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Abstract. One-parameter strongly continuous families {R(t)}t≥0 of bounded operators, de-
fined on a Banach space, are useful instruments in the study of wide classes of abstract evolution
equations. In this paper we show conditions which secure the uniform continuity (or norm con-
tinuity) of (a, k)-regularized resolvent families R(t) for t ≥ 0. We prove that on certain Banach
spaces (e.g. L∞(S,Σ, µ)) each exponentially bounded (a, k)-regularized resolvent family is in
fact uniformly continuous for t ≥ 0. We also characterize families R(t) such that R(t)− k(t)I is
a compact operator for all t > 0. Finally, we prove that in Hilbert spaces the uniform continuity
of R(t) for t > 0 (also called immediate norm continuity) is equivalent to the decay to zero of

k̂(λ)(I − â(λ)A)−1 along some imaginary axis. Our results widely generalize known properties
for strongly continuous semigroups and cosine families of bounded operators.

1. Introduction

The property of uniform continuity (or norm-continuity) for one-parameter families of bounded
operators is a topic of increasing interest in recent research, mainly because their important role
in the exploration of useful criteria for the existence of solutions to nonlinear partial differential
equations, when they are modeled as an abstract evolution equation on vector-valued spaces
of functions, see e.g. the monographs [2] and [27]. The applications of uniform continuity are
usually found in the use of fixed point arguments that try to avoid hypothesis of compactness on
the data of the problem, but where this hypothesis need to be replaced by some better behavior
on the family of bounded operators dealing with the well posedness of the associated abstract
linear problem. See e.g. [1, Remark 3.4], [5, Theorem 3.4], [11, Theorem 4.1] [30, Theorems 4.1
and 5.3] and [33] to cite a few references. Note that uniform continuity also plays a crucial role
in investigating the stability of solutions to abstract Volterra equations [6, Theorem 2.9] and
abstract Cauchy problems.

Recently, Zhenbin Fan [11] derives characterizations of compactness for families of bounded
operators associated to a class of semilinear fractional Cauchy problem. In the searching of this
characterizations, one of the difficult points is that they requires the uniform continuity of the
family under consideration [11, Theorem 3.6 and Theorem 3.7]. As remarked by Fan, the main
difficulty is the non existence of practical criteria that can assure uniform continuity of the given
family of bounded operators.

The main goal of this paper is to give a complete answer to the question raised by Fan
and other authors (see e.g. [30, p.208, item (ii)]). We give an exhaustive study of uniform
continuity not only for families of bounded operators associated to fractional Cauchy problems,
but also for a very wide class of families of bounded operators {R(t)}t≥0, namely, the class
of (a, k)-regularized resolvent families [22]. We recall that this notion generalizes the theories
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of C0-semigroups [2, Section 3.1], α-times-integrated semigroups [2, Section 3.2], convoluted
semigroups [8], cosine functions [2, Section 3.14], n-times integrated cosine families [3], resolvent
families [27] and α -resolvent families [4], among others. For example, if a(t) = k(t) = 1 for
all t ≥ 0 and if a(t) = t, k(t) = 1, then we obtain the well-known cases of strongly continuous
semigroups and cosine operator functions, respectively. If a(t) = 1 and k(t) = tn/n! then R(t)
is an n-integrated semigroup. Taking a ∈ L1

loc(R+) and k(t) = 1 for all t ≥ 0 we have that R(t)
is a resolvent family, which are the central object to study in the theory of abstract Volterra
equations [27]. Finally, if a(t) = tα−1/Γ(α) (α > 0) and k(t) = 1 for all t ≥ 0, then R(t)
corresponds to a α- resolvent family. For an up to date overwiew we refer the reader to [23,
Section 2] and references therein.

Previous studies on uniform continuity for families of bounded operators have been done
mainly in the case of C0-semigroups [18]. K. Latrach, Paoli and Simonett [15], [16] have studied
the problem for diverse perspectives. See also [20] and [21] for an study in case of resolvent
families associated to Volterra equations. In the case of cosine and sine families of bounded
operators, first studies are due to Travis and Webb [28, Proposition 4.1], [29, Proposition 2.4].
See also [17]. More recently, in [13] the authors prove that when the semigroup generated by the
linear part of some linear neutral partial functional differential equations in Lp-spaces is norm
continuous, then the solution semigroup associated to the neutral system is eventually norm
continuous.

It is well known that if a C0-semigroup {T (t)}t≥0 of type (M,ω) defined on a Banach space
X generated by an operator A is continuous in the operator norm for all t > 0, then ∥(s+ iτ −
A)−1∥ → 0 as |τ | → ∞ for all s > ω. See [10]. The converse is also true in Hilbert spaces H
(see [10, 12, 32]) but it may fail in general Banach spaces. See for example [26]. We also note
the recent paper [7] where the authors construct an example where the semigroup is nowhere
continuous in operator norm but the resolvent tends to 0 along 2 + iτ almost logarithmically.
However, the question of find a similar characterization for (a, k) regularized resolvent families
under reasonable conditions on the kernels a and k remains as an open problem.

One of the main issues of this paper, is that we are able to solve this problem assuming
that a and k are 2-regular (see Section 2 for definitions) and certain behavior of k̂(λ) along the
imaginary axis. More precisely, we prove that the following assertions are equivalent:

(i) {R(t)}t≥0 is continuous in B(H) for t > 0,

(ii) lim
|τ |→∞

||k̂(s+ iτ)
(
I − â(s+ iτ)A

)−1
|| = 0 for some s > ω.

