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Abstract. We study and characterize the compactness of resolvent families of operators as-
sociated to fractional differential equations. We show an application in the study of existence
of mild solutions for a class of semilinear fractional differential equations with non-local initial
conditions.

1. Introduction

Of concern in this paper is a remarkable class of families of bounded and linear operators
which have proved to be useful in the study of abstract models for Partial Differential Equations
describing anomalous diffusion. We mean here compact fractional resolvent operator functions.
A fractional resolvent operator function endows the solution operator, defined by the nonhomo-
geneous equation

(1.1) Dα
t u(t) = Au(t) + f(t, u(t)), 0 < α ≤ 2,

by means of the variation of constants formula, with the compactness property, comparable with
the finite-dimensional counterpart.

For α = 1, the well known criteria for compactness of C0-semigroups (see e.g. [17, Theorem
3.3, Chapter 2]), assert that a C0-semigroup {T (t)}t≥0 generated by A is compact (for t > 0)
if and only if T (t) is continuous in the uniform operator topology for t > 0 and the resolvent
operator (λ − A)−1 is compact for all λ ∈ ρ(A), the resolvent set of A. This criteria has great
importance in the study of existence of mild solutions for (1.1), because arguments to solve (1.1)
using fixed points Theorems of Schauder’s type can be applied.

In case α = 2 we find a similar situation assuming that A is the generator of a strongly
continuous sine family {S(t)}t≥0. In this case, the compactness criteria of sine family (see [22]),
asserts that a sine family S(t) is compact for all t > 0, if and only if the resolvent operator
(λ2 −A)−1 is compact for every λ ∈ ρ(A). Observe that, in infinite dimensional Banach spaces,
a cosine family {C(t)}t≥0 cannot be compact.

In the last decade, the fractional differential equation (1.1) where the fractional derivative
is understood in the Caputo sense, has been extensively studied. Equations with memory, of
type (1.1) are of interest in connection with several applications in Physics and Viscoelasticity
theory (see [18, 21] and references therein). The solution to equation (1.1) in case 0 < α < 1 is
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essentially given by

u(t) = Sα(t)u(0) +

∫ t

0
Sα(t− s)f(s, u(s))ds,(1.2)

where {Sα(t)}t≥0 is the (α, 1)-resolvent family generated by A. Several properties of {Sα(t)}t≥0

have been studied in [4, 11, 12] among others. The compactness of {Sα(t)}t>0 was first studied
by subordination methods, i.e. A is supposed to be a generator of a compact semigroup, and
then compactness of the family {Sα(t)}t>0 is obtained, see Prüss [20, Corollary 2]. After that,
Wang, Chen and Xiao [23], assuming that A is an almost sectorial operator and (λα − A)−1

is compact, proved that the family {Sα(t)}t>0 is continuous in the uniform operator topology
for t > 0 [23, Theorem 3.2] and compact [23, Theorem 3.5]. The method relies in the use of
functional calculus. Very recently, and under the hypothesis continuity in the uniform operator
topology for t > 0, Fan [7] found that the compactness of the resolvent operator (λα − A)−1

is necessary and sufficient for compactness of {Sα(t)}t>0. The proof follows a direct method
having in mind the case α = 1. However, the necessary condition has a mistake in their proof
(see Remark 3.6 below), and therefore the problem of characterization of compactness remains
open. The objective of this paper is to provide a completely new approach to Fan’s result, and
to provide a complete characterization in the complementary case 1 < α ≤ 2 for the associated
family Rα(t) = (gα−1∗Sα)(t) that corresponds to the fractional counterpart of the sine functions
for α = 2 and that has not been studied previously in the literature. We finish this paper with
a new application to semilinear fractional abstract equations with nonlocal initial conditions.

