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Abstract. In this paper we continue our developments in [17] on the existence of classical solu-

tions for abstract neutral differential equations. In the current work we extend the results in [17]

for nonlinear neutral differential equations. Some applications involving nonlinear partial neutral

differential equations are presented.

1. Introduction

In this paper we discuss the existence of classical solutions for some models of neutral differential

equations which can be described in the abstract form

d

dt
[u(t) + g(t, ut)] = A(t)u(t) + f(t, ut), t ∈ [0, a],(1.1)

u0 = φ ∈ U ⊂ B = C([−p, 0];D), (p > 0),(1.2)

where (A(t))t∈[0,a] is a family of sectorial operators defined on a common domain D(A) ⊂ X, each

operator A(t) is the generator of an analytic semigroup of bounded linear operators on a Banach

space (X, ∥ · ∥), D denotes the space D(A) endowed with the norm ∥ · ∥D, U ⊂ B is open, φ ∈ U ,

the history ut : [−p, 0] → X (ut(θ) = x(t+θ)) belongs to B = C([−p, 0];D) and f, g : [0, a]×U → X

are continuous functions.

The literature on abstract neutral differential equations of the form (1.1)-(1.2) is extensive and

includes topics on the existence and qualitative properties of solutions, see [2, 3, 4, 5, 9, 11, 16, 17,

18, 19, 20, 22, 27] and the references therein. In the cited works some restrictive conditions are

used in order to guarantee the integrability of the function s→ AT (t− s)g(s, us) which appears in

the variation of constant formulae used to define the concept of mild solution of (1.1)-(1.2). We can

present these conditions in the following unified manner.

(Hg) There exists a Banach space (Y, ∥ · ∥Y) continuously included in X

such that g ∈ C([0,a] × B;Y) and the operator function t → AT(·) belongs

to L1([0,b];L(Y,X)), where L(Y,X) denotes the space of bounded linear

operator from Y into X endowed with the norm of operators.

The condition (Hg) is an elegant mathematical condition which can be verified in some situations.

However, due to the nature of the operator A, this assumption is a severe restriction. To illustrate

this fact, we note that in Datko [9], for example, X = CUC([0,∞),R) (the space of bounded

uniformly continuous functions from (−∞, 0] into R endowed with the uniform norm), A(t) = A for

all t, and A : D(A) ⊂ X → X is the operator given by Ax = x′ with domain D(A) = {x ∈ X :

x′ ∈ X}. In this case, the function g(·) has an unusual regularizing property which transforms a

continuous function into a C1 function. A similar situation is observed in [1, 18, 19, 20].

In connection to the above, we note that in [2, 3, 4, 5] it is assumed that the set {AT (t) : t ∈ (0, a]}
is bounded in the space of bounded linear operator on X which correspond to the case Y = X.
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However, as pointed out in [20], this condition is valid if and only if the operator A is a bounded

linear operator, so this restricts the applications to ordinary differential equations.

On the other hand, in [16] is studied the existence of solutions for a neutral problem of the form

d

dt
[x(t) + g(t, x(t− r1))] = Ax(t) + f(t, xt), (r1 < r)(1.3)

x0 = φ ∈ C([−r, 0];X),(1.4)

without using the condition Hg. We note that the approach in [16] is completely different to that

used in this current paper and in the cited literature. The results in [16] are proved by assuming

that the function t → g(t, φ(t − r1)) is smooth enough on [0, r1] when the function g(·) and the

initial condition φ are smooth in an appropriate sense which permit the study of the existence of

solutions for the associated integral equation

u(t) = T (t)[φ(0) + g(0, φ(−r1))]− g(t, φ(t− r1))

−
∫ t

0

AT (t− s)g(s, φ(s− r1))ds+

∫ t

0

T (t− s)f(s, us)ds, t ∈ [0, r1].

Motivated by the above comments, in [17] we introduced a new approach to study abstract neutral

differential equations based on maximal regularity type techniques for abstract parabolic problems.

Using this new approach, in [17] we discussed the existence of classical solutions for abstract neutral

problems of the form

d

dt
[u(t) + g(t, ut)] = A(t)u(t) + f(t, ut).

The results in [17] are proved assuming that the functions f(·), g(·) are α-Hölder in an appropriated

sense and f(t, ·), g(t, ·) are bounded linear operator for all t ∈ [0, a]. The assumption on f(t, ·),
g(t, ·) is used to guarantee that functions of the form t→ f(t, ut)−f(t, vt), t→ g(t, ut)−g(t, vt) are
α-Hölder continuous when the involved functions u(·), v(·) are α-Hölder and this enables us to use

the contraction mapping principle in spaces of α-Hölder continuous functions. The conditions on

f(t, ·), g(t, ·) are useful and satisfied in several situations. However, they restrict the applications to

linear type neutral differential equations. This relevant fact is the main motivation of the current

work. In this paper, by assuming that f(·), g(·) are smooth enough on an open neighborhood of

the initial condition φ, we study the local existence of classical solutions for neutral problems of the

form

d

dt
[u(t) + g(t, ut)] = A(t)u(t) + f(t, ut),(1.5)

d

dt

[
u(t) +

∫ t

−p

B(t, τ)u(τ)dτ

]
= A(t)u(t) + f(t, ut),(1.6)

which were treated earlier, for the linear type case, in the paper [17].

To finish our comments on the associated literature, is convenient to include a remark on the

paper [15] where is introduced and studied a new type of neutral differential equation described in

the form

u′(t) = Au(t) + f(t, ut, u
′
t), u0 = φ ∈ B,(1.7)

which has a slight similarity with the problem and the technical approach in this current work.

Concerning the relations between [15] and our current paper, we remark that now we study “non-

linear neutral” problems with applications to nonlinear partial differential equations whereas the

results in [15] are only applicable to neutral type linear equations.

Abstract neutral differential equations arise in many situations. The abstract problem (1.1)-(1.2)

arises, for example, in the theory of heat conduction in fading memory material. In the classical

theory of heat conduction, it is assumed that the internal energy and the heat flux depends linearly

on the temperature u and on its gradient ∇u. Under these conditions, the classical heat equation

describes sufficiently well the evolution of the temperature in different types of materials. However,
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this description is not satisfactory in materials with fading memory. In the theory developed in

[13, 26], the internal energy and the heat flux are described as functionals of u and ux. The next

system, see [6, 7, 8, 24], has been frequently used to describe this phenomena,

d

dt

[
u(t, x) +

∫ t

−∞
k1(t− s)u(s, x)ds

]
= c△u(t, x) +

∫ t

−∞
k2(t− s)△u(s, x)ds,

u(t, x) = 0, x ∈ ∂Ω.

In this system, Ω ⊂ Rn is open, bounded and has smooth boundary, (t, x) ∈ [0,∞) × Ω, u(t, x)

represents the temperature in x at the time t, c is a physical constant and ki : R → R, i = 1, 2, are

the internal energy and the heat flux relaxation respectively. By assuming the solution u is known

on (−∞, 0] and k2 ≡ 0, we can transform this system into the abstract form (1.1)-(1.2).

