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Abstract. Let A and M be closed linear operators defined on a complex Banach space
X. Using operator-valued Fourier multipliers theorems, we obtain necessary and sufficient
conditions to guarantee existence and uniqueness of periodic solutions to the equation
d
dt (Mu(t)) = Au(t) + f(t), in terms of either boundedness or R-boundedness of the
modified resolvent operator determined by the equation. Our results are obtained in the
scales of periodic Besov and periodic Lebesgue vector-valued spaces.

1. Introduction

We are concerned with the regularity of solutions to the equation

(1.1)
d

dt
(Mu(t)) = Au(t) + f(t), 0 ≤ t ≤ 2π,

where (A,D(A)) and (M,D(M)) are (unbounded) closed linear operators on a Banach
space X, with D(A) ⊆ D(M). The model (1.1), in the case that A = ∆ is the Laplacian
and M = m is the multiplication operator by a function m(x), was first considered by
Carroll and Showalter [9] and has been recently studied by Marinoschi [21]. This model
describes, for example, the infiltration of water in unsaturated porous media, in which
saturation might occur. The function m(x) characterizes the porosity of the nonhomo-
geneous medium, while the fact that m is zero indicates the existence of impermeable
intrusions in the soil. A study of solutions for this model, with m(x) = 1 and periodic
initial conditions was made in [22] in case of a nonlinear convection, in connection with
some results given in [17]. An interesting analysis of periodic solutions to a nonlinear
model consisting in a degenerate diffusion equation of the form (1.1) with homogeneous
Dirichlet boundary conditions, where A is a multivalued linear operator, has been given
recently in the paper [14].

A detailed study of linear abstract degenerate differential equations, using both the
semigroups generated by multivalued (linear) operators and extensions of the operational
method from Da Prato and Grisvard has been described in the monograph [13].
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Regularity of solutions in various vector-valued function spaces for the abstract equation
(1.1) with periodic initial conditions

(1.2) Mu(0) = Mu(2π),

using the sum method have been studied in [4]. The obtained results gives sufficient
conditions for periodicity, but leaves as an open problem to characterize the maximal
regularity in terms of hypothesis of the modified resolvent operator (λM − A)−1 of the
operators M and A.

On the other hand, Arendt and Bu [2], using operator-valued Fourier multiplier the-
orems, have derived spectral characterizations of maximal regularity in Lebesgue spaces
for the equation (1.1) with M = I, the identity operator, and periodic initial conditions.
Similar characterizations were then obtained for the scale of Besov spaces [3] and subse-
quently, the scale of Triebel-Lizorkin [6] spaces. See also [20] and references therein. This
connection motivates the question whether it is possible to obtain a similar characteriza-
tion for the problem (1.1)-(1.2).

After some preliminaries in the first section, and under some kind of geometrical as-
sumption on the Banach space X, we are able to characterize in Section 2 the uniqueness
and existence of a strong Lp-solution for the problem (1.1)-(1.2) solely in terms of a prop-
erty of boundedness for the sequence of operators ikM(ikM − A)−1. We remark that no
additional assumption on the operator A is required. In Section 3, we prove a characteriza-
tion is the context of Besov spaces. We notice that in this case an additional hypothesis on
X is not longer required. In the particular case of Hölder spaces Cs((0, 2π);X), 0 < s < 1,
we obtain that the following assertions are equivalent in general Banach spaces, provided
D(A) ⊂ D(M):

(1) ikM − A is invertible for all k ∈ Z and supk∈Z ||ikM(ikM − A)−1|| <∞.
(2) For every f ∈ Cs((0, 2π);X) there exist a unique function u ∈ Cs((0, 2π);D(A))

such that Mu ∈ Cs+1((0, 2π);X) and (1.1)-(1.2) holds for a.e. t ∈ [0, 2π].

We remark that this result extends and improves [4, Theorem 2.1]. Finally, some concrete
examples are examined.

