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Abstract. Let A and M be closed linear operators defined on a complex Banach space
X and a ∈ L1(R+) be an scalar kernel. We use operator-valued Fourier multipliers
techniques to obtain necessary and sufficient conditions to guarantee the existence and
uniqueness of periodic solutions to the equation

d

dt
(Mu(t)) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t > 0,

with initial condition Mu(0) = Mu(2π), solely in terms of spectral properties of the data.
Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue
vector-valued function spaces.

1. Introduction

In this paper, we study maximal regularity in Lebesgue, Besov and Triebel-Lizorkin
vector-valued function spaces for the following class of differential equation with infinite
delay

(1.1)
d

dt
(Mu(t)) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), 0 ≤ t ≤ 2π,

where (A,D(A)) and (M,D(M)) are (unbounded) closed linear operators defined on a
Banach space X, with D(A) ⊆ D(M), a ∈ L1(R+) an scalar-valued kernel, and f an
X-valued function defined on [0, 2π].

The model (1.1) corresponds to problems related with viscoelastic materials; that is,
materials whose stresses at any instant depend on the complete history of strains that
the material has undergone (see [21]) or heat conduction with memory. For more details,
see, for instance, [14], [15] and [23].

The recent linear theory of maximal regularity is not only important on its own but
it is also the indispensable basis for the theory of nonlinear evolution equations, see e.g.
[1], [13], [23] and references therein. In case M = I (the identity in X) and a ≡ 0,
equation (1.1) with periodic initial conditions have been studied by Arendt-Bu, Bu-Kim
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and characterizations of the maximal regularity in Lebesgue, Besov and Triebel-Lizorkin
vector-valued function spaces were obtained using the resolvent set of A. See [3], [4] and
[7].

On the other hand, characterizations of maximal regularity for equation (1.1) in case
M = I and a ∈ L1(R) have been obtained by Keyantuo-Lizama [18] in Lebesgue and
Besov vector-valued function spaces and by Bu-Fang [8] in Triebel-Lizorkin vector valued
spaces. We note that periodic solutions have been also studied by other authors, for
example in [11] using topological methods.

Characterizations of maximal regularity in these vector-valued function spaces, for the
degenerate abstract equation (1.1) with periodic initial conditions

(1.2) Mu(0) = Mu(2π),

and a ≡ 0 has been studied recently by the authors [22]. The method used in [22] is
based on the results given by Arendt-Bu ([3, 4]) and Bu-Kim ([7]), for operator-valued
Fourier multipliers in Lebesgue, Besov and Triebel-Lizorkin vector-valued function spaces.
It is worthwhile to mention that this method enables to improve and extend results on
degenerate abstract equations obtained previously in the literature. Compare e.g. Barbu-
Favini [5] and [22].

In this article, we apply the same method to obtain characterizations of maximal reg-
ularity for (1.1) in the above mentioned vector-valued function spaces. The advantage of
our approach is clear. We recover, as special cases, the results in [3], [4], [7], [8], [18] and
[22]. In addition, we are also able to improve the results in [22] where is assumed the
closedness of the operator ikM − A for all k ∈ Z to prove boundedness of (ikM − A)−1.
Indeed, we give a simple argument to show that this condition is not necessary under the
presence of maximal regularity (cf. the proof of Theorem 3.4).

It is remarkable that in the characterizations that we will obtain, no conditions on the
commutativity of operators A and M, or in the existence of bounded inverse of A or M,
are needed. Also, in the case of periodic Besov and Triebel-Lizorkin function spaces, no
geometrical assumption on the underlying Banach space X is needed.

The plan of the paper is the following: After some preliminaries in the second section,
assuming that X is an UMD space, we characterize in Section 3 the uniqueness and
existence of a strong Lp-solution for the problem (1.1)-(1.2) solely in terms of a property
of R-boundedness for the sequence of operators ikM(ikM − (1 + ã(ik))A)−1. Here the
tilde denotes Laplace transform of a(t). In Section 4, we obtain a characterization in the
context of Besov spaces. We notice that, as particular case of this characterization, a
simply condition to guarantee the existence and uniqueness of solution in Hölder spaces
Cs((0, 2π);X), 0 < s < 1, in general Banach spaces X, is obtained. Namely

Theorem 1.1. Let s > 0 and A : D(A) ⊆ X → X, M : D(M) ⊆ X → X be closed linear
operators on a Banach space X. Suppose that D(A) ⊆ D(M), the sequence {ã(ik)}k∈Z is
2-regular and (ikM − (1 + ã(ik))A) are closed operators for all k ∈ Z. Then, the following
assertions are equivalent:
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(i) For every f ∈ Cs((0, 2π);X) there is a unique strong Cs-solution of (1.1) such that
Mu(0) = Mu(2π);

(ii) (ikM − (1 + ã(ik))A)−1 exists for all k ∈ Z and

sup
k∈Z
||ikM(ikM − (1 + ã(ik))A)−1|| <∞.

In Section 5 we give the corresponding characterization in case of the scale of Triebel-
Lizorkin vector valued spaces. The difference with the scale of Besov vector valued spaces
is only that we need more regularity of the sequence ã(ik). In Section 6, we apply our
results in two concrete examples.

2. Preliminaries

Given 1 ≤ p < ∞, we denote by Lp2π(R, X) the space of all 2π-periodic Bochner
measurable X-valued functions f , such that the restriction of f to [0, 2π] is p-integrable.

For a function f ∈ L1
2π(R, X) we denote by f̂(k), the k-th Fourier coefficient of f :

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt,

for all k ∈ Z. We remark that the Fourier coefficients determine the function f , that is,
f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 a.e. Let X, Y be Banach spaces. We denote
by B(X, Y ) be the space of all bounded linear operators from X to Y . When X = Y ,
we write simply B(X). For a linear operator A on X, we denote domain by D(A) and
its resolvent set by ρ(A). By [D(A)] we denote the domain of A equipped with the graph
norm.