This paper is organized as follows: Section 2 is devoted to preliminaries, recalling the definition
of (a, k)-regularized resolvent families and their main properties related with the contents of this
article. We also recall in this section, the notion of Grothendieck space and the Dunford-Pettis
property. A notion of regularity on the kernels will be also useful as well as an important result
due to Lotz [24] that is the key to establish one of our main results in the forthcoming sections.
Section 3 shows a characterization of uniformly continuity (t ≥ 0) of (a, k)-regularized resolvent
families (Theorem 3.2) which is not surprising at all, but that is absent in the current literature
on the subject. The main novelty here are the hypothesis needed in the kernels a and k where
one of them need to be positive, for instance. In Section 4, we give a somewhat surprising result.
We show in Theorem 4.1 that a strongly continuous (a, k)-regularized resolvent family on a class
of Banach spaces containing all L∞-spaces is necessarily uniformly continuous (t ≥ 0). This
result generalize a known theorem in the case of C0-semigroups due to Lotz [24]. Then, we
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remark an interesting corollary: The result is also true in the case of certain families of bounded
operators (called α-resolvent families) that play a central and decisive role in the development
of qualitative properties for solutions to fractional partial differential equations. In Section 5,
we characterize those (a, k)-regularized resolvent families which have the property of being near
k(t) times the identity (i.e., R(t)− k(t)I is compact for some positive value of t). First results
on such property are due to Cuthbert [9], Henŕıquez [14], Lutz [25] and the first author of this
paper [20]. It turns out that this property is equivalent to the compactness of the generator.
This equivalence is proved in Theorem 5.1. Finally, Section 6 is concerned with an important
characterization of uniform continuity (t > 0) in case of Hilbert spaces. See Theorem 6.7. This
characterization constitutes a remarkable and non trivial extension of previous results (see [21]
and [32]) and will be useful in establish practical criteria on the e.g. compactness of (a, k)-
regularized families of operators in general, and their specialization in different cases of interest,
in particular. An example of this assertion is given in Corollary 6.8 and further applications are
indicated in Remark 6.9.

2. Preliminaries

Let X be a Banach space, A be a closed linear operator with domain D(A) densely defined
on X.

Definition 2.1. Let k ∈ C(R+), k ̸= 0 and a ∈ L1
loc(R+), a ̸= 0 be given. A strongly contin-

uous family {R(t)}t≥0 ⊂ B(X) is called (a, k)-regularized resolvent family on X having A as a
generator if the following properties hold:

(i) R(0) = k(0)I;
(ii) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0;

(iii) R(t)x = k(t)x+

∫ t

0
a(t− s)AR(s)x ds, t ≥ 0, x ∈ D(A).

It is well-known that if an (a, k)-regularized resolvent family exists, then it is unique [22]. Let
{R(t)}t≥0 be an (a, k)-regularized resolvent family with generator A such that

(2.1) ∥R(t)∥ ≤ Mk(t), t ≥ 0,

for some constant M > 0. Then, under certain hypothesis on the kernels a and k (see [23,
Section 2] and references therein) we have

D(A) = {x ∈ X : lim
t→0+

R(t)x− k(t)x

(a ∗ k)(t)
exists },

and

(2.2) Ax = lim
t→0+

R(t)x− k(t)x

(a ∗ k)(t)
.

Here we denote (a ∗ k)(t) :=
∫ t
0k(t− s)a(s) ds the finite convolution between a and k. We note

that there is a one-to-one correspondence between (a, k)-regularized resolvent families and their
generators.

We say that {R(t)}t≥0 is exponentially bounded (or, of type (M,ω)) if there exists constants
M ≥ 0 and ω ∈ R such that

∥R(t)∥ ≤ Meωt for all t ≥ 0.
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For exponentially bounded (a, k)-regularized resolvent families is well known the following char-
acterization.

Theorem 2.2. [19] Let X be a Banach space. The following assertions are equivalent:

(i) A is the generator of an (a, k)-regularized resolvent family of type (M,ω);
(ii) For all λ > ω, the resolvent set ρ(A) contains the set { 1

â(λ) : λ > ω} and

k̂(λ)
(
I − â(λ)A

)−1
x =

∫ ∞

0
e−λtR(t)xdt, x ∈ X, λ > ω.

Here, without loss of generality, we are assuming that a and k are Laplace transformable for
λ > ω.

We recall that a Banach space X is called a Grothendieck space if every weak∗ convergent
sequence in X ′ converges weakly, where X ′ denotes the dual space of X.

Definition 2.3. A Banach space X is said to have the Dunford-Pettis property if for all sequence
{xn}n≥0 in X such that xn → 0 weakly in X and x′n → 0 in X ′ then ⟨xn, x′n⟩ → 0.

For example, the spaces L∞(X,Ω, µ) where (X,Ω, µ) is a positive measure space, and C(X)
(whereX is a compact σ−Stonian space) are examples of Grothendieck spaces with the Dunford-
Pettis property. Recall that X is Stonian if the closure of every open set is open, and it is
σ-Stonian if the closure of every open Fσ-set is open. On the other hand, a Banach space E
is injective if for every Banach space X and every subspace Y of X, each operator T : Y → E
admits an extension T̂ : X → E. Every injective Banach space is a Grothendieck space with the
Dunford-Pettis property. Finally, a reflexive space does not have the Dunford-Pettis property,
unless the space is finite dimensional.