The literature on ordinary neutral differential equations in the theory of population dynamics

is extensive, see for example, [10, 12, 22, 23]. If in some of these works we consider the spatial

diffusion phenomena, which arises in the natural tendency of biological populations to migrate from

high population density regions to regions with minor density, then it is possible to obtain partial

neutral differential systems of the form

d

dt
[u(t, ξ) + g(t, u(t− p1, ξ))] = △u(t, ξ) + f(t, u(t− p1, ξ)),

which can be described in the abstract form (1.1).

For additional references and new developments in abstract neutral differential equations we also

cite [15, 16] and the references therein.

This paper has four sections. In the next section we introduce some notations, definitions and

results used in this work. In Section 3 we study the existence of classical solutions for the neutral

problems (1.5)-(1.6). In the last section some applications to nonlinear partial neutral differential

equations are presented.

2. Preliminaries

In this section we introduce some notations, definitions and technical results used in this paper.

Let (Z, ∥ · ∥Z) and (W, ∥ · ∥W ) be Banach spaces. In this paper, L(Z,W ) denotes the space of

bounded linear operators from Z intoW endowed with the norm of operators denoted by ∥ · ∥L(Z,W )

and we write L(Z) and ∥ · ∥L(Z) when Z =W . In addition, Bl(z, Z) = {x ∈ Z :∥ x− z ∥Z≤ l} and

for a given function h(·) we use the notation dih(·) for the i-th partial derivative.

As usual, C([b, c];Z) is the space of continuous functions from [b, c] into Z endowed with the

uniform norm denoted by ∥ · ∥C(I;Z). The space Cγ([b, c];Z), γ ∈ (0, 1), is formed by all the

functions ξ ∈ C([b, c];Z) such that [ξ]Cγ([b,c];Z) = supt,s∈[b,c],t ̸=s
∥ξ(s)−ξ(t)∥Z

|t−s|γ <∞, provided with the

norm ∥ ξ ∥Cγ([b,c];Z)=∥ ξ ∥
C([b,c];Z)

+[ξ]Cγ([b,c];Z).

Concerning the operator family (A(t))t∈[0,a], we adopt all the notations and assumptions consid-

ered in [17]. In particular, A = A(0) and D denotes the domain of A endowed with the graph norm

∥ x ∥D=∥ Ax ∥. In addition, we suppose that 0 ∈ ρ(A), each operator A(t) is the infinitesimal gener-

ator of an analytic semigroup on X, the domain of A(t) is independent of t and the operator function

t → A(t) belongs to Cα([0, a];L(D;X)) for some α ∈ (0, 1). In this work, (T (t))t≥0 represents the

semigroup generated by A and Ci, i ∈ N, are positive constants such that ∥ AiT (t) ∥≤ Cit
−i for

every t > 0. The notation (X,D)η,∞, η ∈ (0, 1), stands for the space

(X,D)η,∞ = {x ∈ X : [x]η,∞ = sup
t∈(0,1)

∥ t1−ηAT (t)x ∥<∞},

endowed with the norm ∥ x ∥η,∞= [x]η,∞+ ∥ x ∥. In addition, Ck
η,∞, k ∈ N, are real numbers such

that s1−η ∥ AkT (s) ∥L((X,D)η,∞,X)≤ Ck
η,∞ for all s ∈ (0, a] and every k ∈ N.

We also need to include some remarks on the abstract Cauchy problem

d

dt
(x(t) + ξ1(t)) = Ax(t) + ξ2(t), t ∈ [0, a], x(0) = x0.(2.1)
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We note that the mild solution of (2.1) on [0, b], 0 < b ≤ a, is the function given by

u(t) = T (t)(x0 + ξ1(0))− ξ1(t)−
∫ t

0

AT (t− s)ξ1(s)ds+

∫ t

0

T (t− s)ξ2(s)ds, ∀ t ∈ [0, b].

In addition, a function u ∈ C([0, b];X) is said to be a classical solution of (2.1) on [0, b] if u + ξ ∈
C1([0, b];X), u ∈ C([0, b];D) and u(·) satisfies (2.1) on [0, b].

Lemma 2.1. [17, Lemma 2.1] Assume ξ1 ∈ Cα([0, b],D), ξ2 ∈ Cα([0, b], X), x ∈ D and let u :

[0, b] → X be the mild solution of (2.1) on [0, b]. If Ax+ ξ2(0) ∈ (X,D)α,∞, then u(·) is a classical

solution of (2.1), u ∈ Cα([0, b],D), the function u + ξ1 is differentiable, d
dt (u + ξ1) ∈ Cα([0, b], X)

and

[u]Cα([0,b],D) ≤ Λ([ξ1]Cα([0,b],D) + [ξ2]Cα([0,b],X)) +
C1

α,∞

α
∥ Ax+ ξ2(0) ∥α,∞,

where Λ = 2C1

α + 3C0 + 2 + C2

α(1−α) .

To prove our results we introduce the Hα
Z,W condition.

(Hα
Z,W) Let V ⊂ Z be an open set, z ∈ V , α ∈ (0, 1), and H ∈ C([0, a]× V ;W ). We say that H(·)

satisfies the Hα
Z,W condition at z ∈ V if d2H ∈ C([0, a] × V ;W ) and there is a function

LH ∈ C([0, a]× [0,∞); (0,∞)) such that

∥ H(t, x)−H(s, x) ∥W + ∥ d2H(t, x)− d2H(s, x) ∥L(Z,W )≤ LH(b, r) | t− s |α,
∥ d2H(s, x1)− d2H(s, x2)) ∥L(Z,W )≤ LH(b, r) ∥ x1 − x2 ∥Z ,

for all 0 ≤ s < t ≤ b ≤ a, x1, x2 ∈ Br(z, Z) and each r > 0 such that Br(z, Z) ⊂ V.

The following result is proved in [21] and we include the proof for completeness. In this result,

we use the notation Hw(·) = H(·, w(·)) for appropriate functions H(·) and w(·).

Lemma 2.2. Assume H ∈ C([0, a]× V ;W ) satisfies the Hα
Z,W condition at z ∈ V , Br(z, Z) ⊂ V ,

0 ≤ b ≤ a and u, v ∈ Cα([0, b];Br(z, Z)) are such that u(0) = v(0) = z. Then Hu ∈ Cα([0, b];W )

and

[Hu]Cα([0,b];W )

≤ LH(b, r) +
(
∥ d2H(·, z) ∥C([0,b];L(Z,W )) +LH(b, r)bα[u]Cα([0,b];Z)

)
[u]Cα([0,b];Z),(2.2)

[Hu −Hv]Cα([0,b];W )

≤
(
bαLH(b, r)(1 + 2B(u, v))+ ∥ d2H(·, z) ∥C([0,b];L(Z,W ))

)
[u− v]Cα([0,b];Z),(2.3)

where B(u, v) = [u]Cα([0,b];Z) + [v]Cα([0,b];Z).