2. Preliminaries

Let X be a complex Banach space and denote by L1
loc(R+, X) the Banach space of all

locally (Bochner) integrable vector-valued functions. The Laplace transform of a function
f ∈ L1

loc(R+, X) is defined by

f̂(λ) :=

∫ ∞

0
e−λtf(t)dt, Reλ > ω,

whenever the integral is absolutely convergent for Reλ > ω. We denote by B(X) the space of
bounded linear operators from X into X.

The Caputo fractional derivative of order α > 0 is defined by

Dα
t f(t) := (gm−α ∗ f (m))(t) :=

∫ t

0
gm−α(t− s)f (m)(s)ds,

where m is the smallest integer greater that or equal to α, and for β > 0

gβ(t) =
tβ−1

Γ(β)
, t > 0,

where Γ(·) denotes the Gamma function.
Applying the properties of the Laplace transform, an easy computation shows that for 0 <

α < 1,

D̂α
t f(λ) = λαf̂(λ)− λα−1f(0).

For details in fractional calculus, we refer the reader to [9, 10, 16]. The following definition
was first introduced in [3] although implicitly in [21] and [13].
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Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X and α > 0. We call A the generator of an (α, 1)− resolvent family if there exist ω ≥ 0
and a strongly continuous function Sα : R+ → B(X) such that {λα : Reλ > ω} ⊆ ρ(A) and

λα−1(λα −A)−1x =

∫ ∞

0
e−λtSα(t)xdt, Reλ > ω, x ∈ X.

In this case the family {Sα(t)}t≥0 is called an (α, 1)-resolvent family generated by A.

The next definition was introduced in [1] after previous work in [3].

Definition 2.2. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X and 1 ≤ α ≤ 2. We call A the generator of an (α, α)-resolvent family if there exist
ω ≥ 0 and a strongly continuous function Rα : R+ → B(X) such that {λα : Reλ > ω} ⊆ ρ(A)
and

(λα −A)−1x =

∫ ∞

0
e−λtRα(t)xdt, Reλ > ω, x ∈ X.

In this case the family {Rα(t)}t≥0 is called an (α, α)-resolvent family generated by A.

Because of the uniqueness of the Laplace transform, a (1, 0)-times resolvent family is the
same as a C0-semigroup, a (2, 1)-resolvent family corresponds to the concept of sine family and
a (2, 0)-resolvent family is a cosine family, see [2].

Remark 2.3. If A is the generator of an (α, 1)-resolvent family {Sα(t)}t≥0 then by [13, Proposi-
tion 3.1 and Lemma 2.2] we have that the family {Sα(t)}t≥0 verifies the following properties:

S1) Sα(t) is strongly continuous for t ≥ 0 and Sα(0) = I;
S2) Sα(t)A ⊂ ASα(t) for t ≥ 0;
S3) for x ∈ D(A), the resolvent equation

Sα(t)x = x+

∫ t

0
gα(t− s)Sα(s)Axds

holds for all t ≥ 0.
Similarly, an (α, α)-resolvent family {Rα(t)}t≥0 verifies:

R1) Rα(t) is strongly continuous for t ≥ 0 and Rα(0) = gα(0);
R2) Rα(t)A ⊂ ARα(t) for t ≥ 0;
R3) for x ∈ D(A), the resolvent equation

Rα(t)x = gα(t)x+

∫ t

0
gα(t− s)Rα(s)Axds

holds for all t ≥ 0.

Finally, we recall that a strongly continuous family {T (t)}t≥0 ⊆ B(X) is said to be of type
(M,ω) or exponentially bounded if there exist constants M > 0 and ω ∈ R, such that ∥T (t)∥ ≤
Meωt for all t ≥ 0.

3. A characterization

The next Theorem, was proved recently in [7, Theorem 3.6]. Unfortunately the proof in
[7] does not allow to obtain that the compactness of the resolvent (λα − A)−1 implies the
compactness of the (α, 1)-resolvent family {Sα(t)}t>0, because there is a logical mistake in the
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proof (see Remark 3.6 below). Here we prove, by a completely different method, the desired
characterization.

