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Abstract. The existence and uniqueness of almost automorphic solutions for linear
and semilinear nonconvolution Volterra equations on time scales is studied. The
existence of asymptotically almost automorphic solutions is proved. Examples that
illustrate our results are given.

1. Introduction

Several important and interesting models in diverse applied areas are described us-
ing differential and integral equations, or even difference and summation equations.
However, in the last years, there are some recent studies which have been showed that
these equations are not the best choices to describe most of the existent models. It
happens, because most of phenomena in the environment do not involve only continu-
ous aspects or only discrete aspects, but they feature elements of both the continuous
and the discrete. These phenomena are called hybrid processes and there are several
examples of them. See, for instance, [4, 5, 7, 13, 18, 28].

By these reasons, Stephan Hilger and Bernard Aulbach in 1988 introduced a theory to
study in a unified way large classes of time scales. This theory encompasses the dynamic
study of differential equations, integral equations, difference equations, summation
equations, among others. Therefore, using this theory, it is possible to describe in
a more precise way the real-world problems, obtaining a more detailed analysis and
description of specifics problems. For a detailed account, see [1, 2, 4, 5, 6, 7, 13, 15,
18, 19, 20, 23, 28] and references therein.

On the other hand, it is well known that Volterra integral equations play an impor-
tant role in applications since they can describe several interesting phenomena. Some
typical examples are provided by viscoelastic fluids and heat flow in materials of fading
memory type. Due to this fact, these equations have been attracted the attention of
several researchers from long ago. Some references are [3, 8, 17, 24, 27].

However, when we introduce into the study of Volterra equations with nonconvolu-
tion kernels, the study of both existence of solutions as well as qualitative behavior, is
much more complicated than for convolution equations. Only in the scalar case and
for the time scale R has it been possible to obtain interesting results on the asymptotic
behavior of solutions. These results are based on monotonicity or sign properties of the
kernel, see [16, Chapter 9] and in the combination of Schauder’s fixed point theorem
and the contraction mapping principle [16, Chapter 12].
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The setting of qualitative properties of Volterra integral equations on time scales is
not well-developed yet. There are few references concerning this topic and, to the best
of our knowledge, there are no results concerning asymptotically almost automorphic
solutions of nonconvolution Volterra integral equations on general time scales.

Motivated by this fact, our goal in this paper is to search for the existence and
uniqueness of asymtotically almost automorphic solutions for the class of nonconvolu-
tion Volterra integral equation on time scales given by:

(1.1) u(t) =

∫ t

t0

a(t, σ(s))[u(s) + f(s, u(s))]∆s,

where a : T×T→ Rn×n is almost automorphic in both variables and f : T×Rn → Rn is
almost automorphic with respect to the first variable and satisfies a Lipschitz condition
in the second variable.

It is worthwhile to observe that the concept of almost automorphic functions on time
scales was introduced in the literature recently by Lizama and Mesquita [23] and since
then interesting new applications have appeared [25, 29, 21]. In contrast, this topic has
been extensively studied mainly on the setting of functions defined only on R. See, for
instance, [10, 11, 12, 14, 26, 9].

To achieve our results, one important difficulty that arises is how to handle the
concept of almost automorphy for the nonconvolution kernel a(t, σ(s)) in (1.1). Our
approach in this paper is to adopt the idea of almost automorphy with respect to
both variables. See Definition 2.25 below. This new concept shows to be efficient to
undertake our investigation.

In particular, this definition provide new insights on the behavior of the exponential
function on time scales. See Theorem 3.3 and its Corollary. We also find a practical
condition that should be verified for the kernel in equation (1.1), namely
(H1) There exist positive constants K, γ ∈ R such that∫ u

−∞
‖a(t, σ(s))‖∆s ≤

∫ u

−∞
Ke	γ(t, σ(s))∆s,

for every t, u ∈ T.
Under this condition, we prove that if T is an invariant under translations time scale,
then there exists a unique asymptotically almost automorphic solution of (1.1) either
in case t0 ∈ T+ or t0 = −∞, provided γ

K(1 + µ̃γ)
> 2(1 +L), where L is the Lipschitz

constant of f . See Theorems 4.1 and 6.1. Moreover, if f does not depends on the
second variable, then L can be chosen to be 0. See Theorems 3.6 and 5.1. Several
examples along the text are also provided. Finally, it is worthwhile to remark that the
results are essentially new when T = R or T = Z.

2. Preliminaries

2.1. Time scales. In this section, we review some basic concepts and results concern-
ing time scales which will be essential to prove our main results. For more details, the
reader may consult [5, 6].

Let T be a time scale, that is, a closed and nonempty subset of R. For every t ∈ T,
we define the forward and backward jump operators σ, ρ : T → T, respectively, as
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follows:
σ(t) = inf{s ∈ T, s > t} and ρ(t) = sup{s ∈ T, s < t}.

If σ(t) > t, we say that t is right-scattered. Otherwise, t is called right-dense.
Analogously, if ρ(t) < t, then t is called left-scattered whereas if ρ(t) = t, then t is
left-dense.

We also define the graininess function µ : T→ R+ by

µ(t) = σ(t)− t.

Definition 2.1 ([5]). A function f : T→ R is called regulated provided its right-sided
limits exist (finite) at all right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T.

Definition 2.2 ([5]). A function f : T→ R is called rd-continuous if it is regulated on
T and continuous at right-dense points of T. If the function f : T → R is continuous
at each right-dense point and each left-dense point, then the function f is said to be
continuous on T. We denote the class of all rd-continuous functions f : T → R by
Crd = Crd(T) = Crd(T,R).

Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote a closed
interval in T, that is, [a, b]T = {t ∈ T; a ≤ t ≤ b}. On the other hand, [a, b] is the
usual closed interval on the real line, that is, [a, b] = {t ∈ R; a ≤ t ≤ b}.

We define the set Tκ which is derived from T as follows: If T has a left-scattered
maximum m, then Tκ = T\{m}. Otherwise, Tκ = T.

Definition 2.3 ([5]). For y : T → R and t ∈ Tκ, we define the delta-derivative of y
to be the number (if it exists) with the following property: given ε > 0, there exists a
neighborhood U of t such that

|y(σ(t))− y(t)− y∆(t)[σ(t)− s]| < ε|σ(t)− s|,
for all s ∈ U .