2. Preliminaries

Let X, Y be Banach spaces. We denote by B(X, Y ) be the space of all bounded linear
operators from X to Y . When X = Y , we write simply B(X). For a linear operator A
on X, we denote domain by D(A) and its resolvent set by ρ(A). By [D(A)] we denote the
domain of A equipped with the graph norm.

A Banach space X is said to be UMD, if the Hilbert transform is bounded on Lp(R, X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈
S(R, X), the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1

π
PV (

1

t
) ∗ f.
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These spaces are also called HT spaces. It is a well known that the set of Banach spaces
of class HT coincides with the class of UMD spaces. This has been shown by Bourgain
[5] and Burkholder [7].

Definition 2.1. Let X and Y be Banach spaces. A family of operators T ⊂ B(X, Y )
is called R-bounded, if there is a constant C > 0 and p ∈ [1,∞) such that for each
N ∈ N, Tj ∈ T , xj ∈ X and for all independent, symmetric, {−1, 1}-valued random
variables rj on a probability space (Ω,M, µ) the inequality

(2.1) ||
N∑
j=1

rjTjxj||Lp(Ω,Y ) ≤ C||
N∑
j=1

rjxj||Lp(Ω,X)

is valid. The smallest such C is called R-bound of T , we denote it by Rp(T ).

We remark that large classes of classical operators are R-bounded (cf. [15] and refer-
ences therein). Hence, this assumption is not too restrictive for the applications that we
consider in this article.

Remark 2.2.

Several properties of R-bounded families can be founded in the recent monograph of
Denk-Hieber-Prüss [10]. For the reader’s convenience, we summarize here from [10, Sec-
tion 3] some results.

(a) If T ⊂ B(X, Y ) is R-bounded then it is uniformly bounded, with

sup{||T || : T ∈ T } ≤ Rp(T ).

(b) The definition of R-boundedness is independent of p ∈ [1,∞).
(c) When X and Y are Hilbert spaces, T ⊂ B(X, Y ) is R-bounded if and only if T is

uniformly bounded.
(d) Let X, Y be Banach spaces and T ,S ⊂ B(X, Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}
is R-bounded as well, and Rp(T + S) ≤ Rp(T ) +Rp(S).

(e) Let X, Y, Z be Banach spaces, and T ⊂ B(X, Y ) and S ⊂ B(Y, Z)be R-bounded.
Then

ST = {ST : T ∈ T , S ∈ S}
is R-bounded, and Rp(ST ) ≤ Rp(S)Rp(T ).

(g) Let X, Y be Banach spaces and T ⊂ B(X, Y ) is R-bounded. If {αk}k∈Z is a bounded
sequence, then {αkT : T ∈ T } is R-bounded.

Given 1 ≤ p < ∞, we denote by Lp2π(R, X) the space of all 2π-periodic Bochner
measurable X-valued functions f , such that the restriction of f to [0, 2π] is p-integrable.

For a function f ∈ L1
2π(R, X) we denote by f̂(k), k ∈ Z the k-th Fourier coefficient of

f :

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt,
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for all k ∈ Z and t ∈ R.
We need the following Lemma.

Lemma 2.3. [2] Let f, g ∈ Lp2π(R;X), where 1 ≤ p <∞ and A is a closed operator on a
Banach space X. Then, the following are equivalent.

(i) f(t) ∈ D(A) and Af(t) = g(t), a.e.

(ii) f̂(k) ∈ D(A) and Af̂(k) = ĝ(k), for all k ∈ Z.

The proof of the following Lemma is analogue to [2, Lemma 2.1] and therefore omitted.

Lemma 2.4. Let M be a closed operator, u ∈ Lp2π(R; [D(M)]) and u′ ∈ Lp2π(R;X)for
1 ≤ p <∞. The following assertions are equivalent,

(i)

∫ 2π

0

(Mu)′(t)dt = 0 and there exist x ∈ X such that Mu(t) = x +

∫ t

0

(Mu)′(s)ds

a.e. on [0, 2π];

(ii) (̂Mu)′(k) = ikMû(k) for all k ∈ Z.