Our method of proof relies in two main ingredients. The first of them is a Theorem due to
Weis [24] that asserts - roughly speaking - that the integral of a family of compact operators
is a compact operator. The second ingredient is a Theorem due to Hasse [8] that gives direct
inversion of the Laplace transform for one-parameter families of operators, when the family is
regularized by finite convolution with a locally integrable kernel.

Theorem 3.4. Let 0 < α ≤ 1 and {Sα(t)}t≥0 be an (α, 1)-resolvent family of type (M,ω)
generated by A. Suppose that Sα(t) is continuous in the uniform operator topology for all t > 0.
Then the following assertions are equivalent

i) Sα(t) is a compact operator for all t > 0.

ii) (µ−A)−1 is a compact operator for all µ > ω1/α.

Proof. (i) ⇒ (ii) Suppose that {Sα(t)}t>0 is compact and let λ > ω be fixed. Then we have

λα−1(λα −A)−1 =

∫ ∞

0
e−λtSα(t)dt,

where the integral in the right-hand side exists in the Bochner sense, because {Sα(t)}t>0 is
continuous in the uniform operator topology, by hypothesis. Then, by [24, Corollary 2.3] we
conclude that (λα −A)−1 is a compact operator.

(ii) ⇒ (i) The case α = 1 follows from [17]. Let t > 0 be fixed. Since α < 1, it follows that
g1−α ∈ L1

loc[0,∞) and therefore, by [8, Proposition 2.1] we obtain

lim
N→∞

1

2πi

∫ ω+iN

ω−iN
eλt ̂(g1−α ∗Rα)(λ)dλ = (g1−α ∗Rα)(t) = Sα(t),

in B(X). Therefore,

1

2πi

∫
Γ
eλtλα−1(λα −A)−1dλ = Sα(t),

where Γ is the path consisting of the vertical line {ω + it : t ∈ R}. By hypothesis and [24,
Corollary 2.3], we conclude that Sα(t) is compact. �
Remark 3.5. Theorem 3.4 extends the compactness criteria for semigroup operator functions,
see e.g. [17], [6, Chapter II,Theorem 4.29] and [5].

Remark 3.6. The proof of [7, Theorem 3.6] in (ii) =⇒ (i) uses [7, Lemma 3.4]. However, one
of the hypothesis of such Lemma is precisely (i).

Remark 3.7. Useful criteria for continuity of Sα(t) in the uniform operator topology can be found
in the work of Fan [7]. For example, this property is true for the class of analytic resolvents, see
[7, Lemma 3.8].

Our second main result completely characterizes the compactness of (α, α)-resolvent families
in the range 1 < α ≤ 2. In contrast with the case 0 < α ≤ 1, it is remarkable that we obtain
here a characterization solely in terms of properties of their generator A.

Theorem 3.8. Let 1 < α ≤ 2 and A be the generator of an (α, 1)-resolvent family {Sα(t)}t≥0

of type (M,ω). Then A generates an (α, α)-resolvent family {Rα(t)}t≥0 of type ( M
α−1 , ω) and the

following assertions are equivalent
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i) Rα(t) is a compact operator for all t > 0.

ii) (µ−A)−1 is a compact operator for all µ > ω1/α.

Proof. We first prove that A generates an (α, α)-resolvent family {Rα(t)}t≥0 of type ( M
α−1 , ω).

Indeed, let α > 1 be given. By hypothesis we have ∥Sα(t)∥ ≤ Meωt for all t ≥ 0. Define

Rα(t) := (gα−1 ∗ Sα)(t),

for all t ≥ 0. We obtain

∥Rα(t)∥ ≤ M

∫ t

0
gα−1(t− s)eωsds ≤ M

∫ t

0
gα−1(s)e

ω(t−s)ds

≤ Meωt
∫ t

0

sα−2

Γ(α− 1)
e−ωsds ≤ Meωt

Γ(α− 1)

∫ ∞

0
sα−2e−ωsds ≤ Meωt

ωα−1
.

