ALMOST AUTOMORPHIC SOLUTIONS TO ABSTRACT VOLTERRA
EQUATIONS ON THE LINE

CARLOS LIZAMA AND RODRIGO PONCE

ABSTRACT. Given a € L'(R) and A the generator of an L'-integrable family of bounded
and linear operators defined on a Banach space X, we prove the existence of almost
automorphic mild solution to the semilinear integral equation u(t) = ffoo a(t—s)[Au(s)+
f(s,u(s))]ds for each f: R x X — X SP-almost automorphic in ¢, uniformly in = € X,
and satisfying diverse Lipschitz type conditions. In the scalar linear case, we prove that
a € L'(R) completely monotonic is already sufficient.

1. INTRODUCTION

We study almost automorphic solutions of an integral equation with infinite delay in a
general Banach space X:

t

(1.1) u(t) = / a(t — s)[Au(s) + f(s,u(s))]ds, teR
— 0o

where the operator A : D(A) C X — X generates an integral resolvent and a : Ry — C is

an integrable function.

A rich source of problems leading to the equation (1.1) is provided by the theory of
viscoelastic material behavior. Some typical examples are viscoelastic fluids and heat flow
in materials of fading memory type: see for instance [3], [24] and [27]. In such applications
the operator A typically is the Laplacian in X = L%(Q), or the elasticity operator, the
Stokes operator, or the biharmonic A2, etc. equipped with suitable boundary conditions.
The material kernel a(t) reflect the properties of the medium under consideration. Note
that, in the finite dimensional case, the system (1.1) contains as particular cases several
systems with finite or infinite delay, already considered in the literature. See e.g. [4] and
[16].

An equivalent form of equation (1.1) is given by

d t 00

(1.2) u(t) + a(au(t) —I—/ kE(t — s)u(s)ds) = / a(s)ds(Au(t) + f(t,u(t))), teR
—00 0

for some a > 0 and k € L'(R,) nonnegative and non increasing, see [5, Section 2]. This

integrodifferential equation was studied in [6], where some results of [7] where used in order

to obtain the existence and regularity of the solution u when A generates a contraction

semigroup (not necessarily analytic) on X.
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The problem of existence of almost automorphic solutions to (1.1) is a very natural
one. Conditions which guarantee the existence of an almost automorphic solution for any
f(t,z) in a given space of almost automorphic functions have been studied recently in [8].

In a recent paper [13], the authors dealt with the existence of almost automorphic
solutions to certain classes of fractional differential equations, which can be represented
in the form ([9, Section 1]):

t (t o S)a—l

u(t) = / —————JAu(s) + g(s,u(s))]ds; u(0) =up, 1<a<2.
0 I'(a)

The aim of this paper is to point out that similar results hold true for the class of integral

equations (1.1) (or equivalently (1.2)) containing the above equations as limiting special

cases [27, Chapter II, section 11.5].

Specifically, we consider in this paper the class of continuous data f : R x X — X of
SP- almost automorphic functions on ¢, and we look for solutions u belonging to the class
of almost automorphic functions.

The concept of SP-almost automorphy was introduced and applied to study the existence
of solutions to some parabolic evolution equations by N’Guérékata and Pankov in [23].
We would like to point out that new and interesting results on SP-almost automorphic
mild solutions to evolution equations have been recently appeared in [17], [11] and [18].
However, none of them include existence of almost automorphic mild solutions for (1.1)
or (1.2) with SP-almost automorphic terms.

This paper is organized as follows: Section 2 collect all the results of [25],[11], [23],
[13] and [12] we need about SP-almost automorphic functions. In section 3, we treat
equation (1.1) when f(t,u(t)) = g(t) is SP-almost automorphic, that is, the linear case.
We exploit in full strength the use of integral resolvents, instead the classical approach
by Cp-semigroups, to obtain a representation of the solution. Then, using recent results
from [13] (see Lemma 2.9 below) we get maximal regularity of the solution (Proposition
3.1). In particular, we improve in this section some results of [§8] and give new results
and examples, specially in the scalar case, where the assumptions given are based only in
the data of the equation. Specifically we require only a € L*(R) completely monotonic
(Theorem 3.2). Section 4 is devoted to our main results in the semilinear case. As is
well known, maximal regularity results for the linear case, are very useful for nonlinear
problems. Using this approach, and a very recent composition theorem proved in [13]
(Theorem 2.10), we are able to prove three new and general existence and uniqueness
theorems of almost automorphic solutions to the equation (1.1) (cf. Theorems 4.2, 4.3
and 4.4). Then, as an illustration, we apply the abstract results to a concrete equation.
Finally, we point out that our results also generalizes the existence results obtained in
[8], as the space of SP-almost automorphic functions contains the space AA(X) of almost
automorphic functions.

