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Abstract
For β > 0 and p≥ 1, the generalized Cesàro operator

Cβ f (t) :=
β

tβ

∫ t

0
(t− s)β−1 f (s)ds

and its companion operator C ∗
β

defined on Sobolev spaces T
(α)

p (tα) and T
(α)

p (|t|α)
(where α ≥ 0 is the fractional order of derivation and are embedded in Lp(R+) and
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Lp(R) respectively) are studied. We prove that if p > 1, then Cβ and C ∗
β

are bounded

operators and commute on T
(α)

p (tα) and T
(α)

p (|t|α). We calculate explicitly their spec-
tra σ(Cβ ) and σ(C ∗

β
) and their operator norms (which depend on p). For 1 < p≤ 2, we

prove that Ĉβ ( f ) = C ∗
β
( f̂ ) and Ĉ ∗

β
( f ) = Cβ ( f̂ ) where f̂ denotes the Fourier transform

of a function f ∈ Lp(R).

Keywords: Cesàro operators, Sobolev spaces, Boundedness.

1 Introduction
Given 1 ≤ p < ∞, let Lp(R+) be the set of Lebesgue p-integrable functions, that is, f is a
measurable function and

|| f ||p :=
(∫

∞

0
| f (t)|pdt

)1/p

< ∞.

The classical Hardy inequality (see [13, p. 245]) establishes that(∫
∞

0

∣∣∣∣1t
∫ t

0
f (s)ds

∣∣∣∣p dt
)1/p

≤ p
p−1

|| f ||p, f ∈ Lp(R+),

for 1 < p < ∞ and therefore the so-called Cesàro transformation C , defined by

C ( f )(t) =
1
t

∫ t

0
f (s)ds, t > 0, (1.1)

is a bounded operator on Lp(R+) with ||C || ≤ p
p−1 for 1 < p < ∞. In fact, it is also known

that if β > 0(∫
∞

0

∣∣∣∣ β

tβ

∫ t

0
(t− s)β−1 f (s)ds

∣∣∣∣p dt
)1/p

≤
Γ(β +1)Γ(1− 1

p)

Γ(β +1− 1
p)
‖ f‖p, f ∈ Lp(R+), (1.2)

for 1 < p < ∞ and the constant
Γ(β+1)Γ(1− 1

p )

Γ(β+1− 1
p )

is optimal in this inequality, see [13, Theorem

329]. A closer (and dual) inequality is the following(∫
∞

0

∣∣∣∣∣β
∫

∞

x

(t− x)β−1

tα
f (t)dt

∣∣∣∣∣
p

dx

) 1
p

≤
Γ(α +1)Γ

(
1
p

)
Γ

(
α + 1

p

) ‖ f‖p. (1.3)

Also the constant
Γ(α+1)Γ

(
1
p

)
Γ

(
α+ 1

p

) is optimal in the above inequality ([13, Theorem 329, p.245]).
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Note that inequalities (1.2) and (1.3) show that the operators Cβ , C ∗
β

where

Cβ f (t) :=
β

tβ

∫ t

0
(t− s)β−1 f (s)ds, C ∗

β
f (s) := β

∫
∞

s

(t− s)β−1

tβ
f (t)dt,

define bounded operators on Lp(R+), C1 = C and C ∗1 = C ∗. By Fubini theorem, the dual
operator of Cβ on Lp(R+) is C ∗

β
on Lp′(R+), i.e,∫

∞

0
Cβ f (t)g(t)dt =

∫
∞

0
f (s)C ∗

β
g(s)ds, f ∈ Lp(R+), g ∈ Lp′(R+),

where 1 < p, p′ < ∞ and 1
p +

1
p′ = 1. See other properties about some of these operators in

[6, 7, 18].
Recently, A. Arvanitidis and A. Siskakis ([4]) showed that the half-plane versions of

Cesàro operators on the Hardy space Hp(U), defined on U := {z ∈ C : Im(z)> 0} by

C(F)(z) :=
1
z

∫ z

0
F(s)ds, C∗(F)(z) :=

∫
∞

z

F(s)
s

ds, F ∈ H p(U), (1.4)

define bounded operators on Hp(U) when p > 1. Both operators C and C∗ can be obtained
as resolvent operators of generators of some appropriate strongly continuous C0-semigroups
on Hp(U).

Similarly, W. Arendt and B. de Pagter ([3]) studied the Cesàro operator (1.1) defined
in an interpolation space E of (L1,L∞) on R+. When E = Lp(R+), the authors obtained a
representation of C in terms of an appropriate resolvent operator, see [3, Corollaries 2.2,
4.3].

In [11], Sobolev subspaces T
(α)

1 (tα) and T
(α)

1 (|t|α) (contained in L1(R+) and L1(R)
respectively and where α ≥ 0 is the fractional order of derivation) were introduced. In fact,
these subspaces are sub-algebras for the convolution products given by

f ∗g(t) =
∫ t

0
f (t− s)g(s)ds, t ≥ 0, (1.5)

and
f ∗g(t) =

∫
∞

−∞

f (t− s)g(s)ds, t ∈ R, (1.6)

respectively. These algebras are canonical to define some algebra homomorphisms (defined
by integral representations) into B(X), the set of all linear and bounded operators on a
Banach space X . See further details in [11].

Further, in [20] Sobolev subspaces T
(α)

p (tα) contained in Lebesgue spaces Lp(R+)
(p ≥ 1) were introduced and studied in detail. Some remarkable results were proved (see
Proposition 2.2 below). In particular, the subspace T

(α)
p (tα) is a module for the algebra

T
(α)

1 (tα) for the convolution product ∗ given by (1.5).
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Hence, it is natural to ask to what extent the boundedness property of the operators Cβ

and C ∗
β

remain valid in the above described Sobolev spaces.
The main aim of this paper is to study boundedness, representation and spectral properties

for the generalized Cesàro operators Cβ and C ∗
β

on Sobolev subspaces of fractional order

α ≥ 0 embedded in Lp(R+) and Lp(R) (which are denoted by T
(α)

p (tα) and T
(α)

p (|t|α)
respectively).

The outline of the paper is as follows: In the second section we recall some basic prop-
erties of the Sobolev spaces T

(α)
p (tα) (where T

(α)
p (tα) ↪→ Lp(R+)). We also prove new

results, see for example Proposition 2.4. The main tool of this section (and in the rest of the
paper) is the group of isometries on T

(α)
p (tα), (Tt,p)t∈R given by

Tt,p f (s) := e−
t
p f (e−ts), f ∈T

(α)
p (tα).

In the Theorem 2.5 it is identified its infinitesimal generator and, its spectrum, in Proposition
2.6. We note that this strategy has been pursued by other authors. We mention here [3, 4, 8,
24].