We also recall the following definition from [2].

Definition 2.5. For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is an
Lp-multiplier if, for each f ∈ Lp2π(R, X), there exists u ∈ Lp2π(R, Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

We finally recall the following results.

Proposition 2.6. [2] Let X be a Banach space and {Mk}k∈Z be an Lp-multiplier, where
1 ≤ p <∞. Then, the set {Mk : k ∈ Z} is R-bounded.

Theorem 2.7. [2] Let X, Y be UMD spaces and let {Mk}k∈Z ⊆ B(X, Y ). If the sets
{Mk}k∈Z and {k(Mk+1 −Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an Lp-multiplier for
1 < p <∞.

3. A characterization on vector-valued Lebesgue spaces

We consider in this section the degenerate equation

(3.1)


d

dt
(Mu(t)) = Au(t) + f(t), 0 ≤ t ≤ 2π,

Mu(0) = Mu(2π),

where A : D(A) ⊆ X → X and M : D(M) ⊆ X → X are closed linear operators,
D(A) ⊆ D(M), and f ∈ Lp2π(R, X), p ≥ 1. For a given closed operator M , and 1 ≤ p <∞,
we define the set

H1,p
per,M(R;D(M)) = {u ∈ Lp2π(R;D(M)) : ∃v ∈ Lp2π(R;X), v̂(k) = ikMû(k) for all k ∈ Z}.
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If M = I, we denote H1,p
per(R;X); see [2]. Next, we introduce the following definition.

Definition 3.1. We say that a function u ∈ H1,p
per,M(R; [D(M)]) is a strong Lp-solution

of (3.1) if u(t) ∈ D(A) and equation (3.1) holds for a.e. t ∈ [0, 2π].

We begin with the following result.

Proposition 3.2. Let A,M be are linear closed operators defined on a UMD space X.
Suppose that ikM −A is invertible for all k ∈ Z. Then the following assertions are equiv-
alent

(i) {ikM(ikM − A)−1}k∈Z is an Lp-multiplier for 1 < p <∞;

(ii) {ikM(ikM − A)−1}k∈Z is R-bounded.

Proof. Define Mk = ikM(ikM − A)−1. By Proposition 2.6 it follows that (i) implies
(ii). Conversely, by Theorem 2.7 is sufficient to prove that the set {k(Mk+1 −Mk)}k∈Z is
R-bounded. In fact, we note the following
(3.2)

k[Mk+1 −Mk] = k
[
i(k + 1)M [i(k + 1)M − A]−1 − ikM [ikM − A]−1

]
= kM

[
i(k + 1)[i(k + 1)M − A]−1 − ik[ikM − A]−1

]
= kM(i(k + 1)M − A)−1

[
i(k + 1)(ikM − A)− ik(i(k + 1)M − A)

]
×

×(ikM − A)−1

= kM(i(k + 1)M − A)−1[−iA](ikM − A)−1

= −ikM(i(k + 1)M − A)−1
[
ikM(ikM − A)−1 − I

]
,

where in the last equality we use the identity A(ikM − A)−1 = ikM(ikM − A)−1 − I.
Therefore, since the products and sums of R-bounded sequences is bounded, by (d) and
(g) in Remark 2.2, the proof is finished.

The following is one of the main results in this paper. It corresponds to an extension
of [2, Theorem 2.3] in case M = I.

Theorem 3.3. Let X be a UMD space and A : D(A) ⊆ X → X, M : D(M) ⊆ X → X
linear closed operators. Suppose that D(A) ⊆ D(M). Then, the following assertions are
equivalent.