Definition 2.4. [27] Let a ∈ L1
loc(R+) be Laplace transformable and n ∈ N. The kernel a(t) is

called n-regular if there is a constant c > 0 such that

|λmâ(m)(λ)| ≤ c|â(λ)|,
for all Re(λ) > 0 and 0 ≤ m ≤ n.

We finally recall the following result due to Lotz [24].

Theorem 2.5. [24, Theorem 10] Let E be a Grothendieck space with the Dunford-Pettis property
and let (Tn) ⊂ B(E) with limn→∞ ∥Tm(Tn−I)∥ → 0 for all m ∈ N. If (Tn) tends to the identity in
the strong operator topology, then limn→∞ ∥Tn−I∥ → 0. If, in addition, limn→∞ ∥(Tn−I)Tm∥ →
0 for every m ∈ N, in particular, if all operators Tn commute, then suffices to assume that (Tn)
converges to the identity in the weak operator topology.

3. Uniformly continuous (a, k)-regularized resolvent families

Let X be a complex Banach space. We recall that a strongly continuous family of bounded
and linear operators {S(t)}t≥0 ⊂ B(X) is said to be uniformly continuous if

(3.1) ∥S(t)− S(s)∥B(X) → 0 as t → s,

holds for all s ≥ 0. This property is also called norm-continuity for some authors [7], [10] [12],
[26], but also it sometimes refers to the case that (3.1) holds for all s > 0. To distinguish between
both cases, some authors say that {S(t)}t≥0 is immediate norm continuous when refers to the
continuity of {S(t)}t≥0 in the uniform operator topology for s > 0.
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Our first result is probably not surprising, but we do not find a formal proof of this in the
existing literature.

Theorem 3.1. Let {R(t)}t≥0 be a uniformly continuous (a, k)-regularized resolvent family with
generator A. Assume that a and k are exponentially bounded functions and a is positive. Then
A must be a bounded operator and

(3.2) R(t) = k(t) +

∞∑
n=1

An(a∗n ∗ k)(t), t ≥ 0.

Proof. We may assume that a(t) ≤ Meλt and |k(t)| ≤ Meλt for the same constants M > 0 and
λ > 0. Denote eλ(t) = eλt, t ≥ 0 and observe that

e∗nλ (t) =
tn−1

(n− 1)!
eλ(t), t ≥ 0, n = 2, 3, ...

Hence |(a∗n ∗ k)(t)| ≤ Mn+1 tn

n! eλ(t) for all t ≥ 0, n ∈ N, and we have

∞∑
n=1

∥An(a∗n ∗ k)(t)∥ ≤
∞∑
n=1

∥A∥n|(a∗n ∗ k)(t)| ≤ M
∞∑
n=1

∥A∥nMn t
n

n!
eλ(t) = Me∥A∥Mteλ(t).

This proves that the series in the right hand side of (3.2) converges. Define

S(t) := k(t) +

∞∑
n=1

An(a∗n ∗ k)(t) t ≥ 0.

We will show that S(t) = k(t) +A(a ∗ S)(t). Indeed, we have

A(a ∗ S)(t) = A
(
a ∗ [k +

∞∑
n=1

An(a∗n ∗ k)]
)
(t)

= A
(
(a ∗ k)(t) +

∞∑
n=1

An(a∗n+1 ∗ k)
)
(t)]

= A(a ∗ k)(t) +
∞∑
n=1

An+1(a∗n+1 ∗ k)(t)

=

∞∑
n=1

An(a∗n ∗ k)(t) = S(t)− k(t),

for all t ≥ 0. This proves the claim. Now, by uniqueness, we conclude that S(t) = R(t). It
proves the representation (3.2).

Let t > 0 be fixed and define

f(t) :=
1

(1 ∗ a)(t)
(a ∗R)(t) =

1

(1 ∗ a)(t)

∫ t

0
a(t− s)R(s) ds.
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Because {R(t)}t≥0 is an uniformly continuous family, there exist δ > 0 such that for 0 < s < δ
we have ∥R(s)− k(0)I∥ < 1. Let τ ∈ (0, δ) be fixed. Then

∥f(τ)− I∥ =

∥∥∥∥ 1

(1 ∗ a)(τ)

∫ τ

0
a(τ − s)R(s) ds− k(0)I

∥∥∥∥
=

∥∥∥∥ 1

(1 ∗ a)(τ)

∫ τ

0
a(τ − s)(R(s)− k(0)) ds

∥∥∥∥
≤ 1

(1 ∗ a)(τ)

∫ τ

0
a(τ − s) ∥R(s)− k(0)∥ ds

<
1

(1 ∗ a)(τ)

∫ τ

0
a(τ − s) ds = 1,

where we have used that a is positive. Therefore, f(τ) is invertible on X. Let x ∈ X be fixed.
There exists y ∈ X such that x = f(τ)y. But, according to [19, Lemma 2.2] for y ∈ X we have

f(τ)y =
1

(1 ∗ a)(τ)

∫ τ

0
a(τ − s)R(s)y ds ∈ D(A).

Then D(A) = X which implies that A is a bounded operator. �

The following characterization is new in the context of (a, k)-regularized resolvent families
with k ̸= 1.

Theorem 3.2. Let {R(t)}t≥0 be an strongly continuous (a, k)-regularized resolvent family with
generator A. Assume that a and k are exponentially bounded, a is positive and k ∈ C1(R). The
following assertions are equivalent:

(i) {R(t)}t≥0 is uniformly continuous;
(ii) A is a bounded operator.