We begin with some preliminaries about operator-valued Fourier multipliers. More
information can be found in [4] in the periodic case and for the non-periodic case, see for
instance, [25].

Definition 2.1. [3] For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is an
Lp-multiplier if, for each f ∈ Lp2π(R, X), there exists u ∈ Lp2π(R, Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

It follows from the uniqueness theorem of Fourier series that u is uniquely determined
by f .

For j ∈ N, denote by rj the j-th Rademacher function on [0, 1] i.e. rj(t) = sgn(sin(2jπt))
and for x ∈ X, rj ⊗ x, denote the vector valued function t→ rj(t)x.

Definition 2.2. A family of operators T ⊂ B(X, Y ) is called R-bounded, if there is a
constant Cp > 0 and p ∈ [1,∞) such that for each N ∈ N, Tj ∈ T , xj ∈ X, j = 1, ..., N
the inequality

(2.1) ||
N∑
j=1

rj ⊗ Tjxj||Lp((0,1);Y ) ≤ Cp||
N∑
j=1

rj ⊗ xj||Lp((0,1);X)

is valid.
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If (2.1) holds for some p ∈ [1,∞) then if holds for all p ∈ [1,∞). The smallest Cp in
(2.1) is called R-bound of T , we denote it by Rp(T ).

We remark that large classes of classical operators are R-bounded (cf. [16] and refer-
ences therein). Hence, this assumption is not too restrictive for the applications that we
consider in this article.

Remark 2.3.

Several properties of R-bounded families can be founded in the monograph of Denk-
Hieber-Prüss [13]. For the reader’s convenience, we summarize here from [13, Section 3]
some results.

(a) If T ⊂ B(X, Y ) is R-bounded then it is uniformly bounded, with

sup{||T || : T ∈ T } ≤ Rp(T ).

(b) The definition of R-boundedness is independent of p ∈ [1,∞).
(c) When X and Y are Hilbert spaces, T ⊂ B(X, Y ) is R-bounded if and only if T is

uniformly bounded.
(d) Let X, Y be Banach spaces and T ,S ⊂ B(X, Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}
is R-bounded as well, and Rp(T + S) ≤ Rp(T ) +Rp(S).

(e) Let X, Y, Z be Banach spaces, and T ⊂ B(X, Y ) and S ⊂ B(Y, Z) be R-bounded.
Then

ST = {ST : T ∈ T , S ∈ S}
is R-bounded, and Rp(ST ) ≤ Rp(S)Rp(T ).

(g) Let X, Y be Banach spaces and T ⊂ B(X, Y ) be R-bounded. If {αk}k∈Z is a
bounded sequence, then {αkT : T ∈ T } is R-bounded.

Proposition 2.4. [3] Let X be a Banach space and {Mk}k∈Z be an Lp-multiplier, where
1 ≤ p <∞. Then, the set {Mk : k ∈ Z} is R-bounded.

A Banach space X is said to be UMD, if the Hilbert transform is bounded on Lp(R, X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈
S(R, X), the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1

π
PV (

1

t
) ∗ f.

These spaces are also called HT spaces. It is a well known that the set of Banach
spaces of class HT coincides with the class of UMD spaces. This has been shown by
Bourgain [6] and Burkholder [9]. Some examples of UMD-spaces include the Hilbert
spaces, Sobolev spaces W s

p (Ω), 1 < p < ∞, Lebesgue spaces Lp(Ω, µ), 1 < p < ∞,
Lp(Ω, µ;X), 1 < p <∞, when X is a UMD-space. Moreover, a UMD-space is reflexive
and therefore, L1(Ω, µ), L∞(Ω, µ) (in the case infinite dimensional) and Cs([0, 2π];X) are
not UMD. More information on UMD spaces can be found in [6, 9] and [10].
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We recall the following theorem, due to Arendt-Bu [3, Theorem 1.3], in the context of
UMD-spaces.

Theorem 2.5. [3] Let X, Y be UMD spaces and let {Mk}k∈Z ⊆ B(X, Y ). If the sets
{Mk}k∈Z and {k(Mk+1 −Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an Lp-multiplier for
1 < p <∞.

We will need the following Lemmas.

Lemma 2.6. [3] Let f, g ∈ Lp2π(R;X), where 1 ≤ p <∞ and A is a closed operator on a
Banach space X. Then, the following assertions are equivalent.

(i) f(t) ∈ D(A) and Af(t) = g(t), a.e.

(ii) f̂(k) ∈ D(A) and Af̂(k) = ĝ(k), for all k ∈ Z.

Lemma 2.7. [22] Let M be a closed operator, u ∈ Lp2π(R; [D(M)]) and u′ ∈ Lp2π(R;X)
for 1 ≤ p <∞. Then, the following assertions are equivalent,

(i)

∫ 2π

0

(Mu)′(t)dt = 0 and there exist x ∈ X such that Mu(t) = x +

∫ t

0

(Mu)′(s)ds

a.e. on [0, 2π];

(ii) (̂Mu)′(k) = ikMû(k) for all k ∈ Z.

Let a be a complex valued function. We define the set

ρM,a(A) = {λ ∈ C : (λM − (1 + a(λ))A) : D(A) ∩D(B)→ X

is invertible and (λM − (1 + a(λ))A)−1 ∈ B(X)},
and denote by σM,a(A) the complementary set C \ ρM,a(A). If M = I, is the identity
operator on X and a ≡ 0, we denote simply the set ρM,a(A) by ρ(A) and as usual we
call this set, the resolvent set of A. Denote by ã(λ) the Laplace transform of a. In what
follows, we always assume that ã(ik) exists for all k ∈ Z.

Henceforth, we use the following notation:

ak := ã(ik)

and we assume that ak 6= −1 for all k ∈ Z.