(i) For every f ∈ Lp2π(R, X), there exist a unique strong Lp-solution of (3.1);

(ii) ikM −A is invertible for all k ∈ Z and {ikM(ikM −A)−1}k∈Z is an Lp-multiplier
for 1 < p <∞;

(iii) ikM − A is invertible for all k ∈ Z and {ikM(ikM − A)−1}k∈Z is R-bounded.
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Proof. (i)⇒ (ii) Follows the same lines of [2, Theorem 2.3]. Let k ∈ Z and y ∈ X. Define
f(t) = eikty. By hypothesis, there exists u ∈ H1,p

per,M(R, [D(M)]) such that u(t) ∈ D(A) and
(Mu)′(t) = Au(t) + f(t). Taking Fourier transform on both sides, we have û(k) ∈ D(A)
and,

ikMû(k) = Aû(k) + f̂(k)

= Aû(k) + y.

Thus (ikM − A) is surjective for all k ∈ Z. Let x ∈ D(A). If (ikM − A)x = 0, then
u(t) = eiktx defines a periodic solution of (3.1). In fact, since u(t) = eiktx we obtain
(Mu)′(t) − Au(t) = ikeiktMx − eiktAx = eikt(ikM − A)x = 0. Hence u ≡ 0 by the
assumption of uniqueness, and thus x = 0. Therefore, (ikM −A) is bijective. We will see
that {ikM(ikM − A)−1}k∈Z is an Lp-multiplier.

Let f ∈ Lp2π(R, X), by hypothesis, there exist u ∈ H1,p
per,M(R, [D(M)]) such that u(t) ∈

D(A) and (Mu)′(t) = Au(t) + f(t). Taking Fourier transform on both sides, and using

that (ikM − A) is invertible, we have û(k) ∈ D(A) and û(k) = (ikM − A)−1f̂(k). Now,
since u ∈ H1,p

per,M(R, [D(M)]) and by definition of H1,p
per,M(R, [D(M)]), there exist v ∈

Lp2π(R, X) such that v̂(k) = ikMû(k) for all k ∈ Z. Therefore, we have v̂(k) = ikMû(k) =

ikM(ikM − A)−1f̂(k).
(ii)⇒ (i) Define Mk = ikM(ikM−A)−1 and suppose that {Mk}k∈Z is an Lp-multiplier.

Let f ∈ Lp2π(R, X), then, there exist u ∈ Lp2π(R, X) such that û(k) = ikM(ikM −
A)−1f̂(k), for all k ∈ Z. Now by the identity I = ikM(ikM − A)−1 − A(ikM − A)−1 it
follows that

û(k) = ikM(ikM − A)−1f̂(k)

= (I + A(ikM − A)−1)f̂(k).

So, we obtain ̂(u− f)(k) = A(ikM − A)−1f̂(k). Putting v := u − f , we have v ∈
Lp2π(R, X), and v̂(k) = A(ikM − A)−1f̂(k). Observe that A−1 is an isomorphism of
X onto D(A) (seen as a Banach space with the graph norm). Therefore, A−1v̂(k) =

(ikM − A)−1f̂(k). Let w := A−1v. Since A−1 is a bounded operator, we obtain that

w ∈ Lp2π(R, X), ŵ(k) ∈ D(A) and ŵ(k) = (ikM − A)−1f̂(k). So,

ikMŵ(k)− Aŵ(k) = ikM(ikM − A)−1f̂(k)− A(ikM − A)−1f̂(k)

= (ikM − A)(ikM − A)−1f̂(k)

= f̂(k).

Now, observe that we have

û(k) = ikM(ikM − A)−1f̂(k) = ikMŵ(k),

for all k ∈ Z. Therefore, w ∈ H1,p
per,M(R, [D(M)]). Moreover Mw(0) = Mw(2π), since

w(0) = w(2π) and w(t) ∈ D(A). Since A and M are closed operators and (̂Mw)′(t) =
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ikMŵ(k) = Aŵ(k) + f̂(k), for all k ∈ Z, one has (Mw)′(t) = Aw(t) + f(t) by Lemmas
2.3, 2.4 and the uniqueness of Fourier coefficients. So w is a strong Lp-solution of 3.1.
Now, to see the uniqueness, let u ∈ H1,p

per,M(R, [D(M)]) such that (Mu)′(t) = Au(t). Then
û(k) ∈ D(A), and (ikM −A)û(k) = 0, for all k ∈ Z. Since (ikM −A) is invertible for all
k ∈ Z, we obtain û(k) = 0 for all k ∈ Z, and thus u ≡ 0.