Proof: First we prove that Hu ∈ Cα([0, b];W ). For 0 < s ≤ t ≤ b we see that

∥ Hu(t)−Hu(s) ∥W≤∥ H(t, u(t))−H(s, u(t)) ∥W + ∥ H(s, u(t))−H(s, u(s)) ∥W

≤ ∥ H(t, u(t))−H(s, u(t)) ∥W +

∫ 1

0

∥ ∂

∂ξ
H(s, ξu(t) + (1− ξ)u(s)) ∥W dξ

≤ LH(b, r)(t− s)α +

∫ 1

0

∥ d2H(s, ξu(t) + (1− ξ)u(s)) ∥L(Z,W )∥ u(t)− u(s) ∥Z dξ

≤ LH(b, r)(t− s)α + [u]Cα([0,b];Z)(t− s)α
∫ 1

0

∥ d2H(s, z) ∥L(Z;W ) dξ

+[u]Cα([0,b];Z)(t− s)α
∫ 1

0

∥ d2H(s, ξu(t) + (1− ξ)u(s))− d2H(s, z) ∥L(Z,W ) dξ

≤ LH(b, r)(t− s)α + [u]Cα([0,b];Z)(t− s)α ∥ d2H(·, z) ∥C([0,b];L(Z,W ))

+[u]Cα([0,b];Z)(t− s)α
∫ 1

0

LH(b, r)(ξ ∥ u(t)− z ∥Z +(1− ξ) ∥ u(s)− z ∥Z)dξ

≤ LH(b, r)(t− s)α+ ∥ d2H(·, z) ∥C([0,b];L(Z,W )) [u]Cα([0,b];Z))(t− s)α

+[u]Cα([0,b];Z)(t− s)αLH(b, r)[u]Cα([0,b];Z)b
α,
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which implies that Hu ∈ Cα([0, b];W ) and establishes the first inequality.

To prove the second inequality, for 0 < s ≤ t ≤ b we note that

Hu(t)−Hv(t)− (Hu(s)−Hu(s))

= H(t, u(t))−H(t, v(t))− (H(s, u(t))−H(s, v(t))

+H(s, u(t))−H(s, v(t))− (H(s, u(s))−H(s, v(s)))

=

∫ 1

0

∂

∂ξ
[H(t, ξu(t) + (1− ξ)v(t))−H(s, ξu(t) + (1− ξ)v(t))]dξ

+

∫ 1

0

∂

∂ξ
[H(s, ξu(t) + (1− ξ)v(t))−H(s, ξu(s) + (1− ξ)v(s))]dξ.

From this equality and using that w = u− v ∈ Cα([0, b];Z) and w(0) = 0, we get

∥ H(t, u(t))−H(t, v(t))− (H(s, u(s))−H(s, v(s)) ∥Z

≤
∫ 1

0

∥ d2H(t, ξu(t) + (1− ξ)v(t))− d2H(s, ξu(t) + (1− ξ)v(t)) ∥L(Z,W )∥ w(t) ∥Z dξ

+

∫ 1

0

∥ (d2H(s, ξu(t) + (1− ξ)v(t))w(t)− d2H(s, ξu(s) + (1− ξ)v(s))w(s) ∥Z dξ

≤
∫ 1

0

∥ d2H(t, ξu(t) + (1− ξ)v(t))− d2H(s, ξu(t) + (1− ξ)v(t)) ∥L(Z,W )∥ w(t) ∥Z dξ

+

∫ 1

0

∥ [d2H(s, ξu(t) + (1− ξ)v(t))− d2H(s, ξu(s) + (1− ξ)v(s))]w(t) ∥Z dξ

+

∫ 1

0

∥ [d2H(s, ξu(s) + (1− ξ)v(s))− d2H(s, z)](w(t)− w(s)) ∥Z dξ

+

∫ 1

0

∥ d2H(s, z)(w(t)− w(s)) ∥W dξ

≤ LH(b, r)(t− s)α[w]Cα([0,b];Z)b
α

+LH(b, r)

∫ 1

0

(ξ ∥ u(t)− u(s) ∥Z +(1− ξ) ∥ v(t)− v(s) ∥Z) ∥ w(t) ∥Z dξ

+LH(b, r)

∫ 1

0

(ξ ∥ u(s)− z ∥Z +(1− ξ) ∥ v(s)− z ∥Z) ∥ w(t)− w(s) ∥Z dξ

+[w]Cα([0,b];Z)(t− s)α ∥ d2H(·, z) ∥C([0,b];L(Z,W ))

≤ LH(b, r)(t− s)α[w]Cα([0,b];Z)b
α + LH(b, r)B(u, v)(t− s)α[w]Cα([0,b];Z)t

α

+LH(b, r)(sα[u]Cα([0,b];Z) + sα[v]Cα([0,b];Z))[w]Cα([0,b];Z)(t− s)α

+[w]Cα([0,b];Z)(t− s)α ∥ d2H(s, z) ∥L(Z,W ),

which shows that Hu −Hv ∈ Cα([0, b];W ) and

[Hu −Hv]Cα([0,b];W )

≤
(
bαLH(b, r)(1 + 2B(u, v))+ ∥ d2H(·, z) ∥C([0,b];L(Z,W ))

)
[u− v]Cα([0,b];Z).

Remark 2.1. In the remainder of this work, Λ is the constant introduced in Lemma 2.1 and

φ̃ : [−p, a] → B is the function given by φ̃(t) = φ(t) for t ∈ [−p, 0] and φ̃(t) = T (t)φ(0) for t ∈ [0, a].

In addition, for a function u ∈ C([−p, b];D), 0 < b ≤ a, we use the notations Pu and Lu(t) for the

functions Lu : [0, b] → X and Pu : [0, b] → B given by Pu(t) = ut and Lu(t) = (A(t)−A)u(t).

3. Existence of classical solutions

In this section we discuss the existence of solutions for the equations (1.5) and (1.6).
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3.1. Classical solutions for a general class of neutral system. In this section we consider the

problem of the existence of classical solutions for a neutral system of the form

d

dt
(x(t) + g(t, xt)) = A(t)x(t) + f(t, xt), t ∈ [0, a],(3.1)

x0 = φ ∈ U ⊂ B = C([−p, 0],D).(3.2)

To begin we note the following concept of solution.

Definition 3.1. A function u ∈ C([−p, b];X) is called a classical solution of (3.1)-(3.2) on [0, b] if

u(·) + g(·, Pu(·)) ∈ C1([0, b];X), u ∈ C([0, b];D), u0 = φ and u(·) satisfies (3.1) on [0, b].

To establish the results of this section, from [17] we include the following lemma.

Lemma 3.3. Let u,w ∈ C([−p, b];D) and assume w = 0. Then Lu ∈ Cα([0, b],D) and

[Lu]Cα([0,b];X) ≤ [A]Cα([0,b];L(D,X))(∥ u ∥C([0,b],D) +b
α[u]Cα([0,b],D)),(3.3)

[Lw]Cα([0,b];X) ≤ 2bα[A]Cα([0,b];L(D,X))[w]Cα([0,b],D)).(3.4)

Remark 3.2. It is convenient to include some additional notations. For b ∈ (0, b] and R > 0 we

use the notations

ΘA(b,R) = [A]Cα([0,b];L(D,X))(2b
αR+ ∥ φ(0) ∥D) and ΘA(b) = 2bα[A]Cα([0,b];L(D,X)).

We note that if u,w are the functions in Lemma 3.3, u(0) = φ(0), [u]Cα([0,b];D) ≤ R and [w]Cα([0,b];D) ≤
R, then [Lu]Cα([0,b];X) ≤ ΘA(b,R) and [Lw]Cα([0,b];X) ≤ ΘA(b).