Remark 2.8. Note that by the Riemann-Lebesgue lemma, we have that the sequences
{ak}k∈Z and { 1

α+ak
}k∈Z (α 6= 0) are bounded.

Finally, from [20] we recall the concept of n-regularity for n = 1, 2, 3. The general notion
of n-regularity is the discrete analogue for the notion of n-regularity related to Volterra
integral equations (see [23, Chapter I, Section 3.2]).

Definition 2.9. A sequence {ck}k∈Z ⊂ C \ {0} is said to be:

(i) 1-regular, if the sequence
{
k

(ck+1 − ck)
ck

}
k∈Z

is bounded.
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(ii) 2-regular, if it is 1-regular and the sequence
{
k2 (ck+1 − 2ck + ck−1)

ck

}
k∈Z

is bounded.

(iii) 3-regular, if it is 2-regular and the sequence
{
k3 (ck+2 − 3ck+1 + 3ck − ck−1)

ck

}
k∈Z

is bounded.

Note that if {ck}k∈Z is 1-regular, then lim
|k|→∞

ck+1/ck = 1. For more details of n-regularity

sequences, see [20].

3. Maximal regularity on vector-valued Lebesgue spaces

To characterize the maximal regularity, we begin with the study of the relation between
multipliers and R-boundedness of a sequences of operators. Consider the problem

(3.1)


d

dt
(Mu(t)) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), 0 ≤ t ≤ 2π,

Mu(0) = Mu(2π),

where (A,D(A)) and (M,D(M)) are closed linear operators on X, D(A) ⊆ D(M), a ∈
L1(R+) is a scalar-valued kernel, and f ∈ Lp2π(R, X), p ≥ 1.

From [22], we recall that for a given closed operator M , and 1 ≤ p < ∞, the set
H1,p
per,M(R; [D(M)]) is defined by

H1,p
per,M(R; [D(M)]) = {u ∈ Lp2π(R; [D(M)]) : ∃v ∈ Lp2π(R;X),

such that v̂(k) = ikMû(k) for all k ∈ Z}.
When M = I, we denote H1,p

per(R;X); see [3].

Lemma 3.1. Let X be a UMD-space. Suppose that the sequence {ak}k∈Z is 1-regular.
Then, { 1

1+ak
I}k∈Z is an Lp-multiplier.

Proof. By Remarks 2.8 and 2.3 (g), { 1
1+ak

I}k∈Z is R-bounded. Moreover,

k

(
1

1 + ak+1

− 1

1 + ak

)
= −k

(
ak+1 − ak

ak

)
· ak ·

1

1 + ak+1

· 1

1 + ak
.

Since {ak}k∈Z is 1-regular, we conclude the proof of Lemma by Remark 2.8 and Theorem
2.5.

The following Proposition is an extension of [22, Proposition 3.2].

Proposition 3.2. Suppose that the sequence {ak}k∈Z is 1-regular. Let A : D(A) ⊆ X →
X and M : D(M) ⊆ X → X be linear closed operators defined on a UMD space X.
Suppose that D(A) ⊆ D(M). Then, the following assertions are equivalent

(i) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is an Lp-multiplier for 1 <
p <∞;

(ii) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is R-bounded.
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Proof. Define Nk := (ikM − (1 + ak)A)−1 and Mk := ikM(ikM − (1 + ak)A)−1, k ∈ Z.
By the Closed Graph Theorem we can show that if ik ∈ ρM,ã(A), then Mk are bounded
operators for each k ∈ Z. By Proposition 2.4 it follows that (i) implies (ii). Conversely,
by Theorem 2.5 is sufficient to prove that the set {k(Mk+1 −Mk)}k∈Z is R-bounded. In
fact, we note the following

(3.2)

k[Mk+1 −Mk] = k
[
i(k + 1)MNk+1 − ikMNk

]
= ikMNk+1

[
(k + 1)[ikM − (1 + ak)A]−

k[i(k + 1)M − (1 + ak+1)A]
]
Nk

= ikMNk+1

[
k (ak+1−ak)

1+ak

]
(1 + ak)ANk −Mk(1 + ak)ANk.

Since {ak}k∈Z is 1-regular, the sequence {k(ak+1−ak
1+ak

)}k∈Z is bounded. The identity (1 +

ak)ANk = Mk − I, imply that {(1 + ak)ANk}k∈Z is R-bounded. We conclude the proof
using the Remark 2.3.

Next, we introduce the following definition of solution of (3.1).

Definition 3.3. We say that a function u ∈ H1,p
per,M(R; [D(M)]) ∩ Lp2π(R; [D(A)]) is a

strong Lp-solution of (3.1) if u(t) ∈ D(A) and equation (3.1) holds for a.e. t ∈ [0, 2π].

Let a ∈ L1(R+) and A be a closed operator defined on X. For u ∈ Lp2π(R; [D(A)])

denote by F (t) := (a∗̇Au)(t) =
∫ t
−∞ a(t − s)Au(s)ds. An easy computation show that

F̂ (k) = Aã(ik)û(k), k ∈ Z (where the hat .̂ denotes Fourier transform). It is remarkable
that in case a ≡ 0 the next theorem improves the main result in [22].

Theorem 3.4. Let X be a UMD space. Let A : D(A) ⊆ X → X, M : D(M) ⊆ X → X
be linear closed operators. Suppose that D(A) ⊆ D(M) and the sequence {ak}k∈Z is
1-regular. Then, the following assertions are equivalent

(i) For every f ∈ Lp2π(R, X), there exist a unique strong Lp-solution of (3.1);
(ii) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is an Lp-multiplier for

1 < p <∞;
(iii) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is R-bounded.