(ii) ⇔ (iii) Proposition 3.2.

Corollary 3.4. Let H be a Hilbert space, A : D(A) ⊂ H → H, and M : D(M) ⊂ H → H
closed linear operators satisfying D(A) ⊆ D(M). Then, for 1 < p < ∞, the following
assertions are equivalent:

(i) For every f ∈ Lp2π(R, H), there exists a unique strong Lp-solution of (3.1);

(ii) ikM − A is invertible for all k ∈ Z, and sup
k
||ikM(ikM − A)−1|| <∞.

Proof. Follows from Theorem 3.3, and the fact that in Hilbert spaces the concepts of
R-boundedness and boundedness are equivalent [10].

4. Maximal Regularity on the scale of vector-valued Besov Spaces

In this section we consider solutions in vector-valued periodic Besov spacesBs
p,q((0, 2π);X),

1 ≤ p ≤ ∞, s > 0. For the definition and main properties of these spaces we refer to [3]
or [19]. For the scalar case, see [8], [24]. Contrary to the Lp case, the multiplier theorems
established so far are valid for arbitrary Banach spaces; see [1], [3] and [16]. Special cases
here allow one to treat Hölder-Zygmund spaces. Specifically, we have Bs

∞,∞ = Cs for
s > 0. Moreover, if 0 < s < 1 then Bs

∞,∞ is just the usual Hölder space Cs. We summarize
some useful properties of Bs

p,q((0, 2π);X). See [3, Section 2] for a proof.

(i) Bs
p,q((0, 2π);X) is a Banach space;

(ii) If s > 0, then Bs
p,q((0, 2π);X) ↪→ Lp((0, 2π);X), and the natural injection from

Bs
p,q((0, 2π);X) into Lp((0, 2π);X) is a continuos linear operator;

(iii) Let s > 0. Then f ∈ Bs+1
p,q ((0, 2π);X) if and only if f is differentiable a.e. and

f ′ ∈ Bs
p,q((0, 2π);X).

We begin with the definition of operator valued Fourier multipliers in the context of
periodic Besov spaces.

Definition 4.5. Let 1 ≤ p ≤ ∞. A sequence {Mk}k∈Z ⊂ B(X, Y ) is a Bs
p,q-multiplier if

for each f ∈ Bs
p,q((0, 2π);X) there exists a function g ∈ Bs

p,q((0, 2π);Y ) such that

Mkf̂(k) = ĝ(k), k ∈ Z.

The following concept was studied in [20].
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Definition 4.6. We say that {Mk}k∈Z ⊂ B(X, Y ) is M-bounded if

sup
k
||Mk|| <∞, sup

k
||k(Mk+1 −Mk)|| <∞,(4.3)

sup
k
||k2(Mk+1 − 2Mk +Mk−1)|| <∞.(4.4)

We recall the following operator-valued Fourier multiplier theorem on Besov spaces.

Theorem 4.7. [3] Let X, Y be Banach spaces and let {Mk}k∈Z ⊆ B(X, Y ) be a M-
bounded sequence. Then for 1 ≤ p, q ≤ ∞, s ∈ R, {Mk}k∈Z is an Bs

p,q-multiplier.

We next prove the following result, which is the analogue to Proposition 3.2 .

Proposition 4.8. Let A : D(A) ⊆ X → X, M : D(M) ⊆ X → X be linear closed
operators. Suppose that D(A) ⊆ D(M) and ikM − A is invertible for all k ∈ Z. Then
the following assertions are equivalent.

(i) {ikM(ikM − A)−1}k∈Z is an Bs
p,q-multiplier for 1 ≤ p ≤ ∞, s > 0;

(ii) supk∈Z ||ikM(ikM − A)−1|| <∞.