We can establish now our first result on the existence of a classical solution for (3.1)-(3.2).

Theorem 3.1. Assume that g(·) satisfies the Hα
B,D condition at φ ∈ U and f(·) satisfies the Hα

B,X

condition at φ ∈ U . Suppose, Pφ̃ ∈ Cα([0, b];B), φ ∈ Cα([−p, 0];D), {Aφ(0), f(0, φ)} ⊂ (X,D)α,∞
and

(3.5) 2Λ(Lf (0, 0) + Lg(0, 0)+ ∥ d2f(0, φ) ∥L(B,X) + ∥ d2g(0, φ) ∥L(B,D)) < 1,

where Lg(·), Lf (·) are the functions associated to g(·), f(·) via the Hα
B,D and the Hα

B,X conditions.

Then there exists a unique classical solution u ∈ Cα([−p, b];D) of the problem (3.1)-(3.2) on [0, b]

for some 0 < b ≤ a.

Proof: Let r > 0 be such that Br(φ,B) ⊂ U . By using that the functions Lg(·), Lf (·) are continuous,
from condition (3.5) we select R > r > 0 and b ∈ (0, a] such that

bα(Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞ +[Pφ̃]Cα([0,b];B)) ≤ r,

2Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) + [Pφ̃]Cα([0,b];B)

+
Cα,∞

α
(∥ f(0, φ) ∥α,∞ + ∥ Aφ(0) + f(0, φ) ∥α,∞) ≤ R,

2(bα + 1)Λ((Lf (b, r) + Lg(b, r))(1 + 4Rbα) + Θ(b)) < 1,

where Θf (b) =∥ d2f(·, φ) ∥C([0,b];L(B,X)), Θg(b) =∥ d2g(·, φ) ∥C([0,b];L(B,D)), Θ(b) = Θf (b) +Θg(b) +

ΘA(b), Θh(r,R, b) = Lh(b, r) + (Lh(b, r)b
αR+Θh(b))R for h ∈ {f, g}, and ΘA(b), ΘA(b, R) are the

numbers introduced in Remark 3.2.

Let Y = Cα([−p, b];D) and Y(b, r, R) be the space

Y(b, r, R) = {u ∈ Y ;u0 = φ, Pu ∈ Cα([0, b];B), [Pu]Cα([0,b];B) ≤ R, ∥ Pu − φ ∥C([0,b];B)≤ r},

endowed with the metric d(u, v) =∥ Pu − Pv ∥Cα([0,b];B). On the space Y(b, r, R) we define the map

Γ : Y(b, r, R) → C([−p, b];X) by (Γu)0 = φ and

Γu(t) = T (t)(φ(0) + g(0, φ))− gu(t)−
∫ t

0

AT (t− s)gu(s)ds

+

∫ t

0

T (t− s)[fu(s) + Lu(s)]ds, for t ∈ [0, b],
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where gu(t) = g(t, ut), fu(t) = f(t, ut) and Lu(t) = (A(t)−A)u(t).

By noting that gu ∈ C([0, b];D), it is easy to see that Γu ∈ C([−p, b];X). Next, we prove that Γ

is a contraction on Y(b, r, R). In the remainder of the proof, we assume u, v ∈ Y(b, r, R) and we use

the notation Γ1u for the function Γ1u = Γu− φ̃.

Step 1. The map Γ has values in Y and ∥ Pu − φ ∥C([0,b];B)≤ r.

From the definition of Y , the properties of the functions g(·), f(·) and Lemma 2.2 we have that

gu ∈ Cα([0, b];D), fu ∈ Cα([0, b];X) and

[fu]Cα([0,b];X)

≤ Lf (b, r) + (Lf (b, r)b
α[Pu]Cα([0,b];B)+ ∥ d2f(·, φ) ∥C([0,b];L(B,X)))[Pu]Cα([0,b];B),

[gu]Cα([0,b];D)

≤ Lg(b, r) + (Lg(b, r)b
α[Pu]Cα([0,b];B)+ ∥ d2g(·, φ) ∥C([0,b];L(B,D)))[Pu]Cα([0,b];B).

From the above and Remark 3.2 we obtain that

(3.6) [Lu]Cα([0,b];X) ≤ ΘA(b,R), [fu]Cα([0,b];X) ≤ Θf (r,R, b) and [gu]Cα([0,b];D) ≤ Θg(r,R, b).

On the other hand, from Lemma 2.1 we see that Γu|[0,b] ∈ Cα([0, b];D) and

[(Γu)|[0,b] ]Cα([0,b];D) ≤ Λ([fu]Cα([0,b];X) + [gu]Cα([0,b];D) + [Lu]Cα([0,b];X))

+
Cα,∞

α
∥ Aφ(0) + f(0, φ) ∥α,∞,

from which we obtain that

[(Γu)|[0,b] ]Cα([0,b];D) ≤ Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R))

+
Cα,∞

α
∥ Aφ(0) + f(0, φ) ∥α,∞.(3.7)

In addition, by noting that (Γ1u)|[−p,0]
is the mild solution of (2.1) with ξ1 = gu, ξ2 = fu + Lu and

x0 = 0 and using Lemma 2.1, for t ∈ [−p, 0] and h > 0 such that t+ h > 0 we get

∥ Γu(t+ h)− Γu(t) ∥D=∥ Γu(t+ h)− φ(t) ∥D
≤ ∥ Γu(t+ h)− T (t+ h)φ(0) ∥D + ∥ T (t+ h)φ(0)− φ(0) ∥D + ∥ φ(0)− φ(t) ∥D

≤ (t+ h)α(Λ([fu]Cα([0,b];X) + [gu]Cα([0,b];D) + [Lu]Cα([0,b];X)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞)

+

∫ t+h

0

∥ T (s)Aφ(0) ∥ ds+ (−t)α[φ]Cα([0,b];D)

≤ hα(Λ([fu]Cα([0,b];X) + [gu]Cα([0,b];D) + [Lu]Cα([0,b];X)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞)

+(t+ h)αb1−αC0 ∥ Aφ(0) ∥ +hα[φ]Cα([0,b];D),

and hence,

∥ Γu(t+ h)− Γu(t) ∥D

≤ hα(Λ([fu]Cα([0,b];X) + [gu]Cα([0,b];D) + [Lu]Cα([0,b];X)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞)

+hα(b1−αC0 ∥ Aφ(0) ∥ +[φ]Cα([0,b];D)), for t ∈ [−p, 0], h > 0, t+ h > 0.

Using this inequality, (3.6), (3.7) and the fact that φ ∈ Cα([−p, 0];D) we infer that

[Γu]Cα([−p,b];D) ≤ Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R))

+
Cα,∞

α
(∥ f(0, φ) ∥α,∞ + ∥ Aφ(0) + f(0, φ) ∥α,∞)

+b1−αC0 ∥ Aφ(0) ∥ +[φ]Cα([0,b];D),

which shows that Γu ∈ Cα([−p, b];D) and Γu ∈ Y .
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To prove that ∥ Pu − φ ∥C([0,b];B)≤ r, it is convenient to estimate ∥ Γu(t) − φ̃(t) ∥D. From the

inequalities in (3.6) and Lemma 2.1, we note that for t ∈ [0, b]

∥ Γu(t)− φ̃(t) ∥D=∥ Γ1u(t) ∥D

≤ tα(Λ([fu]Cα([0,b];X) + [gu]Cα([0,b];D) + [Lu]Cα([0,b];X)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞)

≤ tα(Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞).