Proof. Suppose that A is a bounded operator. In order to see that the resolvent family R(t) is
uniformly continuous, we take 0 < t < s and observe that

∥R(t)−R(s)∥ =

∥∥∥∥∥k(t) +
∞∑
n=1

An(a∗n ∗ k)(t)− k(s)−
∞∑
n=1

An(a∗n ∗ k)(s)

∥∥∥∥∥
≤ ∥k(t)− k(s)∥+

∥∥∥∥∥
∞∑
n=1

An(a∗n ∗ k)(t)−
∞∑
n=1

An(a∗n ∗ k)(s)

∥∥∥∥∥
≤ ∥k(t)− k(s)∥+

∞∑
n=1

∥A∥n|(a∗n ∗ k)(t)− (a∗n ∗ k)(s)|.
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Since k ∈ C1(R), there exists p ∈ C(R) such that k(t) =
∫ t
0p(r) dr = (p ∗ 1)(t). Hence,

∥R(t)−R(s)∥ ≤ ∥k(t)− k(s)∥+
∞∑
n=1

∥A∥n
∣∣(a∗n ∗ (p ∗ 1)

)
(s)−

(
a∗n ∗ (p ∗ 1)

)
(t)

∣∣
≤ ∥k(t)− k(s)∥+

∞∑
n=1

∥A∥n
∣∣∣∣∫ s

t
(a∗n ∗ p)(v) dv

∣∣∣∣
≤ ∥k(t)− k(s)∥+ |t− s|

∞∑
n=1

∥A∥n sup
t≤v≤s

|(a∗n ∗ p)(v)|

≤ ∥k(t)− k(s)∥+ |t− s|
∞∑
n=1

∥A∥n sup
t≤v≤s

∣∣∣∣∫ v

0
a∗n(τ)p(v − τ) dτ

∣∣∣∣ .
Note that |a∗n(τ)| ≤ Mnτn−1

(n− 1)!
for 0 ≤ τ ≤ s, where M := sup

0≤τ≤s
|a(τ)|. Indeed,

|a∗n(τ)| ≤
∫ τ

0
|a∗n−1(u)a(τ − u)| du ≤

∫ τ

0

Mn−1un−2

(n− 2)!
·M du ≤ Mnτn−1

(n− 1)!
.

Hence, we obtain

∥R(t)−R(s)∥ ≤ ∥k(t)− k(s)∥+ |t− s|
∞∑
n=1

∥A∥nMnsn−1

(n− 1)!
sup

t≤v≤s

∣∣∣∣∫ v

0
p(v − τ) dτ

∣∣∣∣
≤ ∥k(t)− k(s)∥+ |t− s|

∞∑
n=0

(∥A∥M)n+1sn

n!
sup

t≤v≤s
|k(v)|

≤ ∥k(t)− k(s)∥+ |t− s|∥A∥M
∞∑
n=0

(∥A∥Ms)n

n!
sup

t≤v≤s
|k(v)|

≤ ∥k(t)− k(s)∥+ |t− s| · sup
t≤v≤s

|k(v)| · ∥A∥M · e∥A∥Ms,

so we can conclude that lim
t→s

∥R(t)−R(s)∥ = 0. This proves the theorem. �

4. (a, k)-regularized resolvent families on L∞ and Similar Spaces

In this section we will assume that a and k are exponentially bounded and hence Laplace
transformable. Moreover, we suppose that k̂(λ) ̸= 0 and â(λ) ̸= 0 for all λ sufficiently large. We
prove the following Theorem, which shows that in certain classes of Banach spaces the uniform
continuity for (a, k)-regularized resolvent families is automatic. This generalizes previous results
of Lotz [24], the first author [20] and also provides new results for other classes of families. See
the corollaries below.

Theorem 4.1. Let X be a Grothendieck space with the Dunford-Pettis property. Suppose that
A generates an exponentially bounded (a, k)-regularized resolvent family {R(t)}t≥0 on X. Then
{R(t)}t≥0 is uniformly continuous on X.
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Proof. By hypothesis, we have that 1
â(λ) ∈ ρ(A), the resolvent set of A, for all λ sufficiently large,

say λ > ω0. Define T (λ) := (I− â(λ)A)−1 for all λ > ω0. Observe that limλ→∞ |â(λ)| = 0 implies
limλ→∞(I − â(λ)A)−1x = x for all x ∈ X. Therefore, according to the uniform boundedness
principle, we obtain that there exists M0 > 0 such that for all λ > ω0 we have ∥T (λ)∥ ≤ M0.
Hence from the identity

â(µ)(T (λ)− T (µ)) = T (λ)(T (µ)− I)(â(λ)− â(µ)),

we obtain

∥â(λ)T (λ)(T (µ)− I)∥ ≤ ∥â(µ)T (λ)(T (µ)− I)∥+ ∥â(µ)(T (λ)− T (µ))∥
≤ |â(µ)| ·

(
∥T (λ)(T (µ)− I)∥+ ∥(T (λ)− T (µ))∥

)
≤ |â(µ)| ·

(
∥T (λ)∥∥T (µ)∥+ 2∥T (λ)∥+ ∥T (µ)∥

)
≤ |â(µ)|(M2

0 + 3M0).