In the third section, we study the generalized Cesàro operators Cβ and C ∗
β

defined on

Sobolev spaces T
(α)

p (tα). We first show that both operators are bounded operators and
commute for p > 1. In fact, we have

||Cβ ||=
Γ(β +1)Γ(1/p′)

Γ(β +1/p′)
; ||C ∗

β
||= Γ(β +1)Γ(1/p)

Γ(β +1/p)
,

for α ≥ 0, p > 1,β > 0, 1/p+1/p′ = 1. It is remarkable that the composition CαC ∗
β

may be
described explicitly involving the Gaussian hypergeometric function 2F1 (see Theorem 3.12)
as follows:

(CαC ∗
β
) f (t) = α

∫ t

0
f (r)

1
t− r

(
t− r

t

)α+β

2F1(α +β ,β ;β +1;
r
t
)dr

+ β

∫
∞

t
f (r)

1
r− t

(
r− t

t

)α+β

2F1(α +β ,α;α +1;
t
r
)dr,

for α,β > 0.
Using the description of Cβ and C ∗

β
in terms of the C0-semigroups (Theorem 3.3 and

Theorem 3.7), we are able to determine the spectra, σ(Cβ ) and σ(C ∗
β
) (Theorem 3.5 and

3.9) as:

σ(Cβ ) = Γ(β +1)

{
Γ( 1

p′ + it)

Γ(β + 1
p′ + it)

: t ∈ R

}
;

and

σ(C ∗
β
) = Γ(β +1)

{
Γ( 1

p + it)

Γ(β + 1
p + it)

: t ∈ R

}
,
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where 1/p+1/p′= 1. In particular, the operators C1 and C ∗1 can be obtained as the resolvent
operator of appropriate C0-semigroups, namely (Tt,p)t≥0 and (T−t,p)t≥0, respectively.

We remark that in case β = 1 we obtain:

σ(C ∗1 ) =
{

w ∈ C :
∣∣∣w− p

2

∣∣∣= p
2

}
.

This gives a proof of a conjecture posed by F. Móricz on Lp(R+) [18, Section 2] and new
proofs of some results given in [6, 7].

In Section 4, we introduce and give some basic properties of the Sobolev spaces T
(α)

p (|t|α)
(here T

(α)
p (|t|α) ↪→ Lp(R)). We also prove that the space T

(α)
p (|t|α) is a module for the

algebra T
(α)

1 (|t|α) and the ∗-convolution product given by (1.6). Moreover, the following
interesting inequality holds:

||| f ∗g|||α,p ≤Cα,p||| f |||α,p|||g|||α,1, f ∈T
(α)

p (|t|α), g ∈T
(α)

1 (|t|α).

In Section 5, we study boundedness, representation and spectral properties of generalized
Cèsaro operators on R. Again, it is relevant to mention that the C0-group of isometries on
T

(α)
p (|t|α), (Tt,p)t∈R given by

Tt,p f (s) := e−
t
p f (e−ts), f ∈T

(α)
p (|t|α),

(Theorem 4.4) is the main tool to prove the main results in this section. The generalized
Cesàro operators Cβ and C ∗

β
defined on Sobolev spaces T

(α)
p (|t|α) are described in terms of

the C0-group of isometries (Tt,p)t∈R. Similar results shown in the case T
(α)

p (tα) hold in this
case, see Theorem 5.2 and 5.3 below.

In the last section we show that Ĉβ ( f ) = C ∗
β
( f̂ ) and Ĉ ∗

β
( f ) = Cβ ( f̂ ) where f̂ is the

Fourier transform of a function f ∈ Lp(R) and 1 < p ≤ 2, see Theorem 6.4. We notice that
our studies in this section extends and complement the main result in [19].

2 Composition groups on Sobolev spaces defined on R+.

Let D+ be the class of C∞-functions with compact support on [0,∞) and S+ the Schwartz
class on [0,∞). For a function f ∈S+ and α > 0, the Weyl fractional integral of order α ,
W−α

+ f , is defined by

W−α
+ f (t) :=

1
Γ(α)

∫
∞

t
(s− t)α−1 f (s)ds, t ∈ R+.

The Weyl fractional derivative W α
+ f of order α is defined by

W α
+ f (t) := (−1)n dn

dtnW−(n−α)
+ f (t), t ∈ R+
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where n = [α]+1, and [α] denotes the integer part of α. It is proved that W α+β

+ =W α
+ (W β

+ )

for any α,β ∈ R, where W 0
+ = Id is the identity operator and (−1)nW n

+ = dn

dtn holds with
n ∈ N, see more details in [16] and [21].

Take λ > 0 and fλ defined by fλ (r) := f (λ r) for r > 0 and f ∈S+. It is direct to check
that

W α
+ fλ = λ

α(W α
+ f )λ , f ∈S+, (2.1)

for α ∈ R.
Now we introduce a family of subspaces T

(α)
p (tα) which are contained in Lp(R+).

Definition 2.1 For α > 0 let be the Banach space T
(α)

p (tα) defined as the completion of the
Schwartz class S+ in the norm

|| f ||α,p :=
1

Γ(α +1)

(∫
∞

0
|W α

+ f (t)|ptα pdt
) 1

p

.

We understand that T
(0)

p (t0) = Lp(R+) and || ||0,p = || ||p. The case p = 1 and α ∈N
where introduced in [2] and for α > 0 in [11].

In the next proposition we collect some results about these family of spaces T
(α)

p (tα)
which we may be found in [20].

Proposition 2.2 Take p≥ 1 and β > α > 0. Then

(i) T
(β )

p (tβ ) ↪→T
(α)

p (tα) ↪→ Lp(R+).

(ii) T
(α)

p (tα)∗T (α)
1 (tα) ↪→T

(α)
p (tα) for 1≤ p < ∞, where

f ∗g(t) =
∫ t

0
f (t− s)g(s)ds, t ≥ 0, f ∈T

(α)
p (tα), g ∈T

(α)
1 (tα). (2.2)

(iii) The operator Dα
+ : T

(α)
p (tα)→ Lp(R+) defined by

f 7→ Dα
+ f (t) =

1
Γ(α +1)

tαW α
+ f (t), t ≥ 0, f ∈T

(α)
p (tα).

is an isometry.

(iv) If p > 1 and p′ satisfies 1
p +

1
p′ = 1, then the dual of T

(α)
p (tα) is T

(α)
p′ (tα), where the

duality is given by

〈 f ,g〉α =
1

Γ(α +1)2

∫
∞

0
W α

+ f (t)W α
+ g(t)t2αdt,

for f ∈T
(α)

p (tα), g ∈T
(α)

p′ (tα).
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Note that, in fact,

‖ f‖α,p = ‖Dα
+ f‖p, 〈 f ,g〉α = 〈Dα

+ f ,Dα
+g〉0, (2.3)

for f ∈T
(α)

p (tα) and g ∈T
(α)

p′ (tα) with 1
p +

1
p′ = 1.

In the next lemma, we consider some functions which belong (or not) to T
(α)

p (tα) for
p≥ 1.

Lemma 2.3 If α,a > 0 and p≥ 1, then
(i) tβ 6∈T

(α)
p (tα) for β ∈ C.

(ii) (a+ t)−β ∈T
(α)

p (tα) for ℜβ > 1/p.

Proof. (i) It suffices to note that tβ does not belong to Lp(R+).
(ii) For 0 < ℜγ < ℜδ and a > 0 it is well know that W−γ

+ (a+ t)−δ = Γ(δ−γ)
Γ(δ ) (t +a)γ−δ ,

see for example [10, p. 201]. With this formula, it is easy to check that

W α
+ (a+ t)−β =

Γ(α +β )

Γ(β )
(t +a)−(α+β ).