Using this estimate, for t ∈ [0, b] we get

∥ PΓu(t)− φ ∥B≤∥ PΓu(t)− Pφ̃(t) ∥B + ∥ Pφ̃(t)− φ ∥B
≤ sup

s∈[0,t]

∥ Γu(s)− φ̃(s) ∥B +tα[Pφ̃]Cα([0,b];B)

≤ tα(Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞) + tα[Pφ̃]Cα([0,b];B),(3.8)

which shows (see the choice of b) that ∥ PΓu(t)− φ ∥B≤ r for all t ∈ [0, b].

Step 2. PΓu ∈ Cα([0, b];B) and [PΓu]Cα([0,b];B) ≤ R.

From (3.7), (3.8) and Lemma 2.1, for t ∈ [0, b) and h > 0 with t+ h ∈ [0, b] we get

∥ PΓu(t+ h)− PΓu(t) ∥B
≤ ∥ PΓu(h)− φ ∥B + sup

s∈[0,t]

∥ Γu(s+ h)− Γu(s) ∥

≤ hα(Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) +
Cα,∞

α
∥ f(0, φ) ∥α,∞ +[Pφ̃]Cα([0,b];B))

+hα(Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) +
Cα,∞

α
∥ Aφ(0) + f(0, φ) ∥α,∞),

≤ 2hα(Λ(Θf (r,R, b) + Θg(r,R, b) + ΘA(b,R)) + hα[Pφ̃]Cα([0,b];BX)

+hα
Cα,∞

α
(∥ f(0, φ) ∥α,∞ + ∥ Aφ(0) + f(0, φ) ∥α,∞),(3.9)

which shows that PΓu ∈ Cα([0, b];B) and [PΓu]Cα([0,b];B) ≤ R.

Step 3. The map Γ is a contraction on Y(b, r, R).

From Step 1 and Step 2 it follows that Γ has values in Y(b, r, R). To prove that Γ is a contraction,

we estimate [PΓu − PΓv]Cα([0,b];B).

By noting that Γ1u − Γ1v is the mild solution of the problem (2.1) with ξ1 = gu − gv, ξ2 =

fu+Lu− (fv +Lv) and x0 = 0 and using Lemma 2.1, for t ∈ [0, b) and h > 0 such that t+h ∈ [0, b]

we see that

∥ PΓu(t+ h)− PΓv(t+ h)− (PΓu(t)− PΓv(t)) ∥B
≤ ∥ PΓu(h)− PΓv(h) ∥B + sup

s∈[0,t]

∥ Γu(s+ h)− Γv(s+ h)− (Γu(s)− Γv(s)) ∥D

≤ sup
s∈[0,h]

∥ Γu(s)− Γv(s)− (Γu(0)− Γv(0)) ∥D +hα[(Γu)|[0,b] − (Γv)|[0,b] ]Cα([0,b];D)

≤ 2hα[(Γu)|[0,b] − (Γv)|[0,b] ]Cα([0,b];D)

≤ 2hαΛ([fu − fv]Cα([0,b];X) + [gu − gv]Cα([0,b];D) + [Lu−v]Cα([0,b];X))

which implies, via Lemma 2.2 and Lemma 3.3 (see the inequalities (2.3) and (3.4) respectively), that

[PΓu − PΓv]Cα([0,b];B)

≤ 2Λ(Lf (b, r)(1 + 2B(Pu, Pv)b
α)+ ∥ d2f(·, φ) ∥C([0,b];L(B))[Pu − Pv]Cα([0,b];B))

+2Λ(Lg(b, r)(1 + 2B(Pu, Pv)b
α)+ ∥ d2g(·, φ) ∥C([0,b];L(B))[Pu − Pv]Cα([0,b];B))

+2bα[A]Cα([0,b];L(D,X))d(u, v),

and

[PΓu − PΓv]Cα([0,b];B) ≤ 2Λ((Lf (b, r) + Lg(b, r))(1 + 4Rbα) + Θ(b))d(u, v).
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Moreover, by noting that PΓu(0) = PΓv(0) it follows that

∥ PΓu − PΓv ∥Cα([0,b];B)≤ 2(bα + 1)Λ((Lf (b, r) + Lg(b, r))(1 + 4Rbα) + Θ(b))d(u, v),

which proves that Γ is a contraction on Y(b, r, R).

Finally, from the contraction mapping principe we conclude that there exists a unique classical

solution u ∈ Cα([0, b];D) of (3.1)-(3.2) on [0, b]. This completes the proof.

In connection with the results in [17] we have the following corollary.

Corollary 3.1. Assume that g ∈ Cα([0, a];L(B;D)), f ∈ Cα([0, a];L(B;X)), the function Pφ̃

belongs to Cα([0, a];B), φ ∈ Cα([−p, 0];D), {Aφ(0), f(0)φ} ⊂ (X,D)α,∞ and

4Λ(∥ f(0) ∥L(B;X) + ∥ g(0) ∥L(B;D)) < 1.

Then there exists a unique classical solution u ∈ Cα([−p, b];D) of (3.1)-(3.2) on [0, b] for some

0 < b ≤ a.

Proof: The assertion follows directly from Theorem 3.1. We only note that the functions g(·), f(·)
satisfies the Hα

B,D and the Hα
B,X condition with Lg(t, r) =∥ g ∥

C([0,t];L(B,D))
(1 + r) and Lf (t, r) =∥

f ∥
C([0,t];L(B,X))

(1 + r).

In the next corollary we establish the existence of a classical solution for the neutral problem

d

dt
[x(t) +G(t, x(t− p1))] = A(t)x(t) + F (t, x(t− p2)), t ∈ [0, a],(3.10)

x0 = φ,(3.11)

where 0 < p1, p2 ≤ p, F,G ∈ C1([0, a]× V ;X) and V ⊆ D is a open neighborhood of φ(0).

Corollary 3.2. Assume that G(·), F (·) satisfies the Hα
D,D and the Hα

D,X conditions at φ(0) ∈ V ,

Pφ̃ ∈ Cα([0, b];B), {Aφ(0), F (0, φ(−p2))} ⊂ (X,D)α,∞ and

Λ(LF (0, 0) + LG(0, 0)+ ∥ d2F (0, φ(−p2)) ∥L(D,X) + ∥ d2G(0, φ(−p1)) ∥L(D,D)) < 1.

Then there exists a unique classical solution u ∈ Cα([−p, b];D) of (3.10)-(3.11) on [0, b] for some

0 < b ≤ a.

Proof: The results follows from Theorem 3.1 by defining the function f(·), g(·) by f(t, ψ)(ξ) =

F (t, ψ(−p2)) and g(t, ψ)(ξ) = G(t, ψ(−p1)).