Therefore

∥T (λ)(T (µ)− I)∥ ≤ |â(µ)|
|â(λ)|

(M2
0 + 3M0),

and we obtain

lim
µ→∞

∥T (λ)(T (µ)− I)∥ = 0, for all λ > ω0.

From Theorem 2.5, this implies that there exists λ2 > ω0 such that T (λ2) is invertible on X,
that is, T (λ2)

−1 ∈ B(X). Therefore, A is a bounded operator and, by Theorem 3.2, we conclude
that the family {R(t)}t≥0 is uniformly continuous. �

In case a(t) = k(t) = 1 we recover the following result due to Lotz [24].

Corollary 4.2. Let X be a Grothendieck space with the Dunford-Pettis property. Then every
strongly continuous one-parameter semigroup of operators on X is uniformly continuous.

In case k(t) = 1 and a(t) a Laplace transformable kernel, we recover [20, Theorem 3.2].

Corollary 4.3. Let X be a Grothendieck space with the Dunford-Pettis property. Then every
strongly continuous resolvent family of operators on X is uniformly continuous.

Now, we consider for α > 0 the function a(t) = tα−1/Γ(α) defined for t > 0, where Γ(·)
denotes the Gamma function. The Laplace transform is â(λ) = λ−α. Consider the fractional
abstract Cauchy problem

(4.1) Dα
t u(t) = Au(t), 0 < α ≤ 1,

with initial condition u(0) = u0 where A is a closed and linear operator defined on a Banach

space X, and Dα
t denotes the Caputo fractional derivative. Recall that if A generates a ( t

α−1

Γ(α) ,1)-

resolvent family {Sα(t)}t≥0, then the solution of (4.1) is given by u(t) = Sα(t)u0 whenever
u0 ∈ D(A). An analogous result holds for α > 1, see [4].

Corollary 4.4. Let X be a Grothendieck space with the Dunford-Pettis property. Let α > 0 and

suppose that A generates an exponentially bounded ( t
α−1

Γ(α) , 1)-resolvent family {Sα(t)}t≥0 on X.

Then {Sα(t)}t≥0 is uniformly continuous on X.
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5. (a, k)-regularized resolvent families with compact generator

In section 3, it was proved that if an operator A is bounded, then the (a, k)-resolvent family
generated by A is given by

R(t) = k(t)I +
∞∑
n=1

An(a∗n ∗ k)(t), t > 0.

In this section, we develop some aspects of (a, k)-regularized resolvent families of bounded
linear operators on a Banach space which have the property of being near k(t) times the identity
(i.e., R(t) − k(t)I is compact for some positive value of t). First results on such property are
due to Cuthbert [9], Henŕıquez [14], Lutz [25] and Lizama [20].

The following result generalizes all the above mentioned papers.

Theorem 5.1. Let {R(t)}t≥0 be an strongly continuous (a, k)-resolvent family of type (M,ω)
with generator A. Then the following assertions are equivalent:

(i) R(t)− k(t)I is compact for all t > 0.
(ii) A is a compact operator.

Proof. Suppose that A is compact. Since the set of compact operators is a closed subspace of
B(X), we have by (3.2) that

R(t)− k(t)I =
∞∑
n=1

k(s)∗nAn = lim
N→∞

N∑
n=1

k(s)∗nAn,

and hence R(t)− k(t)I is a compact operator.
Conversely, suppose that R(t) − k(t)I is compact for all t > 0. According to the hypothesis

we have that for all Re(λ) > ω the operator (I − â(λ)A) is invertible and∫ ∞

0
e−λtR(t) dt = R̂(λ) = k̂(λ)(I − â(λ)A)−1

for Re(λ) > ω. For x ∈ X, define H(λ)x := k̂(λ)(I − â(λ)A)−1x. We have

λH(λ)x− λk̂(λ)x =

∫ ∞

0
λe−λtR(t)x dt− λk̂(λ)x

=

∫ ∞

0
λe−λtR(t)x dt−

∫ ∞

0
λe−λtk(t)x dt

=

∫ ∞

0
λe−λt(R(t)− k(t))x dt.

Hence by [31, Corollary 2.3], we obtain that λH(λ)x− λk̂(λ)x is a compact operator. From the
identity

λH(λ)x− λk̂(λ) = −λk̂(λ)

(
I − H(λ)

k̂(λ)

)
,

we obtain that
(
I − H(λ)

k̂(λ)

)
is a compact operator, and this implies that Ran

(H(λ)

k̂(λ)

)
is closed. On

the other hand, Ran
(H(λ)

k̂(λ)

)
= D(A) is dense on X. Therefore D(A) = D(A) = X concluding
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that A is a bounded operator. Next, we observe that the following identity holds

A =
(
λH(λ)x− λk̂(λ)I

)(I − â(λ)A)

λk̂(λ)â(λ)
,

and this implies that A is a compact operator. The proof is complete. �

6. A characterization of immediate norm continuity in Hilbert spaces.

Since reflexive spaces do not have the Dunford-Pettis property, we can not apply Theorem 4.1
to characterize the uniform continuity for t > 0 of (a, k)-regularized resolvent families in general
Banach spaces. Of course, in this case the generator A is not necessarily bounded. This is one of
the reasons why a characterization only in terms of the generator is desirable but unfortunately
difficult to obtain in general Banach spaces. However, we can obtain a positive result extending
an important result due to O. El Mennaoui and K.-J. Engel [10] valid for the case a ≡ k ≡ 1
to the case of (a, k)-regularized resolvent families in Hilbert spaces (see also [21] for the case of
resolvent families)

Let A be a closed operator with domain D(A) densely defined, a ∈ L1
loc(R+) and k ∈ C(R+).