Thus for f (t) := (a+ t)−β we obtain

|| f ||pα,p =
1

Γ(α +1)p

∫
∞

0
|W α

+ f (t)|ptα pdt =
(

Γ(α +β )

Γ(α)Γ(β )

)p ∫ ∞

0

tα p

|(t +a)(α+β )p|
dt

≤
(

Γ(α +β )

Γ(α)Γ(β )

)p ∫ ∞

0

1
(t +a)pℜβ

dt < ∞,

and we conclude the proof.

Given f ∈T
(α)

p (tα), as the next result shows, we obtain that the function f ∈C(R+) for
p,α ≥ 1.

Proposition 2.4 Take p,α ≥ 1 and f ∈T
(α)

p (tα). Then f ∈C(R+), limt→∞ f (t) = 0 and

sup
t>0

t p| f (t)| ≤Cα,p‖ f‖α,p, f ∈T
(α)

p (tα),

where Cα,p is independent of f .

Proof. By Proposition 2.2 (i), it is enough to check for α = 1. Take t > s > 0, and we get
that

| f (t)− f (s)| ≤
∫ t

s
| f ′(u)|du≤ 1

s

∫ t

s
| f ′(u)|udu.

7



For p = 1, it is clear that f is continuous and for p > 1, we apply the Hölder inequality to
obtain

| f (t)− f (s)| ≤ ‖ f‖1,p (t− s)
1
p′ ,

1
p
+

1
p′

= 1.

Then f is continuous in R+. For f ∈T
(α)

1 (tα), we have

| f (t)| ≤
∫

∞

t
| f ′(u)|du≤ 1

t

∫
∞

t
u| f ′(u)|du≤ C

t
‖ f‖1,1 ≤

C
t
‖ f‖α,1, t > 0,

and we conclude that limt→∞ f (t) = 0. Similarly take f ∈ T
(α)

p (tα) with 1 < p < ∞. Then
we have that

| f (t)| ≤
∫

∞

t
| f ′(u)|du≤

(∫
∞

t
up| f ′(u)|pdu

) 1
p
(∫

∞

t

1
up′ du

) 1
p′
≤
(

1
p′t p′−1

) 1
p′
‖ f‖1,p

where we conclude that supt>0 t p| f (t)| ≤
(

1
p′

) 1
p′ ‖ f‖1,p and the proof is finished.

The following is the main result of this section. It will be the key in the study of spectral
properties of the generalized Cesàro operators Cβ and C ∗

β
defined on Sobolev spaces.

Theorem 2.5 For 1≤ p and α ≥ 0, the family of operators (Tt,p)t∈R defined by

Tt,p f (s) := e−
t
p f (e−ts), f ∈T

(α)
p (tα),

is a C0-group of isometries on T
(α)

p (tα) whose infinitesimal generator Λ is given by

(Λ f )(s) :=−s f ′(s)− 1
p

f (s)

with domain D(Λ) = T
(α+1)

p (tα+1).

Proof. We check that the operators (Tt,p)t∈R are isometries:

||Tt,p f ||pα,p =
1

Γ(α +1)p

∫
∞

0
|W α

+ Tt,p f (s)|psα pds =
e−t

Γ(α +1)p

∫
∞

0
|W α

+ f (e−ts)|psα pds

=
e−t

Γ(α +1)p

∫
∞

0
et |e−αt(W α

+ f )(u)|p(eαtuα)pdu = || f ||pα,p,

where we have applied the equality (2.1).
Using some known properties for fractional derivative ([21, p. 96]) it can be shown that

the family of operatos (Tt,p)t∈R are strongly continuous, see similar ideas in [4, Proposition
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2.1] and [3, Section 2]. It is straightforward to check that the family (Tt,p)t∈R is a group of
operators.

On T
(α)

p (tα) define {St}t≥0 by St( f )(s) := f (e−ts). Then, an easy computation shows
that the generator A of {St}t≥0 with domain { f ∈ T

(α)
p (tα) : t f ′ ∈ T

(α)
p (tα)} is given by

A f (s) = −s f ′(s). Therefore, the rescaled semigroup (Tt,p)t≥0 has domain { f ∈ T
(α)

p (tα) :
t f ′ ∈ T

(α)
p (tα)} and his generator is (Λ f )(s) = −s f ′(s)− 1

p f (s). See [9, p. 60] for more
details.

Finally, we prove that D(Λ) = T
(α+1)

p (tα+1). In fact, let f ∈ T
(α+1)

p (tα+1) be given.
Since T

(α+1)
p (tα+1) ↪→ T

(α)
p (tα), we have f ∈ T

(α)
p (tα). From [16, p. 246] it is easy

to show that W α
+ (t f ′(t)) = αW α

+ f (t) + tW α+1
+ f (t). Thus, t f ′ ∈ T

(α)
p (tα) and therefore

f ∈ D(Λ). Conversely, if f ∈ D(Λ), then f ∈ T
(α)

p (tα) and t f ′ ∈ T
(α)

p (tα). The same
above identity, implies that tα+1W α+1

+ f (t) = tαW α
+ (t f ′(t))− αtαW α

+ f (t), and therefore
f ∈T

(α+1)
p (tα+1).

The proof of the following result is inspired in [4, Proposition 2.3] (see also [1]). We
denote by σ(Λ) the usual spectrum of the operator Λ and by σp(Λ) the point spectrum of the
operator Λ.

Proposition 2.6 For 1≤ p < ∞ we have
(i) σp(Λ) = /0;
(ii) σ(Λ) = iR.

Proof. (i) Let λ ∈ C and f ∈ T
(α)

p (tα) such that Λ( f ) = λ f . Then, f is solution of the
differential equation

s f ′(s)+(λ +
1
p
) f (s) = 0.

The nonzero solutions to this equation have the form f (t) = ct−(λ+1/p) with c 6= 0. But by
Lemma 2.3, these solutions are not in T

(α)
p (tα). Therefore σp(Λ) = /0.

(ii) Since each Tt,p is an invertible isometry its spectrum satisfies

σ(Tt,p)⊆ {z ∈ C : |z|= 1}.

By the spectral mapping theorem (see Theorem [9, IV.3.6]), we have that

etσ(Λ) ⊆ σ(Tt,p).

Therefore, if w ∈ σ(Λ), then etw ∈ {z ∈ C : |z|= 1}. Thus, we obtain that σ(Λ)⊆ iR.
Conversely, let µ ∈ iR and assume that µ ∈ ρ(Λ). Let λ = µ + 1

p . By Lemma 2.3 the

function f defined by f (t) := (1+ t)−λ−1 ∈T
(α)

p (tα). Since R(µ,Λ) is a bounded operator,
the function g(t) := R(µ,Λ) f (t) belongs to T

(α)
p (tα). Therefore, g is solution of equation

λg(t)+ tg′(t) = f (t).
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An easy computation shows that the solution of this equation is G(t) := ct−λ + λ−1(1+
t)−λ , where c is a constant. However, as in Lemma 2.3 one can check that G 6∈ T

(α)
p (tα).