Definition 2.4 ([5]). A partition of [a, b]T is a finite sequence of points

{t0, t1, . . . , tm} ⊂ [a, b]T, a = t0 < t1 < . . . < tm = b.

Given such a partition, we put ∆ti = ti − ti−1. A tagged partition consists of a
partition and a sequence of tags {ξ1, . . . , ξm} such that ξi ∈ [ti−1, ti) for every i ∈
{1, . . . ,m}. The set of all tagged partitions of [a, b]T will be denoted by the symbol
D(a, b).

If δ > 0, then Dδ(a, b) denotes the set of all tagged partitions of [a, b]T such that for
every i ∈ {1, . . . ,m}, either ∆ti ≤ δ, or ∆ti > δ and σ(ti−1) = ti. Note that in the last
case, the only way to choose a tag in [ti−1, ti) is to take ξi = ti−1.

In the sequel, we present the definition of Riemann ∆-integrals. See [5] and [6], for
instance.

Definition 2.5. We say that f is Riemann ∆-integrable on [a, b]T, if there exists a
number I with the following property: for every ε > 0, there exists δ > 0 such that∣∣∣∣∣∑

i

f(ξi)(ti − ti−1)− I

∣∣∣∣∣ < ε,
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for every P ∈ Dδ(a, b) independently of ξi ∈ [ti−1, ti)T for 1 ≤ i ≤ n. It is clear that
such a number I is unique and we call it the Riemann ∆-integral of f from a to b.

In what follows, we present a concept of regressive functions, which will be important
to define the generalized exponential function.

Definition 2.6 ([5]). We say that a function p : T→ R is regressive provided

1 + µ(t)p(t) 6= 0, for all t ∈ Tκ

holds. The set of all regressive and rd-continuous functions will be denoted by R =
R(T) = R(T,R).

Suppose that p, q ∈ R, then we define p⊕ q and 	p as follows:

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), for all t ∈ Tκ

and

(	p)(t) :=
−p(t)

1 + µ(t)p(t)
, for all t ∈ Tκ.

By this definition, it is possible to prove that (R,⊕) is an Abelian group. See [5].
In the sequel, we define the generalized exponential function ep(t, s).

Definition 2.7 ([5]). If p ∈ R, then we define the generalized exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T,

where the cylinder transformation ξh : Ch → Zh is given by

ξh(z) =
1

h
log(1 + zh),

where log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all
z ∈ C.

In the following, we present some important properties of the generalized exponential
function.

Theorem 2.8. [5, Theorem 2.39] If p ∈ R and a, b, c ∈ T, then∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Theorem 2.9. [23, Theorem 2.14] If α > 0, then e	α(t, s) ≤ 1 for t, s ∈ T such that
t > s.

Theorem 2.10. [20, Lemma 5.1] Let α > 0, then for any fixed s ∈ T and s = −∞,
one has the following:

e	α(t, s)→ 0, t→ +∞.

In what follows, we recall some definitions about matrix-valued functions on time
scales.

Definition 2.11 ([5]). Let A be an m×n matrix-valued function on T. We say that A
is rd-continuous on T if each entry of A is rd-continuous on T. We denote the class of
all rd-continuous m× n matrix-valued function on T by Crd = Crd(T) = Crd(T,Rm×n).
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We say that A is delta-differentiable at T if each entry of A is delta-differentiable on
T. And in this case, we have

Aσ(t) = A(t) + µ(t)A∆(t).

Definition 2.12 ([5]). A m× n matrix-valued function A on a time scale T is called
regressive (with respect to T) provided

I + µ(t)A(t) is invertible for all t ∈ Tκ,

and the class of all such regressive rd-continuous is denoted by R = R(T,Rm×n).

Assume A and B are regressive n×n matrix-valued functions on T. Then, we define
A⊕B by

(A⊕B)(t) = A(t) +B(t) + µ(t)A(t)B(t), ∀t ∈ Tκ,
and we define 	A by

(	A)(t) = −[I + µ(t)A(t)]−1A(t), ∀t ∈ Tκ.

It is clear that (R(T,Rn×n),⊕) is a group (see [5]).
We proceed by giving the definition of the matrix exponential function found in [5].

Definition 2.13. (Matrix Exponential Function) Let t0 ∈ T and assume that A ∈ R
is an n× n matrix valued function. The unique matrix-valued solution of the IVP

Y ∆(t) = A(t)Y (t), Y (t0) = I,

where I denotes, as usual, the n × n-identity matrix, is called the matrix exponential
function at t0 and it is denoted by eA(·, t0).

In the sequel, we enunciate a result which describes the properties of matrix expo-
nential function. It can be found in [5, Theorem 5.21].

Theorem 2.14. If A,B ∈ R are matrix-valued functions on T, then
(i) e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);
(iii) eA−1(t, s) = e∗	A∗(t, s);
(iv) eA(t, s) = eA

−1(s, t) = e∗	A∗(s, t);
(v) eA(t, s)eA(s, r) = eA(t, r);
(vi) eA(t, s)eB(t, s) = eA⊕B(t, s) if eA(t, s) and B(t) commute.

Using these notions, one can obtain the following result which resembles the variation
of constants formula. This result can be found in [5, Theorem 5.24].

Theorem 2.15. Let A ∈ R be an n×n matrix-valued function on T and suppose that
f : T→ Rn is rd-continuous. Let t0 ∈ T and y0 ∈ Rn. Then the initial value problem

(2.1)
{
y∆(t) = A(t)y(t) + f(t),

y(t0) = y0

has a unique solution y : T→ Rn. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.
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2.2. Asymptotically almost automorphic and almost automorphic functions.
In this section, we remember several properties concerning asymptotically almost au-
tomorphic functions and almost automorphic functions defined on T. For more details,
the reader may consult [22, 23].

We start by presenting the definition of invariant under translations time scales.

Definition 2.16 ([22]). A time scale T is called invariant under translations if

(2.2) Π := {τ ∈ R : t± τ ∈ T, ∀t ∈ T} 6= {0}.

