama, F. Poblete. On a functional equation associated with (a, k)-regularized resolvent families, Abstr. Appl.30

Anal. 2012, Art. ID 495487, 23 pp.31

[39] Ch. Lubich, Discretize fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719.32

[40] K. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, New York33

1993.34

[41] R. Ponce, Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces, Appl. Math. Lett.35

105 (2020), 106322.36

[42] R. Ponce, Subordination Principle for fractional diffusion-wave of Sobolev type, Fract. Calc. Appl. Anal. 23 (2020),37

no. 2, 427-449.38

[43] R. Ponce, Time discretization of fractional subdiffusion equations via fractional resolvent operators. Comput. Math.39

Appl. 80 (2020), no. 4, 69-92.40

[44] J. Prüss. Evolutionary Integral Equations and Applications. Monographs Math., 87, Birkhäuser Verlag, 1993.41
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