2. PRELIMINARIES

Since we are going to use several concepts of almost automorphy, it is proper to provide
a brief description of the spaces of almost automorphic functions to be considered.

Definition 2.1. A continuous function f : R — X is said to be almost automorphic if
for every sequence of real numbers (s],),en there exists a subsequence (sp,)nen C (8),)nen
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such that
gt) == Tim f(t+ s)

n—oo
is well defined for each ¢ € R, and
f(t)= lim g(t —s,), foreachteR.

n—oo

If the convergence above is uniform in ¢ € R, then f is almost periodic in the classical
Bochner’s sense.

Almost automorphicity, as a generalization of the classical concept of an almost periodic
function, was introduced in the literature by S. Bochner and recently studied by several
authors, including [1, 2, 10, 14, 19, 20] among others. A complete description of their
properties and further applications to evolution equations can be found in the monographs
[21] and [22] by G. M. N’Guérékata.

Denote by AA(X) the collection of all (Bochner) almost automorphic functions R — X.
Some basic properties are stated in the following result.

Theorem 2.2 ([22]). If f, fi1, fo € AA(X), then:

() fi+ f> € AA(X),

(ii) Af € AA(X) for any scalar ;

(ili) fo € AA(X) where fo : R — X is defined by fo(-) = f(- + a);

(iv) the rangeRy := {f(t) : t € R} is relatively compact in X, thus f is bounded in
norm;

(v) if fn — f uniformly on R where each f,, € AA(X), then f € AA(X) too.

Note that AA(X) equipped with the sup-norm |[f[|44(x) = supseg ||f(¢)|| turns out to
be a Banach space.

Definition 2.3 ([25]). The Bochner transform f%(t,s),t € R,s € [0, 1], of a function f(¢)
on R, with values in X, is defined by

fo(t,s) .= f(t +s).

Definition 2.4 ([25]). The space BSP(X) of all Stepanov bounded functions, with the
exponent p, consists of all measurable functions f : R — X such that

1

t+1
|| f]]s» :zigﬂg(/t ||f(7)|]pdr)p < 0o.

It is obvious that LP(R; X) C BSP(X) C L} (R;X) and BS?(X) C BS(X) whenever
p=qg=1

Definition 2.5 (]23]). The space ASP(X) of SP-almost automorphic functions (SP-a.a.
for short) consists of all f € BSP(X) such that f* € AA(LP([0,1]; X)). In other words,
a function f € L} (R;X) is said to be SP-almost automorphic if its Bochner transform
f°: R — LP([0,1]; X) is almost automorphic in the sense that for every sequence of
real numbers (s, )nen, there exist a subsequence (s,)neny C (8),)nen and a function g €
LP (R; X) such that

loc

1 1
lim (/ £G4 50+ ) — gl + ) Pds) =0,
0

n—oo
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lim (/01 lg(t — sn + 3) —f(t+s)||pds); =0,

n—0o0

for each t € R.

Remark 2.6. Tt is clear that if 1 < p < ¢ < oo and f € L] (R;X) is S%almost au-

tomorphic, then f is SP-almost automorphic. Also if f € AA(X), then f is SP-almost
automorphic for any 1 < p < oc.

Denote [*°(X) the space of all bounded sequences with values in X. Recall that a
sequence x € [°°(X) is said to be almost automorphic if for any sequence of integers (s/,)
there exists a subsequence (sy,) such that lim lim z, g, _s, = zp.

n—o0 m—oo
Example 2.7 ([23]). Let (a,) be an almost automorphic sequence and ey € (0,1/2). Let
f(t) =an ift € (n—ep,n+e€y) and f(t) = 0 otherwise. Then f € ASY(X) for all q € [1,00)
but f is not in AA(X).