Therefore, µ ∈ σ(Λ).

Now, consider the negative part {T−t,p, t ≥ 0} of the group {Tt,p}t∈R: that is, for f ∈
T

(α)
p (tα),

T−t,p f (s) = e
t
p f (ets), t ≥ 0.

Obviously, {T−t,p}t≥0 is a C0-semigroup on T
(α)

p (tα) of isometries whose generator is −Λ.
We finish this section, establishing the relationship between the semigroups {Tt,p}t≥0 and

{T−t,p′}t≥0 with 1
p +

1
p′ = 1.

Proposition 2.7 The semigroups {Tt,p}t≥0 and {T−t,p′}t≥0 are dual operators of each other

acting on T
(α)

p (tα) and T
(α)

p′ (tα) with 1
p +

1
p′ = 1.

Proof. This is easily checked by Proposition 2.2 (iv) and (2.1).

3 Generalized Cesàro operators on Sobolev spaces defined
on R+.

For β > 0 the generalized Cesàro operator on T
(α)

p (tα) is defined by

Cβ f (t) :=
β

tβ

∫ t

0
(t− s)β−1 f (s)ds = β

∫ 1

0
(1− r)β−1 f (tr)dr, t > 0.

Defining the function

gβ (t) =
tβ−1

Γ(β )
, t > 0,

we obtain the also equivalent formulation of the generalized Cesàro operator in terms of
finite convolution as follows:

Cβ f (t) :=
1

gβ+1(t)

∫ t

0
gβ (t− s) f (s)ds, t > 0.

We remark that for certain classes of vector-valued functions f , the asymptotic behavior as
t→ ∞ of Cβ f (t) in the above representation has been studied in [14].

Note that we may calculate Cβ ( f ) for some particular functions:
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Example 3.1 (i) Functions gγ are eigenfunctions of Cβ with eigenvalue Γ(β+1)Γ(γ)
Γ(β+γ) :

Cβ (gγ)(t) =
β

Γ(γ)tβ−1

∫ t

0
(t− s)β−1sγ−1ds =

Γ(β +1)Γ(γ)
Γ(β + γ)

gγ(t), t > 0.

(ii) Take eλ (t) := e−λ t for t > 0 and λ ∈ C+. Then

C1(eλ )(t) =
1
λ t

(1− e−λ t), C2(eλ )(t) =
2
λ t

(e−λ t−1+λ t), t > 0.

Since C 2
1 (eλ )(t) =

1
tλ

∫ t

0

1− e−λ s

s
ds for t > 0, we conclude that C 2

1 (eλ ) 6= C2(eλ ) and then

C 2
1 6= C2.

(iii) More generally, take fλ (t) := Eβ ,1(λ tβ ) the Mittag-Leffler function, for t > 0 and λ ∈
C+. Then

Cβ ( fλ )(t) =
1

λgβ+1(t)
(1− fλ (t)), t > 0.

The relationship between these generalized Cesáro operators and fractional evolution
equations of order α can be also observed in [14].

The next lemma shows a key commutativity property.

Lemma 3.2 Take α ≥ 0 and β > 0. Then Dα
+ ◦Cβ = Cβ ◦Dα

+, i.e.,

Dα
+(Cβ ( f )) = Cβ (D

α
+( f )), f ∈S+,

where Dα
+(t) =

1
Γ(α +1)

tαW α
+ f (t) for f ∈S+.

Proof. By the equality (2.1), we have that

Cβ (D
α
+( f ))(t) = β

∫ 1

0
(1− r)β−1(tr)αW α

+ f (tr)dr

= tαW α
+

(
β

∫ 1

0
(1− r)β−1 f (r)dr

)
(t) = Dα

+(Cβ ( f ))(t)

for f ∈S+ and we conclude the proof.

The first main result in this section is the following theorem.

Theorem 3.3 The operator Cβ is a bounded operator on T
(α)

p (tα) and

||Cβ ||=
Γ(β +1)Γ(1−1/p)

Γ(β +1−1/p)
,

11



for α ≥ 0, p > 1 and β > 0. If f ∈T
(α)

p (tα), then

Cβ f (t) = β

∫
∞

0
(1− e−r)β−1e−r(1−1/p)Tr,p f (t)dr, t ≥ 0, (3.1)

where the semigroup (Tr,p)t≥0 is defined in Theorem 2.5.

Proof. Let α ≥ 0, β > 0 and f ∈ T
(α)

p (tα) be given. We apply the change of variable
s = te−r to get that

Cβ f (t) :=
β

tβ

∫ t

0
(t− s)β−1 f (s)ds = β

∫
∞

0
(1− e−r)β−1e−r f (te−r)dr,

and the equality (3.1) is proved. Observe that by this equality, Cβ is well defined and is a

bounded operator on T
(α)

p (tα) for p > 1. Indeed, we have

||Cβ f ||α,p ≤ β

∫
∞

0
(1− e−r)β−1e−r(1−1/p)||Tr f ||α,pdr

= β || f ||α,p

∫
∞

0
(1− e−r)β−1e−r(1−1/p)dr = || f ||α,p

Γ(β +1)Γ(1−1/p)
Γ(β +1−1/p)

.

To check the exact value of ||Cβ ||α,β , note that by the Lemma 3.2, the boundedness of
Cβ on Lp(R+) (see the Introduction) and the fact that the operator Dα

+ is an isometry (see
Proposition 2.2 (iii)), we have

‖Cβ‖α,p = sup
f 6=0

‖Cβ f‖α,p

‖ f‖α,p

= sup
f 6=0

‖Dα
+ ◦Cβ f‖p

‖Dα
+ f‖p

= sup
f 6=0

‖Cβ ◦Dα
+ f‖p

‖Dα
+ f‖p

= sup
g6=0

‖Cβ g‖p

‖g‖p
= ‖Cβ‖p.

Finally, we observe that ‖Cβ‖p = inf{M > 0 : ‖Cβ f‖p≤M‖ f‖p}= Γ(β+1)Γ(1−1/p)
Γ(β+1−1/p) because,

by (1.2), the constant Γ(β+1)Γ(1−1/p)
Γ(β+1−1/p) is optimal for the inequality.

Remark 3.4 (i) Recall that the Beta function, also called the Euler integral of the first kind,
is defined by:

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt, x > 0, y > 0,

12



and satisfies the property B(x,y) = Γ(x)Γ(y)
Γ(x+y) . Hence, the obtained value for the norm of Cβ

can be rewritten as
||Cβ ||= βB(β ,1−1/p), β > 0, p > 1.

(ii) In the case p = 1 we remark that Cβ does not take T
(α)

1 (tα) in T
(α)

1 (tα). In fact,

from Lemma 2.3 it follows that, for β > 0, hβ (t) := (1+ t)−(β+1) belongs to T
(α)

1 (tα). By
[21, Formula 2, p.173] and [17, p. 38], we have

Cβ hβ (t) =
β

tβ

∫ t

0

(t− s)β−1

(1+ s)β+1 ds = 2F1(1,β +1;β +1;−t) = (1+ t)−1,

where 2F1 denotes the Gaussian hypergeometric function,

2F1(a,b;c;z) :=
Γ(c)

Γ(b)Γ(a)

∞

∑
n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

zn

n!
.