3.2. On integro-differential abstract neutral equations. In this section we extend the results

in [17, Section 2.2]. We study the existence of solutions for a class of “nonlinear” integro-differential

neutral equations of the form

d

dt

[
u(t) +

∫ t

−p

B(t, τ)u(τ)dτ

]
= A(t)u(t) + f(t, ut), t ∈ [0, a], (p ≥ a),(3.12)

u0 = φ.(3.13)

Definition 3.2. A function u ∈ C([−p, b];X) is said to be a classical solution of (3.12)-(3.13) on

[0, b] if the function t→
[
u(t) +

∫ t

−p
B(t, τ)u(τ)dτ

]
belongs to C1([0, b];X), u ∈ C([0, b];D), u0 = φ

and u(·) satisfies (3.12) on [0, b].

To prove our following results, from [17] we note the following conditions.

(H1) For all t ≥ s, B(t, s) ∈ L(D), B(t, ·) ∈ L
1

(1−α) ([0, t],L(D)),

ΘB(b) = sup
t∈[0,b]

(

∫ t

0

∥ B(t, σ) ∥
1

1−α

L(D) dσ)
(1−α) <∞,

for all b < a, and there is LB ∈ L1([0, a];R+) such that

∥ B(t, t− τ)−B(s, s− τ) ∥L(D)≤ LB(τ) | t− s |α, t ≥ s, τ ∈ [0, s].
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(H2) For all t ≥ s, B(t, s) ∈ L(D), B(t, ·) ∈ L
1

(1−α) ([0, t],L(D)), ΘB(b) (see condition H1) is

finite for all 0 < b ≤ a and there is a integrable function LB ∈ L1([0, a];R+) such that

∥ B(t, τ)−B(s, τ) ∥L(D)≤ LB(τ) | t− s |α for all a ≥ t ≥ s ≥ 0 and every τ ∈ [0, s].

Remark 3.3. In the remainder of this section, Φ(φ) : [0, a] → X is the function given by Φ(φ)(t) =∫ 0

−p
B(t, τ)φ(τ)dτ . In addition, for u ∈ ([−p, b];D), 0 < b ≤ a, we use the notation Su for the

function Su : [0, b] → X given by Su(t) =
∫ t

0
B(t, τ)u(τ)dτ .

The proof of Lemma 3.4 follows with minor modifications from the proof of [17, Lemma 2.4].

Lemma 3.4. Assume u ∈ Cα([0, b],D) and the condition H1 is satisfied. Then Su belongs to

Cα([0, b],D), ∥ Su ∥C([0,b],D)≤∥ u ∥C([0,b],D) ΘB(b)b
α and

[Su]Cα([0,b],D)) ≤ (∥ LB ∥L1([0,b]) +ΘB(b)) ∥ u ∥C([0,b];D) +ΘB(b)b
α[u]Cα([0,b],D).

In addition, if u(0) = 0 then ∥ Su ∥C([0,b],D)≤ [u]Cα([0,b],D)ΘB(b)b
2α and

[Su]Cα([0,b],D)) ≤ (∥ LB ∥L1([0,b]) +2ΘB(b))b
α[u]Cα([0,b],D).

Remark 3.4. In the remainder of this section, for positive number b,R we use the notations

Θ1,B(b,R) := (∥ LB ∥L1([0,b]) +ΘB(b))(Rb
α+ ∥ φ(0) ∥) + ΘB(b)b

αR,

Θ2,B(b) := (∥ LB ∥L1([0,b]) +2ΘB(b))b
α.

If u(·) is the function in Lemma 3.4 and [u]Cα([0,b];D) ≤ R, then [Su]Cα([0,b],D)) ≤ Θ1,B(b,R) when

u(0) = φ(0) and [Su]Cα([0,b],D)) ≤ Θ2,B(b)[u]Cα([0,b],D) when u(0) = 0.

The proof of the next theorem follows an argument similar at that in the proof of Theorem 3.1.

We include a sketch of the proof for completeness.

Theorem 3.2. Assume the condition H1 is satisfied and f(·) satisfies the Hα
B,X condition at φ ∈ U .

Suppose Pφ̃ ∈ Cα([0, b];B), φ ∈ Cα([−p, 0];D), {Aφ(0), f(0, φ)} ⊂ (X,D)α,∞, Φ(φ) ∈ Cα([0, b];D)

and

2Λ(Lf (0, 0)+ ∥ d2f(0, φ) ∥L(B,X)) < 1,(3.14)

where Lf (·) is the function associated to f(·) via the Hα
B,X condition. Then there exists a unique

classical solution u ∈ Cα([0, b],D) of the neutral problem (3.12)-(3.13) for some 0 < b ≤ a.

Proof: Let ΘA(s), ΘA(s, l), Θ1,B(s, l) and Θ2,B(s) be defined as in Remark 3.2 and Remark 3.4.

Let r > 0 be such that Br(φ,B) ⊂ U . By noting that Θ2,B(s)+ΘA(s) → 0 as s→ 0, from condition

(3.14) we select 0 < b ≤ a and R > r such that

bαΛ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b,R))

+bα(Λ[Φ(φ)]Cα([0,b];D) +
Cα,∞

α
∥ f(0, φ) ∥α,∞ +[Pφ̃]Cα([0,b];BX)) ≤ r,

2Λ(Θf (r,R, b) + Θ1,B(b, R) + ΘA(b,R)) + 2Λ[Φ(φ)]Cα([0,b];D) + [Pφ̃]Cα([0,b];BX)

+
Cα,∞

α
(∥ f(0, φ) ∥α,∞ + ∥ Aφ(0) + f(0, φ) ∥α,∞) ≤ R,

2(bα + 1)Λ (Lf (b, r)(1 + 4Rbα) + Θf (b) + Θ2,B(b) + ΘA(b)) < 1,

where Θf (r,R, b) = Lf (r, b) + (Lf (r, b)b
αR+Θf (b))R and Θf (b) =∥ d2f(·, φ) ∥C([0,b];L(B,X)).

Let Y,Y(b, r, R) be the spaces introduced in the proof of Theorem 3.1 and Γ : Y(b, r, R) →
C([−p, b];X) the map given by (Γu)0 = φ and

Γu(t) = T (t)φ(0)− [Su(t) + Φ(φ)(t)]−
∫ t

0

AT (t− s)[Su(s) + Φ(φ)(s)]ds

+

∫ t

0

T (t− s)[fu(s) + Lu(s)]ds, t ∈ [0, b],

where gu, fu and Lu are defined in the proof of Theorem 3.1. Next we prove that Γ is a contraction

on Y(b, r, R). In the sequel we assume u, v ∈ Y(b, r, R).
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Step 1. The map Γ has values in Y(b, r, R).

From the assumptions, Lemma 2.2, Lemma 3.3 and Lemma 3.4 we have that the functions ASu,

AΦ(φ), fu and Lu belong to Cα([0, b];X) which implies via Lemma 2.1 that Γu|[0,b] belongs to

Cα([0, b];D) and Γu is a well defined continuous function. Moreover, from these results we also

obtain that

[Su]Cα([0,b];D) ≤ (∥ LB ∥L1([0,b]) +ΘB(b)) ∥ u ∥C([0,b];D) +ΘB(b)b
α[u]Cα([0,b],D)

[Lu]Cα([0,b];X) ≤ [A]Cα([0,b];L(D,X))(∥ u ∥C([0,b],D) +b
α[u]Cα([0,b],D))

[fu]Cα([0,b];X) ≤ Lf (b, r) + (Lf (b, r)b
α[Pu]Cα([0,b];B)+ ∥ d2f(·, φ) ∥C([0,b];L(B,X)))[Pu]Cα([0,b];B),

and

(3.15) [Lu]Cα([0,b];X) ≤ ΘA(b,R), [fu]Cα([0,b];X) ≤ Θf (r,R, b), [Su]Cα([0,b];D) ≤ Θ1,B(b, R).