Proof. (i) ⇒ (ii). Let k ∈ Z and y ∈ X. Define f(t) = eikty. By hypothesis, there
exists u ∈ H1,p

per,M(R; [D(M)]) ∩ Lp2π(R; [D(A)]) such that u(t) ∈ D(A) and (Mu)′(t) =
Au(t) + (a∗̇Au)(t) + f(t). Taking Fourier transform on both sides, we have û(k) ∈ D(A)
and,

ikMû(k) = (1 + ak)Aû(k) + f̂(k)

= (1 + ak)Aû(k) + y.

Thus, (ikM − (1 +ak)A)û(k) = y for all k ∈ Z and we conclude that (ikM − (1 +ak)A)
is surjective. Let x ∈ D(A). If (ikM − (1 + ak)A)x = 0, then u(t) = eiktx defines a
periodic solution of (3.1). Hence u ≡ 0 by the assumption of uniqueness, and thus x = 0.
Therefore, (ikM − (1 + ak)A) is bijective.
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Now, we must prove that (ikM − (1 + ak)A)−1 is a bounded operator for all k ∈ Z.
Suppose that (ikM − (1 + ak)A)−1 has no bounded inverse. Then, for each k ∈ Z there
exists a sequence (yn,k)n∈Z ⊂ X such that ||yn,k|| ≤ 1 and

||(ikM − (1 + ak)A)−1yn,k|| ≥ n2, for all n ∈ Z.

Thus, we obtain that the sequence xk := yk,k, satisfies

||(ikM − (1 + ak)A)−1xk|| ≥ k2, for all k ∈ Z.

Let f(t) :=
∑

k∈Z\{0} e
ikt xk

k2
. Observe that f ∈ Lp2π(R, X) and so, by hypothesis, there

exists a unique strong solution u ∈ Lp2π(R, X) of (3.1). One can check that u(t) =∑
k∈Z\{0}(ikM − (1 + ak)A)−1eikt xk

k2
. Since∥∥∥(ikM − (1 + ak)A)−1eikt

xk
k2

∥∥∥ ≥ 1, for all k ∈ Z \ {0},

we obtain u 6∈ Lp2π(R, X). A contradiction. Thus, we conclude that (ikM − (1 + ak)A)−1

is a bounded operator for all k ∈ Z, and therefore ik ∈ ρM,ã(A) for all k ∈ Z.
Using the Closed Graph Theorem, we have that there exist a constant C > 0 indepen-

dent of f ∈ Lp2π(R;X) such that

||(Mu)′||Lp + ||a∗̇Au||Lp + ||Au||Lp ≤ C||f ||Lp .

Note that for f(t) = eitky, y ∈ X, the solution u of (3.1) is given by u(t) = (ikM − (1 +
ak)A)−1eikty. Hence,

||ikM(ikM − (1 + ak)A)−1y|| ≤ C||y||.

We obtain that for k ∈ Z, ikM(ikM − (1 + ak)A)−1 is a bounded operator. Let f ∈
Lp2π(R, X), by hypothesis, there exist u ∈ H1,p

per,M(R; [D(M)]) ∩ Lp2π(R; [D(A)]) such that
u(t) ∈ D(A) and (Mu)′(t) = Au(t) + (a∗̇Au)(t) + f(t). Taking Fourier transform on
both sides, and using that (ikM − (1 + ak)A) is invertible, we have û(k) ∈ D(A) and

û(k) = (ikM − (1 + ak)A)−1f̂(k). Now, since u ∈ H1,p
per,M(R; [D(M)]) and by definition of

H1,p
per,M(R; [D(M)]), there exist v ∈ Lp2π(R, X) such that v̂(k) = ikMû(k) for all k ∈ Z.

Therefore, we have v̂(k) = ikMû(k) = ikM(ikM − (1 + ak)A)−1f̂(k).
(ii) ⇒ (i). Define Mk = ikM(ikM − (1 + ak)A)−1 and Nk = (ikM − (1 + ak)A)−1.

Suppose that {ik}k∈Z ⊂ ρM,ã(A) and {Mk}k∈Z is an Lp-multiplier. For f ∈ Lp2π(R, X)

there exist u ∈ Lp2π(R, X) such that û(k) = ikM(ikM − (1 + ak)A)−1f̂(k), for all k ∈ Z.
The identity I = Mk − (1 + ak)ANk imply that

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k)

= (I + (1 + ak)ANk)f̂(k).

So, we obtain ̂(u− f)(k) = (1 + ak)ANkf̂(k). By Lemma 3.1, the sequence { 1
1+ak

I}k∈Z
is an Lp-multiplier. Thus, for u − f ∈ Lp2π(R, X) there exists v ∈ Lp2π(R, X) such that

v̂(k) = 1
1+ak

̂(u− f)(k) = ANkf̂(k). Since that 0 ∈ ρM,ã(A) we obtain that A−1 ∈ B(X),
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and therefore w := A−1v ∈ Lp2π(R, X) and ŵ(k) = Nkf̂(k). Hence ikMŵ(k) − (1 +

akA)ŵ(k) = f̂(k). Now, observe that for all k ∈ Z, we have

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k) = ikMŵ(k).

Thus w ∈ H1,p
per,M(R, [D(M)])∩Lp2π(R; [D(A)]). Moreover Mw(0) = Mw(2π), since w(0) =

w(2π) and w(t) ∈ D(A). Since A and M are closed operators and (̂Mw)′(k) = ikMŵ(k) =

(1 + ak)Aŵ(k) + f̂(k), for all k ∈ Z, one has (Mw)′(t) = Aw(t) + (a∗̇Au)(t) + f(t) a.e. by
Lemmas 2.6 and 2.7. Thus, we conclude that w is a strong Lp-solution of (3.1).

Finally, to see the uniqueness, let u ∈ H1,p
per,M(R, [D(M)]) ∩ Lp2π(R, [D(A)]) such that

(Mu)′(t) = Au(t) + (a∗̇Au)(t). Taking, Fourier transform on both sides we have û(k) ∈
D(A), and (ikM− (1+ak)A)û(k) = 0, for all k ∈ Z. Since (ikM− (1+ak)A) is invertible
for all k ∈ Z, we obtain û(k) = 0 for all k ∈ Z, and thus u ≡ 0.