By this definition, it is easy to check that R, hZ,
1

n
Z, Pa,b, among others, are

examples of invariant under translations time scales. From this definition, we obtain
several imediate consequences, which will be essential to prove our main results. See
below.

Theorem 2.17. [22, Lemma 3.3] If T is invariant under translations and α ∈ Π, then
kα ∈ Π for every k ∈ Z.

Theorem 2.18. [22, Lemma 3.6] If T is an invariant under translation time scale and
h ∈ Π, then

σ(t) + h = σ(t+ h) and σ(t)− h = σ(t− h),

for every t ∈ T.

Theorem 2.19. [22, Corollary 3.12] If T is an invariant under translations time scale
and h ∈ Π, then

µ(t+ h) = µ(t) = µ(t− h),

for every t ∈ T.

In the sequel, we recall the definition of an almost automorphic function f : T→ X.

Definition 2.20 ([23]). LetX be (real or complex) Banach space and T be an invariant
under translation time scale. Then, an rd-continuous function f : T → X is called
almost automorphic on T if for every sequence (α′n) ∈ Π, there exists a subsequence
(αn) ⊂ (α′n) such that

lim
n→∞

f(t+ αn) = f̄(t)

exists and is well defined for each t ∈ T and

lim
n→∞

f̄(t− αn) = f(t),

exists and is well defined for every t ∈ T.

We denote the space of all almost automorphic function on time scales f : T → X
by AAT(X).

In the sequel, we present a result which describes several properties of almost auto-
morphic functions defined on T. For a proof of this result, see [23].

Theorem 2.21. Let T be an invariant under translations time scale and suppose the
rd-continuous functions f, g : T→ X are almost automorphic on time scales, then the
following assertions hold.

(i) f + g is almost automorphic function on time scales;
(ii) cf is almost automorphic function on time scales for every scalar c;
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(iii) For each l ∈ T, the function fl : T → X defined by fl(t) := f(l + t) is almost
automorphic on time scales.

(iv) sup
t∈T
‖f(t)‖ <∞, that is, f is a bounded function;

(v) sup
t∈T
‖f̄(t)‖ ≤ sup

t∈T
‖f(t)‖, where

lim
n→∞

f(t+ αn) = f̄(t) and lim
n→∞

f̄(t− αn) = f(t).

Theorem 2.22 ([23]). Let T be invariant under translations time scale and the func-
tions f, u : T→ X be almost automorphic on time scales, then the function uf : T→ X
defined by (uf)(t) = u(t)f(t) is almost automorphic on time scales.

In what follows, we present a result which brings a property concerning composition
of an almost automorphic function on time scales and a continuous function.

Theorem 2.23 ([23]). Let T be an invariant under translations time scale and let
X, Y be Banach spaces. Suppose f : T → X is an almost automorphic function on
time scales and φ : X → Y is a continuous function, then the composite function
φ ◦ f : T→ Y is an almost automorphic function on time scales.

Now, we present the definition of a function f : T × X → X which is almost
automorphic with respect to the first variable.

Definition 2.24 ([23]). Let X be a (real or complex) Banach space and T be an
invariant under translations time scale. Then, an rd-continuous function f : T×X → X
is called almost automorphic at t ∈ T for each x ∈ X, if for every sequence (α′n) ∈ Π,
there exists a subsequence (αn) ⊂ (α′n) such that

(2.3) lim
n→∞

f(t+ αn, x) = f̄(t, x)

exists and is well defined for each t ∈ T, x ∈ X and

(2.4) lim
n→∞

f̄(t− αn, x) = f(t, x)

exists and is well-defined for every t ∈ T and x ∈ X.

In the sequel, we present the definition of a function f : T×T→ X which is almost
automorphic with respect to both variables.

Definition 2.25. Let X be a (real or complex) Banach space ant T be an invariant
under translations time scale. Then, a rd-continuous function f : T× T→ X is called
almost automorphic with respect to both variables if for every sequence (α′n) ∈ Π, there
exists a subsequence (αn) ⊂ (α′n) such that

(2.5) lim
n→∞

f(t+ αn, s+ αn) = f̄(t, s)

exists and is well defined for each t, s ∈ T and

(2.6) lim
n→∞

f̄(t− αn, s− αn) = f(t, s)

exists and is well-defined for every t, s ∈ T.

Now, we recall a result concerning the properties of almost automorphic functions
on time scales to respect the first variable. This result can be found in [23].
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Theorem 2.26. Let T be invariant under translations and f, g : T×X → X be almost
automorphic functions on time scales in t for each x in X, then the following assertions
hold.

(i) f + g is almost automorphic function on time scales in t for each x in X.
(ii) cf is almost automorphic function on time scales in t for each x in X, where c

is an arbitrary scalar.
(iii) sup

t∈T
‖f(t, x)‖ = Mx <∞, for each x in X.

(iv) sup
t∈T
‖f̄(t, x)‖ = Nx < ∞, for each x in X, where f̄ is the function in the

Definition 2.24.

The following result will be essential to our purposes. A detailed proof can be found
in [23].

Theorem 2.27. Let T be invariant under translations and f : T×X → X be almost
automorphic function on time scales for each x ∈ X and if f is Lipschitzian in x
uniformly in t, then f̄ given by (2.3) and (2.4) satisfies the same Lipschitz condition
in x uniformly in t.

Theorem 2.28. [23, Theorem 3.23] Let T be an invariant under translations time scale
and f : T × X → X be an almost automorphic function on time scales in t for each
x ∈ X and satisfies Lipschitz condition in x uniformly in t, that is

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,

for all x, y ∈ X. Suppose φ : T → X is almost automorphic function on time scales,
then the function U : T → X defined by U(t) = f(t, φ(t)) is almost automorphic on
time scales.

In the sequel, we remember the concept of asymptotically almost automorphic func-
tions on time scales. See, for instance, [22].

Definition 2.29. Let X be a (real or complex) Banach space, T be an invariant
under translations time scale and f : T → X. We say that f is an asymptotically
almost automorphic function on time scales if there is an almost automorphic function
f1 : T → X and an rd-continuous function f2 : T+ → X such that lim

t→∞
‖f2(t)‖ = 0

such that
f(t) = f1(t) + f2(t),

for every t ∈ T+. We say that f1 and f2 are called, respectively, the principal and
corrective terms of the function f . We denote the set of all asymptotically almost
automorphic functions f : T+ → X by AAAT(X).