In particular, we conclude that Rα(t) is Laplace transformable and, for λ > ω, we have

R̂α(λ) =
1

λα−1
Ŝα(λ) = (λα −A)−1,

and hence, by definition, A is generator of Rα(t) and it is an (α, α)-resolvent family. This proves
the claim.

(i) ⇒ (ii) Suppose that {Rα(t)}t>0 is compact. We prove that Rα(t) is continuous in the
uniform operator topology for all t > 0. In fact, we can assume that ω > 0. First, observe that
for t > s, we have

Rα(t)−Rα(s) =

∫ t

s
gα−1(t− r)Sα(r)dr +

∫ s

0
[gα−1(t− r)− gα−1(s− r)]Sα(r)dr =: I1 + I2,

where

∥I1∥ ≤
∫ t

s
gα−1(t− r)∥Sα(r)∥dr ≤ Meωt

∫ t

s
gα−1(t− r)dr.

Because α > 1, we have gα(0) = 0 and we obtain

∥I1∥ ≤ Meωtgα(t− s).(3.3)

On the other hand,

∥I2∥ ≤
∫ s

0
|gα−1(t− r)− gα−1(s− r)|∥Sα(r)∥dr

≤ Meωs
∫ s

0
|gα−1(t− r)− gα−1(s− r)|dr

= Meωs
∫ s

0
|gα−1(t− s+ r)− gα−1(r)|dr.

Note that gα−1 is decreasing for α < 2, therefore gα−1(r)− gα−1(t− s+ r) > 0, obtaining

∥I2∥ ≤ Meωs
∫ s

0
[gα−1(r)− gα−1(t− s+ r)]dr = Meωs[gα(s)− gα(t) + gα(t− s)].(3.4)

Observe that in the border case α = 2 we have I2 ≡ 0 because g1(t) ≡ 1. Combining (3.3) and
(3.4), we obtain the assertion. Then for λ > ω fixed we have

(λα −A)−1 =

∫ ∞

0
e−λtRα(t)dt,
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where the integral in the right-hand side exists in the Bochner sense, because {Rα(t)}t>0 is
continuous in the uniform operator topology. Then, by [24, Corollary 2.3] we conclude that
(λα −A)−1 is a compact operator.

(ii) ⇒ (i) Let t > 0 be fixed. Since α > 1, it follows that gα−1 ∈ L1
loc[0,∞) and therefore, by

[8, Proposition 2.1] we obtain

lim
N→∞

1

2πi

∫ ω+iN

ω−iN
eλt ̂(gα−1 ∗ Sα)(λ)dλ = (gα−1 ∗ Sα)(t) = Rα(t),

in B(X). Therefore,

1

2πi

∫
Γ
eλt(λα −A)−1dλ = Rα(t),

where Γ is the path consisting of the vertical line {ω + it : t ∈ R}. By hypothesis and [24,
Corollary 2.3], we conclude that Rα(t) is a compact operator. �

Remark 3.9. In case α = 2 the preceding Theorem extends the compactness criteria for sine
operator functions in [22]. See also [19, Theorem 10.1.1].

4. An application to a semilinear problem with non-local initial condition

In this section, we present one example which do not aim at generality but indicate how our
theorems can be applied to more concrete problems. For other examples, see Fan [7, Theorem
4.1] and Wang-Chen-Xiao [23, Theorem 5.3].

Recall that the Riemann-Liouville fractional integral of order 0 < β < 1 is defined as follows

Jβ
t u(t) =

∫ t

0
gβ(t− s)u(s)ds, u ∈ L1(R+), t > 0.