Definition 2.8 ([11]). A function f : RxX — X, (t,u) — f(t,u) with f(-,u) € L} (R,X)
for each u € X is said to be SP-almost automorphic in ¢ € R uniformly for v € X, if for
every sequence of real numbers (s],),en, there exist a subsequence (8, )nen C (8, )nen and

a function g : R x X — X with g(-,u) € L} (R, X) such that

loc

B =

1
lim </ Hf(t—i—sn—i-s,u)—g(t—i—s,u)des) =0,
0

n—oo

D=

lim </01Hg(t—sn+s,u)—f(t—i—s,u)des) =0,

n—oo

for each ¢ € R and for each u € X. We denote by ASP(R x X, X) the set of all such
functions.

Lemma 2.9 ([13]). Let {S(t) }+>0 C B(X) be a strongly continuous family of bounded and
linear operators such that

IS@II < o(t), forallt € Ry,
where ¢ € LY(Ry) is nonincreasing. Then, for each f € ASY(X),

/t S(t—s)f(s)ds € AA(X).

Theorem 2.10 ([13, 12]). Assume that
(1) f € ASP(R x X, X) with p > 1;
(13) there exists a non negative function L € AS™(R) with r > max{p,p/(p—1)} such that
for allu,v e X andt € R,
£t u) = f(& )| < LO)|Ju —ol[;
(131) x € ASP(X) and K = {x(t) : t € R} is compact in X.
Then there exists q € [1,p) such that f(-,z(-)) € ASYUX).

The following definition is taken from [27, Definition 1.6, p.46].
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Definition 2.11. Let X be a complex Banach space, A a closed linear unbounded operator
in X and a € L} (R;) an scalar kernel # 0. A family {S(¢)}:>0 C B(X) is called an

loc
integral resolvent with generator A if the following conditions are satisfied.

(’Lz S()x € L}, (Ry;X) for each x € X and ||S(t)]] < (t) a.e. on Ry, for some ¢ €
Lipe(Ry);

(74) S(t) commutes with A for each ¢ > 0;

(7i7) the following integral resolvent equation holds

(2.1) S(t)x = a(t)r + /0 a(t — s)AS(s)xds.

for all z € D(A) and a.a. t > 0.

We will see that the concept of integral resolvent is directly and naturally related with
the solution of the equation (1.1) by means of a kind of variation of parameters formula
(cf. Definition 4.1 below). On the other side, our definition of solution (mild) for equation
(1.1) that we will give, is motivated by the linear case (see (3.3) in Proposition 3.1 below).

3. ALMOST AUTOMORPHIC SOLUTIONS FOR THE LINEAR EQUATION

In this section we consider the existence and uniqueness of almost automorphic solutions
to the evolution equation

(3.1) u(t) = /_ a(t — $)[Au(s) + g(s)|ds, teR,

where A is the generator of an integral resolvent family and a € L!(R).

Proposition 3.1. Let a € L'(R). Assume that A generates an integral resolvent family
{S(t)}+>0 on X, which satisfies

IS@II < o(t), forallt € Ry,

where ¢ € L'(Ry) is nonincreasing. If f € ASY(X) and takes values on D(A) then the
unique bounded solution of the problem

(3.2) u(t) = / a(t — s)[Au(s) + f(s)]ds, teR,

—00

1s almost automorphic and is given by

(3.3) u(t) = / S(t—s)f(s)ds, teR.
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Proof. Since g(t) € D(A) for all t € R, we obtain u(t) € D(A) for all t € R (see [27,
Proposition 1.2]). Then applying (2.1) and Fubini’s theorem we obtain

/ a(t — s)Au(s)ds = a(t — S)A/S S(s —7)f(r)drds

t a(t —s)AS(s — 1) f(r)drds

a(t —s)AS(s — 1) f(r)dsdr

e
[

T

“8

/ N a(t — 7 —p)AS(p)dpf(r)dr

0

”8

S(t—7)f(r) —alt —7)f(7))dr

/.
-/
-/
-/
/.

— () - /_ a(t — 1) f(r)dr.

The statement follows by Lemma 2.9. g

Recall that a C*°-function f : (0,00) — R is called completely monotonic if
(=1)"f™(X) >0, for all A > 0,n € Ny.

We remark that such functions naturally occur in areas such as probability theory, numer-
ical analysis, and elasticity. Our main result in case X = R is the following theorem. It is
remarkable that the hypothesis given, are completely based in the data of the problem.