By the definition, it is clear that every almost automorphic function on time scale
restricted to T+ is asymptotically almost automorphic. See [22], for instance.

The next result is essential to our purposes. The reader may find a proof of it in [22,
Theorem 3.19].

Theorem 2.30. Let T be an invariant under translations time scale. The decomposi-
tion of an asymptotically almost automorphic function f : T+ → X is unique.
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3. Almost automorphic solutions of linear Volterra Integral
Equations on Time scales

In this section, we investigate the existence and uniqueness of almost automorphic
solutions for class of linear Volterra integral equations on time scales given by:

(3.1) u(t) =

∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s,

where a : T × T → Rn×n is an almost automorphic function with respect to both
variables and g : T → Rn is almost automorphic. From now on, we consider the
following hypothesis on the function a:
(H1) There exist positive constants K, γ ∈ R such that∫ u

−∞
‖a(t, σ(s))‖∆s ≤

∫ u

−∞
Ke	γ(t, σ(s))∆s,

for every t, u ∈ T.

Remark 3.1. The hypothesis (H1) remembers the property of exponential dichotomy
on T. But clearly (H1) is weaker than the exponential dichotomy condition on the time
scale R.

Remark 3.2. We point out that for the specific case T = R, the hypothesis (H1) can
be rewritten as follows:
(H1R) There exist positive constants K, γ ∈ R such that∫ u

−∞
‖a(t, s)‖ds ≤ K

γ
e−γ(t−u),

for every t, u ∈ R.
On the other hand, for the specific case T = hZ, h ∈ N, we have

u/h−1∑
k=−∞

‖a(t, k + h)‖h ≤ K

u/h−1∑
k=−∞

(1 + h	 γ)(t−k)−1h

= K

u/h−1∑
k=−∞

(
1 + h

−γ
1 + hγ

)(t−k)−1

h

= K

u/h−1∑
k=−∞

h

(
1

1 + hγ

)(t−k)−1

= K

u/h−1∑
k=−∞

h (1 + hγ)k+1−t

for every t, u ∈ hZ. Consequently, the hypothesis (H1) reads as follows
(H1hZ) There exist positive constants K, γ ∈ R such that

m−1∑
k=−∞

‖a(n, k + h)‖ ≤ K

m−1∑
k=−∞

(1 + hγ)k−n+1
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for every m,n ∈ Z.

Before to proceed with our main result concerning the existence and uniqueness of
almost automorphic solutions, we will need to prove some auxiliaries results. Our first
result provide new insights on the exponential function on time scales.

Theorem 3.3. Let T be an invariant under translations time scale and a : T → R
be an almost automorphic and regressive function, then e	a(t, σ(s)) is also an almost
automorphic function with respect to both variables.

Proof. Since a : T → R is an almost automorphic function, then for every sequence
(α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

a(t+ αn) = ā(t)

exists and is well-defined for each t ∈ T and

lim
n→∞

ā(t− αn) = a(t)

exists and is well-defined for each t ∈ T.
Then, we have

e	a(t+ αn, σ(s+ αn)) = e	a(t+ αn, σ(s) + αn)

= exp

(∫ t+αn

σ(s)+αn

1

µ(τ)
log(1 +	a(τ)µ(τ))∆τ

)
= exp

(∫ t+αn

σ(s)+αn

1

µ(τ)
log

(
1− a(τ)

1 + µ(τ)a(τ)
µ(τ)

)
∆τ

)
= exp

(∫ t

σ(s)

1

µ(τ + αn)
log

(
1− a(τ + αn)µ(τ + αn)

1 + µ(τ + αn)a(τ + αn)

)
∆τ

)
= exp

(∫ t

σ(s)

1

µ(τ)
log

(
1− a(τ + αn)

1 + µ(τ)a(τ + αn)
µ(τ)

)
∆τ

)
.

Applying the limit as n→ +∞, we have:

lim
n→+∞

e	a(t+ αn, σ(s) + αn) = lim
n→+∞

exp

(∫ t

σ(s)

1

µ(τ)
log

(
1− a(τ + αn)µ(τ)

1 + µ(τ)a(τ + αn)

)
∆τ

)
= exp

(∫ t

σ(s)

1

µ(τ)
log

(
1− ā(τ)

1 + µ(τ)ā(τ)
µ(τ)

)
∆τ

)
= exp

(∫ t

σ(s)

1

µ(τ)
log (1 +	ā(τ)µ(τ)) ∆τ

)
= exp

(∫ t

σ(s)

ξµ(τ)(	ā)∆τ

)
= e	ā(t, σ(s)),

for each t, s ∈ T.
Also, it is not difficult to prove that

lim
n→+∞

e	ā(t− αn, σ(s)− αn) = e	a(t, σ(s))

exists and is well-defined for every t, s ∈ T. And the result follows as well. �
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As an immediate consequence, we have the following result.

Corollary 3.4. Let T be an invariant under translations time scale, α > 0, then
e	α(t, σ(s)) is almost automorphic with respect to both variables.

Finally, we present an important auxiliary result, which brings a very important
property concerning the limit function of the almost automorphic function a.

Lemma 3.5. Let T be an invariant under translations time scale and a : T × T →
Rn×n be almost automorphic on time scales with respect to both variables. More pre-
cisely, for every sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that
lim
n→∞

a(t+ αn, σ(s) + αn) = ā(t, σ(s)) exists and is well-defined for each t, s ∈ T and
lim
n→∞

ā(t− αn, σ(s)− αn) = a(t, σ(s)) exists and is well-defined for each t, s ∈ T. If
the function a satisfies the condition (H1), then ā : T × T → Rn×n also satisfies the
condition (H1) for the same constants K, γ > 0.