Proof. (i) ⇒ (ii). Follows the same lines as the proof in [18, Proposition 3.4].
(ii) ⇒ (i) Define Mk = ikM(ikM − A)−1. From the identity (3.2) we obtain:

(4.5) sup
k
||k(Mk+1 −Mk)|| <∞,

proving (4.3). To verify (4.4), we notice:

k2[Mk+1 − 2Mk +Mk−1] =

= k2
[
i(k + 1)M [i(k + 1)M − A]−1 − 2ikM [ikM − A]−1 + i(k − 1)M [i(k − 1)M − A]−1

]
= k2M [i(k + 1)M − A]−1

[
i(k + 1)[ikM − A]− 2ik[i(k + 1)M − A]

+ i(k − 1)[i(k + 1)M − A][i(k − 1)M − A]−1[ikM − A]
]
[ikM − A]−1

= k2M [i(k + 1)M − A]−1
[
i(k + 1)[ikM − A]− 2ik[ikM − A]− 2ikiM

+ i(k − 1)[i(k − 1)M − A][i(k − 1)M − A]−1[ikM − A]

+ 2i · i(k − 1)M [i(k − 1)M − A]−1[ikM − A]
]
[ikM − A]−1



PERIODIC SOLUTIONS 9

= k2M [i(k + 1)M − A]−1
[(
i(k + 1)− 2ik + i(k − 1) + 2iMk−1

)
[ikM − A]− 2ikiM

]
×

×[ikM − A]−1

= k2M [i(k + 1)M − A]−1
[
2iMk−1[ikM − A]− 2ikiM

]
[ikM − A]−1

= kM [i(k + 1)M − A]−1
[
2ikMk−1[ikM − A]− 2ikikM

]
[ikM − A]−1

= kM [i(k + 1)M − A]−1
[
2ikMk−1 · I − 2ikikM [ikM − A]−1

]
= kM [i(k + 1)M − A]−1

[
2ikMk−1 − 2ikMk

]
= kM [i(k + 1)M − A]−1

[
− 2ik(Mk −Mk−1)

]
= kM [i(k + 1)M − A]−1

[
− 2i(k − 1)(Mk −Mk−1)− 2i(Mk −Mk−1)

]
Since, we know that {k(Mk+1 − Mk)}k∈Z is bounded, and {Mk}k∈Z is bounded by

hypothesis, we conclude from the above identity that,

sup
k
||k2(Mk+1 − 2Mk +Mk−1)|| <∞.(4.6)

So, {Mk}k∈Z, is M -bounded and therefore, by Theorem 4.7, {Mk}k∈Z is an Bs
p,q-

multiplier.

Definition 4.9. Let 1 ≤ p, q ≤ ∞ and s > 0. We say that a function u ∈ Bs
p,q((0, 2π); [D(A)])

is a strong Bs
p,q-solution of (3.1) if Mu ∈ Bs+1

p,q ((0, 2π);X) and equation (3.1) holds for
a.e. t ∈ [0, 2π].

The next Theorem is the main result of this section. It extends [3, Theorem 5.1] with
M = I.

Theorem 4.10. Let 1 ≤ p, q ≤ ∞ and s > 0. Let X be a Banach space and let
A : D(A) ⊆ X → X, M : D(M) ⊆ X → X linear closed operators. Suppose that
D(A) ⊆ D(M). Then, the following assertions are equivalent,

(i) For every f ∈ Bs
p,q((0, 2π);X) there exist a unique strong Bs

p,q-solution of (3.1);

(ii) ikM−A is invertible for all k ∈ Z and {ikM(ikM−A)−1}k∈Z is an Bs
p,q-multiplier

for 1 ≤ p, q ≤ ∞;

(iii) ikM − A is invertible for all k ∈ Z and supk∈Z ||ikM(ikM − A)−1|| <∞.