(ii)⇔ (iii). Proposition 3.2.

In the Hilbert case, we obtain a simple condition to existence and uniqueness of solutions
of (3.1). Since in Hilbert spaces the concepts of R-boundedness and boundedness are
equivalent [13], the proof of the next Corollary follows from Theorem 3.4.

Corollary 3.5. Let H be a Hilbert space, A : D(A) ⊂ H → H, and M : D(M) ⊂ H → H
closed linear operators satisfying D(A) ⊆ D(M). Suppose that the sequence {ak}k∈Z is
1-regular. Then, for 1 < p <∞, the following assertions are equivalent

(i) For every f ∈ Lp2π(R, H), there exists a unique strong Lp-solution of (3.1);
(ii) {ik}k∈Z ⊂ ρM,ã(A) and sup

k∈Z
||ikM(ikM − (1 + ak)A)−1|| <∞.

Note that the solution u(·) given in Theorem 3.4 satisfies the following maximal regu-
larity property.

Corollary 3.6. In the context of Theorem 3.4, if condition (iii) is fulfilled, we have
(Mu)′, Au, a∗̇Au ∈ Lp2π(R, X). Moreover, there exists a constant C > 0 independent of
f ∈ Lp2π(R;X) such that

(3.3) ||(Mu)′||Lp + ||Au||Lp + ||a∗̇Au||Lp ≤ C||f ||Lp .

Remark 3.7.

The Fejer’s Theorem (see [3, Proposition 1.1]) can be used to construct the solution
u given in the Theorem 3.4. More precisely, if Mk = ikM(ikM − (1 + ak)A)−1 satisfies
the condition (ii) or (iii) in the Theorem 3.4, then for f ∈ Lp2π(R, X), the solution
u ∈ Lp2π(R, X) of (3.1) is given by

u(·) = lim
n→∞

1

n+ 1

n∑
m=0

m∑
k=−m

ek ⊗Mkf̂(k),

where ek(t) := eikt, t ∈ R and the convergence holds in Lp2π(R, X).
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4. Maximal Regularity on Hölder and Besov Spaces

In this section, we formulate analogous theorems to the above section, in the context
of Hölder and Besov Spaces.

Besov spaces form one class of function spaces that are of special interest. The relatively
complicated definition is recompensed by useful applications to differential equations (see
[2] for a concrete model).

We consider solutions to equation (3.1) in Bs
p,q((0, 2π);X), the vector-valued periodic

Besov spaces for 1 ≤ p ≤ ∞, s > 0. Is remarkable that in this case, there are no geometrical
conditions on the Banach space X. For the definition and main properties of these spaces
we refer to [4] or [19]. For the scalar case, see [12], [24]. Contrary to the Lp case,
the multiplier theorems established for vector-valued Besov spaces are valid for arbitrary
Banach spaces X; see [1], [4] and [17]. Note also that, for 0 < s < 1, Bs

∞,∞ is the the
usual Hölder space Cs. We summarize some useful properties of Bs

p,q((0, 2π);X). See [4,
Section 2] for a proof.

(i) Bs
p,q((0, 2π);X) is a Banach space;

(ii) If s > 0, then Bs
p,q((0, 2π);X) ↪→ Lp((0, 2π);X), and the natural injection from

Bs
p,q((0, 2π);X) into Lp((0, 2π);X) is a continuos linear operator;

(iii) Let s > 0. Then f ∈ Bs+1
p,q ((0, 2π);X) if and only if f is differentiable a.e. and

f ′ ∈ Bs
p,q((0, 2π);X).

We begin with the definition of operator valued Fourier multipliers in the context of
periodic Besov spaces.

Definition 4.8. Let 1 ≤ p, q ≤ ∞, s > 0. A sequence {Mk}k∈Z ⊂ B(X, Y ) is a Bs
p,q-

multiplier if for each f ∈ Bs
p,q((0, 2π);X) there exists a function g ∈ Bs

p,q((0, 2π);Y ) such
that

ĝ(k) = Mkf̂(k), k ∈ Z.
Definition 4.9. [20] We say that {Mk}k∈Z ⊂ B(X, Y ) satisfies the Marcinkiewicz condi-
tion of order 2 if

sup
k∈Z
||Mk|| <∞, sup

k∈Z
||k(Mk+1 −Mk)|| <∞,(4.4)

sup
k∈Z
||k2(Mk+1 − 2Mk +Mk−1)|| <∞.(4.5)

We recall the following operator-valued Fourier multiplier theorem on Besov spaces.

Theorem 4.10. [4] Let X, Y be Banach spaces and let {Mk}k∈Z ⊆ B(X, Y ) be a M-
bounded sequence. Then for 1 ≤ p, q ≤ ∞, s ∈ R, {Mk}k∈Z is an Bs

p,q-multiplier.

The following Proposition is the analogous of the Proposition 3.2.

Proposition 4.11. Let A : D(A) ⊆ X → X, M : D(M) ⊆ X → X be linear closed
operators on a Banach space X. Suppose that D(A) ⊆ D(M) and the sequence {ak}k∈Z
is 2-regular. Then, the following assertions are equivalent
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(i) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is an Bs
p,q-multiplier for

1 ≤ p, q ≤ ∞;
(ii) {ik}k∈Z ⊂ ρM,ã(A) and sup

k∈Z
||ikM(ikM − (1 + ak)A)−1|| <∞.