Proof. Let t, s ∈ T and ε > 0 be given. Then, by the almost automorphicity of the
function a and by the definition of ā, we have that for every sequence (α′n) ∈ Π, there
exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

a(t+ αn, σ(s) + αn) = ā(t, σ(s))

exists and is well-defined for each t, σ(s) ∈ T and

lim
n→∞

ā(t− αn, σ(s)− αn) = a(t, σ(s))

exists and is well-defined for each t, σ(s) ∈ T.
Therefore, we have∫ t+αn

−∞
‖a(t+ αn, σ(s))‖∆s ≤

∫ t+αn

−∞
Ke	γ(t+ αn, σ(s))∆s.

Hence, ∫ t

−∞
‖a(t+ αn, σ(s+ αn))‖∆s ≤

∫ t

−∞
Ke	γ(t+ αn, σ(s+ αn))∆s.

Therefore,∫ t

−∞
‖a(t+ αn, σ(s) + αn)‖∆s ≤

∫ t

−∞
Ke	γ(t+ αn, σ(s) + αn)∆s.

Applying the limit as n→∞ and using Theorem 3.3, we have∫ t

−∞
‖ā(t, σ(s))‖∆s ≤

∫ t

−∞
Ke	γ(t, σ(s))∆s

and we have the desired result. �

Now, we are able to prove our main result in this section concerning existence and
uniqueness of almost automorphic solution of the linear Volterra equation (3.1).

Theorem 3.6. Consider the linear Volterra integral equation (3.1). Also, consider that
the time scale T is invariant under translations, the function a : T×T→ Rn×n satisfies
hypothesis (H1) with the positive constants γ and K being such that

γ

K(1 + µ̃γ)
> 2,
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where µ̃ = sup
t∈T
|µ(t)| and that the function g : T → Rn is almost automorphic. Then,

the Volterra equation (3.1) has a unique almost automorphic solution.

Proof. At first, we notice that by hypothesis (H1), we have:∫ t

−∞
‖a(t, σ(s))‖∆s <

∫ t

−∞
Ke	γ(t, σ(s))∆s

=
K

| 	 γ|
[e	γ(t,−∞)− e	γ(t, t)]

≤ 2K

| 	 γ|
=

2K(1 + µ(t)γ)

γ
≤ 2K(1 + µ̃γ)

γ
(3.2)

where the first equality follows from Theorem 2.8 and the second inequality follows
from Theorem 2.9.

Define an operator T : AAT(Rn)→ AAT(Rn) as follows:

(Tu)(t) =

∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s,

for all u ∈ AAT(Rn).
Now, we have to show that T is well defined. In fact, by the almost automorphicity

of the functions g(t), a(t, σ(s)) and u(t), it follows that for every sequence (α′n) ∈ Π,
there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

g(t+ αn) = g(t),

lim
n→∞

a(t+ αn, σ(s) + αn) = a(t, σ(s)) and

lim
n→∞

u(t+ αn) = u(t)

exists and is well-defined for every t, σ(s) ∈ T and

lim
n→∞

g(t− αn) = g(t),

lim
n→∞

a(t− αn, σ(s)− αn) = a(t, σ(s)) and

lim
n→∞

u(t− αn) = u(t)

exists and is well-defined for every t, σ(s) ∈ T.
Define a function h : T→ Rn as follows:

h(t) :=

∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s.

Then, we have

‖(Tu)(t+ αn)− h(t)‖ =

∥∥∥∥∫ t+αn

−∞
a(t+ αn, σ(s))[u(s) + g(s)]∆s

−
∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t+ αn, σ(s+ αn))[u(s+ αn) + g(s+ αn)]∆s
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−
∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t+ αn, σ(s) + αn)[u(s+ αn) + g(s+ αn)]∆s

−
∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t, σ(s))[u(s+ αn)− u(s)]∆s

+

∫ t

−∞
[a(t+ αn, σ(s) + αn)− a(t, σ(s))]u(s+ αn)∆s

+

∫ t

−∞
a(t, σ(s))[g(s+ αn)− g(s)]∆s

+

∫ t

−∞
[a(t+ αn, σ(s) + αn)− a(t, σ(s))]g(s+ αn)∆s

∥∥∥∥ .
Applying the limit as n→∞ and using the boundedness of the functions g and u (by
Theorem 2.21 (iv)), the fact that ā satisfies condition (H1) (by Lemma 3.5) and the
almost automorphicity of the functions a, g and u, we obtain

lim
n→∞

(Tu)(t+ αn) = h(t),

for every t ∈ T. Similarly, one can prove that

lim
n→∞

h(t− αn) = (Tu)(t),

for every t ∈ T. From these facts, we conclude that Tu is an almost automorphic
function. Thus, Tu is well-defined.

Now, let us prove that T is a contraction.

‖Tu− Tv‖ =

∥∥∥∥∫ t

−∞
a(t, σ(s))[u(s) + g(s)]∆s−

∫ t

−∞
a(t, σ(s))[v(s) + g(s)]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t, σ(s))[u(s)− v(s)]∆s

∥∥∥∥
≤

∫ t

−∞
‖a(t, σ(s))‖∆s‖u− v‖∞

≤ 2K(1 + µ̃γ)

γ
‖u− v‖∞

where the last inequality follows by (3.2).Therefore, T is a contraction, then by Banach
fixed-point Theorem, T has a unique fixed point. By the definition of T , we obtain
that the integral equation (3.1) has a unique solution which is almost automorphic. �

In what follows, we present some examples to illustrate our result.

Example 3.7. Consider the following integral equation:

x(t) =

∫ t

−∞
Ke	a(t, σ(s))[x(s) + f(s)]∆s
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Let us suppose that both a and f are almost automorphic functions on T. Also,
suppose that the function a is lower bounded, that is, there exists a constant γ > 0
such that γ < |a(t)|, t ∈ T.

By Theorem 3.3, the function a(t, σ(s)) = e	a(t, σ(s)) is almost automorphic with
respect to both variables.

Also, it is easy to see that the hypothesis (H1) is satisfied with∫ t

−∞
e	a(t, σ(s))∆s ≤

∫ t

−∞
e	γ(t, σ(s))∆s.

Also, suppose that
Kγ

1 + µ̃γ
> 2, where µ̃ = sup

t∈T
|µ(t)|. Therefore, all the hypothesis

of Theorem 3.6 are satisfied and we conclude that the integral equation

x(t) =

∫ t

−∞
e	a(t, σ(s))[x(s) + f(s)]∆s

has an almost automorphic solution.