Proof.
(ii)⇔ (iii). Follows from Proposition 4.8.
(i)⇒ (iii). Suppose that for every f ∈ Bs

p,q((0, 2π);X) there exist a unique strong Bs
p,q-

solution of (3.1). Fix x ∈ X and k ∈ Z. Define f(t) = eitkx. Then f ∈ Bs
p,q((0, 2π);X).

By hypothesis there exist u ∈ Bs
p,q((0, 2π); [D(A)]) with Mu ∈ Bs+1

p,q ((0, 2π);X) such that
u(t) ∈ D(A) and (Mu)′(t) = Au(t) + f(t) a.e. t ∈ [0, 2π]. By Lemma 2.4 we have
ikMû(k) = Aû(k) + x. Following the same reasoning in the proof of Theorem 3.3 we
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obtain that (ikM − A) is invertible for all k ∈ Z. Let Mk := ikM(ikM − A)−1. We will
see that {Mk}k∈Z is bounded. Using the Closed Graph Theorem, we have that there exist
a constant C independent of f such that

||Mu||Bs+1
p,q ((0,2π);X) + ||Au||Bs

p,q((0,2π);[D(A)]) ≤ C||f ||Bs
p,q((0,2π);X).

Note that for f(t) = eitkx, the solution u of (3.1) is given by u(t) = (ikM −A)−1eiktx.
Hence,

sup
k
||ikM(ikM − A)−1x|| ≤ C||x||.

(iii)⇒ (i). Suppose that (ikM−A) is invertible for all k ∈ Z and {ikM(ikM−A)−1}k∈Z
is bounded. Define Mk := ikM(ikM − A)−1 and Nk := (ikM − A)−1 for k ∈ Z. Since
{Mk}k∈Z is bounded, we have by Proposition 4.8 that {Mk}k∈Z is a Bs

p,q-multiplier. Now,
we will see that {Nk}k∈Z is a M -bounded sequence. First, note that A is an invertible
operator, and hence the identity ikM(ikM − A)−1 = A(ikM − A)−1 + I imply Nk =
A−1(Mk − I). So, supk∈Z ||Nk|| <∞. Now, observe that

k
[
Nk+1 −Nk

]
= k

[
(i(k + 1)M − A)−1 − (ikM − A)−1

]
= A−1k

[
Mk+1 −Mk].

Hence, by (4.5) we get supk∈Z ||k(Nk+1 −Nk)|| <∞. In the same way, we have

k2
[
Nk+1 − 2Nk +Nk−1

]
= k2

[
A−1Mk+1 − A−1 − 2[A−1(Mk − I)] + A−1Mk−1 − A−1

]
= A−1k2

[
Mk+1 − 2Mk +Mk−1].

Therefore, using (4.6), we obtain

sup
k
||k2(Nk+1 − 2Nk +Nk−1)|| <∞.

So, {Nk}k∈Z is a M -bounded sequence and, by Theorem 4.7, {Nk}k∈Z is an Bs
p,q-multiplier.

We conclude that {Mk}k∈Z and {Nk}k∈Z are Bs
p,q-multipliers.

Let f ∈ Bs
p,q((0, 2π);X). There exists u, v ∈ Bs

p,q((0, 2π);X) such that û(k) = ikM(ikM−
A)−1f̂(k) and v̂(k) = (ikM − A)−1f̂(k) for all k ∈ Z. So, we have ikMv̂(k) = û(k) for
all k ∈ Z. By Lemma 2.3 we obtain (Mv)′ = u a.e. Since u ∈ Bs

p,q((0, 2π);X) we

have (Mv)′ ∈ Bs
p,q((0, 2π);X), and so, Mv ∈ Bs+1

p,q ((0, 2π);X). Also, since (ikM − A)

is invertible for all k ∈ Z and v̂(k) = (ikM − A)−1f̂(k), we have v(t) ∈ D(A) and

ikMv̂(k) − f̂(k) = Av̂(k), for all k ∈ Z. So, one has (Mv)′(t) = Av(t) + f(t) a.e.
t ∈ [0, 2π] by Lemma 2.3. Uniqueness follows the same way as in the proof of Theorem
3.3.
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Remark 4.11. Note that the Besov spaces Bs
∞,∞((0, 2π);X) corresponds to the familiar

Hölder spaces Cs, if 0 < s < 1. Hence, Theorem 4.10 extends and improves Theorem 2.1
in [4] where X was considered a reflexive Banach space only.