Theorem 3.2. Let a € LY(Ry) be a scalar, completely monotonic function on Ry. Let
p >0 be given. If g € ASY(R) then:

a) There is S, € L'(R4) completely monotonic such that equation (2.1) is satisfied with
A= —p.

b) The equation

(3.4) u(t) = / a(t — s)[—pu(s) + g(s)lds, teR,

—0o0

has an unique almost automorphic solution given by

u(t):/t S(t— s)g(s)ds, teR.

—00
Proof. By the hypothesis on the scalar kernel a(¢) and [16, Theorem 2.8, p.147] we have
that log(a) is convex on R;. Moreover, since a(t) is positive and nonincreasing, it follows

by [27, Lemma 4.1, p.98] that there exists S, € L'(R.) completely monotone, such that
equation (2.1) is satisfied with A = —p, that is

(3.5) Sy(t) = alt) — p/o a(t —s)S,(s)ds.

Hence (a) follows. Part (b) is an immediate consequence of Lemma 2.9, since S, is non-
increasing. O
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In case that g € AA(R) we have the following result that improves [8, Corollary 3.7].
We denote by a(A) the Laplace transform of a(t).

Theorem 3.3. Let f: R — R be an almost automorphic function and let p > 0 be a real
number. Suppose a € L*(R.), and a()\) # —71) for all Re(\) > 0. Then

a) There is S, € L*(R) such that equation (2.1) is satisfied with A = —p;

b) The equation

(3.6) u(t) = / a(t — $)[—pu(s) + f(s)ds, t€R,

—0o0

has an unique almost automorphic solution given by

u(t) = / S,(t—s)f(s)ds, teR.

Proof. The proof is a direct consequence of the half Paley-Wiener theorem [16, Theorem
4.1 p.45] and [8, Lemma 3.1] (see also the references therein).
O

Example 3.4. Let a(t) = e % b >0 and p > 0. Then a(t) is completely monotonic and
a(A) = %4—1) # —% for all Re(\) > 0. Moreover a direct calculation using Laplace transform
gives S,(t) = e TPt Hence for any g € ASY(R) (resp. g € AA(R)) there exist a unique
almost automorphic solution of the equation

u(t) = / e ) [ pu(s) + g(s)]ds, teR,

—00

given by
t
u(t) = / =90 g(5)ds,  t e R.

The remarkable fact is that we only need g € AS'(R) instead of g € AA(R) to have
existence of almost automorphic solutions.

ta—l

Example 3.5. Let a(t) = Iﬂ(oé)e_bt,b > 0,0 > 0 and p > 0. We note that a(t) is

b
pl/a

[cos(Z)+i sin(g)]pé, we have \ # (—p)é—b, for all Re(\) > 0, that is a(\) = (/\Jrlb)a # —%,
for all Re(X\) > 0. A calculation using Laplace transform shows S,(t) = t* e " E, o (pt®),
where E, o denotes the generalized Mittag-Leffler function (see e.g. [15]).

Hence for any g € AA(R) there exist a unique almost automorphic solution of the

equation

not completely monotonic but, under the condition cos(mw/a) < and since (—p)é =

u(t) = F(la) /_Oo (t —5)*Le =) [ pu(s) + g(s)]ds, teR,

given by
t
u®) = [ (=) e I Bt — ) g()ds. tE R
—00
Note that this example improves [8, Example 3.6] where only 1 < a < 2 was considered.
In fact, 1 < a < 2 implies immediately that the more general condition cos(w/a) < #
holds.
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Example 3.6. Let b > 0 and consider the perturbed problem

(3.7) u(t) = /_t e =) [Bu(s) + bu(s) + f(s)]ds, teR,

where B is the generator of an exponentially stable Co-semigroup T(t). Taking a(t) = e~

and A := B + bl we obtain (3.7) in the form of equation (3.2). By (2.1) we have

— AT =A4+b-B-b)"t=\=-B)'=T().

Hence, by uniqueness of the Laplace transform, we obtain in this case that the integral
resolvent S(t) is identical to the Cy-semigroup T'(t). We conclude by Proposition 3.1 that
given f € ASY(X) taking values on D(B), the unique bounded solution of the problem
(8.7) is almost automorphic and given by

u(t) = / T(t—s)f(s)ds, teR.