Moreover, suppose a, k are 2-regular kernels.

Definition 6.1. Let k ∈ L1
loc(R+) be Laplace transformable. We say that k is an admissible

kernel if there exists limλ→iρk̂(λ) = k̂(iρ) for all |ρ| ≥ 1 and satisfies the following condition

(H) there exists a constant M > 0 such that

1

|ρ k̂(iρ)|
≤ M

for all |ρ| ≥ 1.

Example 6.2. For instance, the function k(t) = tα−1

Γ(α) is an admissible kernel for 0 < α ≤ 1, but

fails to be admissible for α > 1. Moreover, is easy to check that k(t) is 2-regular (see Definition
2.4).

To prove our main result in this section, we need the following lemmata. The first Lemma,
corresponds to a general result for strongly continuous families of bounded operators.

Lemma 6.3. Let {R(t)}t≥0 be a strongly continuous family of type (M,σ) defined in a Hilbert

space H. Then for any x ∈ H and ω > σ, ∥R̂(ω + iu)x∥ and ∥R̂(ω + iu)∗x∥ are in L2(R,H),
viewed as functions of u ∈ R.

Proof. Without loss of generality, we can suppose that σ ≥ 0. Let ω > σ be given and define
R1(t) := e−ωtR(t). Then ∥R1(t)∥ ≤ Me−(ω−σ)t for t ≥ 0. Let x ∈ H be fixed, and note that
χ[0,∞)(·)R1(·)x is in L2(R,H), where χ[0,∞)(·) denotes the characteristic function. In fact, we
have

∥χ[0,∞)(·)R1(·)x∥22 ≤
∫ ∞

0
∥Me−(ω−σ)tx∥2 dt ≤ M2∥x∥2

2(ω − σ)
.(6.1)

On the other hand, because {R(t)}t≥0 is an exponentially bounded family of type (M,σ), its

Laplace transform R̂(λ) is well-defined for all Re(λ) > σ and is holomorphic there. Hence, we
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have for all x ∈ H and s ∈ R

R̂(ω + is)x =

∫ ∞

0
e−(ω+is)tR(t)x dt =

∫ ∞

0
e−istR1(t)x dt

=

∫ ∞

−∞
e−istχ[0,∞)(t)R1(t)x dt = F

(
χ[0,∞)(·)R1(·)

)
(s).

It follows from (6.1) and the Plancherel theorem that R̂(ω+ i(·))x ∈ L2(R,H). Analogously, we

can prove that R̂(ω + i(·))∗x ∈ L2(R,H). This proves the Lemma. �

Lemma 6.4. Let a, k ∈ L1
loc(R+) be Laplace transformable and A be a closed linear operator

defined on a Banach space X. Assume that H(λ) := k̂(λ)(I− â(λ)A)−1 exists for all Re(λ) > ω.
Then there are functions fi(λ), i = 1, 2 and hj(λ), j = 1, 2, 3 such that

(1) H ′(λ) = f1(λ)H(λ) + f2(λ)H(λ)2,
(2) H ′′(λ) = h1(λ)H(λ) + h2(λ)H(λ)2 + h3(λ)H(λ)3

for all Re(λ) > ω.

Proof. A computation shows that for all Re(λ) > ω, we have

f1(λ) =
k̂′(λ)

k̂(λ)
− â′(λ)

â(λ)
, f2(λ) =

â′(λ)

k̂(λ)â(λ)
,(6.2)

and

h1(λ) =
k̂′′(λ)

k̂(λ)
− 2k̂′(λ)â′(λ)

k̂(λ)â(λ)
+

2â′(λ)2

â(λ)2
− â′′(λ)

â(λ)
,(6.3)

h2(λ) =
â′(λ)k̂′(λ)

k̂(λ)2â(λ)
− 4â′(λ)2

k̂(λ)â(λ)2
+

â′′(λ)

k̂(λ)â(λ)
,(6.4)

h3(λ) =
2â′(λ)2

k̂(λ)2â(λ)2
.(6.5)

�

Lemma 6.5. Let a, k ∈ L1
loc(R+) be Laplace transformable and 2-regular, and suppose that k is

an admissible kernel. Then, there exists a constant M > 0 such that

(1) |λf1(λ)| < M and |f2(λ)| < M for all Re(λ) > ω;
(2) sup

|τ |≥N
|h3(s+ iτ)| < M for all s > ω and N ≥ 1;

(3)

∫
|τ |≥N

|hj(s+ iτ)|j dτ < M for all s > ω and N ≥ 1, j = 1, 2.

Proof. Is a direct consequence of formulas (6.2) - (6.5). �

Lemma 6.6. [10] Let X be a Banach space and let R : [0,∞) → X be a function which is
continuous for t > 0. If there exist M > 0, ω ∈ R such that ∥R(t)∥ ≤ Meωt, then

lim
|µ|→∞

∥R̂(µ0 + iµ)∥ = 0

for every µ0 > ω.
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Our main result in this section is the following characterization. It extends the main result
in [21, Theorem 2.2] proved in the case k ≡ 1. See also [32] for the same characterization in case
of C0-semigroups, i.e. k ≡ 1 and a ≡ 1.