Example 4.12.

Let us consider the periodic boundary value problem

∂(m(x)u)

∂t
−∆u = f(t, x), in [0, 2π]× Ω(4.7)

u = 0, in [0, 2π]× ∂Ω(4.8)

m(x)u(0, x) = m(x)u(2π, x) in Ω,(4.9)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, m(x) ≥ 0 is a given
measurable bounded function on Ω and f is a function on [0, 2π] × Ω. The initial value
problem m(x)u(0, x) = v0 relative to (4.7)- (4.8) has been studied in [11], [12] both in
the spaces H−1(Ω), L2(Ω) and in Lp(Ω), p > 1. The periodic problem (4.7)-(4.9) has been
studied in [4] in the spaces H−1(Ω) and L2(Ω).

Let M be the multiplication operator by m. If we take X = H−1(Ω) then by [4, p.38]
(see also references therein), we have that there exists a constant c > 0 such that

||M(zM −∆)−1|| ≤ c

1 + |z|
,

whenever Rez ≥ −c(1+ |Im(z)|). In particular, in the imaginary axis we have ||M(ikM−
∆)−1|| ≤ c

1+|k| , for all k ∈ Z. Therefore, Theorem 4.10 applies immediately, obtaining ex-

istence and uniqueness of solutions of (4.7)-(4.9) in periodic Besov spaces, complementing
the results in [4]. On the other hand, and because H−1(Ω) is a Hilbert space, Corollary 3.4
also applies, obtaining that for all f ∈ Lp2π(R, H−1(Ω)) the periodic problem (4.7)-(4.9)
has precisely one strong solution u with maximal regularity.

Example 4.13.

Consider, for t ∈ [0, 2π] and x ∈ [0, π], the problem

∂

∂t

( ∂2

∂x2
+ 1
)
u(t, x) = −a ∂

2

∂x2
u(t, x)− ku(t, x) + f(t, x)(4.10)

u(t, 0) = u(t, π) =
∂2

∂x2
u(t, 0) =

∂2

∂x2
u(t, π) = 0(4.11) ( ∂2

∂x2
+ 1
)
u(0, x) =

( ∂2

∂x2
+ 1
)
u(2π, x),(4.12)

where a is positive constant and −2a < k < 4a. If we take X = C0([0, π]) = {u ∈
C([0, π]) : u(0) = u(π)} and K the realization of ∂2

∂x2
with domain

D(K) = {u ∈ C2([0, π]) : u(0) = u(π) =
∂2

∂x2
u(0) =

∂2

∂x2
u(π) = 0},
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then we take M = K + I, A = aM + (k − a)I. By [4, p.39,Ex.1.2] we have, as in the
above example:

||M(ikM −∆)−1|| ≤ c

1 + |k|
for all k ∈ Z. Therefore, Theorem 4.10 applies, and hence for all f ∈ Bs

p,q((0, 2π),
C0([0, π])), s > 0, 1 ≤ p, q ≤ ∞ the problem (4.10)-(4.12) has a unique strong solu-

tion u with regularity ∂2u
∂x2
∈ Bs

p,q((0, 2π), C0([0, π])). In particular, because the class of
Besov spaces contains the class of Hölder spaces, our result recover and extends Example
1.2 in [4].

Remark 4.14. Following a similar method of proof, and using the operator-valued Fourier
multiplier theorem stated in [6, Theorem 3.2], an analogous result like Theorem 4.10 for
the scale of Triebel-Lizorkin spaces can be proved.
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