— 00
4. ALMOST AUTOMORPHIC MILD SOLUTIONS FOR NONLINEAR EQUATIONS

In this section we consider the existence and uniqueness of almost automorphic mild
solutions to the nonlinear evolution equation

(4.1) u(t)—/ a(t — $)[Au(s) + F(s,u(s)ds, teR,

—00
where A is the generator of an integral resolvent family and a € L'(R). The following
definition is motivated by the linear case.

Definition 4.1. Let A be the generator of an integral resolvent family {S(¢)}i>0. A
continuous function u : R — X satisfying the integral equation

(4.2) u(t) = /t S(t—s)f(s,u(s))ds, for all t € R,

is called a mild solution on R to the equation (4.1).

Our first result gives conditions under which we have existence of a unique almost
automorphic mild solution with SP- almost automorphic terms. Note that we assume that
the function f is bounded by a Lipschitz function L(t) with respect to the first argument
uniformly in the second argument. Moreover, we have to assume a control on the S'-norm
of the Lipschitz function. The advantage is that the assumptions on L and ¢ are less
restrictive than in the subsequent results.

Theorem 4.2. Assume that A generates an integral resolvent family {S(t)}+>0 such that
I1S@)I < ¢(t), for allt =0,

where ¢ € LY(R,) is nonincreasing. Suppose that
(1) f € ASP(R x X, X) with p > 1;
(13) there exists a non negative function L € AS™(R) with r > max{p,p/(p—1)} such that
for allu,v e X andt € R,
1F (& w) = £ 0)| < L(#)][u = ol[;

If||IL| |1 < ||®||7Y, then the equation (4.1) has a unique almost automorphic mild solution.
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Proof. We define the operator F': AA(X) — AA(X) by

(4.3) / S(t—s)f(s,p(s))ds, teR.

Since ¢ € AA(X), we have that {o(t):t € R} is compact in X. By Theorem 2.10,
there exists g € [1, p) such that f(-,¢(-)) € ASY(X) C AS'(X). Then, by Lemma 2.9, we
conclude that F' is well defined. Then for ¢1,p2 € AA(X) and ¢t € R we have:

t
[Fe1(t) = Fea(t)]] < / 1S = )l - 11f(s,01(s5)) = f (s, 02(s))llds

< / T LIS - ol — ) — galt — 1) dr

< lot — wollc /0 L(t - 7)é(r)dr
I i/kﬂu Jo(r)d
= |l¥Y1 — ¥2||co t—71)o(T)dr
1 2 £ L
00 k+1
< Hw—m@wk)/ L(t - 7)dr
k=0 k

oo t—k—1
= - 0o k L(s)d
ot alle 3000 [ £is)as

< lpr = p2llollLllst Y ¢(k)

k=0
< o1 = @2lool| L5116 |1-
This proves that F' is a contraction, so by the Banach fixed point theorem there exists
t
a unique u € AA(X), such that Fu = u, that is u(t) = / S(t—s)f(s,u(s))ds.
—0o0
O

We remark that in the case of L(t) = L, by following the proof of previous theorem,
one can get the same conclusion.

Our next result consider a Lipchitz condition with a function L(¢) whose norm does not
need to be controlled, in contrast with our previous result. However, we have to add some
extra conditions: boundedness of the resolvent family and integrability of L(t).

Theorem 4.3. Assume that A generates an integral resolvent family {S(t) }+>0 such that
IS@ < ¢(t), for allt =0,

where ¢ € LY(Ry) N L®(Ry) is nonincreasing. Suppose that

(1) f e ASP(R x X, X) withp > 1;

(i1) there exists a non negative function L € AS™(R) N LY(R) with r > max{p,p/(p — 1)}
such that for all u,v € X andt € R,

£t w) = £ 0)| < L(#)][u = ol];
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Then equation (4.1) has a unique almost automorphic mild solution.

Proof. Define the operator F' as in (4.3). Let ¢1, @2 be in AA(X). We have:

1(Fp1)(t) — (Fpa) (D)l S/ 1S(t = )[f (s, 01(5)) = £ (s, 02(3))]l|ds

—0o0

< / L()|5(t — 9)llll1(s) — pa(s) |ds

— 00

< lor— sl / L(s)(t — s)ds

—0o0

o1 — @alloc /0 T Lt - n)p(r)dr

N

< lor - wzl\oo\lcﬁl\oo/o L(t - r)dr

t

= ler - mnoougﬁuoo/ L(s)ds.