Example 3.8. Consider the following integral equation

(3.3) x(t) =

∫ t

−∞
a(t, σ(s))(x(s) + g(s))∆s,

where g : T→ Rn is an almost automorphic function and

a(t, σ(s)) =

( e	2(t,σ(s))
4

0

0 e	2(t,σ(s))
4

)
.

By Corollary 3.4, it follows that a is almost automorphic with respect to both variables.
Moreover, ∫ t

−∞
‖a(t, σ(s))‖∆s =

∫ t

−∞

∥∥∥∥( e	2(t,σ(s))
4

0

0 e	2(t,σ(s))
4

)∥∥∥∥∆s

≤
∫ t

−∞

√
2

4
e	2(t, σ(s))∆s,

which shows that a : T× T→ Rn×n satisfies the hypothesis (H1). Also, suppose that
8√

2(1 + µ̃2)
> 2, where µ̃ = sup

t∈T
|µ(t)|.

Therefore, all the hypothesis of Theorem 3.6 are satisfied, and hence the integral
equation (3.3) has a unique almost automorphic solution.

4. Almost automorphic solutions of semilinear Volterra Integral
Equations on Time scales

In this section, our goal is to investigate the existence and uniqueness of almost
automorphic solutions of the semilinear Volterra integral equation on time scales given
by:

(4.1) u(t) =

∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s,
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where a : T × T → Rn×n is almost automorphic with respect to both variables and
f : T× Rn → Rn is almost automorphic with respect to the first variable and satisfies
a Lipschitz condition in the second variable. As in the previous section, we consider
that the hypothesis (H1) is satisfied.

Theorem 4.1. Suppose that the time scale T is invariant under translations, the func-
tion f : T× Rn → Rn is almost automorphic on time scales in t for each x ∈ Rn and
satisfies a Lipschitz condition in x uniformly in t, that is,

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,
for all x, y ∈ Rn, the function a : T×T→ Rn×n is almost automorphic with respect to
both variables and satisfies hypothesis (H1) with the positive constants γ and K being
such that

γ

K(1 + µ̃γ)
> 2(1+L), where L is the Lipschitz constant. Then, the equation

(4.1) possesses a unique almost automorphic solution.

Proof. We start by defining an operator T : AAT(Rn)→ AAT(Rn) as follows:

(Tu)(t) =

∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s,

for all u ∈ AAT(Rn).
At first, we will show that T is well defined. In order to do this, notice that by

the almost automorphicity of f and u and by the Lipschitz condition, it follows that
f(·, u(·)) ∈ AAT(Rn), by Theorem 2.28.

By the almost automorphicity of functions a(t, σ(s)), u(t) and f(·, u(·)), we have
that for every sequence (α′n) ∈ Π, there exists a subsequence (αn) ⊂ (α′n) such that

lim
n→∞

a(t+ αn, σ(s) + αn) = a(t, σ(s)), lim
n→∞

u(t+ αn) = u(t)

and lim
n→∞

f(t+ αn, u(t+ αn)) = f(t, u(t))

exists and is well-defined for every t, σ(s) ∈ T and

lim
n→∞

a(t− αn, σ(s)− αn) = a(t, σ(s)), lim
n→∞

u(t− αn) = u(t)

and lim
n→∞

f(t− αn, u(t− αn)) = f(t, u(t))

exists and is well-defined for every t, σ(s) ∈ T.
Define the function M : T→ Rn as follows:

M(t) =

∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s.

Then, we have

‖(Tu)(t+ αn)−M(t)‖ =

∥∥∥∥∫ t+αn

−∞
a(t+ αn, σ(s))[u(s) + f(s, u(s))]∆s

−
∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t+ αn, σ(s+ αn))[u(s+ αn) + f(s+ αn, u(s+ αn))]∆s
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−
∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t+ αn, σ(s) + αn)[u(s+ αn) + f(s+ αn, u(s+ αn))]∆s

−
∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t, σ(s))[u(s+ αn)− u(s)]∆s

+

∫ t

−∞
[a(t+ αn, σ(s) + αn)− a(t, σ(s))]u(s+ αn)∆s

+

∫ t

−∞
a(t, σ(s))[f(s+ αn, u(s+ αn))− f(s, u(s))]∆s

+

∫ t

−∞
[a(t+ αn, σ(s) + αn)− a(t, σ(s))]f(s+ αn, u(s+ αn))∆s

∥∥∥∥ .
Applying the limit as n → ∞ and using the boundedness of the functions f and u

(by Theorem 2.21 (iv)), the fact that ā satisfies condition (H1) (by Lemma 3.5) and
the almost automorphicity of the functions a, f and u, we obtain that

lim
n→∞

(Tu)(t+ αn) = M(t)

exists and is well-defined for every t ∈ T. Similarly, one can prove that

lim
n→∞

M(t− αn) = (Tu)(t)

exists and is well-defined for every t ∈ T. Therefore, we conclude that Tu is an almost
automorphic function and thus, Tu is well-defined.

Now, let us prove that T is a contraction.

‖Tu− Tv‖ =

∥∥∥∥∫ t

−∞
a(t, σ(s))[u(s) + f(s, u(s))]∆s−

∫ t

−∞
a(t, σ(s))[v(s) + f(s, v(s))]∆s

∥∥∥∥
=

∥∥∥∥∫ t

−∞
a(t, σ(s))[u(s)− v(s) + f(s, u(s))− f(s, v(s))]∆s

∥∥∥∥
≤

∫ t

−∞
‖a(t, σ(s))‖∆s(‖u− v‖∞ + ‖f(s, u)− f(s, v)‖)

≤
∫ t

−∞
‖a(t, σ(s))‖∆s(‖u− v‖∞ + L‖u− v‖∞)

≤ 2K(1 + µ̃γ)

γ
‖u− v‖∞,

where the last inequality follows from hyphotesis (H1), (3.2) and the hypothesis that
γ

K(1 + µ̃γ)
> 2(1 + L).

It follows that T is a contraction, then by Banach fixed-point Theorem, T has a
unique fixed point. By the definition of T , we obtain that equation (4.1) has a unique
solution wich is almost automorphic. �
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In the sequel, let us present an example to illustrate our result.