Since Cβ hβ does not belong to L1(R+) and T
(α)

1 (tα) ↪→ L1(R+) (see Proposition 2.2 (i)),

we obtain Cβ hβ 6∈T
(α)

1 (tα).

(iii) Let p > 1 be given. Take β = 1 and f ∈T
(α)

p (tα). Then

C1 f (t) =
∫

∞

0
e−r(1−1/p)Tr,p f (t)dr = R(λp,Λ) f (t), λp = 1−1/p > 0. (3.2)

and by the spectral theorem for resolvent operators (see for example [9, Theorem IV.1.13])
we get that

σ(C1) =

{
w ∈ C :

∣∣∣∣w− p
2(p−1)

∣∣∣∣= p
2(p−1)

}
, (3.3)

see [18, Theorem 2] and similar results in [4, Theorem 3.1], and [3, Corollary 2.2]. Here,
R(·,Λ) denotes the resolvent operator of Λ.

Note that in case β = 2 we obtain

C2 f (t) = 2
∫

∞

0
e−r(1−1/p)(1− e−r)Tr,p f (t)dr = 2R(λp,Λ) f (t)−2R(λp +1,Λ) f (t),

and, more generally, for β = n+1,

Cn+1 f (t) = (n+1)
n

∑
k=0

(
n
k

)
(−1)kR(λp + k,Λ) f (t), n ∈ Z+. (3.4)

In the next result, we are able to describe σ(Cβ ) for β > 0.
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Theorem 3.5 Let 1 < p < ∞, and Cβ : T
(α)

p (tα)→T
(α)

p (tα) the generalized Cesàro oper-
ator. Then

σ(Cβ ) = βB(β ,1−1/p+ iR) := Γ(β +1)

{
Γ(1− 1

p + it)

Γ(β +1− 1
p + it)

: t ∈ R

}
.

Proof. Note that (Tt,p)t∈R is an uniformly bounded C0-group (Theorem 2.5) whose in-
finitesimal generator is (Λ,D(Λ)) and Cβ = f̂β ,p(Λ), i.e,

Cβ f = β

∫
∞

0
(1− e−r)β−1e−r(1−1/p)Tr,p f dr =

∫
∞

−∞

fβ ,p(r)Tr,p f dr,

where fβ ,p(r) = χ[0,∞)(r)β (1−e−r)β−1e−r(1−1/p) for r ∈R, see Theorem 3.3. By [22, The-
orem 3.1], we obtain

σ(Cβ ) = f̂β ,p(σ(iΛ))

where f̂β ,p is the Fourier transform of the function fβ ,p. As σ(iΛ) = R (see Proposition 2.6
(ii)) and f̂β ,p(t) = L ( fβ ,p)(it) we use that

L ( fβ ,p)(z) = β

∫
∞

0
e−zr(1− e−r)β−1e−r(1−1/p)dr =

Γ(β +1)Γ(1− 1
p + z)

Γ(β +1− 1
p + z)

, z ∈ C+.

to conclude the result.

Remark 3.6 In the case that n ∈ N, we obtain that

σ(Cn) =

{
n!pn

((n+ it)p−1) . . .((1+ it)p−1)
: t ∈ R

}
∪{0},

and for n = 1

σ(C1) =

{
p

(1+ it)p−1
: t ∈ R

}
∪{0}=

{
w ∈ C :

∣∣∣∣w− p
2(p−1)

∣∣∣∣= p
2(p−1)

}
.

Now we consider the generalized dual Cesàro operator C ∗
β

on T
(α)

p (tα) defined by

C ∗
β

f (t) := β

∫
∞

t

(s− t)β−1

sβ
f (s)ds = β

∫
∞

1

(r−1)β−1

rβ
f (tr)dr, t > 0.

For 0 < γ < 1, functions gγ are eigenfunctions of C ∗
β

with eigenvalue Γ(β+1)Γ(1−γ)
Γ(β−γ+1) :

C ∗
β
(gγ)(t) =

β

Γ(γ)

∫
∞

t

(s− t)β−1sγ−1

sβ
ds =

Γ(β +1)Γ(1− γ)

Γ(β − γ +1)
gγ(t),
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for t > 0.
Using (2.1), we obtain

Dα
+ ◦C ∗β ( f ) = C ∗

β
◦Dα

+( f ), f ∈S+ (3.5)

where Dα
+ f (t) =

1
Γ(α +1)

tαW α
+ f (t) for f ∈ S+ and t ≥ 0. Hence the proof of the next

result follows from duality and Theorem 3.3.

Theorem 3.7 The operator C ∗
β

is a bounded operator on T
(α)

p (tα) and

||C ∗
β
||= Γ(β +1)Γ(1/p)

Γ(β +1/p)
,

for α ≥ 0, p > 1 and β > 0. The dual operator of Cβ on T
(α)

p (tα) is C ∗
β

on T
(α)

p′ (tα), i.e.

〈Cβ f ,g〉α = 〈 f ,C ∗
β

g〉α , f ∈T
(α)

p (tα), g ∈T
(α)

p′ (tα),

where 〈 , 〉α is given in Proposition 2.2 (iv) and 1
p +

1
p′ = 1.

If f ∈T
(α)

p (tα), then

C ∗
β

f (t) = β

∫ 0

−∞

(e−r−1)β−1e−r(1−1/p−β )Tr,p f (t)dr, t ≥ 0, (3.6)

where the C0-group (Tr,p)t∈R is defined in Theorem 2.5.

Remark 3.8 Take β = 1 and f ∈T
(α)

p (tα). Then

C ∗1 f (t) =
∫ 0

−∞

e−
r
p T−r,p f (t)drds = R(1/p,−Λ) f (t), t ≥ 0.

and by the spectral theorem for the resolvent operator, see [9, Theorem IV.1.13], we obtain

σ(C ∗1 ) =
{

w ∈ C :
∣∣∣w− p

2

∣∣∣= p
2

}
.

This gives a proof of a conjecture posed by F. Móricz in [18, Section 2]. See a similar result
in [4, Theorem 3.2].

In the following theorem we describe σ(C ∗
β
) for β > 0. The proof follows from duality and

Theorem 3.5.
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Theorem 3.9 Let β > 0, 1 ≤ p < ∞, and C ∗
β

: T
(α)

p (tα)→ T
(α)

p (tα) the generalized dual
Cesàro operator. Then

σ(C ∗
β
) = βB(β ,1/p+ iR) := Γ(β +1)

{
Γ( 1

p + it)

Γ(β + 1
p + it)

: t ∈ R

}
.

Remark 3.10 In the case that n ∈ N, we obtain that

σ(C ∗n ) =

{
n!pn

((n−1)p+1+ it) . . .(p+1+ it)(1+ it)
: t ∈ R

}
∪{0},

and for n = 1

σ(C ∗1 ) =

{
p

1+ it
: t ∈ R

}
∪{0}=

{
w ∈ C :

∣∣∣w− p
2

∣∣∣= p
2

}
.