From the above estimates and Lemma 2.1 we obtain that Γu|[0,b] ∈ Cα([0, b];D) and

[Γu]Cα([0,b];D) ≤ Λ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b,R))

+Λ[Φ(φ)]Cα([0,b];D) +
Cα,∞

α
∥ Aφ(0) + f(0, φ) ∥α,∞ .(3.16)

Moreover, arguing as in the proof of Theorem 3.1, for t ∈ [−p, 0] and h > 0 such that t+ h > 0 we

obtain that

∥ Γu(t+ h)− Γu(t) ∥D ≤ hα(Λ([fu]Cα([0,b];X) + [Su]Cα([0,b];D) + [Lu]Cα([0,b];X)))

hα(Λ[Φ(φ)]Cα([0,b];D) +
Cα,∞

α
∥ f(0, φ) ∥α,∞)

+hα(b1−αC0 ∥ Aφ(0) ∥ +[φ]Cα([0,b];D)).(3.17)

From the above estimates and the fact that φ ∈ Cα([−p, 0];D) we have that

[Γu]Cα([−p,b];D) ≤ Λ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b,R)) + Λ[Φ(φ)]Cα([0,b];D)

+
Cα,∞

α
(∥ f(0, φ) ∥α,∞ + ∥ Aφ(0) + f(0, φ) ∥α,∞)

+b1−αC0 ∥ Aφ(0) ∥ +[φ]Cα([0,b];D),(3.18)

which shows that Γu ∈ Y . Moreover, from the estimates (3.8) and (3.9) we infer that

∥ PΓu(t)− φ ∥B ≤ tα(Λ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b, R))) + tαΛ[Φ(φ)]Cα([0,b];D)

+tα(
Cα,∞

α
∥ f(0, φ) ∥α,∞ +[Pφ̃]Cα([0,b];B)),

[PΓu]Cα([0,b];B) ≤ 2Λ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b,R)) + 2Λ[Φ(φ)]Cα([0,b];D)

+[Pφ̃]Cα([0,b];BX) +
Cα,∞

α
(∥ f(0, φ) ∥α,∞ + ∥ Aφ(0) + f(0, φ) ∥α,∞),(3.19)

which implies that ∥ Pu−φ ∥C([0,b];B)≤ r, [PΓu |]Cα([0,b];B) ≤ R and Γ is a Y(b, r, R)-valued function.

Step 2. Γ is a contraction on Y(b, r, R).

From Lemma 2.1, Lemma 2.2, Lemma 3.3, Lemma 3.4 and proceedings as in the proof of Theorem

3.1 step 3, it is easy to infer that

[PΓu − PΓv]Cα([0,b];B) ≤ 2Λ([fu − fv]Cα([0,b];X) + [Su−v]Cα([0,b];D) + [Lu−v]Cα([0,b];X))

≤ 2Λ (Lf (b, r)(1 + 4Rbα) + Θf (b) + Θ2,B(b) + ΘA(b)) d(u, v),

and

∥ PΓu − PΓv ∥Cα([0,b];B)≤ 2(bα + 1)Λ (Lf (b, r)(1 + 4Rbα) + Θf (b) + Θ2,B(b) + ΘA(b)) d(u, v),

which proves (see the choice of b) that Γ is a contraction on Y(b, r, R).
Finally, from the contraction mapping principe we infer that there exists a unique classical solution

u ∈ Cα([−p, b];D) of (3.12)-(3.13). This completes the proof.
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In the next proposition we study the existence of solutions for (3.12)-(3.13) by assuming that the

derivative Φ′(φ) of Φ(φ) belongs to Cα([0, a], X).

Proposition 3.1. Assume the condition H1 is satisfied and f(·) satisfies the Hα
B,X condition at

φ ∈ U ⊂ B. Suppose Pφ̃ ∈ Cα([0, b];B), φ ∈ Cα([−p, 0];D), the function Φ(φ) is continuously

differentiable, Φ′(φ) ∈ Cα([0, a];X), {Aφ(0), f(0, φ) − Φ′(φ)(0)} ⊂ (X,D)α,∞ and 2Λ(Lf (0, 0)+ ∥
d2f(0, φ) ∥L(B,X)) < 1. Then there exists a unique classical solution u ∈ Cα([0, b],D) of (3.12)-(3.13)

for some 0 < b ≤ a.

Proof: The proof follows from the proof of Theorem 3.1. For the sake of clarity, we include some

details. We adopt all the notations in the cited proof.

Let R > r > 0 and 0 < b ≤ a such that Br(φ,B) ⊂ U and

bαΛ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b,R))

+bα(Λ[Φ′(φ)]Cα([0,b];X) +
Cα,∞

α
∥ f(0, φ)− Φ′(φ)(0) ∥α,∞ +[Pφ̃]Cα([0,b];BX)) ≤ r,

2Λ(Θf (r,R, b) + Θ1,B(b,R) + ΘA(b,R)) + 2Λ[Φ′(φ)]Cα([0,b];X) + [Pφ̃]Cα([0,b];BX)

+
Cα,∞

α
(∥ f(0, φ)− Φ′(φ)(0) ∥α,∞ + ∥ Aφ(0) + f(0, φ)− Φ′(φ)(0) ∥) ≤ R,

2(bα + 1)Λ (Lf (b, r)(1 +Rbα) + Θf (b) + Θ2,B(b) + ΘA(b)) < 1.

Let Y,Y(b, r, R) be defined as in the proof of Theorem 3.1 and Γ : Y(b, r, R) → C([−p, b];X) be the

map given by (Γu)0 = φ and

Γu(t) = T (t)φ(0)− Su(t)−
∫ t

0

AT (t− s)Su(s)ds

+

∫ t

0

T (t− s)[Fu(s)− Φ′(φ)(s) + Lu(s)]ds, for t ∈ [0, b].

From the choice of b and arguing as in the proof of Theorem 3.2 (replacing Φ(φ) by zero and f by

f − Φ′(φ)) we can prove that Γ is a contraction on Y(b, r, R) and there exists a classical solution

u ∈ Cα([0, b],D) of the problem (3.12)-(3.13).

By using the condition H2 we also can establish the existence of a classical solution for (3.12)-

(3.13). We omit the proof of the following results.

Lemma 3.5. [17, Lemma 2.5] If the condition H2 is valid and u ∈ Cα([0, b],D), then Su ∈
Cα([0, b],D), ∥ Su ∥C([0,b],D)≤ ΘB(b)b

α ∥ u ∥C([0,b],D) and [Su]Cα([0,b],D)) ≤ (∥ LB ∥L1([0,b])

+ΘB(b)) ∥ u ∥C([0,b];D). In addition, if u(0) = 0 then ∥ Su ∥C([0,b],D)≤ ΘB(b)b
2α[u]Cα([0,b],D)

and [Su]Cα([0,b],D)) ≤ (∥ LB ∥L1([0,b]) +ΘB(b))b
α[u]Cα([0,b],D).