Proof. (i)⇒ (ii). Follows the same lines as the proof in [18, Proposition 3.4]. (ii)⇒ (i)
For k ∈ Z, define Mk = ikM(ikM − (1 + ak)A)−1 and Nk = (ikM − (1 + ak)A)−1. From
the identity (3.2) we obtain:

(4.6) sup
k∈Z
||k(Mk+1 −Mk)|| <∞,

proving (4.4). To verify (4.5), note that:
k2[Mk+1 − 2Mk +Mk−1] =

= ik2M
[
(k + 1)Nk+1 − 2kNk + (k − 1)Nk−1

]
= ik2MNk+1

[
(k + 1)N−1

k − 2kN−1
k+1 + (k − 1)N−1

k+1Nk−1N
−1
k

]
Nk

= ik2MNk+1

[
(k + 1)N−1

k − 2k
[
(ikM − (1 + ak)A)− (ak+1 − ak)A+ iM

]
+

(k − 1)
[
(i(k − 1)M − (1 + ak−1)A) + 2iM − (ak+1 − ak−1)A

]
Nk−1N

−1
k

]
Nk

= ik2MNk+1

[
(k + 1)N−1

k − 2kN−1
k + 2k(ak+1 − ak)A− 2ikM +[

(k − 1)N−1
k−1 + 2i(k − 1)M − (k − 1)(ak+1 − ak−1)A

]
Nk−1N

−1
k

]
Nk

= ik2MNk+1

[
(k + 1)I − 2kI + 2k(ak+1 − ak)ANk − 2ikMNk +[

(k − 1)I + 2i(k − 1)MNk−1 − (k − 1)(ak+1 − ak−1)ANk−1

]]
= ik2MNk+1

[
2k(ak+1 − ak)ANk − 2(Mk −Mk−1)− (k − 1)(ak+1 − ak−1)ANk−1

]
= ikMNk+1

[
2k2(ak+1 − ak)ANk − 2k(Mk −Mk−1)−

k(k − 1)(ak+1 − ak−1)ANk−1

]
= ikMNk+1

[
2k2 (ak+1 − ak)

1 + ak
(Mk − I)− 2k(Mk −Mk−1)−

k(k − 1)
(ak+1 − ak−1)

1 + ak−1

(Mk−1 − I)
]
.

Using the identities,

2k2(ak+1 − ak) = k2(ak+1 − 2ak + ak−1) + k2(ak+1 − ak−1),

and
k(k − 1)(ak+1 − ak−1) = k2(ak+1 − ak−1)− k(ak+1 − ak−1),

we obtain
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2k2 (ak+1 − ak)
1 + ak

[Mk − I]− k(k − 1)
(ak+1 − ak−1)

1 + ak−1

[Mk−1 − I] =

= k2 (ak+1 − 2ak + ak−1)

1 + ak
[Mk − I] + k2 (ak+1 − ak−1)

1 + ak
·

·
[(Mk −Mk−1) + (ak − ak−1)I + ak−1Mk − akMk−1

1 + ak−1

]
+ k

(ak+1 − ak−1)

1 + ak−1

[Mk−1 − I]

= k2 (ak+1 − 2ak + ak−1)

1 + ak
[Mk − I] + k

(ak+1 − ak−1)

1 + ak

[ 1

1 + ak−1

k(Mk −Mk−1)

+k
(ak − ak−1)

1 + ak−1

I +
k

1 + ak−1

[ak−1Mk − akMk−1]
]

+ k
(ak+1 − ak−1)

1 + ak−1

[Mk−1 − I].

Since the identities

k

1 + ak−1

[
ak−1Mk − akMk−1

]
=

ak−1

1 + ak−1

k[Mk −Mk−1] + k
(ak−1 − ak)

1 + ak−1

Mk−1,

k
(ak+1 − ak−1)

1 + ak
= k

(ak+1 − ak)
1 + ak

+
k

k − 1
(k − 1)

(ak − ak−1)

ak−1

ak−1
1

1 + ak
,

k
(ak+1 − ak−1)

1 + ak−1

= k
(ak+1 − ak)

1 + ak−1

+ k
(ak − ak−1)

1 + ak−1

,

and

k[Mk −Mk−1] =
k

k − 1
(k − 1)[Mk −Mk−1],

are valid, and from the fact that {k(Mk+1−Mk)}k∈Z is bounded and {ak}k∈Z is 2-regular,
we conclude from the above identities and Remark 2.8 that,

sup
k∈Z
||k2(Mk+1 − 2Mk +Mk−1)|| <∞.(4.7)

Thus, {Mk}k∈Z, satisfies the Marcinkiewicz condition of order 2 and therefore, by Theorem
4.10, {Mk}k∈Z is an Bs

p,q-multiplier.

Lemma 4.12. Let X be a Banach space. Suppose that the sequence {ak}k∈Z is 2-regular.
Then, { 1

1+ak
I}k∈Z is an Bs

p,q-multiplier for 1 ≤ p, q ≤ ∞.

Proof. Define mk := 1
1+ak

, k ∈ Z. By Remark 2.8, the sequence {mk}k∈Z is bounded.

Moreover, {mk}k∈Z satisfies the identities,

k[mk+1 −mk] = −kak+1 − ak
1 + ak

1

1 + ak+1

,
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and

k2[mk+1 − 2mk +mk−1] = − 1

(1 + ak+1)(1 + ak)(1 + ak−1)
k2(ak+1 − 2ak + ak−1) +

2

(1 + ak+1)(1 + ak)(1 + ak−1)
k(ak − ak−1)k(ak+1 − ak)−

ak
(1 + ak+1)(1 + ak)(1 + ak−1)

k2(ak+1 − 2ak + ak−1).

Since {ak}k∈Z is 2-regular, we conclude that {mk}k∈Z satisfies the Marcinkiewicz condition
of order 2 and therefore {mk}k∈Z is an Bs

p,q-multiplier.