Remark 3.11 In the case that p = 2 we have σ(Cβ ) = σ(C ∗
β
) for all β > 0. Note that in

case p 6= 2 the spectrum of Cβ and C ∗
β

are dual in the sense that σ(Cβ ), with Cβ defined on

T
(α)

p (tα), is identical to σ(C ∗
β
), with C ∗

β
defined on T

(α)
p′ (tα), and where 1

p +
1
p′ = 1.

To finish this section we prove the remarkable fact that Cα and C ∗
β

commute on Lp(R+)

(and then on T
(α)

p (tα)). We also give explicitly the value of CαC ∗
β

in terms of the the
Gaussian hypergeometric function 2F1. This theorem includes [18, Lemma 2] for α = β = 1.

Theorem 3.12 Let Cα and C ∗
β

the generalized Cesáro operators on Lp(R+) for p > 1. Then
CαC ∗

β
= C ∗

β
Cα for α,β > 0 and

(CαC ∗
β
) f (t) = α

∫ t

0
f (r)

1
t− r

(
t− r

t

)α+β

2F1(α +β ,β ;β +1;
r
t
)dr

+ β

∫
∞

t
f (r)

1
r− t

(
r− t

t

)α+β

2F1(α +β ,α;α +1;
t
r
)dr,

in particular

(C1C
∗
β
) f (t) = C1 f (t)+β

∫
∞

t
f (r)

(r− t)β

rβ+1 2F1(β +1,1;2;
r
t
)dr,

(CαC ∗1 ) f (t) = α

∫ t

0
f (r)

(t− r)α

tα+1 2F1(α +1,1;2;
r
t
)dr+C ∗1 f (t),

(C1C
∗
1 ) f = C1 f +C ∗1 f = (C ∗1 C1) f ,

for f ∈ Lp(R+) and t almost everywhere on R+.
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Proof. By the integral representations (3.1) and (3.6), and since Tt,p commutes with Tr,p for
any t,r ∈ R, we conclude that CαC ∗

β
= C ∗

β
Cα for α,β > 0. Take f ∈ Lp(R+) and we apply

the Fubini theorem to get that

C ∗
β
Cα f (t) = βα

∫
∞

t

(x− t)β−1

xβ+α

∫ x

0
(x− r)α−1 f (r)drdx

= βα

∫
∞

0
f (r)

∫
∞

max{t,r}

(x− t)β−1(x− r)α−1

xβ+α
dxdr

for t almost everywhere on R+. For 0 < r < t, this equality

∫
∞

t

(x− t)β−1(x− r)α−1

xβ+α
dx =

1
β (t− r)

(
t− r

t

)α+β

2F1(α +β ,β ;β +1;
r
t
)

holds, see for example [12, p. 314, 3197(1)].
Now take α = 1. Since

(1− z)a
2F1(a,b;c;z) = 2F1(a,c−b;c;

z
z−1

)

(see for example [17, p.47]), we get that

1
t− r

(
t− r

t

)1+β

2F1(1+β ,β ;β +1;
r
t
) =

1
t− r 2F1(1+β ,1;1+β ;

−r
t− r

) =
1
t

where we apply that 2F1(−a,b;b;−z) = (1+ z)a, ([17, p. 38]). Similarly we prove the case
β = 1.

4 Composition groups on Sobolev spaces defined on R.

In this section we introduce the subspaces T
(α)

p (|t|α) which are contained in Lp(R), simi-
larly to T

(α)
p (tα) are in Lp(R+). Let S be the Schwartz class on R and we set

W−α
− f (x) =

1
Γ(α)

∫ x

−∞

(x− t)α−1 f (t)dt,

W α
− f (x) =

1
Γ(n−α)

dn

dxn

∫ x

−∞

(x− t)n−α−1 f (t)dt,

and W 0
− f = f , for x∈R and a natural number n > α . Putting f̃ (x) = f (−x), it is readily seen

that W α
+ f (x) =W α

− f̃ (−x) for all α ∈ R, f ∈S and x ∈ R. Equalities W α+β

− =W α
−W β

− and
W n
− f = f (n) hold for each natural number n and α,β ∈ R.
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For f ∈S , put

W α
0 f (t) :=

{
W α
− f (t), t < 0,

eiπαW α
+ f (t), t > 0.

For λ > 0, we have that W α
0 ( fλ ) = λ α(W α

0 f )λ , where fλ (t) = f (λ t) for t ∈ R.

Definition 4.1 Let 1≤ p < ∞. The Banach space T
(α)

p (|t|α) is defined as the completion of
the Schwartz class on R in the norm

||| f |||α,p :=
1

Γ(α +1)

(∫
∞

−∞

(|W α
0 f (t)| |t|α)p dt

) 1
p

.

Properties similar to those of T
(α)

p (tα) hold for T
(α)

p (|t|α). The proof of next proposi-
tion is similar to the proof of Proposition 2.2 and we skip it.

Proposition 4.2 Take p≥ 1 and β > α > 0. Then

(i) T
(β )

p (|t|β ) ↪→T
(α)

p (|t|α) ↪→ Lp(R).

(ii) The operator Dα
0 : T

(α)
p (|t|α)→ Lp(R) defined by

f 7→ Dα
0 f (t) :=

1
Γ(α +1)

|t|αW α
0 f (t), t ∈ R, f ∈T

(α)
p (|t|α),

is an isometry.

(iii) If p > 1 and p′ satisfies 1
p +

1
p′ = 1, then the dual of T

(α)
p (|t|α) is T

(α)
p′ (|t|α), where

the duality is given by

〈 f ,g〉α =
1

Γ(α +1)2

∫
∞

−∞

W α
0 f (t)W α

0 g(t)|t|2αdt,

for f ∈T
(α)

p (|t|α), g ∈T
(α)

p′ (|t|α).

For p = 1, the subspace T
(α)

1 (|t|α) was introduced in [11, Definition 1.9]. In fact
T

(α)
1 (|t|α) is a subalgebra of L1(R) for the convolution product

f ∗g(t) =
∫

∞

−∞

f (t− s)g(s)ds, t ∈ R, f ,g ∈T
(α)

1 (|t|α), (4.1)

see [11, Theorem 1.8] and also [15, Theorem 2] for some more details.
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Theorem 4.3 Let 1 < p < ∞. The Banach space T
(α)

p (|t|α) is a module for the algebra
T

(α)
1 (|t|α) and

||| f ∗g|||α,p ≤Cα,p||| f |||α,p|||g|||α,1, f ∈T
(α)

p (|t|α), g ∈T
(α)

1 (|t|α).

Proof. Take f ,g ∈ S . We write f+ := f χ[0,∞) and f− := f χ(−∞,0]. By considering the
decomposition f ∗g = ( f+ ∗g+)+( f+ ∗g−)+( f− ∗g+)+( f− ∗g−) on R, and we apply [11,
Lemma 1.6] and the fact that f− ∗g− = 0 on (0,∞) to obtain that

W α
+ ( f ∗g)+(t) =W α

+ ( f+ ∗g+)(t)+(W α
+ f+ ∗g−)(t)+(W α

+ g+ ∗ f−)(t), t > 0.