Example 4.2. Consider the following integral equation on time scale

(4.2) x(t) =

∫ t

−∞
Ke	γ(t, σ(s))(x(s) + η(s)e−αx(s))∆s,

where K, γ and α are real and positive constants.
Also, suppose that η is an almost automorphic function. Therefore, it follows that

η is a bounded function, so denote η̃ = sup
t∈T
|η(t)|.

Then, we have

|g(t, x(t))− g(y, y(t))| := |η(t)e−αx(t) − η(t)e−αy(t)|
≤ η̃α|x(t)− y(t)|.

Therefore, g satisfies the Lipschitz condition. Moreover, let us consider 2(1 + η̃α) <
γ

K(1 + µ̃γ)
, where µ̃ = sup

t∈T
|µ(t)|.

Finally, it follows from Corollary 3.4 that Ke	γ(t, σ(s)) is an almost automorphic
function with respect to both variables.

Therefore, all the hypothesis of Theorem 4.1 are satisfied, then it follows that the
integral equation (4.2) has a unique almost automorphic solution.

5. Asymptotically almost automorphic solutions of linear equations

In this section, we present a necessary condition for the existence of asymptotically
almost automorphic solutions of the linear Volterra integral equation:

(5.1) u(t) =

∫ t

t0

a(t, σ(s))[u(s) + g(s)]∆s,

with t0 ∈ T+, t > t0, where a : T+ × T+ → Rn×n is almost automorphic with respect
to both variables and g : T+ → Rn is asymptotically almost automorphic.

The definition of asymptotically almost automorphic functions on time scales makes
clear why we are considering the Volterra integral equations on the form of the equation
(5.1) instead of considering equations on the form of the equation (3.1). Also, let us
recall the following hypothesis under the function a : T+ × T+ → Rn×n:
(H1) There exist real and positive constants K and γ such that∫ u

t0

‖a(t, σ(s))‖∆s ≤
∫ u

t0

Ke	γ(t, σ(s))∆s, for every u, t, t0 ∈ T+.

The following theorem ensures the existence of an asymptotically almost automor-
phic solution of (5.1). The proof is inspired in the proof of [22, Theorem 4.2] and the
proof of [14, Lemma 2.6].

Theorem 5.1. Suppose that the time scale T is invariant under translations, a : T+×
T+ → Rn×n satisfies the hypothesis (H1) with

γ

K(1 + µ̃γ)
> 2, where µ̃ = sup

t∈T
|µ(t)|

and the function g : T+ → Rn is asymptotically almost automorphic. Then, the integral
equation (5.1) possesses an asymptotically almost automorphic solution.
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Proof. Since g : T → Rn is an asymptotically almost automorphic function, then we
can write the function g as follows:

g(t) = g1(t) + g2(t),

where g1 and g2 are, respectively, the principal and corrective terms of the function g.
Thus, equation (5.1) can be written as:

u(t) =

∫ t

t0

a(t, σ(s))[u(s) + g1(s) + g2(s)]∆s,

for every t ∈ T+, with t > t0.
Hence, by Theorem 3.6, we have

h1(t) =

∫ t

t0

a(t, σ(s))[u(s) + g1(s)]∆s ∈ AAT(Rn).

Therefore, it remains to prove that the function h2 : T→ Rn defined by

h2(t) =

∫ t

t0

a(t, σ(s))g2(s)∆s,

for every t ∈ T+, with t > t0, is a rd-continuous function and satisfies

lim
t→∞
‖h2(t)‖ = 0.

Notice that from these facts, we obtain that the solution of (5.1) is asymptotically
almost automorphic. The rd-continuity of the function h2 follows immediately from
the definition. Let us show that lim

t→∞
‖h2(t)‖ = 0. In fact,

‖h2(t)‖ =

∥∥∥∥∫ t

t0

a(t, σ(s))g2(s)∆s

∥∥∥∥
≤

∫ t

t0

‖a(t, σ(s))‖‖g2(s)‖∆s <
∫ t

t0

Ke	γ(t, σ(s))‖g2(s)‖∆s

Since lim
t→∞
‖g2(t)‖ = 0, for every ε > 0, there exists a T sufficiently large such that for

every t > T , we have
‖g2(t)‖ < ε.

Hence, we obtain

‖h2(t)‖ <

∫ T

t0

Ke	γ(t, σ(s))‖g2(s)‖∆s+

∫ t

T

Ke	γ(t, σ(s))‖g2(s)‖∆s

≤ g̃K
[e	γ(t, T )− e	γ(t, t0)]

| 	 γ|
+ εK

[e	γ(t, t)− e	γ(t, T )]

| 	 γ|
,

where g̃ = sup
t∈[t0,T ]T

‖g(t)‖. Applying the limit as t→∞ and Theorem 2.10, we have

lim
t→∞
‖h2(t)‖ =

εK

| 	 γ|
.

Since ε is arbitrary, the result follows as well. �
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The following result gives us a characterization of the asymptotically almost auto-
morphic solution of (5.1) whenever it exists. It is an immediate consequence of the
previous theorem and Theorem 2.30.

Corollary 5.2. If u : T+ → Rn is an asymptotically almost automorphic solution of
(5.1) and g is an asymptotically almost automorphic function, then the principal and
corrective terms of u are given, respectively, by∫ t

t0

a(t, σ(s))[u(s) + g1(s))]∆s and
∫ t

t0

a(t, σ(s))g2(s))∆s,

where g1 and g2 are, respectively, the principal and the corrective terms of g.

Notice that from the previous corollary, the existence of an asymptotically almost
automorphic solution of (5.1) implies the uniqueness of this solution by Theorem 2.30.

We finish this section by presenting an example to illustrate our result.

Example 5.3. Let us consider the following integral equation

(5.2) x(t) =

∫ t

−∞
Ke	α(t, σ(s))

(
x(s) + 2 +

1

σ(s) + 1

)
∆s,

where α, K > 0 are constants and t0 ∈ T+.
Is is not difficult to see that

a(t, σ(s)) := Ke	α(t, σ(s))

is almost automorphic with respect to both variables (see Corollary 3.4). Also, it is
clear that the function satisfies the hypothesis (H1).