Theorem 6.7. Let A be a closed linear operator defined in a Hilbert space H with dense domain
D(A). Assume that A generates an strongly continuous (a, k)-regularized resolvent R(t) of type
(M,ω), with M > 0, ω ∈ R, a ∈ L1

loc(R+) and k ∈ C(R+) Laplace transformable. Assume
that a and k are 2-regular kernels, and that k is admissible. Then the following conditions are
equivalent:

(a) {R(t)}t≥0 is continuous in B(H) for t > 0,

(b) lim
|τ |→∞

||k̂(s+ iτ)
(
I − â(s+ iτ)A

)−1
|| = 0 for some s > ω.

Proof. (a) ⇒ (b). Follows from Lemma 6.6. (b) ⇒ (a). Let x ∈ H be fixed and µ > ω. Because

∥R(t)e−µtx∥ ≤ Me−(µ−ω)t∥x∥, the function t 7→ χ[0,∞)(t)R(t)e−µt is in L2(R,H) for all µ > ω
(compare the inequality (6.1)). Since H is a Hilbert space, by Plancherel theorem is well known
that the Fourier transform is an unitary operator on L2(R,H), thus we obtain

F
(
χ[0,∞)(·)R(·)e−µ·x

)
= R̂(µ+ iτ)x,

and hence

(6.6) R(t)e−µtx =
1

2π

∫ ∞

−∞
eiτtR̂(µ+ iτ)x dτ.

for t > 0 and each x ∈ H. Clearly, the resolvent R(t) is continuous in B(H) for t > 0 if and only
if R(t)e−µt is continuous in B(H) for t > 0. Next, note that for each x ∈ H we have

R̂(µ+ iτ)x = k̂(µ+ iτ)
(
I − â(µ+ iτ)A

)−1
x,

and observe that if |τ | → ∞, then we get â(µ+iτ) → 0 and k̂(µ+iτ) → 0, whence lim|τ |→∞ R̂(µ+
iτ)x = 0. Applying this to (6.6) and integrating by parts we have

R(t)e−µtx =
−1

2πt

∫ ∞

−∞
eiτtR̂′(µ+ iτ)x dτ.

for t > 0 and x ∈ H. Now, by Lemma 6.4 (1) and Lemma 6.5 (1) with H(λ) := R̂(λ) we also

have lim|τ |→∞ R̂′(µ+ iτ) = 0, whence, again integrating by parts, we get

(6.7) R(t)e−µtx =
1

2πt2

∫ ∞

−∞
eiτtR̂′′(µ+ iτ)x dτ, x ∈ H, t > 0.

Next we show that the operator family {t2R(t)e−µt}t>0 is continuous in B(H) for t > 0. Indeed,
formula (6.7) shows

∥t2R(t)e−µtx− s2R(s)e−µsx∥ =
1

π

∥∥∥∥ ∫ ∞

−∞
(eiτt − eiτs)R̂′′(µ+ iτ)x dτ

∥∥∥∥
≤ 1

π

∥∥∥∥ ∫
|τ |≥N

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ

∥∥∥∥+
1

π

∫
|τ |≤N

|eiτt − eiτs|∥R̂′′(µ+ iτ)x∥ dτ

=: I1(N) + I2(N).
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We estimate I1(N): Let ϵ > 0 and take x∗ ∈ H. Using Lemma 6.4 (2), and the Cauchy-Schwarz
and Hölder inequalities, we have

|⟨I1(N), x∗⟩| ≤ sup
|τ |≥N

∥R̂(µ+ iτ)∥ ·
(∫

|τ |≥N
|h1(µ+ iτ)| dτ · ∥x∥∥x∗∥

+
(∫

|τ |≥N
∥R̂(µ+ iτ)x∥2 dτ

)1/2(∫
|τ |≥N

∥h2(µ+ iτ)x∗∥2 dτ
)1/2

+ sup
|τ |≥N

∥h3(µ+ iτ)∥ ·

(∫
|τ |≥N

∥R̂(µ+ iτ)x∥2 dτ
)1/2(∫

|τ |≥N
∥R̂(µ+ iτ)∗x∗∥2 dτ

)1/2
)

Next, by the Plancherel Theorem for the Hilbert space valued Fourier transform, and Lemma
6.5 items (2) and (3), we get

|⟨I1(N), x∗⟩| ≤ sup
|τ |≥N

∥R̂(µ+ iτ)∥
(
M · ∥x∥∥x∗∥+

(
2π

∫ ∞

0
∥e−µtR(t)x∥2 dt

)1/2
M∥x∗∥

+M ·
(
2π

∫ ∞

0
∥e−µtR(t)x∥2 dt

)1/2(
2π

∫ ∞

0
∥e−µtR(t)∗x∗∥2 dt

)1/2
)

Since (R(t))t≥0 is of type (M,ω), we have that the families {e−µtR(t)}t>0 and {e−µtR(t)∗}t>0

are exponentially bounded of type (M,ω − µ), and that there exists a positive constant C > 0
such that ∫ ∞

0
∥e−µtR(t)x∥2 dt ≤ C2∥x∥,

∫ ∞

0
∥e−µtR(t)∗x∗∥2 dt ≤ C2∥x∥.

Combining the above with the Hahn - Banach Theorem, we obtain the existence of a constant
K > 0 such that

I1(N) = sup
∥x∗∥≤1

|⟨
∫
|τ |≥N

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ, x∗⟩|

≤ K · sup
|τ |≥N

∥R̂(µ+ iτ)∥∥x∥.