Now, first,

‖ f+ ∗g+‖α,p ≤Cα,p‖ f+‖α,p‖g+‖α,1 ≤Cα,p||| f |||α,p|||g|||α,1

by Proposition 2.2 (ii).
On the other hand, T

(α)
1 (tα) ⊂ L1(R+), and we apply the Minkowski inequality to get

that (∫
∞

0
|W α

+ f+ ∗g−(t)|ptα pdt
) 1

p

≤
(∫

∞

0

(∫
∞

0
|W α

+ f+(s+ t)||g−(s)|ds
)p

tα pdt
) 1

p

=
∫

∞

0
|g−(s)|

(∫
∞

0
|W α

+ f+(t + s)|ptα pdt
) 1

p

ds

≤
∫

∞

0
|g−(s)|

(∫
∞

s
|W α

+ f+(u)|puα pdu
) 1

p

ds

≤ Γ(α +1)|||g|||0,1|| f+||α,p ≤ Γ(α +1)|||g|||α,1||| f |||α,p.

As T
(α)

p (tα)⊂ Lp(R+) for p> 1, and we apply again the Minkowski inequality to obtain
that (∫

∞

0
|(W α

+ g+ ∗ f−)(t)(t)|ptα pdt
) 1

p

≤
(∫

∞

0

(∫
∞

t
|W α

+ g+(s)|| f−(t− s)|ds
)p

tα pdt
) 1

p

=
∫

∞

0
|W α

+ g+(s)|
(∫ s

0
| f−(t− s)|ptα pdt

) 1
p

ds

≤ ||| f |||0,p
∫

∞

0
|W α

+ g+(s)|sαds

≤ Γ(α +1)||| f |||α,p ||g+||α,1

≤ Γ(α +1)||| f |||α,p |||g|||α,1.

19



Combining these estimates obtained, we get

1
Γ(α +1)

(∫
∞

0
|W α

+ ( f ∗g)(t)|p tα pdt
) 1

p

≤C||| f |||α,p |||g|||α,1.

Finally, because W α
− ( f ∗ g)(t) = W α

+ ( f̃ ∗ g̃)(−t) if t < 0 using the inclusion T
(α)

p (tα) ⊂
Lp(R+) as above for p≥ 1, we have that

1
Γ(α +1)

(∫ 0

−∞

|W α
− ( f ∗g)(t)|p |t|α p dt

) 1
p

≤C||| f |||α,p |||g|||α,1.

The result follows.

We remark that, as in the case of T
(α)

p (tα), it is easy to verify that (Tt,p)t∈R is a C0-group
of isometries on T

(α)
p (|t|α) as the next theorem shows. The proof runs parallel to the proofs

of Theorem 2.5, Proposition 2.6 and Proposition 2.7 and hence we omit it.

Theorem 4.4 Let 1≤ p and α ≥ 0. We define the family of operators (Tt,p)t∈R by

Tt,p f (s) := e−
t
p f (e−ts), f ∈T

(α)
p (|t|α).

(i) Then (Tt,p)t∈R is a C0-group of isometries on T
(α)

p (|t|α) whose infinitesimal generator
Λ is given by

(Λ f )(s) :=−s f ′(s)− 1
p

f (s)

with domain D(Λ) = T
(α+1)

p (|t|α+1).

(ii) σp(Λ) = /0 and σ(Λ) = iR (here σp denotes the point spectrum).

(iii) The semigroups (Tt,p)t≥0 and (T−t,p′)t≥0 are dual operators of each other acting on

T
(α)

p (|t|α) and T
(α)

p′ (|t|α) with 1
p +

1
p′ = 1 for p > 1.

5 The generalized Cesàro operators on R.
For β > 0 we define the generalized Cesàro operator by

Cβ f (t) :=



β

|t|β
∫ 0

t
(s− t)β−1 f (s)ds, t < 0,

f (0), t = 0,

β

tβ

∫ t

0
(t− s)β−1 f (s)ds, t > 0,
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for f ∈S . We are interested in the extension of Cβ on T
(α)

p (|t|α). Note that we may write

Cβ f (t) = β

∫ 1

0
(1− r)β−1 f (tr)dr, t ∈ R, f ∈S .

We use this integral representation to prove the next lemma.

Lemma 5.1 Take α ≥ 0 and β > 0. Then Dα
0 ◦Cβ = Cβ ◦Dα

0 , i.e.,

Dα
0 (Cβ ( f )) = Cβ (D

α
0 ( f )), f ∈S ,

where Dα
0 f (t) = 1

Γ(α+1) |t|
αW α

0 f (t) for f ∈S .

Proof. Since for λ > 0, we have that W α
0 ( fλ ) = λ α(W α

0 f )λ , where fλ (t) = f (λ t) for t ∈R,
the proof follows similarly to Lemma 3.2.

Similar results of Cβ on T
(α)

p (tα) hold for Cβ on T
(α)

p (|t|α). The proof of next result is
analogous to the proof of Theorem 3.3 and Theorem 3.5.

Theorem 5.2 Let α ≥ 0, β > 0, 1 < p < ∞ and the generalized Cesàro operator Cβ on

T
(α)

p (|t|α). Then

(i) The operator Cβ is bounded on T
(α)

p (|t|α) and

||Cβ ||=
Γ(β +1)Γ(1−1/p)

Γ(β +1−1/p)
.

(ii) If f ∈T
(α)

p (|t|α), then

Cβ f (t) = β

∫
∞

0
(1− e−r)β−1e−r(1−1/p)Tr,p f (t)dr, t ∈ R,

where the C0-group (Tr,p)r∈R is defined in Theorem 4.4.

(iii)

σ(Cβ ) = Γ(β +1)

{
Γ(1− 1

p + it)

Γ(β +1− 1
p + it)

: t ∈ R

}
.

Now we consider the generalized dual Cesàro operator C ∗
β

defined for β > 0 by

C ∗
β

f (t) :=



β

∫ t

−∞

(t− s)β−1

|s|β
f (s)ds, t < 0,

0, t = 0,

β

∫
∞

t

(s− t)β−1

sβ
f (s)ds, t > 0,
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and Dα
0 ◦C ∗β ( f ) = C ∗

β
◦Dα

0 ( f ), where Dα
0 f (t) = 1

Γ(α+1) |t|
αW α

0 f (t) for f ∈S and t ∈ R.
Note that we may write

C ∗
β

f (t) = β

∫
∞

1

(s−1)β−1

sβ
f (ts)ds, t 6= 0,

for f ∈S . The proof of next result runs parallel to the proof of Theorem 3.7 and 3.9.

Theorem 5.3 Let α ≥ 0, β > 0, 1 ≤ p < ∞ and the generalized dual Cesáro operator C ∗
β

on T
(α)

p (|t|α). Then

(i) The operator C ∗
β

is bounded on T
(α)

p (|t|α) and

||C ∗
β
||= Γ(β +1)Γ(1/p)

Γ(β +1/p)
.

(ii) The dual operator of Cβ on T
(α)

p (|t|α) is C ∗
β

on T
(α)

p′ (|t|α), i.e.