Moreover, the function g : T+ → Rn given by

g(s) = 2 +
1

σ(s) + 1

is clearly asymptotically almost automorphic, where the principal term is

g1(s) = 2

and the corrective term is
g2(s) =

1

σ(s) + 1
.

Clearly, g2 is rd-continuous (see [5, Theorem 1.6]) and lim
s→∞
‖g2(s)‖ = 0, since σ(s)+1

is an increasing function.
Assume that

α

K(1 + µ̃α)
> 2, where µ̃ = sup

t∈T
|µ(t)|. Therefore, all the hypothesis of

Theorem 5.1 are satisfied, then the integral equation (5.2) has an asymptotically almost
automorphic solution u : T+ → Rn and by Corollary 5.2, the solution u : T+ → Rn has
the following principal and corrective terms

u1(t) =

∫ t

t0

Ke	α(t, σ(s))(u(s) + 2)∆s

u2(t) =

∫ t

t0

Ke	α(t, σ(s))

(
1

σ(s) + 1

)
∆s

respectively.
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6. Asymptotically almost automorphic solutions of semilinear
equations

In this section, we present a sufficient condition for the existence of asymptotically
almost automorphic solutions of the following semilinear Volterra integral equation:

(6.1) u(t) =

∫ t

t0

a(t, σ(s))[u(s) + f(s, u(s))]∆s,

with t0 ∈ T+, t > t0, where a : T+×T+ → Rn×n is almost automorphic with respect to
both variables and f : T+ × Rn → Rn is an almost automorphic function with respect
to the first variable satisfying the Lipschitz condition.

Theorem 6.1. Consider the semilinear Volterra integral equation (6.1) and let T be an
invariant under translations time scale. Assume that the function f : T+×Rn → Rn is
almost automorphic on time scales in t for each x ∈ Rn and satisfies Lipschitz condition
in x uniformly in t, that is,

(6.2) ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖,
for all x, y ∈ Rn. Moreover, suppose that the function a : T+ × T+ → Rn×n is almost
automorphic with respect to both variables and satisfies the hypothesis (H1) with the
positive constants γ and K being such that

γ

K(1 + µ̃γ)
> 2(1 + L), where L is the

Lipschitz constant of f . Then, there exists a unique asymptotically almost automorphic
solution of (6.1).

Proof. We start by defining an operator T : AAAT(Rn)→ AAAT(Rn) as follows:

(Tu)(t) =

∫ t

t0

a(t, σ(s))(u(s) + f(s, u(s))∆s,

for all u ∈ AAAT(Rn).
Let us show that T is well-defined. In fact, since u is an asymptotically almost

automorphic function, we can write

u(t) = u1(t) + u2(t)

where u1 and u2 are, respectively, the principal and corrective terms of u. Then, we
have

(Tu)(t) =

∫ t

t0

a(t, σ(s))[u(s) + f(s, u(s))]∆s

=

∫ t

t0

a(t, σ(s))[u1(s) + u2(s) + f(s, u(s))]∆s

=

∫ t

t0

a(t, σ(s))[u1(s) + f(s, u1(s))]∆s

+

∫ t

t0

a(t, σ(s))[u2(s) + f(s, u(s))− f(s, u1(s))]∆s.

By Theorem 4.1, we have∫ t

t0

a(t, σ(s))[u1(s) + f(s, u1(s))]∆s ∈ AAT(Rn).
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Hence, it remains to prove that

h(t) :=

∫ t

t0

a(t, σ(s))[u2(s) + f(s, u(s))− f(s, u1(s))]∆s,

for every t ∈ T+, with t > t0 is a rd-continuous function and satisfies

lim
t→∞
‖h(t)‖ = 0.

The rd-continuity of the function h follows directly by the definition. Let us show
that lim

t→∞
‖h(t)‖ = 0:

‖h(t)‖ =

∥∥∥∥∫ t

t0

a(t, σ(s))[u2(s) + f(s, u(s))− f(s, u1(s))]∆s

∥∥∥∥
≤

∫ t

t0

‖a(t, σ(s))‖‖u2(s) + f(s, u(s))− f(s, u1(s))‖∆s

≤
∫ t

t0

Ke	γ(t, σ(s))[‖u2(s)‖+ ‖f(s, u(s))− f(s, u1(s))‖]∆s

≤
∫ t

t0

Ke	γ(t, σ(s))[‖u2(s)‖+ L‖u(s)− u1(s)‖]∆s

=

∫ t

t0

Ke	γ(t, σ(s))[‖u2(s)‖+ L‖u2(s)‖]∆s

= (1 + L)

∫ t

t0

Ke	γ(t, σ(s))‖u2(s)‖∆s.

Using a similar argument as in the proof of Theorem 5.1, one can conclude that
lim
t→∞
‖h(t)‖ = 0. Therefore, the operator T is well-defined.

Now, let us show that T is a contraction.

‖Tu− Tv‖ =

∥∥∥∥∫ t

t0

a(t, σ(s))[u(s)− v(s) + f(s, u(s))− f(s, v(s))]∆s

∥∥∥∥
≤

∫ t

t0

Ke	γ(t, σ(s)) [‖u(s)− v(s)‖+ L‖u(s)− v(s)‖] ∆s

=

∫ t

t0

Ke	γ(t, σ(s)) [(1 + L)‖u(s)− v(s)‖] ∆s

≤ ‖u− v‖∞
∫ t

t0

Ke	γ(t, σ(s))(1 + L)∆s

= ‖u− v‖∞(1 + L)

[
K

| 	 γ|
‖e	γ(t, t0)− e	γ(t, t)

]
≤ ‖u− v‖∞(1 + L)

[
K

| 	 γ|
2

]
= ‖u− v‖∞(1 + L)

2K(1 + µ(t)γ)

γ
≤ ‖u− v‖∞

2K(1 + µ̃γ)

γ
(1 + L).
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Therefore, T is a contraction, then by Banach fixed point Theorem, T has a unique
fixed point. By the definition of T , we obtain that the integral equation (6.1) has a
unique solution which is asymptotically almost automorphic. �
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