Theorem 3.3. Assume the condition H2 is satisfied and f(·) satisfies the Hα
B,X condition at φ ∈ U .

Suppose Pφ̃ ∈ Cα([0, b];B), φ ∈ Cα([−p, 0];D), {Aφ(0), f(0, φ)} ⊂ (X,D)α,∞, Φ(φ) ∈ Cα([0, b];D)

and 2Λ(Lf (0, 0)+ ∥ d2f(0, φ) ∥L(B,X)) < 1. Then there exists a unique classical solution u ∈
Cα([0, b],D) of the neutral problem (3.12)-(3.13) for some 0 < b ≤ a.

Proposition 3.2. Assume the condition in Proposition 3.1 are satisfied with H2 replacing the

condition H1. Then there exists a unique classical solution u ∈ Cα([0, b],D) of (3.12)-(3.13) for

some 0 < b ≤ a.

4. Applications

In this section we present some applications of our abstract results. To begin, we include some

technicalities on the Laplacian operator. In the remainder of this section X = C([0, π]) and A :

D ⊂ X → X is the operator defined by Ax = x′′ on D = {x ∈ C2([0, π]) : x(0) = x(π) = 0}. The
operator A is the generator of an analytic semigroup (T (t))t≥0 on X (which is not a C0-semigroup).

We adopt all the notations used in Section 3.
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We consider the integro-differential neutral problem

∂

∂t

[
u(t, ξ) +

∫ t

t−p

α1(t)ν1(u(s, ξ))ds

]
= γ(t)

∂2u

∂ξ2
(t, ξ) +

∫ t

t−p

α2(t)ν2(u(s, ξ))ds,(4.1)

u(t, 0) = u(t, π) = 0,(4.2)

u(θ, ξ) = φ(θ, ξ), θ ∈ [−p, 0], ξ ∈ [0, π],(4.3)

for (t, ξ) ∈ [0, a] × [0, π], where νi ∈ C1(R;R), αi ∈ Cα([0, a],R) for some α ∈ (0, 1), γ ∈
Cα([0, a],R+) and γ(0) = 1.

To treat this problem we define the functions A(t) : D ⊂ X → X, f, g : [0, a] × B → X by

A(t)u = γ(t)u′′, g(t, ψ)(ξ) =
∫ 0

−p
α1(t)ν1(ψ(s, ξ))ds and f(t, ψ)(ξ) =

∫ 0

−p
α2(t)ν2(ψ(s, ξ))ds. Under

the assumptions we have that f(·), g(·) are C1 functions and

d2g(t, ψ)ϕ(ξ) =

∫ 0

−p

α1(t)ν
′
1(ψ(s, ξ))ϕ(s, ξ)ds,

d2f(t, ψ)ϕ(ξ) =

∫ 0

−p

α2(t)ν
′
2(ψ(s, ξ))ϕ(s, ξ)ds.

In addition, next we assume that ν1(·) is of class C3, v1(0) = 0 and there is a L ∈ C(R;R+) such

that | νi(x) | + | ν′i(x) |≤ L(r) | x | and | ν′i(x) − ν′i(y) |≤ L(r) | x − y | for i = 1, 2 every

x, y ∈ Br(0,R) and all r > 0. Moreover, to simplify and for sake of brevity, we also assume that

∥ αi ∥Cα([0,b];R)→ 0 as b → 0 for i = 1, 2. Under the above conditions, the functions f, g satisfies

the conditions in Theorem 3.1, d2f(0, φ) = 0, d2g(0, φ) = 0 and the functions Lf (·), Lg(·) (see the

statement of Theorem 3.1) are such that Lf (0, r) = Lg(0, r) = 0 for r ≥ 0,

In the next result, which is a consequence of Theorem 3.1, we say that u ∈ C([−p, b];X), b > 0,

is a classical solution of (4.1)-(4.3) on [0, b] if u(·) is a classical solution of the associated abstract

neutral problem (3.1)-(3.2) on [0, b]. Next, φ̃ is defined as in Section 3.

Proposition 4.3. Assume φ ∈ Cα([−p, 0],D), the function Pφ̃ belongs to Cα([0, b];B) and

{Aφ(0, ·),
∫ 0

−p

α2(0)ν2(φ(s, ·))ds} ⊂ (X,D)α,∞.

Then there exists a unique classical solution u ∈ Cα([0, b],D) of (4.1)-(4.3) on [0, b] for some

b ∈ (0, a].

In the next example we discuss briefly the existence of solutions for the problem

∂

∂t

[
u(t, ξ) +G(t,

∫ t

t−p

u(s, ξ)ds)

]
=

∂2u

∂ξ2
(t, ξ) + F (t,

∫ t

t−p

u(s, ξ)ds),(4.4)

u(t, 0) = u(t, π) = 0,(4.5)

u(θ, ξ) = φ(θ, ξ), θ ∈ [−p, 0], ξ ∈ [0, π],(4.6)

for (t, ξ) ∈ [0, a]× [0, π], where F,G : [0, a]× R → R are smooth functions.

To study this problem we assume G ∈ C3([0, a] × R;R), G(t, 0) = 0, F ∈ C1([0, a] × R;R) and

there is a continuous function L ∈ C(R× R;R+) such that

| ∂
iG

∂xi
(t, x)− ∂iG

∂xi
(s, y) | + | ∂

jF

∂xj
(t, x)− ∂jF

∂xj
(s, y) | ≤ L(r)(| t− s | + | x− y |),

for t ∈ [0, a], x, y ∈ Br(0,R), i = 0, . . . , 3 and j = 0, 1. In addition and for simplification, we suppose
∂G
∂ (0, ·) = ∂F

∂ (0, ·) = G(0, ·) = F (0, ·) = 0.
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Under the above conditions, the functions f : [0, a] × B → X, g : [0, a] × B → X defined by

f(t, ψ)(ξ) = F (t,
∫ 0

−p
ψ(s, ξ)ds) and g(t, ψ)(ξ) = G(t,

∫ 0

−p
ψ(s, ξ)ds) are C1 functions and

d2f(t, ψ1)ψ2(ξ) = d2F (t,

∫ 0

−p

ψ1(s, ξ)ds)

∫ 0

−p

ψ2(s, ξ)ds,

d2g(t, ψ1)ψ2(ξ) = d2G(t,

∫ 0

−p

ψ1(s, ξ)ds)

∫ 0

−p

ψ2(s, ξ)ds.

From the above, d2g(0, ·) = d2f(0, ·) = 0 and the functions g(·), f(·) satisfies the Hα
B,D and the Hα

B,X

conditions. Moreover, the numbers Lf (b, r), Lg(b, r) depend on L(r)b1−α, so that, Lf (b, r) → 0 and

Lg(b, r) → 0 as b→ 0. From Theorem 3.1 we have the following result.

Proposition 4.4. Assume φ ∈ Cα([−p, 0],D), Pφ̃ ∈ Cα([0, b];B) and Aφ(0, ·) ∈ (X,D)α,∞. Then

there exists a classical solution of (4.4)-(4.6) in Cα([0, b],D) for some b ∈ (0, a].

Acknowledgement: We would like thank the referee for their comments.
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