—0o0

In the same way

1)) — (Pl < [ 11809l Pors) = f(s, Foals))llds
< / L()6(t — )| Fior(s) — Fipa(s)||ds
< llor-sallellelis [ 25 / L(r)drds.

In general we get

n n oI5 ! ’ n
(F"p1)(t) — (F"02) ()| < lr — s02||oo(n ff), L(s) L(r)dr )  ds
llss ([ "
< g1 - palloo @l L(s)ds
n! oo
Lij1]|¢]l)"
< lior— a1
n!
Hence, since (HL”%M < 1 for n sufficiently large, by the contraction principle F' has a
unique fixed point u € AA(X). O

Our next result, replaces the condition of integrability of L(¢) in the previous theorem
by a less restrictive assumption (see (iii) below). The main idea is to define a new norm
depending on a parameter (a weighted sup-norm) in AA(X) in such way that the amount
of the weight can be controlled, by means of the parameter, in the process of find a fixed
point.
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Theorem 4.4. Assume that A generates an integral resolvent family {S(t)}+>o0 such that
I1S@) < ¢(t), for allt =0,

where ¢ € LY(Ry) N L®(Ry) is nonincreasing. Suppose that

(1) f e ASP(R x X, X) withp > 1;

(17) there exists a non negative function L € AS"(R) with r > max{p,p/(p—1)} such that
for all u,v € X and t € R,

1F (@t w) = f& )| < L(#)][u = ol];

t
(131) the integral / L(s)ds exists for all t € R.
—00
Then equation (4.1) has a unique almost automorphic mild solution.

Proof. Define a new norm |||¢||| := sup;er{v(t)||p(t)||}, where v(t) := e—kf L(s)ds ;4

k is a fixed positive constant greater than C' := ||¢||s. Define the operator F as in (4.3).
Let @1, p2 be in AA(X), then we have

v(@I(Fea)(t) = (Fe2) ()]l = vt)/ S(t = s)f(s,91(5)) = [ (s, p2(s))]ds

< c / $)lp1(s) — 9a(s) |ds
< c / v(t)o(s) " L(s)v(s) [ p1(s) — pa(s)|ds
t
< Clle -l | ot(s) Les)as
t
= Zlller—eall / kb I HOATL ()
= Zliler - w!ll/ (47 20207
_ Ok
T 97 |11 — ol |
C
< Em% — a|]-
Hence, since C/k < 1, F has a unique fixed point u € AA(X). O

We finish this section with the following application, whose construction is inspired by
Example 2.7.

Example 4.5. Suppose that A is the generator of integral resolvent {S(t)}+>0 such that
1S()|] < Me %" where M,w > 0. For concrete examples of operators satisfying this
condition we refer to [26, Section 5]. For ¢(t) = Me™*t, we observe that ¢ is nonincreasing

and ¢ € LY(Ry) N L®(Ry). Define

i 1
l(t) — Sln<m)a te(n—ﬁ,n—kﬁ)?nez
0, otherwise,
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for some 0 < € < % By Ezample 2.7, we conclude that I € AS™(R) for all r € [1,00).
Moreover,

. 1
sm( >‘dt
24 cosn + cosmn

—00

] o0 n+%
[ e < Y [
n= ot

n=—oo
o0 n+ﬁ

< ) / dt
n=-—o0 n_z\sn\
> g

= Z 72|n‘_1:6€.
n=—oo

Therefore, | € AS"(R)YNLY(R). On X = LP([0,7]), p > 1, define f(t,u)(s) = I(t) cos(u(s))
forue X and s € [0,7]. Then, f € ASP(R x X, X) and for u,v € X, t € R we have

1f (@) = fE 0 = /Ow\l(t)COS(U(S))—l(t)COS(v(S))!”dS
L - [l = ][5

We conclude from Theorem 4.3, with L(t) = |l(t)|, that the equation (4.1) has a unique
almost automorphic mild solution. Note that, we obtain the same conclusion from Theorem
4-4. Finally, note that we can apply Theorem 4.2 under the condition 0 < & < 53;.
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