Definition 4.13. Let 1 ≤ p, q ≤ ∞ and s > 0. A function u ∈ Bs
p,q((0, 2π); [D(A)])

is said to be a strong Bs
p,q-solution of (3.1) if Mu ∈ Bs+1

p,q ((0, 2π);X) and equation (3.1)
holds for a.e. t ∈ (0, 2π).

The next Theorem, is the main result of this section and is the analogous version
of Theorem 3.4 in the context of Besov spaces. We remark that there are no special
conditions in the space X.

Theorem 4.14. Let 1 ≤ p, q ≤ ∞ and s > 0. Let A : D(A) ⊆ X → X, M : D(M) ⊆
X → X be linear closed operators on a Banach space X. Suppose that D(A) ⊆ D(M)
and the sequence {ak}k∈Z is 2-regular. Then, the following assertions are equivalent

(i) For every f ∈ Bs
p,q((0, 2π);X) there exist a unique strong Bs

p,q-solution of (3.1);

(ii) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is an Bs
p,q-multiplier;

(iii) {ik}k∈Z ⊂ ρM,ã(A) and supk∈Z ||ikM(ikM − (1 + ak)A)−1|| <∞.

Proof. (i) ⇒ (iii). Suppose that for every f ∈ Bs
p,q((0, 2π);X) there exist a unique

strong Bs
p,q-solution of (3.1). Fix x ∈ X and k ∈ Z. Define f(t) = eitkx. Then

f ∈ Bs
p,q((0, 2π);X). By hypothesis there exist u ∈ Bs

p,q((0, 2π); [D(A)]) with Mu ∈
Bs+1
p,q ((0, 2π);X) such that u(t) ∈ D(A) and (Mu)′(t) = Au(t) + (a∗̇Au)(t) + f(t) a.e.

t ∈ (0, 2π). By Lemma 2.7 we have ikMû(k) = Aû(k) +akAû(k) +x. Following the same
reasoning that in the proof of Theorem 3.4, we obtain that ik ∈ ρM,ã(A) for all k ∈ Z.
Let Mk := ikM(ikM − (1 + ak)A)−1. We will see that {Mk}k∈Z is bounded. Using the
Closed Graph Theorem, we have that there exist a constant C independent of f such that

||Mu||Bs+1
p,q ((0,2π);X) + ||Au||Bs

p,q((0,2π);[D(A)]) + ||a∗̇Au||Bs
p,q((0,2π);[D(A)]) ≤ C||f ||Bs

p,q((0,2π);X).

Note that for f(t) = eitkx, the solution u of (3.1) is given by u(t) = (ikM − (1 +
ak)A)−1eiktx. Hence,

sup
k∈Z
||ikM(ikM − (1 + ak)A)−1x|| ≤ C||x||.

(ii)⇒ (i). Define Mk = ikM(ikM− (1+ak)A)−1 and Nk = (ikM− (1+ak)A)−1 . Sup-
pose that {ik}k∈Z ⊂ ρM,ã(A) and {Mk}k∈Z is an Bs

p,q-multiplier. For f ∈ Bs
p,q((0, 2π);X)
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there exist u ∈ Bs
p,q((0, 2π);X) such that û(k) = ikM(ikM − (1 + ak)A)−1f̂(k), for all

k ∈ Z. The identity I = Mk − (1 + ak)ANk imply that

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k)

= (I + (1 + ak)ANk)f̂(k).

So, we obtain ̂(u− f)(k) = (1 + ak)ANkf̂(k). By Lemma 4.12, the sequence { 1
1+ak

I}k∈Z
is an Bs

p,q-multiplier. Thus, for u − f ∈ Bs
p,q((0, 2π);X) there exists v ∈ Bs

p,q((0, 2π);X)

such that v̂(k) = 1
1+ak

̂(u− f)(k) = ANkf̂(k). Since that 0 ∈ ρM,ã(A) we obtain that

A−1 ∈ B(X), and therefore w := A−1v ∈ Bs
p,q((0, 2π);X) and ŵ(k) = Nkf̂(k). Hence

ikMŵ(k)− (1 + akA)ŵ(k) = f̂(k). Observe that for all k ∈ Z, we have

û(k) = ikM(ikM − (1 + ak)A)−1f̂(k) = ikMŵ(k).

Thus, by uniqueness of Fourier coefficients, u(t) = (Mw)′(t). Since u ∈ Bs
p,q((0, 2π);X),

then (Mw)′ ∈ Bs
p,q((0, 2π);X) and therefore, Mw ∈ Bs+1

p,q ((0, 2π);X). Moreover Mw(0) =
Mw(2π), since w(0) = w(2π) and w(t) ∈ D(A).

Since A and M are closed operators and (̂Mw)′(k) = ikMŵ(k) = (1+ak)Aŵ(k)+ f̂(k),
for all k ∈ Z, one has (Mw)′(t) = Aw(t) + (a∗̇Au)(t) + f(t) a.e. by Lemmas 2.6 and 2.7.
We conclude that w ∈ Bs

p,q((0, 2π);X) is a strong Bs
p,q-solution to (3.1). Finally, the

uniqueness follows the same way as in the proof of Theorem 3.4.
(iii)⇔ (ii). Follows from Proposition 4.11.

5. Maximal Regularity on Triebel-Lizorkin Spaces

In this section, we study the existence and uniqueness of solutions to (3.1) in the context
of Triebel-Lizorkin spaces; F s

p,q((0, 2π);X), where X is a Banach space, 1 ≤ p, q ≤ ∞ and
s ∈ R. More details of theses spaces can be found it in [7] and the references therein.

The next definition and theorem are the analogous versions mentioned in the above
sections.

Definition 5.15. Let 1 ≤ p, q ≤ ∞, s ∈ R. A sequence {Mk}k∈Z ⊂ B(X, Y ) is a F s
p,q-

multiplier if for each f ∈ F s
p,q((0, 2π);X) there exists a function g ∈ F s

p,q((0, 2π);Y ) such
that

ĝ(k) = Mkf̂(k), k ∈ Z.