Let T > 0 be given. We study the semilinear problem

(4.5) Dα
t u(t) = Au(t) + J1−α

t f(t, u(t)), 0 < α < 1, 0 ≤ t ≤ T,

with nonlocal initial condition u(0) + g(u) = u0 where f : [0, T ] ×X → X and g : C(I,X) →
C(I,X) are continuous. Here Dα denotes Caputo fractional derivative. The concept of nonlocal
initial condition has been introduced to extend the study of classical initial value problems.
This notion is more precise for describing nature phenomena than the classical notion because
additional information is taken into account. For the importance of nonlocal conditions in
different fields, the reader is referred to [15] and the references cited therein.

Let A be the generator of an (α, 1) - resolvent family Sα(t). Then it is well known that the
mild solution of (4.5) is defined by means of the variation-of-constant formula.

u(t) = Sα(t)[u0 − g(u)] +

∫ t

0
Sα(t− s)f(s, u(s))ds, t ∈ I := [0, T ].

See e.g. [7, Section 4]. We will make the following assumptions

• H1. f satisfies the Carathéodory condition, that is f(·, u) is strongly measurable for
each u ∈ X and f(t, ·) is continuous for each t ∈ I.

• H2. There exists a continuous function µ : I → R+ such that

∥f(t, u)∥ ≤ µ(t)∥u∥, ∀ t ∈ I, u ∈ C(I,X).
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• H3. g : C(I,X) → C(I,X) is continuous and there exists Lg > 0 such that

∥g(u)− g(v)∥ < Lg∥u− v∥, ∀u, v ∈ C(I,X).

We prove the following existence theorem. The method of proof combines ideas from [7] and
[14].

Theorem 4.10. Let A be the generator of an (α, 1)-resolvent family Sα(t) of type (M,ω). If
(λα − A)−1 is compact for all λ > ω and Sα(t) is continuous in the uniform operator topology
for all t > 0, then, under assumptions H1-H3, Equation (4.5) has at least one mild solution.

Proof. Define the operator Γ : C(I,X) → C(I,X) by

(Γu)(t) := Sα(t)[u0 − g(u)] +

∫ t

0
Sα(t− s)f(s, u(s))ds

Let Br := {u ∈ C(I,X) : ∥u∥ ≤ r}. The proof will be conducted into several steps
Step 1.
We first show that Γ sends bounded sets of C(I,X) into bounded sets of C(I,X); in other

words for any given r > 0 there exists ξ > 0 such that ΓBr ⊂ Bξ. So let u ∈ Br and
G := supu∈Br

∥g(u)∥. Then

(4.6)

∥Γu(t)∥ ≤ M∥Sα(t)∥(∥u0∥+ ∥g(u)∥) +M

∫ t

0
∥Sα(t− s)∥∥f(s, u(s))∥ds

≤ Meωt(∥u0∥+ ∥g(u)∥) +M

∫ t

0
∥Sα(t− s)∥∥f(s, u(s))∥ds

≤ Meωt(∥u0∥+ ∥g(u)∥) +M

∫ t

0
eω(t−s)∥f(s, u(s))∥ds

≤ Meωt(∥u0∥+ ∥g(u)∥) +M

∫ t

0
eω(t−s)µ(s)∥u(s)∥ds

≤ MeωT (∥u0∥+G) +Mr∥µ∥ eωT

ω = ξ.

Thus ΓBr ⊂ Bξ.
Step 2. Let’s show that Γ is a continuous operator.
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Let un, u ∈ Br such that un → u in C(I,X). Then we have
(4.7)

∥Γun(t)− Γu(t)∥ ≤ ∥Sα(t)∥(∥g(un)− g(u)∥) +
∫ t

0
∥Sα(t− s)∥∥f(s, un(s))− f(s, u(s))∥ds

≤ MeωtLg∥un − u∥+M

∫ t

0
eω(t−s)∥f(s, un(s))− f(s, u(s))∥ds

≤ MeωTLg∥un − u∥+M

∫ t

0
eω(t−s)∥f(s, un(s))− f(s, u(s))∥ds

≤ MeωtLg∥un − v∥+M

∫ t

0
eω(t−s)µ(s)(∥un(s)∥+ ∥u(s)∥)ds

≤ MeωtLg∥un − u∥+ 2rM

∫ t

0
eω(t−s)µ(s)ds.