〈Cβ f ,g〉α = 〈 f ,C ∗
β

g〉α , f ∈T
(α)

p (|t|α), g ∈T
(α)

p′ (|t|α),

where 〈 , 〉α is given in Proposition 4.2 (iii).

(iii) If f ∈T
(α)

p (|t|α), then

C ∗
β

f (t) = β

∫ 0

−∞

(e−r−1)β−1e−r(1−1/p−β )Tr,p f (t)dr, t ∈ R, (5.1)

where the C0-group (Tr,p)r∈R is defined in Theorem 4.4.

(iv)

σ(C ∗
β
) = Γ(β +1)

{
Γ( 1

p + it)

Γ(β + 1
p + it)

: t ∈ R

}
.

Remark 5.4 Note that for t = 0, by the integral representation (5.1)

C ∗
β

f (0) = f (0)β
∫

∞

0
(1− e−r)β−1dr = ∞, f ∈S .
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6 Fourier transform and Cesàro generalized operator
We remind the reader that the Fourier transform of a function f in L1(R) is defined by

f̂ (t) :=
∫

∞

−∞

e−ixt f (x)dx, t ∈ R.

It is well-known that f̂ is continuous on R and f̂ (t) → 0 when |t| → ∞ (the Riemann-
Lebesgue lemma). In the case that f ∈ Lp(R) for some 1 < p ≤ 2, the Fourier transform
of f is defined in terms of a limit in the norm of Lp′(R) of truncated integrals:

f̂ := lim
R→∞

̂f χ(−R,R), ̂f χ(−R,R)(t) =
∫ R

−R
e−ixt f (x)dx, t ∈ R,

i.e., f̂ ∈ Lp′(R) and limR→∞ ‖ f̂ − ̂f χ(−R,R)‖p′ = 0 where 1
p +

1
p′ = 1 and χ(−R,R) is the char-

acteristic function of the interval (−R,R), see for example [25, Vol 2, p.254]. Then the
existence of f̂ (t) is guaranteed only at almost every t and f̂ may be non continuous and the
Riemann-Lebesgue lemma could not hold (unlike the case when f ∈ L1(R)).

In case that f ∈ Lp(R) for some 2 < p < ∞, the Fourier transform f̂ cannot be defined as
an ordinary function although f̂ can be defined as a tempered distribution, see for example
[23, pp 19-30].

In the next theorem, we consider the Fourier transform on the Sobolev space T
(n)

p (|t|n).

Theorem 6.1 Take 1≤ p≤ 2 and n∈N. Then f̂ ∈T
(n)

p′ (|t|n) for f ∈T
(n)

p (|t|n) and 1
p +

1
p′ =

1.

Proof. Take f ∈T
(n)

p (|t|n). Since T
(n)

p (|t|n)⊂T
( j)

p (|t| j), we have that x j f ( j) ∈ Lp(R) for
0≤ j ≤ n. As

(it)n( f̂ )(n)(t) =
n

∑
j=0

(−1)n
(

n
j

)
n!
j!

x̂ j f ( j)(t), n ∈ N, t a.e. on R,

(see for example [25]), we conclude that (it)n( f̂ )(n) ∈ Lp′(R) and then f̂ ∈T
(n)

p′ (|t|n).

In what follows, we show that

Ĉβ ( f ) = C ∗
β
( f̂ ), and Ĉ ∗

β
( f ) = Cβ ( f̂ ), f ∈ Lp(R),

for 1 < p ≤ 2 (Theorem 6.4). This theorem extends the case β = 1 formulated in [5] and
proved in [19]. Our approach looks like to be new and is based in the integral representations
of Cβ ( f ) and C ∗

β
( f ) given in Section 3.
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Lemma 6.2 Let 1≤ p≤ 2 and the family of operators (Tt,p)t∈R defined by Tt,p( f ) := e−
t
p f (e−t ·),

for f ∈ Lp(R). Then

T̂t,p( f ) = T−t,p′( f̂ ), f ∈ Lp(R),
1
p
+

1
p′

= 1.

Proof. Consider 1≤ p≤ 2 and f ∈S . It is clear that Tt,p( f ) ∈S . Note that

̂(Tt,p( f ))(r) = e
−t
p

∫
∞

−∞

e−irx f (e−tx)dx = et(1− 1
p )
∫

∞

−∞

e−irety f (y)dy = e
t
p′ f̂ (etr)

= (T−t,p′ f̂ )(r).

By denseness of S we conclude the result.

Remark 6.3 Since T
(α)

p (|t|α) ↪→ Lp(R) (Proposition 4.2 (i)), the equality T̂t,p( f ) = Tt,p′( f̂ )

holds for f ∈T
(α)

p (|t|α) for α ≥ 0 and 1≤ p≤ 2.

Finally, we are ready to prove the main result in this section.

Theorem 6.4 Let β > 0.

(i) If f ∈ Lp(R) for some 1 < p≤ 2, then Ĉβ ( f ) = C ∗
β
( f̂ ).

(ii) If f ∈ Lp(R) for some 1≤ p≤ 2, then Ĉ ∗
β
( f ) = Cβ ( f̂ ).

Proof. (i) Take f ∈ Lp(R) for some 1 < p ≤ 2. By Theorem 5.2 (ii) and Lemma 6.2 we
have that

Ĉβ ( f )(x) = β

∫
∞

0
(1− e−r)β−1e−r(1−1/p)T̂r,p f (x)dr

= β

∫ 0

−∞

(e−r−1)β−1e−r(1/p−β )Tr,p′ f̂ (x)dr

= β

∫ 0

−∞

(e−r−1)β−1e−r(1− 1
p′−β )Tr,p′ f̂ (x)dr = C ∗

β
( f̂ )(x)

for almost every x on R and we use Theorem 5.3 (iii).
(ii) Now take f ∈ Lp(R) for some 1≤ p≤ 2. By the integral representation (5.1) of C ∗

β

and Lemma 6.2 we have that

Ĉ ∗
β
( f )(x) = β

∫ 0

−∞

(e−r−1)β−1e−r(1− 1
p−β )T−r,p′ f̂ (x)dr

= β

∫
∞

0
(1− e−r)β−1e−

r
p Tr,p′ f̂ (x)dr

= β

∫
∞

0
(1− e−r)β−1e−r(1− 1

p′ )Tr,p′ f̂ (x)dr = Cβ ( f̂ )(x)
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for almost every x on R and we use the Theorem 5.2 (ii).

Remark 6.5 By the Proposition 2.4, we get that Ĉβ ( f )(t)=C ∗
β
( f̂ )(t) and Ĉ ∗

β
( f )(t)=Cβ ( f̂ )(t)

for t 6= 0 and f ∈T
(α)

p (|t|α), 1 < p≤ 2 and α ≥ 1.
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[19] F. Móricz, The harmonic Cesàro and Copson operators on the spaces Lp(R), 1≤ p≤
2, Studia Math.149(3) (2002) 267–279.

[20] J. Royo, Convolution algebras and modules on R+ defined by fractional derivative,
(in spanish) Ph.D. Thesis, Universidad de Zaragoza, 2008.

[21] S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives. Theory and
applications, Gordon-Beach, New York, 1993.
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