Since lim|τ |→∞ ∥R̂(µ+ iτ)∥ = 0, there exists N > 0 such that

K · sup
|τ |≥N

∥R̂(µ+ iτ)∥ < ϵ

which yields the estimate I1(N) < ϵ∥x∥ for each x ∈ H.
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For estimate I2(N), we observe that |eiα − 1|2 = 4 sin2(α/2), α ∈ R. Therefore, for the above
fixed N we have

I2(N) =

∫
|τ |≤N

|eiτt − eiτs|∥R̂′′(µ+ iτ)x∥ dτ

≤
(∫

|τ |≤N
|eiτ(t−s) − 1|2 dτ

)1/2(∫
|τ |≤N

∥R̂′′(µ+ iτ)x∥2 dτ
)1/2

=
(
4

∫
|τ |≤N

∣∣∣ sin2 ((s− t)τ

2

)∣∣∣)1/2(∫
|τ |≤N

∥R̂′′(µ+ iτ)x∥2 dτ
)1/2

≤
(∫

|τ |≤N
|τ |2|s− t|2 dτ

)1/2(∫
|τ |≤N

∥R̂′′(µ+ iτ)x∥2 dτ
)1/2

≤ |s− t|
(2N3

3

)1/2(∫
|τ |≤N

∥R̂′′(µ+ iτ)x∥2 dτ
)1/2

.

Since R̂′′(µ + iτ) is a continuous function and the integral is defined over a compact subset of

R, there exists a constant C ′ > 0 such that ∥R̂′′(µ+ iτ)x∥ ≤ C ′∥x∥; this implies

I2(N) ≤ |s− t|
(2N3

3

)1/2
· (2N)1/2C ′∥x∥ ≤ |s− t|K ′N2∥x∥.

Using these estimates for I1(N), I2(N), yields

||t2R(t)e−µt − s2R(s)e−µs|| < 2ϵ,

for all |s− t| < δ. This completes the proof. �

We finish this paper with a direct application to results of Fan [11].

Corollary 6.8. Let A be a closed linear operator defined in a Hilbert space H with dense
domain D(A). Assume that A generates an α-regularized resolvent Sα(t) of type (M,ω) for
some 0 < α < 1 and suppose lim

|τ |→∞
∥(s + iτ)α−1((s + iτ)α − A)−1∥ = 0 for some s > ω. Then

Sα(t) is compact for t > 0 if and only if (λα −A)−1 is compact for all λα ∈ ρ(A).

Remark 6.9. In a Hilbert space, all the results on Section 4 of Fan’s paper [11] remain true
when the hypothesis on the given operator A, as generator of an analytic compact α-regularized
resolvent (0 < α < 1), is replaced by

lim
|τ |→∞

∥(s+ iτ)α−1((s+ iτ)α −A)−1∥ = 0 for some s > ω.

Remark 6.10. In case a ≡ k ≡ 1, it is known that the characterization obtained in Theorem 6.7
cannot be extended to Banach spaces. See [7] and [26], for instance. However, we can naturally
ask: There exists a class of kernels (a, k) ̸= (1, 1) where this characterization remains true in
general Banach spaces?.
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UNIFORM CONTINUITY 15

[3] W. Arendt and H. Kellermann. Integrated solutions of Volterra integrodifferential equations and applications.
Volterra Integrodifferential Equations in Banach Spaces and Applications, Proc. Trento 1987, G. Da Prato,
M. Iannelli eds., Pitman Res. Notes Math. 190, Longman, Harlow (1989), 21–51.

[4] E.G. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3 (3)
(2000), 213–230.

[5] M. Benchohra, S. Litimein, J.J. Trujillo and M.P. Velasco, Abstract fractional integro-differential equations
with state-dependent delay, Int. J. Evol. Equ. 6 (2012), 25–38.

[6] J.H. Chen, T.J. Xiao, J. Liang, Uniform exponential stability of solutions to abstract Volterra equations. J.
Evol. Equ. 9 (2009), 661–674.

[7] R. Chill, Y. Tomilov, Operators L1(R+) → X and the norm continuity problem for semigroups. J. Funct.
Anal. 256 (2) (2009), 352–384.

[8] I. Cioranescu, G. Lumer On K(t)-convoluted semigroups. Recent Developments in Evolution Equations,
Pitman Res. Notes Math. Ser., Glasgow, 1994, vol. 324, Longman Sci. Tech., Harlow (1995), pp. 86–93.

[9] J.R. Cuthbert, On semi-groups such that Tt − I is compact for some t > 0. Z. Wahrscheinlichkeitstheorie
und Verw. Gebiete 18 (1971) 9–16.

[10] O. El-Mennaoui, K.-J. Engel, On the characterization of eventually norm continuous semigroups in Hilbert
spaces, Arch. Math. 63 (1994), 437-440.

[11] Z. Fan, Characterization of compactness for resolvents and its applications. Appl. Math. Comp. 232 (2014),
60–67.

[12] V. Goersmeyer, L. Weis, Norm continuity of C0-semigroups, Studia Math. 134 (1999), no. 2, 169-178.
[13] S. Hadd, H. Nounou and M. Nounou, Eventual norm continuity for neutral semigroups on Banach spaces. J.

Math. Anal. Appl. 375 (2) (2011), 543–552.
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Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile,
Casilla 307-Correo 2, Santiago-Chile, Chile.

E-mail address: carlos.lizama@usach.cl

Universidad de Talca, Instituto de Matemática y F́ısica, Casilla 747, Talca-Chile.
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