Choose n large enough such that ∥un−u∥ < ϵ. Also note that eω(t−s)µ(s) is integrable on I. So

by the Lebesgue’s Dominated Convergence Theorem,
∫ t
0 e

ω(t−s)∥f(s, un(s))− f(s, u(s))∥ds → 0
as n → ∞; which shows that Γ is continuous.

Step 3 Γ sends bounded sets of C(I,X) into equicontinuous sets of C(I,X).
Let u ∈ Br, with r > 0 and take t1, t2 ∈ I with t2 < t1. Then we have

(4.8)

∥Γu(t1)− Γu(t2)∥ ≤ ∥(Sα(t1)− Sα(t2))(u0 − g(u))∥+
∫ t1

t2

∥Sα(t1 − s)f(s, u(s))∥ds

+

∫ t2

0
∥(Sα(t1 − s)− Sα(t2 − s))f(s, u(s))∥ds

= I1 + I2 + I3.

We have
I1 ≤ ∥(Sα(t1)− Sα(t2))∥∥(u0 − g(u))∥.

Using the uniform continuity of Sα(t) for t > 0, we obtain that limt1→t2 I1 = 0.
Next we have

I2 ≤
∫ t1

t2

eω(t1−s)µ(s)∥u(s)∥ds ≤ r∥µ∥eωT (t1 − t2).

Thus limt1→t2 I2 = 0. Finally we have

(4.9)

I3 ≤
∫ t2

0
∥Sα(t1 − s)− Sα(t2 − s)∥∥f(s, u(s))∥ds

≤
∫ t2

0
∥Sα(t1 − s)− Sα(t2 − s)∥µ(s)∥u(s)∥ds

≤ r

∫ t2

0
∥Sα(t1 − s)− Sα(t2 − s)∥µ(s)ds.
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Now observe that

∥Sα(t1 − ·)− Sα(t2 − ·)∥µ(s) ≤ 2MeωTµ(·) ∈ L1(I,R),

and Sα(t1 − s) − Sα(t2 − s) → 0 in B(X), as t1 → t2. Thus limt1→t2 I3 = 0 by the Lebesgue’s
dominated convergence theorem.

Step 4. Γ maps Br into relatively compact sets in X.
Indeed in view of the hypothesis and Theorem 3.4 we have that Sα(t) is compact for all s > 0,

and hence we deduce that the set K = {Sα(t− s)f(s, u(s)) : u ∈ C(I,X), 0 ≤ s ≤ t} is relatively
compact for each t ∈ I (see the proof of [7, Theorem 4.1] for details). Then the set convK is
compact. Moreover, for u ∈ Br, using the Mean-Value Theorem for the Bochner integral, we
obtain

Γ(u(t)) ∈ t convK, ∀t ∈ [0, T ].

Therefore the set {Γu(t);u ∈ Br} is relatively compact in X for every t ∈ [0, T ]. From Steps
1-4, we deduce that Γ is continuous and compact by the Arzela-Ascoli’s theorem.

Step 5. Consider the set

Ω := {u ∈ Br : u = λΓu, 0 < λ < 1}.
Clearly Ω ̸= ∅ since 0 ∈ Ω. So let u ∈ Ω. Then we have

∥u(t)∥ ≤ λ[Meαt(∥u0∥+ ∥g(u)∥) +M

∫ t

0
eω(t−s)∥f(s, u(s)∥ds]

≤ λ[Meαt(∥u0∥+G) +Mr

∫ t

0
eω(t−s)µ(s)ds]

≤ [Meαt(∥u0∥+G) +Mr∥µ∥e
ωT

ω
]

Thus Ω is bounded. So by the Leray-Schauder theorem Γ has a fixed point. The proof is
complete.

�
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