We recall the following result due to [7].
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Theorem 5.16. [7] Let X, Y be Banach spaces and let {Mk}k∈Z ⊆ B(X, Y ). Assume
that

sup
k∈Z
||Mk|| <∞, sup

k∈Z
||k(Mk+1 −Mk)|| <∞,(5.8)

sup
k∈Z
||k2(Mk+1 − 2Mk +Mk−1)|| <∞,(5.9)

sup
k∈Z
||k3(Mk+2 − 3Mk+1 + 3Mk −Mk−1)|| <∞,(5.10)

where 1 ≤ p <∞ and 1 ≤ q ≤ ∞, s ∈ R, {Mk}k∈Z. Then {Mk}k∈Z is an F s
p,q-multiplier.

Remark 5.17.

We remark that, if X, Y are UMD spaces in the above theorem, then the conditions
(5.8) and (5.9) are sufficient for {Mk}k∈Z to be an F s

p,q-multiplier.
The definition of solution of the equation (3.1) in the Triebel-Lizorkin spaces is the

same that in the Besov case. The proof of following theorem is similar to Theorem 4.14.
We omit the details.

Theorem 5.18. Let 1 ≤ p, q ≤ ∞ and s > 0. Let A : D(A) ⊆ X → X, M : D(M) ⊆
X → X be linear closed operators on a Banach space X. Suppose that D(A) ⊆ D(M)
and the sequence {ak}k∈Z is 3-regular. Then, the following assertions are equivalent

(i) For every f ∈ F s
p,q((0, 2π);X) there exist a unique strong F s

p,q-solution of (3.1);

(ii) {ik}k∈Z ⊂ ρM,ã(A) and {ikM(ikM − (1 + ak)A)−1}k∈Z is an F s
p,q-multiplier;

(iii) {ik}k∈Z ⊂ ρM,ã(A) and supk∈Z ||ikM(ikM − (1 + ak)A)−1|| <∞.

6. Applications

We conclude the paper, with some applications of the above results.

Example 6.19.

Let us consider the boundary value problem

∂(m(x)u(t, x))

∂t
−∆u =

∫ t

−∞
a(t− s)∆u(s, x)ds+ f(t, x), in [0, 2π]× Ω(6.11)

u = 0, in [0, 2π]× ∂Ω,(6.12)

m(x)u(0, x) = m(x)u(2π, x) in Ω,(6.13)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, m(x) ≥ 0 is a given
measurable bounded function on Ω and f is a function on [0, 2π]× Ω.

Let M be the multiplication operator by m. If we take X = H−1(Ω) then by [5, p.38]
(see also references therein), we have that there exists a constant c > 0 such that

||M(zM −∆)−1|| ≤ c

1 + |z|
,
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whenever Re(z) ≥ −c(1 + |Im(z)|). Thus, the inequality

||ikM(ikM − ((1 + ak)∆)−1|| = |k|
|1 + ak|

∥∥∥∥∥M
(

ik

1 + ak
M −∆

)−1
∥∥∥∥∥ ≤ c,

holds, if Re
(

ik
1+ak

)
≥ −c(1 + |Im

(
ik

1+ak

)
|), for all k ∈ Z, that is, if

(6.14) kβk ≥ −c((1 + αk)
2 + β2

k + |k(1 + αk)|),

is valid for all k ∈ Z, where αk and βk denotes the real and imaginary part of ak,

respectively. In particular, if a(t) := tb−1

Γ(b)
, with b an even integer, then one can check that

{ak}k∈Z is 2-regular and βk = 0 for all k ∈ Z, thus the inequality (6.14) holds. Therefore,
by Theorem 4.14 (or Corollary 3.5), we conclude that that for all f ∈ Lp2π(R, H−1(Ω))
there exists a unique solution for (6.11)-(6.12).

Example 6.20.

Consider, for t ∈ [0, 2π] and x ∈ [0, π], the problem

∂

∂t

( ∂2

∂x2
+ 1
)
u(t, x) = −b ∂

2

∂x2
u(t, x)− cu(t, x) +(6.15) ∫ t

−∞
a(t− s)

(
b
∂2

∂x2
+ c
)
u(s, x)ds+ f(t, x)(6.16)

u(t, 0) = u(t, π) =
∂2

∂x2
u(t, 0) =

∂2

∂x2
u(t, π) = 0(6.17) ( ∂2

∂x2
+ 1
)
u(0, x) =

( ∂2

∂x2
+ 1
)
u(2π, x),(6.18)

where b is positive constant and −2b < c < 4b. If we take X = C0([0, π]) = {u ∈
C([0, π]) : u(0) = u(π)} and K the realization of ∂2

∂x2
with domain

D(K) = {u ∈ C2([0, π]) : u(0) = u(π) =
∂2

∂x2
u(0) =

∂2

∂x2
u(π) = 0},

then we take M = K + I, A = bM + (c− b)I. By [5, p.39, Ex.1.2] we have that:

||M(zM − A)−1|| ≤ d

1 + |z|
for all Re(z) ≥ −d(1 + |Im(z)|), and d being a suitable positive constant. Therefore, as
in the Example 6.20, if for all k ∈ Z, the inequality

(6.19) kβk ≥ −d((αk − 1)2 + β2
k + |k(αk − 1)|),

is valid, then for all f ∈ Bs
p,q((0, 2π), C0([0, π])), s > 0, 1 ≤ p, q ≤ ∞, by Theorem 4.14,

we conclude that the problem (6.15)-(6.18) has a unique strong solution u with regularity
∂2u
∂x2
∈ Bs

p,q((0, 2π), C0([0, π])). In particular, if a(t) := eγt, where γ ∈ R, we can check that
{ak}k∈Z is 2-regular and the inequality (6.19) holds with d = 1.
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